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Abstract

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in
QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional
binary quadratic optimization problem (BQOP) with a single cardinality constraint
which requires the sum of the binary variables to be 92. As the BQOP is much sim-
pler than the original QAP, the conversion increases the possibility to solve the QAP.
Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48% gap remains
between the best known upper bound (UB) and lower bound (LB) of the unknown
optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a
property that makes the BQOP very hard to solve. The symmetry induces equivalent
subproblems in branch and bound (BB) methods. To effectively improve the LB, we
propose an efficient BB method that incorporates a doubly nonnegative relaxation,
the standard orbit branching and a technique to prune equivalent subproblems. With
this BB method, a new LB with 1.25% gap is successfully obtained, and computing
an LB with 1.0% gap is shown to be still quite difficult.

1 Introduction

For a positive integer n, we let N = {1, . . . , n} represent a set of locations and also a set of
facilities. Given n×n symmetric matrices A = [aik] and B = [bjℓ], the quadratic assignment
problem (QAP) is stated as

ζ∗ = min
π

n∑
i∈N

n∑
k∈N

aikbπ(i)π(k), (1)
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where aik denotes the flow between facilities i and k, bjℓ = bℓj the distance between locations
j and ℓ, and (π(1), . . . , π(n)) a permutation of 1, . . . , n such that π(i) = j if facility i is
assigned to location j. We assume that the distance bjj from j ∈ N to itself and the flow
aii from i ∈ N to itself are both zero.

The QAP is NP-hard in theory, and solving exactly large scale instances (e.g., n ≥ 40)
is very difficult in practice. To obtain an exact optimal solution, we basically need two
types of techniques. The first one is for computing heuristic solutions. Heuristic methods
such as tabu search, genetic method and simulated annealing have been developed for the
QAP [10, 15, 37, 38]. Those methods frequently attain a near-optimal solution, which
happens to be an exact optimal solution. The exactness is, however, not guaranteed in
general. The objective value ζ̄ obtained by those methods serves as an upper bound (UB)
for the unknown optimal value ζ∗. The second technique is to provide a lower bound (LB)
ζ for ζ∗. If ζ = ζ̄ holds, then we can conclude that ζ = ζ∗ = ζ̄. Various relaxation
methods [2, 16, 23, 35, 40] have been proposed for computing LBs. The two techniques
mentioned above play as essential tools in the branch and bound (BB) method for QAPs
[1, 9, 17, 23, 32, 36].

In this paper, we focus on the largest unsolved instance tai256c in QAPLIB [8]. The
main purpose of this paper is to investigate the challenge to solve the instance and provide
an improved lower bound. Nissofolk et al. [29, 30] showed that tai256c can be converted into
a 256-dimensional binary quadratic optimization problem (BQOP) with a single cardinality
constraint

∑256
i=1 xi = 92.

ζ∗ = min

{
xTBx : x ∈ {0, 1}n and

n∑
i=1

xi = 92

}
. (2)

See Section 2.2. Here each feasible solution π of QAP (1) is converted to a feasible solution x
of BQOP (2). They further transformed the BQOP (2) to a mixed integer convex quadratic
program (MIQP) by the non-diagonal quadratic convex reformulation technique (NDQCR)
developed in [20] for the quadratic knapsack problems. An LB = 44,095,032 (1.48% gap
with respect to the best known UB 44,759,294) was obtained by applying CPLEX to the
resulting MIQP, where CPLEX terminated in almost 8.5 days since the node limit exceeded.
It demonstrated that the simple BQOP equivalent to tai256c remained still difficult to solve.

We show that BQOP (2) admits a nontrivial symmetry property, inherited from tai256c:

(a) The matrix B satisfies

xT
σBxσ = xTBx for every x ∈ {0, 1}n and σ ∈ G, (3)

where G denotes a subgroup of the symmetry group Sn on {1, . . . , n} with |G| =2,048.

(b) BQOP (2) has at least 1,024 distinct feasible solutions with the best known UB
44,759,294.

The size of BQOP (2), 256, is not larger than quadratic unconstrained binary problem
(QUBO) instances whose optimal solutions are known in the benchmark problem sets [39,
13, 27]. In fact, all QUBO instances with dimension less than 500 in the sets were solved
exactly. BQOP (2) involves a single cardinality constraint

∑256
i=1 xi = 92 in binary variables

xi (i = 1, . . . , 256), which is expected to make solving BQOP (2) easier in comparison to
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QUBOs, since it considerably reduces the number of binary feasible solutions. Morevoer, it is
straightforward to transform BQOP (2) into a QUBO by adding a penalty term λ

(∑256
i=1 xi−

92
)2

to the objective quadratic form xTBx with a sufficiently large λ > 0.
Suppose that a BB method is applied to the BQOP with the best known UB. Then we

(implicitly) construct an enumeration tree of its subproblems, where a subproblem is pruned
whenever an LB of the subproblem not less than the best known UB of the BQOP (or an
optimal solution of the subproblem) is obtained. In general, as the size of a subproblem
involving a feasible solution with the best known UB becomes larger, the subproblem is
harder to be pruned. As a result of the feature (b), the BB method cannot terminate in
earlier stages since at least 1, 024 distinct feasible solutions with the best known UB are
distributed over subproblems.

To address the difficulty mentioned above in numerically solving BQOP (2) and to
compute a new LB better than the known ones, this paper proposes

(c) a BB method to show that the unknown optimal value ζ∗ is not less than a given ζ̂.

