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Non-Linear Battery Behavior in Electric Vehicle
Scheduling Problems

Fabian Löbel∗, Ralf Borndörfer†, Steffen Weider

Abstract
The currently most popular approach to handle non-linear battery

behavior for electric vehicle scheduling is to use a linear spline interpolation
of the charge curve. We show that this can lead to approximate models
that underestimate the charge duration and overestimate the state of
charge, which is not desirable. While the error is of second order with
respect to the interpolation step size, the associated mixed-integer linear
programs do not scale well with the number of spline segments. It is
therefore recommendable to use coarse interpolation grids adapted to the
curvature of the charge curve, and to include sufficient safety margins to
ensure solutions of approximate models remain feasible subjected to the
exact charge curve.

1 Introduction and Related Literature
Shadowing the increasing interest in electrifying logistic systems, operations
researchers are developing new optimization methods to handle the additional
challenges introduced by deploying battery-powered vehicles. Logistics companies
utilizing fully or partially electrified fleets must take battery capacities and the
resulting range limitations into account by scheduling recharge events during
service, which result in detours and vehicle downtime. Therefore, the Electric
Vehicle Scheduling Problem (EVSP) is to assign a set of tasks or duties as well
as recharge events to a fleet of electric vehicles such that no battery is ever fully
depleted and the costs are minimized.

In Europe, operators prefer to recharge their vehicles with slow chargers at
depots and fast chargers at selected external locations to minimize infrastructure
acquisition costs. The amount of replenished driving range depends non-linearly
on the charging time and the initial state of charge (soc). The majority of EVSP
papers (cf. surveys [EC19, PLL22]) consider simplified battery characteristics
in such a way that either parts of the total battery capacity are ignored or that
solutions can become infeasible in practice [OK20].

We have identified three approaches in the literature to incorporate non-
linear battery behavior into EVSP models. Energy expansion, a method analogous
to the well-known time expansion, is proposed in [vKNvdAH17] and [LLX19].
The non-linear behavior can be fully encoded in terms of the connections between
discretized energy states. Naturally, this comes at a cost of significantly increased
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problem size, especially if one has to consider an additional time discretization
to handle, for example, charger slot occupation.

Approaches that compute charge states exactly have been proposed by [Lee21],
where a branch-and-price method exploits that charge duration is minimized in
the objective, and by [DEG23], where a branch-and-check procedure produces
cuts from schedules that can not be made energy-feasible by inserting recharge
events.

Originally suggested in [MGMV17], the most popular approach is to use a
piecewise linear spline interpolation ξ̂ of a function ξ that maps the time spent
charging an empty battery to the resulting soc. To the best of our knowledge, the
implications of this particular modeling choice have hitherto only been examined
in [ZMO22].

2 Piecewise Linear Charge Curve
Let ξ : [0, tfull] → [0, 1] be the charge curve giving the soc y ∈ [0, 1] that
results from charging an initially empty battery for t time units. According to
the Constant Current – Constant Voltage (CC-CV ) charging scheme commonly
used for vehicle batteries [PJLV17], this function is linear until ξ(tV ) = yV , then
it grows monotonically and concavely towards the maximum soc, see Figure 1.

The charge curve is the solution to an autonomous non-linear ordinary
differential equation ξ′(t) = f(ξ(t)) where f describes the charge rate as a
function of soc [PJLV17]. f is constant on [0, yV ] and monotonically non-
increasing on [yV , 1], such that ξ is concave. f need not be differentiable in
yV . In general, there is no closed form for ξ, so it has to be approximated in
some way.

The approximation that is most popular in the EVSP literature is a piecewise
linear spline interpolation ξ̂ of ξ. It is exact on the CC part, and it is straightforward
to incorporate into mixed integer programming formulations as introduced in
[MGMV17]. Namely, let bi = (ti, yi), i = 0, . . . , n, be the interpolation points
of ξ̂ such that b0 = (0, 0), b1 = (tV , yV ) and bn = (tfull, 1). Let ys and ye

be the soc at the beginning and the end of a recharge event, respectively,
and θ the corresponding recharge duration. We can relate the duration and
the charge state as follows. We first express (ts, ys) and (te, ye) as convex
combinations of their respective adjacent interpolation points, and then compute
θ from the resulting time values, i.e., if is = arg maxi {yi ≤ ys} and ie =

