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Abstract. We study a functional autoregressive model for high-frequency
time series. We approach the estimation of the proposed model using a
Mixed Integer Optimisation method. The proposed model captures serial
dependence in the functional time series by including high-dimensional
curves. We illustrate our methodology on large-scale natural gas network
data. Our model provides more accurate day-ahead hourly out-of-sample
forecast of the gas in and out-flows compared to alternative prediction
models.

Keywords: Functional autoregression, forecasting, mixed-integer pro-
gramming.

1 Introduction

In the era of Big Data, large-scale time series data are observed in high dimen-
sions and frequency. Functional Autoregression based models have been popular
in modeling high-frequency time series [3,2,5]. Moreover, with the advancement
of mathematical programming methods, it has been possible to solve large-scale
real-life problems to optimality in a few seconds [1,4]. We propose to estimate
the Functional Autoregression model with a Mixed Integer Optimization method
and demonstrate its application in predicting gas flows at more than 1000 gas
nodes in the German gas transmission network. For efficient energy transmis-
sion, it has been an essential task for gas transmission operators to accurately
forecast gas flows in the network for the next 24 hours [4,5]. The results show
that our model outperforms benchmark time series models for most hours and
nodes in the network satisfying the optimal solution.
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2 Method

2.1 Functional Autoregression

Let T be the number of time period. We denote {Yt(τ)}Tt=1 as a series of T
random curves taking values in the Hilbert space H on the continuous domain
τ ∈ [0, 1]. The p lagged curves are denoted as {Yt−1(τ), . . . , Yt−p(τ)}.

We present the functional autoregression (FAR) model, proposed in [3]. In
particular, the FAR(1) is defined as:

Yt(τ) = µ(τ) +

∫ 1

0

β(τ − s)Yt−1(s)ds + ϵt(τ), (1)

where the serial dependence of the functional response on the lagged values of its
own series are measured by β(·) which are square-integral regression parameter
functions in H. The innovation function ϵt(τ) is strong H− white noise with zero
mean and finite second moment E||ϵt(τ)||2 < ∞. The norm || · || is induced by
the inner product < · > of H. We further assume that the serial dependence
is controlled by β(·). The autoregressive (AR) term controls the serial by the
bounded linear AR operators H to H, with the AR operators specified as the
regression functions β(·).

We represent the functional terms, i.e. the functional variables and the func-
tional parameters, in the basis of L2([0, 1]) given by the trigonometric functions:

Φ0 = I[0,1], Φ2k(τ) =
√

2 cos(2πkτ), Φ2k−1(τ) =
√

2 sin(2πkτ)

for k ∈ Z\{0}, which have the orthogonal properties, see details in [2]. Using the
properties, we derive the relationship equations between the Fourier coefficients
as follows:

Yt(τ) = at,0 +

∞∑
k=1

[bt,kΦ2k−1(τ) + at,kΦ2k(τ)],

µ(τ) = p0 +

∞∑
k=1

[pkΦ2k−1(τ) + qkΦ2k(τ)],

β(τ) = u0 +

∞∑
k=1

[vkΦ2k−1(τ) + ukΦ2k(τ)],

ϵt(τ) = ηt,0 +

∞∑
k=1

[ωt,kΦ2k−1(τ) + ηt,kΦ2k(τ)],

where at,0, bt,k, at,k are the Fourier coefficients for Yt(τ); p0, pk, qk are the Fourier
coefficients for µ(τ); u0, vk, uk are the coefficients for β(τ); ηt,0, ωt,k, ηt,k are for
ϵt(τ).

We approximate the functional terms as Yt,mt
(τ), µmt

(τ), βmt
(τ), ϵt,mt

(τ),
respectively, where mt is a hyperparameter for sieves, which controls the smooth-
ing degree and balance the bias and variance of the approximation on the sieves.
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The orthogonality property of complete Fourier bases creates the following rela-
tionship between the Fourier coefficients:

at,0 = p0 + u0at−1,0 + ηt,0,

bt,k = pk +
1√
2

(ukbt−1,k + ϑkat−1,k) + ωt,k, k = 1, . . . ,mt, (2)

at,k = qk +
1√
2

(ukat−1,k − ϑkbt−1,k) + ηt,k, k = 1, . . . ,mt.