Here a target LB ζ̂ is chosen in the interval of the best known LB = ζ = 44,095,032 and

UB = ζ̄ = 44,759,294. We fix ζ̂ and ζ̄ before starting the BB method. The BB method
terminates immediately after an LB not less than ζ̂ is obtained. The proposed BB method
implements the Lagrangian doubly nonnegative (Lag-DNN) relaxation [21, 22] as a lower
bounding procedure for subproblems.

Using this method, we compute a new LB 44,200,000 (1.25% gap) in 39.2 days on a Mac
Studio (20 cpu), and provide estimates on the amount of work (the number of subproblems
to be solved and the execution time) for larger LBs. If we chose ζ̂ to be the best known
UB = ζ̄, then ζ̄ would be proved to be the optimal value. In this case, 2.6 · 1012 days would
be required to solve 6.7 · 1016 Lag-DNN relaxation subproblems of BQOP (2). This is not
an accurate estimate and the execution time certainly depends on a BB method including
a lower bounding procedure, a branching rule and the computer used. Nevertheless, it
illustrates the extreme difficulty of solving the BQOP.

Contribution of the paper and existing results

Our first contribution is to show and analyze the nontrivial symmetry property in BQOP (2)
induced from tai256c. This BQOP is a simple, low-dimensional, and extremely difficult
BQOP instance. As mentioned above, the symmetry property makes BQOP (2) hard to
solve. As far as the authors are aware of, such a BQOP is not known.

The second contribution of this paper is a BB method to prove that the unknown optimal
value ζ∗ is not less than a given target LB = ζ̄. A BB method with a target LB was originally
developed for large scale QAPs, which was successful to obtain improved lower bounds for
some of the QAP instances in QAPLIB including sko100a,. . . , sko100f, tai80b, tai100b and
tai150b. See [26]. The size of QAP tai256c, however, was too large to handle by the original
BB method for the QAPs. In the proposed method, we employ three effective techniques:
The first one is the Lag-DNN relaxation [21, 22] subproblems of BQOP (2) for the lower
bounding procedure. This relaxation is (almost) equivalent to a DNN relaxation [3, Theorem
2.6], which is known as one of the strongest (numerically tractable) conic relaxations for
combinatorial optimization problems [19]. The second one is the standard orbit branching
[31, 34] for reducing the size of the enumeration tree of subproblems to be solved. The third
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one is a new technique for pruning equivalent subproblems of BQOP (2). This technique
works effectively to improve the computational efficiency since the equivalence of some
distinct subproblems occurs in the enumeration tree even after the orbit branching is applied.
With this BB method, we have updated the known LB with 1.48% gap to a new LB with
1.25% gap in 39.2 days on a Mac Studio (20 cpu), and showed that an LB with 1.01% gap
is still quite difficult to attain. This can also be regarded as an important contribution.

Exploiting symmetries of QAPs in their SDP relaxation was discussed in [11, 12, 33]
(also [6] in their DNN relaxation). However, those results are not relevant to the subsequent
discussion of this paper.

This paper is a revised version of an unpublished technical report [14].

Outline of the paper

In Section 2, we introduce key components that will be utilized in the subsequent sections,
including the conversion of QAP (1) into BQOP (2) satisfying the symmetry property (3),
the Lag-DNN relaxation and the Newton-bracketing (NB) method for solving the relaxation.
In Section 3, we present computational results using DABS (Diverse Adaptive Bulk Search,
a genetic algorithm-based search algorithm) [28] and Gurobi Optimizer (version 11.0.0)
[18]. We show that state-of-the-art BQOP solver Gurobi could not improve the known LB
ζ, demonstrating the difficulty of the problem. In Section 4, we describe the BB method
(c) in detail and report numerical results. We conclude the paper in Section 5.

2 Preliminaries

2.1 Notation and symbols

Let N = {1, . . . , n}. We are mainly concerned with the BQOP (2) induced from tai256c.
In that case, n = 256. Let Rn denotes the n-dimensional Euclidean space of column vectors
x = (x1, . . . , xn), and Rn

+ its nonnegative orthant {x ∈ Rn : xi ≥ 0 (i ∈ N)}. For x ∈ Rn,
xT is the transpose of x. For each permutation σ of N and each x ∈ {0, 1}n ⊂ Rn

+, xσ

denotes x′ ∈ {0, 1}n such that x′
j = xσ(i) (i ∈ N). Rm×n denotes the linear space of m× n

matrices. Sn denotes the linear space of n × n symmetric matrices with the inner product
A • B =

∑
i∈N
∑

j∈N AijBij for A, B ∈ Sn, Sn
+ the convex cone of positive semidefinite

matrices in Sn, and Nn the convex cone of matrices with nonnegative elements in Sn.

2.2 Conversion from tai256c to BQOP (2)

QAP (1) can be rewritten with an n × n matrix variable X as a quadratic optimization
problem:

ζ∗ = inf {(AXB) •X : X ∈ Π} , (4)

where Π denotes the set of n× n permutation matrix. We note that each feasible solution
π of QAP (1), which is a permutation of N , corresponds to an X ∈ Π such that Xij = 1
iff π(i) = j for every (i, j) ∈ N ×N . In case of tai256c, n = 256 and A can be represented
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as A = ffT for f =
(
e
0

)
, where e denotes the 92-dimensional column vector of 1’s. Hence,

the objective function (AXB) •X of QAP (4) can be rewritten as

(AXB) •X = (ffTXB) •XT = (XTf)TB(XTf).