0 tV = 55 75 95
time (min)

0.0

yV = 0.8
1.0

so
c

Figure 1: Example charge curve and linear spline interpolation based on real
bus fast charging data. As is common in the literature, there are two CV phase
segments.
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arg maxi {yi ≤ ye}, then

1 = µis
+ µis+1 = λie

+ λie+1 (1)
ys = µis

yis
+ µis+1yis+1 (2)

ye = λie
yie

+ λie+1yie+1 (3)
θ = λie

tie
+ λie+1tie+1 − µis

tis
− µis+1tis+1 (4)

Constraint (1) and µi = λi = 0 for the remaining indices can be enforced in a
MILP formulation via SOS type 2 constraints as in [MGMV17] or the papers
building upon it. This commonly requires at least 2n |T | |S| additional binary
decision variables where T is the set of vehicle tasks and S the set of charger
slots.

3 Error Assessment
Computing θ in this way amounts to evaluating an approximation of a charge
duration function Θξ :

{
(y, z) ∈ [0, 1]2 | y ≤ z

}
→ [0, tfull] that gives the duration

required to reach some final soc z from an initial one y. Equivalently, if we
were to compute z from y and θ, we execute a computation scheme for an
approximation of a charge increment function ∆ξ : [0, 1] × [0, tfull] → [0, 1] that
gives the amount of replenished soc if a battery is charged for θ time units from
some initial charge state. Θ and ∆ are function operators defined as

Θξ(y, z) = ξ−1(z) − ξ−1(y) and ∆ξ(y, θ) = ξ(ξ−1(y) + θ) − y, (5)

where we extend ξ(t) = 1 for t > tfull. To guarantee that solutions produced by
approximate (linear) models using linear splines are also feasible for (non-linear)
models using the exact curve, we want the approximate model to overestimate
charge durations and to underestimate charge states, i.e., we need Θξ̂ ≥ Θξ and
∆ξ̂ ≤ ∆ξ to hold. Unfortunately, however, the natural looking implication

ξ̂(t) ≤ ξ(t) ∀ t ∈ [0, tfull] =⇒ Θξ̂(y, z) ≥ Θξ(y, z) ∀ y ≤ z ∈ [0, 1] (6)

does not hold in general, i.e., in the computation scheme (1)–(4) it is not
true that underestimating the charge curve via a linear spline guarantees an
overestimation of charging times, as we will show now. The analysis in [ZMO22],
if we are not mistaken, takes these assumptions.

Proposition 1. Given a linear spline interpolation ξ̂ of a charge curve ξ, there
exist input values y < z such that Θξ̂(y, z) < Θξ(y, z).

Proof. We have ξ̂(ti) = ξ(ti) for the interpolation points and ξ̂(t) < ξ(t) on the
interior of CV segments (see Figure 1). Consequently, ξ̂−1(yi) = ξ−1(yi) and
ξ̂−1(y) > ξ−1(y) on the CV interior. Hence, choosing z = yi for i > 1, we see

Θξ̂(y, z) = Θξ̂(y, yi) = ξ̂−1(yi) − ξ̂−1(y) < ξ−1(yi) − ξ−1(y) = Θξ(y, z) (7)

for all yV < y < z and y ̸= yj for all j.

Proposition 2. There are y and θ such that ∆ξ̂(y, θ) > ∆ξ(y, θ).
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Proof. For i > 1 and θ > 0 choose y = ξ̂(ti − θ), thus ti = ξ̂−1(y) + θ, and then

∆ξ̂(y, θ) + y = ξ(ti) = ξ(ξ̂−1(y) + θ) > ξ(ξ−1(y) + θ) = ∆ξ(y, θ) + y (8)

by ξ being strictly monotonically increasing.

The charge duration underestimation of Θξ̂ is illustrated in Figure 2 and
the charge state overestimation of ∆ξ̂ in Figure 3. Note that by Inequality (7),
the charge duration is in fact always (not necessarily strictly) underestimated if
the target charge state happens to be an interpolation point. Charge duration
underestimation even occurs if we suppose only two interpolation points (0, 0)
and (tfull, 1), as has been observed computationally by [ZLT+21], and is due to
the derivative of the charge curve being overestimated near interpolation points.
Since there are arguments for which Θξ̂(y, z) > Θξ(y, z) and ∆ξ̂(y, θ) < ∆ξ(y, θ)
does hold, the functions Θξ̂ and ∆ξ̂ fluctuate around their exact counterparts.