Let yt ∈ RKt×1 be the Fourier coefficients of Yt,mt
(τ), where

yt = (at,0, bt,1, at,1, . . . , bt,mt
, at,mt

)⊤ ∈ RKt×1 and Kt = 2mt+1. Similarly, e⊤t ∈
RKt×1 be the Fourier coefficients of ϵt,mt

(τ), where et = (ηt,0, ωt,k, ηt,k, . . . , ωt,mt
, ηt,mt

)⊤ ∈
RKt×1.

After the projection, the FAR(1) model can be represented as:

yt = Γ0 + Γ⊤yt−1 + et, (3)

where Γ0 = (p0, p1, q1, . . . , pmt
, qmt

)⊤ ∈ RKt×1 is an unknown vector of intercept
coefficients and Γ ∈ RKt×Kt represents the unknown Fourier coefficients of the
AR operator βmt(τ) :

Γ =



u0
1√
2
u1 − 1√

2
ϑ1

1√
2
ϑ1

1√
2
u1

. . .
1√
2
umt − 1√

2
ϑmt

1√
2
ϑmt

1√
2
umt


Kt×Kt

2.2 Estimation with Mathematical Programming

For an optimal solution, we estimate the model parameters with a Mixed Integer
Programming (MIP) approach. The FAR model is estimated by minimizing the
absolut sum of errors:

min

T∑
t=2

1⊤
Kt

|et|

where et = yt − Γ0 − Γ⊤yt−1. In order to linearize the objective function, we
rewrite the absolute sum of the error as the sum of two non-negative vectors e+t
and e−t , see [4]. Then, we estimate the unknown model parameters by minimizing
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total sum of the variables in the two non-negative vectors as follows:

min

T∑
t=2

1⊤
Kt

(e+t + e−t )

s.t. yt − Γ0 − Γ⊤yt−1 = e+t − e−t for t = 2, . . . , T

Γj,j = Γj+1,j+1,where j = 2, 4, . . . ,Kt − 1,

Γj+1,j = −Γj,j+1,where j = 2, 4, . . . ,Kt − 1,

Γj+i,j+i = 0,where j = 2, 4, . . . ,Kt − 1, and 2 ≤ i ≤ Kt,

Γj,i = 0,where j < i, j = 1, 3, . . . ,Kt,

e+t , e
−
t ∈ RKt×1

≥0 , for t = 2, . . . , T.

3 Real data analysis

3.1 Data and Forecast setup

We next illustrate our proposed method with a real example. The data are col-
lected from a large-scale German gas transmission network. Our dataset contains
hourly gas in-flow and out-flow for 1029 gas nodes, including demand, supply,
and storage nodes. The hourly gas in-flow or out-flow is observed hourly for the
consecutive T=637 days from April 19 Y1 to January 16 Y3. Y1 denotes the first
year in the time series. The response (i.e., Yt(τ)) considered here is the daily gas
flow curve at day t, see Fig. 1. After omitting three nodes with all-zero flows in
the period of Y1 and Y2, we consider 1026 gas nodes for the forecast procedure.

The dataset is split into training and testing samples. Our objective is to
predict a day-ahead hourly gas flow in the network based on one-day lagged
historical curves of network gas flow. The training sample covers 365 days from
April 19, Y1 to April 18, Y2 (Labeled as T1, total of 365 days). In T1, we
optimize the model to obtain optimal parameter estimates. The rest of the total
period from April 19, Y2 to January 16, Y3, is left for testing the model (labeled
as T2, a total of 272 days). We select Kt = 15, and with a rolling window size of
365 days, we move forward one day at a time to update the parameter matrix,
and we then forecast until we reach the end of the sample. In the testing period,
the forecast performance is evaluated using an out-of-sample day-ahead hourly
forecast of gas demand and supply.