We then see that x = XTf ∈ {0, 1}n and
∑

i∈N xi = 92 for every X ∈ Π. Conversely,

if x ∈ {0, 1}n and
∑

i∈N xi = 92, then x = XTf for some X ∈ Π. Therefore, QAP (4)
(hence QAP (1)) is equivalent to BQOP (2).

2.3 Symmetry of the matrix B

We computed G by a simple implicit enumeration of permutations σ satisfying (3), and
found:

• |G| =2,048

• The best known feasible solution x∗ of BQOP (2) with the objective value = the
best known UB 44,759,294 for tai256c is expanded to the set of feasible solutions
{(x∗)σ : σ ∈ G} with the common objective value, where |{(x∗)σ : σ ∈ G}| = 1024;
(x∗)σ = (x∗)σ′ can occur for distinct σ ∈ G and σ′ ∈ G.

Computing the group G of permutations can also be carried out with a software called
Nauty [24]. The symmetry of B is utilized in orbit branching (Section 4.2) and eliminating
equivalent subproblems (Section 4.5) which are implemented in the BB method for solving
BQOP (2).

2.4 A Lagrangian doubly nonnegative (Lag-DNN) relaxation of a
linearly constrained QOP in binary variables

We briefly describe a Lag-DNN relaxation, which was originally proposed in [21] combined
with the the bisection-projection (BP) method for computing LBs of linearly constrained
QOPs in binary variables. More recently, the BP method was further developed to the
Newton-bracketing (NB) method [22]. In our proposed BB method, the NB method is incor-
porated for computing LBs of BQOP (2). BQOP (2) as well as its subproblem BQOP(I0, I1)
presented in Section 4.1, are special cases of a linearly constrained QOP in binary variables.

ζ = inf
{
uTCu : u ∈ {0, 1}n, Fu− bs = 0, s = 1

}
, (5)

where C ∈ Sn, F ∈ Rm×n and b ∈ Rn.
BQOP (5) is rewritten to strengthen the DNN relaxation by introducing slack variable

vector v ∈ {0, 1}n for u ∈ {0, 1}n:

ζ = inf

{
uTCu :

(u,v, s) ≥ 0, (uj + vj − s)2 = 0 (j ∈ N),

ujvj = 0 (j ∈ N), (Fu− bs)T (Fu− bs) = 0, s2 = 1

}
(6)

Introducing a penalty function (or a Lagrange function)

L(u,v, s, λ) = uTCu+ λ
(∑
j∈N

(uj + vj − s)2 +
∑
j∈N

ujvj

+(Fu− bs)T (Fu− bs)
)
for every (u,v, s, λ) ≥ 0,
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we consider a simple QOP

ζ(λ) = inf
{
L(u,v, s, λ) : (u,v, s) ≥ 0, s2 = 1

}
,

where λ ≥ 0 denotes a penalty parameter (or a Lagrangian multiplier). We can prove that
ζ(λ) converges to ζ as λ → ∞. See [21, Lemma 3]. Since L(u,v, s, λ) is a quadratic form
in (u,v, s) ∈ R2n+1 for each fixed λ and linear in λ, we can represent L(u,v, s, λ) as

L(u,v, s, λ) = Q(λ) •
(u

v
s

u
v
s

T )
for every (u,v, s, λ) ≥ 0,

where Qλ = (Q1 + λQ2) and Q1 ∈ S2n+1 and Q2 ∈ S2n+1
+ + N2n+1. Thus

ζ(λ) = inf

Qλ •
(u

v
s

u
v
s

T )
:

(u,v, s) ≥ 0,

H •
(u

v
s

u
v
s

T )
= 1

 ,

whereH denotes the (2n+1)×(2n+1) matrix with elementsHij = 0 ((i, j) ̸= (2n+1, 2n+1))

and H2n+1,2n+1 = 1. By replacing

(
u
v
s

)(
u
v
s

)T

by a matrix variable W ∈ S2n+1, we obtain a

Lag-DNN relaxation of BQOP (5).

η(λ) = inf {Qλ •W : W ∈ K, H •W = 1} , (7)

where K = S2n+1
+ ∩N2n+1 denotes the (2n+1)-dimensional DNN cone. We note that a DNN

relaxation of BQOP (6) can be written as

η = inf
{
Q1 •W : W ∈ K, Q2 •W = 0, H •W = 1

}
.

The Lag-DNN relaxation (7) is almost as strong as the DNN relaxation above in the sense
that η ≥ η(λ) converges monotonically to η as λ → ∞. See [3, Theorem 2.6]. In Section
4, which presents numerical results for the BB method applied to BQOP (2), a value of
λ = 108/ ∥ Q1 ∥ is used.

