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Abstract. The Periodic Event Scheduling Problem (PESP) is a notori-
ously hard combinatorial optimization problem, essential for the design
of periodic timetables in public transportation. The coefficients of the
integer variables in the standard mixed integer linear programming for-
mulations of PESP are the period time, e.g., 60 for a horizon of one
hour with a resolution of one minute. In many application scenarios,
lines with different frequencies have to be scheduled, leading to period
times with many divisors. It then seems natural to consider derived in-
stances, where the period time is a divisor of the original one, thereby
smaller, and bounds are scaled and rounded accordingly. To this end,
we identify two rounding schemes: wide and tight. We then discuss the
approximation performance of both strategies, in theory and practice.

Keywords: Timetabling · Mixed-Integer Programming · Public Trans-
port.

1 Introduction

When planning public transport networks, particularly periodically oper-
ated networks, one of the many challenges is the definition of a timetable.
Not only it is directly impactful for passengers’ satisfaction, but it also
affects further operational planning tasks, such as managing rolling stock
and personnel assignments. Therefore, being able to compute periodic
timetables with efficiency as well as efficacy is of practical importance, and
as it turns out, also of high technical and computational difficulty. The
Periodic Event Scheduling Problem (PESP) [10] is the standard model
used to design and optimize periodic timetables. It is a well-known NP-
complete problem, even in restrictively simpler instances [7]. Although
a potpourri of solution methods has been designed (e.g., [1, 2, 8]), so far
none of them has managed total success on the infamous PESPlib bench-
marking library [3], where all instances currently sit unresolved.



In this work we propose a simple new strategy. We will employ pre-
viously known methods implemented in the ConcurrentPESP solver [1],
but on slightly modified instances. The modification will consist in di-
viding the period time by some of its integer factors, and with it also
all lower and upper bounds on activity durations. As this means scaling
down the instance to a de facto equivalent copy, we further proceed as fol-
lows: To maintain the useful property of integral arc bounds [9], we round
all scaled bounds, which could otherwise have non-trivial fractional part.
Rather than rounding to the closest integer, we devise two main strate-
gies: tightening and widening. Tightening means making activities bounds
tighter by rounding lower bounds upwards and upper bounds downwards.
Widening, on the contrary, does the opposite. Tightened instances can be
used for primal searches, as they will always produce solutions that are
feasible for the original instance, whereas widened instances can be used
for dual searches instead, as they are a relaxation of the original problem.

Our main motivation for this scaling and rounding procedure is that
decreasing the period time while maintaining integral bounds reduces the
magnitude of the entries of the constraint matrix in the standard MILP
formulations for PESP, and thus allows for tighter LP relaxations.

In Section 2 we will recapitulate the most basic PESP knowledge, in
Section 3 we will describe our novel approach, and in Section 4 we will
present our computational experiments.

2 The Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP) captures several aspects
of periodic timetabling in public transport [5], and is defined as follows:

Definition 1 ([10]). Given an instance I = (G,T, ℓ, u, w), where G is
a directed graph of events V (G) and activities A(G), T ∈ N is a period
time, vectors ℓ, u ∈ ZA(G) are lower and upper bounds on the activities,

and w ∈ RA(G)
≥0 is a weight vector, the Periodic Event Scheduling Problem

(PESP) is to find a periodic timetable π ∈ [0, T )V (G) and a periodic
tension x ∈ RA(G) such that

πj − πi ≡ xa mod T ∀a = (i, j) ∈ A(G), (1)

ℓ ≤ x ≤ u, (2)

w⊤x is minimum, (3)

or to decide that no such π and x exist.



A simple machinery to formulate PESP as a mixed-integer linear program
(MILP) is to use auxiliary integer variables p ∈ ZA(G), so called periodic
offsets, such that (1) can be rewritten as

πj − πi + paT = xa ∀a = (i, j) ∈ A(G). (4)

Another common mixed-integer program formulation for PESP is the cy-
cle formulation, which given an integral cycle basis B and a corresponding
cycle matrix Γ ∈ {−1, 0, 1}B×A(G), then substitutes (1) with

Γx = Tz, (5)

where we again have auxiliary integer variables z ∈ ZB, so called cycle
offsets [6]. In either case, the integer variables are multiplied with the
comparably large factor T , which deteriorates the quality of linear pro-
gramming relaxations.