3.2 Evaluation

We measure forecast accuracy in terms of out-of-sample prediction errors. We
convert back to the original gas flow data to facilitate comparison when com-
puting the forecast accuracy. Specifically, we calculate the mean absolute error
(MAE) and the mean absolute percentage error (MAPE) for hourly day-ahead



FAR with a mixed integer optimisation method 5

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0

1

0

1

2

Fig. 1: Fourier series expansion of period one and #Basis=15 to represent a daily
gas flow {Yt(τ)}30t=1 at the largest gas node for one month. The time series values
are normalized.

forecast at each node n, n = 1, . . . , N, as

MAEh,n =
1

T2

∑
t∈T2

∣∣∣Yt,h,n − Ŷt,h,n

∣∣∣ , MAPEh,n =
1

T2

∑
t∈T2

∣∣∣∣∣Yt,h,n − Ŷt,h,n

Yt,h,n

∣∣∣∣∣ ,
where interval T2 indicates the total number of days in the test period. Ŷt,h,n is
the h−hours ahead forecast of gas flow at day t at node n.

3.3 Forecast accuracy

We demonstrate the day-ahead hourly out-of-sample forecasting results in the
gas network. Table 1 shows the median of the forecast errors, including MAE
and MAPE over 1026 gas nodes by the proposed method and the benchmark
alternative prediction methods. The considered alternative prediction models
include the Autoregressive model of lag 1 and Long short-term memory (LSTM)
model, representing deep learning model. LSTM model is built with 1 layer, 128
neurons, dropout is 0.1 and for every node it was trained with 100 epochs. In
each column, the highlighted values indicate the best-performing result. Both
median MAE and median MAPE show that the FAR model outperforms the
AR and LSTM models for most of the hours in prediction for most nodes in the
network. The weak prediction accuracy of the FAR model in the beginning (first
4 hours) and at the end of the forecast horizon (last 1-2 hours) can be explained
by the not accurate smoothing of the original time series by the Fourier series
as can be seen in Fig. 1, which leaves a room for further studies to enhance the
proposed model.
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MAE MAPE

Hour LSTM AR(1) FAR(1) LSTM AR(1) FAR(1)

1 2.56 0.11 2.62 0.41 0.02 0.36
2 2.29 0.72 2.04 0.40 0.14 0.31
3 2.20 1.12 1.89 0.42 0.22 0.32
4 2.18 1.45 1.98 0.43 0.28 0.31
5 2.16 1.69 2.16 0.45 0.35 0.35
6 2.12 1.88 2.12 0.46 0.41 0.35
7 2.09 2.05 2.09 0.44 0.45 0.36
8 2.08 2.19 2.00 0.48 0.53 0.36
9 2.07 2.31 1.88 0.48 0.59 0.36
10 1.99 2.34 1.85 0.46 0.60 0.36
11 1.96 2.31 1.83 0.46 0.60 0.35
12 1.97 2.31 1.79 0.43 0.57 0.34
13 1.98 2.26 1.75 0.44 0.54 0.33
14 1.95 2.24 1.76 0.40 0.50 0.32
15 1.90 2.25 1.75 0.39 0.52 0.32
16 1.81 2.48 1.72 0.40 0.57 0.33
17 1.77 3.34 1.60 0.47 0.86 0.38
18 1.84 3.93 1.58 0.59 1.20 0.49
19 1.88 4.05 1.65 0.63 1.32 0.59
20 1.89 4.05 1.74 0.58 1.20 0.56
21 1.89 3.99 1.85 0.57 1.21 0.57
22 1.87 3.82 1.94 0.54 1.12 0.60
23 1.75 3.20 2.30 0.46 0.81 0.58
24 2.20 2.29 2.66 0.39 0.42 0.43

Table 1: Day-ahead hourly forecast: median MAE and MAPE of gas flow pre-
diction at 1026 individual gas nodes from April 19, Y2, to January 16, Y3. The
best performance for each hour is highlighted with bold.

4 Conclusion

We propose solving the FAR model with a mathematical programming approach
for predicting day-ahead hourly time series. The real data analysis results show
that the FAR model is more accurate for long-term high-frequency forecasts than
the benchmark time series models.
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