2.5 The Newton-bracketing (NB) Method [3, 22]

Given b0 > η(λ), the NB Method applied to (7) generates a sequence of intervals [ak, bk]
(k = 0, 1, . . .) which converges to η(λ) monotonically. In this section, we present how the
sequence is generated briefly. For more details, we refer to [4, Section 3], [3, Section 4] and
[22]. Throughout this section, λ > 0 is fixed. The dual of DNN problem (7) can be written
as

y∗ = sup {y : Qλ −Hy = Y ∈ K∗} , (8)

where K∗ = S2n+1
+ + N2n+1 (the dual of the (2n + 1)-dim. DNN cone K = S2n+1

+ ∩ N2n+1).
By the strong duality (see [3, Lemma 2.3]), y∗ = η(λ) holds. Define

g(y) = inf{∥ Qλ −Hy − Y ∥: Y ∈ K∗} for every y0 ∈ R.
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Figure 1: The convex function g : R → R+ and the NB method.

y

g(y)

y* ykk+1y

Obviously, g(y) ≥ 0 for every y ∈ R, Y = Qλ − Hy ∈ K∗ (i.e., (y,Y ) is a feasible
solution of (8)) if and only if g(y) = 0, and g(y∗) = 0. Since H ∈ K∗, we also know
that g(y) = 0 if y ≤ y∗. Hence, y∗ corresponds to the maximum zero of g. Furthermore,
g : (y∗,∞) → R is convex and continuously differentiable ([3, Lemma 4.1]). Therefore,
we can generate a sequence {bk = yk} (k = 0, 1, . . .) converging monotonically to η(λ) by
applying the Newton method with a given initial point y0 = b0 > y∗. See Figure 1. The
function value g(y) and the derivative g′(y) at y = yk > y∗ is not given explicitly but can
be computed by the accelerated proximal gradient (APG) method [5]. This method also
computes (Y 1

k,Y
2
k) ∈ S2n+1×N2n+1 which (approximately) satisfies Qλ−Hyk = Y 1+Y 2.

and Y 1 ∈ S2n+1
+ . We obtain ak ≤ y∗ by letting

ak = yk + (n+ 1)min{0, the minimum eigenvalue of Y 1
k}.

See [4, Lemma 3.1]. In each iteration of the NB method, most of its execution time is
consumed to evaluate g(yk), g

′(yk), Y
1
k and Y 2

k by the APG method.

3 Numerical experiments using DABS and Gurobi

We report computational results obtained by DABS (Diverse Adaptive Bulk Search), a
genetic algorithm-based search algorithm for QUBO [28], and a general BQOP solver Gurobi
Optimizer (version 11.0.0) [18], for BQOP (2). Numerical experiments were conducted on
Intel(R) Xeon(R) Gold 6246 (3.30 GHz) processors using 48 threads with 1.5TB of RAM.

BQOP (2) with a single cardinality constraint
∑n

i=1 xi = 92 can be transformed to a
simple QUBO by adding the penalty term λ(

∑n
i=1 xi−92)2 to the objective function xTQx

and removing the constraint, where λ > 0 is a penalty parameter. We applied DABS to
the resulting QUBO with λ = 107. DABS attained a feasible solution with the objective
value 44,759,294, which coincides with the best known upper bound [7] for tai256c, within
a few seconds. Moreover, the feasible solution computed is contained in the 1,024 known
ones with the same objective value 44,759,294 (see Section 2.3).

We also applied Gurobi to the BQOP reformulation (2) of tai256c. Gurobi is state-of-the-
art as a solver for general BQOPs. In a benchmark project conducted by Mittelmann [25],
several solvers are tested for BQOPs. The results there indicate that Gurobi is the fastest
in solving those BQOPs. Gurobi has been enhanced as a BQOP solver, and its performance
and efficiency in this specific area has been constantly improved. In Section 4.2, we will see
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from the symmetry of B that BQOP (2) has an optimal solution x with x1 = 1. When
Gurobi was applied to BQOP (2) with x1 fixed to 1, any information on the symmetry of
B could not be utilized.

To experiment with Gurobi, some parameters were needed to be decided, in particu-
lar MIPFocus, and PreQLinearize. The parameter MIPFocus controls solution strategy
of branch-and-bound. We chose MIPFocus=3 which focuses on computing the LB. The
parameter PreQLinearize controls presolving for BQOPs. More precisely, the parameter
PreQLinearize=0 adds neither any variables nor constraints, but it performs adjustments
on quadratic objective functions to make them positive semidefinite. The parameter values
PreQLinearize=1 and PreQLinearize=2 attempt to linearize quadratic constraints or a
quadratic objective, replacing quadratic terms with linear terms with additional variables
and linear constraints.

In the first step, we examined the value of PreQLinearize by comparing the LB obtained
at the root node. PreQLinearize=0 provided the best LB 41,172,797, PreQLinearize=1
the LB 10,759,778, and PreQLinearize=2 the LB 3,987,504. As the best LB 41,172,797 was
obtained by PreQLinearize=0, we adopted this setting for our experiments.

In the second step, we examined 1,024 potentially best solutions generated by the sym-
metry of BQOP (2). We determine the best initial solution among them by executing
branch-and-bound with a time limit of 1 hour and comparing the LBs.

In the final step, we executed branch-and-bound with MIPFocus=3, PreQLinearize=0
and the initial solution chosen in the second step. We had to set a time limit of 60,000 sec-
onds due to limitations in computational resources. We finally obtained an LB of 41,669,052
using Gurobi, which generated 12,518,148 nodes.

The LB 41,669,052 obtained is significantly lower than the LBs we will present in Sec-
tion 4. This suggests that, despite its rapid improvement in solving BQOP problems, the
state-of-the-art general BQOP solver is still considerably less effective in solving BQOP (2)
or improving its LB.