Lemma 1. The approximation error of Θξ̂ is∥∥∥Θξ − Θξ̂
∥∥∥ =

∥∥∥ξ−1 − ξ̂−1
∥∥∥ ≤ h2

soc

8
∥f ′∥

f(yV )2 , (9)

where ∥.∥ is the maximum norm and hsoc = maxi=2,...,n(yi − yi−1).

Proof. Since the linear spline is accurate for the CC phase, any error occurs
during the CV phase. There we have (ξ−1)′′(y) = −f ′(y)/f(y)2 and since the
charge rate is maximal during the CC phase, ∥f∥ = f(yV ). Plugging this into
a well-known error bound for linear spline approximation we obtain∥∥∥ξ−1 − ξ̂−1

∥∥∥ ≤ h2
soc

8
∥∥(ξ−1)′′∥∥ ≤ h2

soc

8
∥f ′∥
∥f∥2 = h2

soc

8
∥f ′∥

f(yV )2 . (10)

To complete the proof, note that∥∥∥Θξ − Θξ̂
∥∥∥ = max

0≤y≤z≤1

∣∣∣[ξ̂−1(z) − ξ−1(z)] − [ξ̂−1(y) − ξ−1(y)]
∣∣∣

= max
y∈[0,1]

∣∣∣ξ̂−1(y) − ξ−1(y)
∣∣∣ =

∥∥∥ξ−1 − ξ̂−1
∥∥∥ (11)

since ξ̂−1 ≥ ξ−1 and ξ̂−1(yi) = ξ−1(yi).
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Figure 2: One-dimensional slices of Θξ and Θξ̂ computed from our example
charge curve for y = 0.8, 0.85, 0.9, 0.95, 0.975, 1. We have Θξ(y, .) and Θξ̂(y, .)
on the left, and Θξ(., y) and Θξ̂(., y) on the right. Critical areas where the
approximation underestimates the charge duration are shaded.
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Figure 3: One-dimensional slices of ∆ξ and ∆ξ̂, computed from our example
by ∆ξ(., θ) and ∆ξ̂(., θ) for duration θ = 5, 10, 15 minutes. Critical areas where
the approximation overestimates the charge state are shaded.

Lemma 2. The approximation error of ∆ξ̂ is∥∥∥∆ξ − ∆ξ̂
∥∥∥ =

∥∥∥ξ − ξ̂
∥∥∥ ≤ h2

time

8 ∥f ′∥ f(yV ), (12)

where ∥.∥ is the maximum norm and htime = maxi=2,...,n(ti − ti−1).

Proof. Observe that ξ′′(t) = f ′(ξ(t))f(ξ(t)) and by the same error approximation
as used for (10),∥∥∥∆ξ − ∆ξ̂

∥∥∥ = max
y∈[0,1]

θ∈[0,tfull]

∣∣∣ξ(ξ−1(y) + θ) − ξ̂(ξ̂−1(y) + θ)
∣∣∣

= max
y∈[0,1]

θ∈[0,tfull]

∣∣∣[ξ(ξ̂−1(y) + θ) − ξ̂(ξ̂−1(y) + θ)] − [ξ(ξ̂−1(y) + θ) − ξ(ξ−1(y) + θ)]
∣∣∣

= max
t∈[0,tfull]

∣∣∣ξ(t) − ξ̂(t)
∣∣∣ =

∥∥∥ξ − ξ̂
∥∥∥ ≤ h2

time

8 ∥f ′∥ f(yV ) (13)

since ξ̂−1 ≥ ξ−1 and ξ̂−1(yi) = ξ−1(yi).

In particular, the maximum possible underestimation of the charge duration
respectively overestimation of the charge state is exactly the approximation error
of the linear spline interpolation of the charge curve. The error becomes larger
the faster the charge rate dissipates with growing soc, but decreases with the
square of the interpolation step size. However, each additional linear segment
introduces 2 |T | |S| new binary decision variables. We conclude that one should
choose coarse interpolation grids adapted to the curvature of ξ and then include
safety margins based on the error bound into the model to ensure solutions are
feasible under exact ξ.
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