There are two primary factors for Gurobi’s poor performance in solving BQOP (2). Re-
call that the LB 41,172,797 (8.01% gap) was obtained at the root node problem. We applied
the Lag-DNN relaxation to the same problem, and computed an LB 43,881,304 (1.96% gap)
of the problem by the NB method in less than 10 minutes. This shows that the LB procedure
incorporated in Gurobi is much weaker than the Lag-DNN relaxation. Another noteworthy
factor contributing to Gurobi’s poor performance is its inability to utilize the symmetry
property of BQOP (2). This also played a role in the generation of a huge number of nodes,
reaching 12,518,148, by Gurobi to compute the LB 41,669,052 (6.90%) which is still much
smaller than the LB 43,881,304 (1.96%) of the root node computed by the Lag-DNN re-
laxation This sharply contrasts with our improved BB method, which generated 1,077,353
nodes to compute the LB 44,200,000 (1.25%) in 39.2 days. See Section 4.5.

4 A branch and bound method for a given target lower

bound

The optimal value ζ∗ of BQOP (2) remains unknown, with an LB ζ = 44,095,032 ≤ ζ∗ ≤
a UB ζ̄ = 44,759,294 exhibiting a 1.48% gap between them. We need to improve the
UB and/or the LB to compute the optimal value ζ∗. To improve the LB, we propose
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a BB method. For the lower bounding procedure, we use the Lag-DNN relaxation of a
subproblem and the NB method for computing its optimal value which serves as an LB of
the subproblem. See Sections 2.4 and 2.5 for the Lag-DNN relaxation and the NB method,
respectively. Any upper bounding procedure is not incorporated. Before the start of the
BB method, a target LB, ζ̂, is first set such that ζ = 44, 095, 032 < ζ̂ ≤ ζ̄ = 44, 759, 294.

A target LB, ζ̂, is the desired value to obtain. Ideally, we want to set ζ̂ = ζ̄ to confirm
whether ζ̄ is the optimal value. But such a setting may be too ambitious, and requires
much stronger computing power than the machine currently used. As a larger ζ̂ is set, the
computational cost rapidly increases as we will see in Section 4.3.

We describe a class of subproblems of BQOP (2) which appear in the enumeration tree
generated by the BB method in Section 4.1, and the branching procedure used in the BB
method in Section 4.2. Before presenting numerical results on the BB method in Section 4.4,
we provide a preliminary estimate for the amount of work (the number of nodes to generate
and execution time) to attain given target LBs by the BB method in Section 4.3. Based
on this estimation, we choose some reasonable target LBs for the numerical experiment on
the BB method whose results are reported in Section 4.4. In Section 4.5, we propose a new
technique using the equivalence of subproblems of BQOP (2) to improve the performance of
the BB method, and show that the improved BB method is twice efficient than the original
BB method. A new LB ζ̂ = 44,200,000 (1.25% gap) is also attained by the improved BB
method in 39.2 days.

4.1 A class of subproblems of BQOP (2)

Let

S =

{
(I0, I1, F ) :

a partition of N , i.e., I0
⋃
I1
⋃
F = N,

I0, I1 and F are disjoint with each other

}
.

Obviously, F is uniquely determined by I0 and I1 as F = N\
(
I0
⋃
I1
)
for each (I0, I1, F ) ∈ S.

Hence, F in the triplet (I0, I1, F ) is redundant, and we frequently omit F for the simplicity
of notation. For each (I0, I1, F ) ∈ S, we consider a subproblem of BQOP (2)

BQOP(I0, I1) : ζ(I0, I1) = min

xTBx :
x ∈ {0, 1}n,

n∑
i=1

xi = 92,

xi = 0 (i ∈ I0), xj = 1 (j ∈ I1)


= min

yTB(I0, I1)y :
y ∈ {0, 1}F ,∑
i∈F

yi = 92− |I1|

 ,

where

y ∈ RF denotes the subvector of x with elements xi (i ∈ F ),

B(I0, I1) = BFF + 2× diagonal matrix of

(∑
k∈I1

BkF

)
,

BEF = the |E| × |F | submatrix of B consisting of elements Bij (i ∈ E, j ∈ F ).

9



For example, if F = {1, . . . , ℓ} and I1∪ I0 = {ℓ+1, . . . , n}, then B(I0, I1) is an ℓ× ℓ matrix
with elements B(I0, I1)ij (i = 1, . . . , ℓ, j = 1, . . . , ℓ) such that

B(I0, I1)ij =

{
Bij if i ̸= j,
Bii + 2

∑
k∈I1 Bki if i = j.

For computing an LB of BQOP(I0, I1) in the BB method, we applied the NB method to
the Lag-DNN relaxation of BQOP(I0, I1) with λ = 108/ ∥ B(I0, I1) ∥.

4.2 Orbit branching

We discuss the orbit branching technique as in [31, 34]. As mentioned in Section 1, B =
B(∅, ∅) satisfies the symmetry property (3). This property is partially inherited by many
B(I0, I1) ((I0, I1, F ) ∈ S). Let (I0, I1, F ) ∈ S be fixed. Assume in general that

yT
σB(I0, I1)yσ = yTB(I0, I1)y for every y ∈ {0, 1}|F | and σ ∈ G(I0, I1) (9)

holds, where G(I0, I1) is a group of permutations of F . Let ω(i) = {j ∈ F : j =
σi for some σ ∈ G(I0, I1)} for every i ∈ F , andO(I0, I1) = {ω(i) : i ∈ F}. Each o ∈ O(I0, I1)
is called an orbit of the group G(I0, I1). Let min(o) denote the minimum index of orbit o,
which serves as a representative for o. Assume that o ∈ O(I0, I1). Then we know that
all BQOP(I0, I1

⋃
{j}) (j ∈ o) are equivalent in the sense that they share a common opti-

mal value ζ(I0, I1
⋃

min(o)). Therefore, we can branch BQOP(I0, I1) to two sub BQOPs,
BQOP(I0

⋃
o, I1) and BQOP(I0, I1

⋃
min(o)).

In general, O(I0, I1) consists of multiple orbits. Selecting an appropriate o from O(I0, I1)
for branching of BQOP(I0, I1) to BQOP(I0

⋃
o, I1) and BQOP(I0, I1

⋃
min(o)) is an impor-

tant issue to design an efficient branch and bound method. In our numerical experiment
presented in Section 4.4,

• an orbit o is chosen fromO(I0, I1) according to the average objective value of BQOP(I0,
I1
⋃

min(o)) over all feasible solutions, so that the chosen orbit, o∗, attains the largest
value. Then, we apply the branching of BQOP(I0, I1) to two subproblems BQOP(I0⋃

o∗, I1) and BQOP(I0, I1
⋃
{min(o∗)}). Here the average objective value of BQOP(I0, I1)

over all feasible solutions is computed as the objective value xTBx with xi = 0 (i ∈
I0), xj = 1 (j ∈ I1) and xk = (92− |I1|)/|F | (k ∈ F ) for every (I0, I1, F ) ∈ S.

G(∅, ∅) = G has the single orbit o = N = {1, . . . , n}. We branch BQOP(∅, ∅) into
two subproblems BQOP(N, ∅) and BQOP(∅, {1}). Obviously, the former BQOP(N, ∅) is
infeasible. Table 1 summarizes the branching of the node BQOP(∅, {1}) to BQOP({2, 16, 17,
241}, {1}) and BQOP(∅, {1, 2}), where orbit {2, 16, 17, 241} is chosen from O(∅, {1}).

In addition to the branching rule mentioned above, we employ the simple breadth first
search; the method to search the enumeration tree is not relevant to the computational
efficiency since the incumbent objective value is fixed to the target LB ζ̂ and any upper
bounding procedure is not applied. At each node BQOP(I0, I1) of the enumeration tree, the
NB method generates a sequence of intervals [ap, bp] (p = 1, 2, . . .) satisfying a monotonicity
property: (1) ap converges monotonically to an LB ν of BQOP(I0, I1) from below, and (2)

bp converges monotonically to ν from above. Thus, if ζ̂ ≤ aq holds for some q, we know that

the LB ν to which the interval [ap, bp] converges is not smaller than ζ̂, and BQOP(I0, I1) can
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Table 1: A summary of branching of BQOP(I0, I1) with I0 = ∅, I1 = {1} and
F = {2, 3, . . . , 256} to BQOP({2, 16, 17, 241}, {1}) and BQOP(∅, {1, 2}). Here F =
{2, 3, . . . , 256} is partitioned into 44 orbits, which consist of 21 orbits with size 8, 21 orbits
with size 4, 1 orbit with size 2 and 1 orbit with size 1. The 44 orbits are listed according to
the decreasing order of the average objective value of BQOP(∅, {1,min(o)}) over all feasible
solutions.

Orbit The size The average objective
number Orbit of orbit value of BQOP(∅, {1,min(o)})

1 2 16 17 241 4 52655297.0
2 18 32 242 256 4 52567852.0
3 3 15 33 225 4 52524130.0
4 19 31 34 48 226 240 243 255 8 52515385.0
5 35 47 227 239 4 52502268.0

· · · · · ·
30 87 91 102 108 166 172 183 187 8 52483274.0
31 9 129 2 52483139.0
32 72 74 117 125 149 157 200 202 8 52483097.0
33 25 130 144 249 4 52483097.0

· · · · · ·
43 121 136 138 153 4 52481955.0
44 137 1 52481773.0

be pruned. On the other hand, if bq < ζ̂ holds for some q, we know the LB ν of BQOP(I0, I1)

is smaller than ζ̂; hence the iteration can be stopped and branching to BQOP(I0, I1) can be
applied. Therefore, the above properties (1) and (2) of the NB method work very effectively
to increase the computational efficiency of the BB method. See Figure 3.

4.3 Estimating the total number of nodes generated by the BB
method

All the computations for numerical results reported in this section and the next two sections
were performed using MATLAB 2022a on a Mac Studio with Apple M1 Ultra CPU, 20 cores
and 128 GB memory. For the parallel computation, we solved Lag-DNN relaxations of 20
subproblems BQOP(I0, I1) in parallel by the NB method with the ‘parfor’ loop of MATLAB.

To choose a reasonable target LB ζ̂ which can be attained by the BB method, we
performed preliminary numerical experiments to estimate the computational work. Given
a target LB ζ̂, we construct an enumeration tree by the breadth first search as long as
the number tk of nodes at the depth k of the tree is smaller than 1000. Suppose that
t0, t1, . . . , tℓ−1 < 1000 ≤ tℓ; hence the full enumeration tree has been constructed up to the
depth ℓ by the BB method. We start sampling at the depth ℓ and construct a random
subtree to estimate the total number of nodes in the full enumeration tree. Let t̄ℓ = tℓ. At
each depth k ≥ ℓ, we choose sk nodes randomly from t̄k active nodes for the next depth
(k + 1), where

sk =

{
100 if t̄k ≥ 500,
t̄k otherwise.

Then, we apply the lower bounding procedure using the NB method to the selected sk nodes
and the branching procedure to the resulting rk active nodes to generate a subset of the
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Table 2: Estimation of the work of the BB method described in Sections 4.1 and 4.2. For
each target LB ζ̂, we applied 5 different random sampling of sk nodes from t̄k active nodes
at the depth k with k ≥ ℓ for the next depth k + 1. Here min, mean and max denote the
minimum, the mean and the maximum of those 5 estimations of the number of nodes in
the enumeration tree to generate and the execution time (day), respectively. A Lag-DNN
subproblem at each node was solved in about 30 ∼ 150 seconds.

target LB no. of nodes exec. timed (day)

ζ̂ gap min mean max min mean max
44,100,000 1.46% 22,175 27,278 29,692 0.9 1.1 1.2
44,120,000 1.43% 53,625 72,574 91,944 2.1 2.8 3.6
44,130,000 1.41% 64,084 133,417 275,264 2.5 5.2 10.7
44,150,000 1.36% 241,827 293,696 339,245 9.4 11.5 13.2
44,200,000 1.25% 827,791 1,983,516 2,891,498 32.3 77.4 112.8
44,300,000 1.03% 5.4·107 3.7·108 8.1·108 2.1·103 1.4·104 3.1·104
44,500,000 0.58% 1.3·1011 5.5·1012 2.6·1013 5.1·106 2.2·108 1.0·109
44,759,294 0.00% 1.2·1014 6.7·1016 3.3·1017 4.6·109 2.6·1012 1.3·1013

nodes in the full enumeration tree at the depth (k + 1). Next, we let t̄k+1 = 2rk, which
is the cardinality of the subset (the number of nodes in the subset) as each active node is
branched into two child nodes. We may regard 2rk/sk = t̄k+1/sk as the increasing rate of
the nodes from the depth k to the depth k + 1, and the total number of nodes in the full
enumeration tree is estimated by

ℓ∑
k=1

tk +
∑
k>ℓ

t̂k, where t̂ℓ = tℓ, t̂k+1 = (2rk/sk)t̂k (k ≥ ℓ). (10)

We continue this process till rk attains 0. Table 2 shows the estimation of computa-
tional work (the number of nodes to generate and the execution time) for 8 cases ζ̂ =
44,100,00,. . .,44,759,294. In spite of the simplicity of this unrefined method, it provides
useful information on whether a given target LB can be attained by the BB method on the
computer used.

4.4 Numerical results

We see from Table 2 that the cases with the target LB ζ̂ = 44, 759, 294, 44, 500, 000 and
44, 300, 000 are very challenging. The case ζ̂ = 44, 200, 000 could be processed but might
take more than a few months. Table 3 shows numerical results for the other 4 cases with
ζ̂ = 44,100,000, 44,120,000, 44,130,000 and 44,150,000. We observe that the estimation of
the number of nodes and execution time described in the previous section are useful.

Figure 2 (A) displays the change in the number of nodes as the depth k increases, and
Figure 2 (B) the change in the number of nodes with size 2 orbit. All other nodes are of
the trivial single orbit N , except the root node having size 256 orbit as shown in Section
2.2 and the depth 1 node having sizes 1 through 8 orbit as observed in Table 1.

Recall that the NB method applied to a node BQOP(I0, I1) generates a sequence of
intervals [ap, bp] (p = 1, . . .) which monotonically converges to an LB, ν, of BQOP(I0, I1).

Hence, the iteration terminates either when bq < ζ̂ occurs — BQOP(I0, I1) is turned out

to be active in this case — or when ζ̂ ≤ aq occurs — BQOP(I0, I1) is pruned in this case.
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Table 3: Numerical results on the BB method described in Sections 4.1 and 4.2. The 3
numbers in the parenthesis (·, ·, ·) denote the minimum, mean and maximum estimation
from Table 2, respectively.

target LB no. of nodes exec. time (day)

ζ̂ gap estimation (min,mean,max) estimation (min,mean,max)
44,100,000 1.46% 23,510 (22,175, 27,278, 29,692) 1.0 ( 0.9, 1.1, 1.2)
44,120,000 1.43% 63,554 (53,625, 72,574, 91,944) 2.5 ( 2.1, 2.5, 3.6)
44,130,000 1.41% 102,310 (64,084, 133,417, 275,264) 4.1 ( 2.5, 5.2, 10.7)
44,150,000 1.36% 277,304 (241,827, 293,696, 339, 245) 10.7 (9.4, 11.5, 13.2)

Figure 2: (A) The number of nodes of the enumeration tree at the depth k. (B) The
number of nodes of the enumeration tree with size 2 orbit at the depth k.
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Figure 3: The mean of aq (the blue solid line) and bq (the blue dotted line) when the NB

terminated at iteration q as bq < ζ̂ = 44, 120, 000 (i.e., active node) — Case (A) or at

iteration q as ζ̂ = 44, 120, 000 ≤ aq (i.e., pruned node) — Case (B).

We see from Figure 3 that any tight LB is not necessary to decide whether BQOP(I0, I1)
is active or to be pruned in most cases, particularly, in an early stage of the BB method.
This is an important feature of the NB method, which works effectively to increase the
computational efficiency, when it is incorporated in the BB method.

4.5 Improving the BB method with the use of equivalence of sub-
problems

Through numerical results reported in Section 4.4, we found that even with the orbit branch-
ing, multiple subproblems appeared in the enumeration tree turned out to be equivalent to
each other. Here, two subproblems BQOP(I0, I1) and BQOP(I ′0, I

′
1) are called equivalent if

|I0| = |I ′0|, |I1| = |I ′1| and B(I ′0, I
′
1) = P TB(I0, I1)P

for some permutation matrix P . (11)

The equivalent subproblems, BQOP(I0, I1) and BQOP(I ′0, I
′
1), share not only a common

optimal value, but also a common LB, which is obtained as an optimal value of their equiv-
alent Lag-DNN relaxations. Therefore, one of them can be pruned even when both of them
are active. For a given pair of subproblems, BQOP(I0, I1) and BQOP(I ′0, I

′
1), checking (11)

requires significantly less CPU time than computing their lower bounds. Moreover, vari-
ous necessary conditions that are easy to implement can be used for verifying (11) with
some permutation matrix P . Some of the conditions are, for instance,

∑
i[B(I ′0, I

′
1)]ii =∑

i[B(I0, I1)]ii,
∑

i,j[B(I ′0, I
′
1)]ij =

∑
i,j[B(I0, I1)]ij, maxi[B(I ′0, I

′
1)]ii = maxi[B(I0, I1)]ii and

mini,j[B(I ′0, I
′
1)]ij = mini,j[B(I0, I1)]ij. By applying those necessary conditions, the number

of the candidates for pairs of subproblems BQOP(I0, I1) and BQOP(I ′0, I
′
1) for which (11)
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Figure 4: (A) Comparison of the numbers of nodes of the enumeration trees in the original
BB method (O) and the improved BB method (I) at the depth k of their enumeration trees.
(B) Reduction rate of subproblems at the depth k by the equivalence relation.

is tested can be reduced, before verifying (11) with some permutation matrix P . When a
pair of subproblems BQOP(I0, I1) and BQOP(I ′0, I

′
1) satisfies those conditions, an implicit

enumeration procedure is applied to generate all possible permutation matrix P satisfy-
ing (11). If such a permutation matrix P is identified, then subproblems BQOP(I0, I1) and
BQOP(I ′0, I

′
1) are equivalent and one of them is pruned. Otherwise, they are not equivalent.

We improved the BB method by incorporating the technique mentioned above for prun-
ing equivalent subproblems. Table 4 shows numerical results on the improved BB method
in comparison to the original BB method whose numerical results have been reported in
Section 4.4. We observe that the total number of nodes generated in the improved BB
method is less than half of the one in the original BB method in all target LB cases, and
that a larger target LB 44,200,000 (1.25% gap) is newly computed.

Table 4: Numerical results on the improved BB method in comparison to the original BB
method.

target LB no. of nodes exec. time (day)

ζ̂ gap improved BB original BB improved BB original BB
44,100,000 1.46% 11,594 23,5100 0.6 1.0
44,120,000 1.43% 29,050 63,554 1.2 2.5
44,130,000 1.41% 43,904 102,310 1.8 4.1
44,150,000 1.36% 109,284 277,304 4.3 10.7
44,200,000 1.25% 1,077,353 - 39.2 -

Figure 4 (A) compares the numbers of nodes at the depth k in the original and improved
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BB methods for the target LB = 44,100,000, 44,120,000, 44,130,000 and 44,150,000 cases.
We can confirm that there exist significant differences between the numbers of nodes gen-
erated by them. Figure 4 (B) demonstrates the effectiveness of the technique for pruning
equivalent subproblems at each depth k of the enumeration tree. Let vk denote the number
of active subproblems determined by the LB procedure at the depth k. Their 2vk subprob-
lems are generated by the orbit branching. By applying the technique, we try to reduce the
2vk subproblems to which the LB procedure is applied at the depth k + 1. Suppose that
some wk nodes are pruned by the equivalence relation, where wk could be 0. Figure 4 (B)
shows the changes of (2vk−wk)/(2vk) as k increases (k = 1, . . . , ℓ) and their geometric mean
r = (Πℓ

k=1(2vk −wk)/(2vk))
1/ℓ, where ℓ denotes the depth of the enumeration tree when the

improved BB method terminated. In all target LB cases, we see that r ∈ [0.98, 0.99] in Fig-
ure 4 (B). It can be summarized that the technique reduces the number vk of subproblems
generated by the orbit branching to rvk at the depth k on average, and the modified BB
method can reduce the total number of nodes generated by the original BB method by the
factor rℓ.

From the discussions above, we can conclude that the technique proposed for pruning
equivalent subproblems is indeed effective in accerlerating the original BB method. We
must say, however, that computing an LB with 1.1% gap remains very difficult since the
technique would reduce the number of nodes generated by at most 1/8 ∈ [0.98, 0.99]100,
where the improved BB method is assumed to terminate in the enumeration tree at the
depth ℓ = 100.

5 Concluding remarks

We have investigated the 256-dimensional BQOP with a single cardinality constraint, BQOP (2),
which is converted from the largest unsolved QAP instance tai256c. The converted BQOP
with dimension 256 is much simpler than the original QAP tai256c involving 256 × 256 =
65536 binary variables, and its dimension 256 is not so large. While one might expect the
converted BQOP to be notably easier to solve compared to the original QAP tai256c, our
findings indicate that it still presents a significant challenge. The challenge primarily stems
from the symmetry property (3) exhibited in the coefficient matrix B, which is inherited
from tai256c. For future development toward solving the BQOP, we need

• an efficient and much stronger lower bounding procedure than the DNN relaxation,

• additional techniques to enhance the exploitation of the symmetry property (3), and

• more powerful computer systems.

While we have focused on BQOP (2) converted from the QAP tai256c in this paper,
it is straightforward to adapt the discussion of the paper to general BQOPs with a single
cardinality constraint and general QUBOs which satisfy the symmetry property (3).
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