3 Scaling and Rounding of Instances

As discussed, we now propose instance-alteration strategies to hopefully
achieve speed improvements in solution discovery. The basic concept of
our strategies is that of scaling instances by some factor of their period
time and then carefully rounding any non-integral bounds. Explicitly,
given k ∈ N such that k divides T , and arc bounds [ℓ, u], we define two
scaled and rounded bounding strategies as:

tight rounded bounds:

[⌈
ℓ

k

⌉
,
⌊u
k

⌋]
(6)

wide rounded bounds:

[⌊
ℓ

k

⌋
,
⌈u
k

⌉]
. (7)

Then, given a PESP instance I, we indicate as Ik,t the corresponding in-
stance where all arc bounds are scaled by k and tightly rounded, and the
period time is set to T/k. Similarly, Ik,w indicates the case of wide round-
ing. Of course I1,t = I1,w = I. We quickly summarize some immediate
observations.

Lemma 1. Let I be a PESP instance with period time T , and let k be a
divisor of T .

1. If (π, x) is a feasible solution to Ik,t, then (kπ, kx) is feasible for I.
2. If (π, x) is a feasible solution to I, then (π/k, x/k) is feasible for Ik,w.



For the optimal objective values opt(·) in terms of weighted periodic
tension w⊤x, Lemma 1 has the following consequences:

Theorem 1. Let I = (G,T, ℓ, u, w) be a PESP instance, and let k be a
divisor of T .

1. If Ik,t is feasible, then I is feasible, and opt (I) ≤ k · opt (Ik,t).
2. If I is feasible, then Ik,w is feasible, and k · opt (Ik,w) ≤ opt (I).

Proof. Let (π, x) be an optimal solution to Ik,t. Then (kπ, kx) is feasible
for I by Lemma 1, and so opt(I) ≤ w⊤(kx) = k · opt(Ik,t). The proof for
wide rounding is analogous.

All of the above bounds are immediately verified to be tight, for exam-
ple when all activity bounds are divisible by k, because then Ik,t = Ik,w.

However, for realistic instances, e.g., the PESPlib railway instances
[3], the tight rounding procedure reveals an excess of näıveté, as two
issues arise. The span of an activity a ∈ A(G) is defined to be the width
of its bound interval, i.e., ua− ℓa. There are activities a which span small
enough that for some divisors k we have⌊ua

k

⌋
<

⌈
ℓa
k

⌉
, (8)

and of course this then renders Ik,t a priori infeasible. Moreover, there are
often many free activities, i.e., activities with span equal to T − 1. These
arcs intend to model transfer activities, and do not affect the feasibility
of I, but once scaled and rounded in Ik,t they are suddenly quite active
instead.

Therefore, to overcome both issues, we also constructed instances Ĩk,t,
where any activity that is either free or satisfying (8) is left unchanged,
and the bounds on the remaining unproblematic activities a are instead
set to [

k

⌈
ℓa
k

⌉
, k

⌊ua
k

⌋]
, (9)

and the period time remains T . Similarly for Ĩk,w. This strategy basi-
cally tightens the unproblematic activities, while leaving the others as
in the original instance I. As a final attempt we also tested a further
modification of Ĩk,t, where only the unproblematic upper bounds were
rounded downwards, leaving the lower bounds unchanged. The rationale
of this one-sided alteration is that the periodic tensions tend to be par-
ticularly frequently at the lower bound in quality solutions. We denote
such instances by Ĩk,ot, and define Ĩk,ow analogously.
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Fig. 1. Tests of the Ĩk,ot instances. The time axis is in logarithmic scale, the y-axis is
the weighted periodic slack w⊤(x− ℓ).

4 Computational Results

All our experiments were conducted on an Intel i7-9700K CPU with 32
GB RAM, using the latest version of ConcurrentPESP [1], and using
Gurobi 10 [4] as underlying MILP solver.

Initially we tested the Ik,t and Ik,w formulations for all positive in-
tegral divisors of T = 60, i.e., k ∈ {2, 3, 4, 5, 6, 10, 12, 15, 20, 30}, on very
easy to solve sub-instances of R1L1, the smallest PESPlib instance [3]. As
expected, many tightened instances were outright infeasible, if not for the
smallest divisors. In any case, the new formulations showed no advantage,
in none of these tests, which were all quite quickly solved to optimality.
We went on and conducted the same tests on R1L1 and R4L4, with a time
limit of one hour. The exact same patterns repeated.

Further, we repeated the tests with all the same parameters, but now
on the instances adjusted so as to deal with the infeasibility issues ex-
plained above, namely those denoted by Ĩk,t and Ĩk,w. Almost everything
was now feasible, but the non-scaled instance performed best at all times.

To conclude, we tested Ĩk,ot. As divisors, we only used the smaller
ones, i.e., k ∈ {2, 3, 4, 5, 6}, which from the previous tests were the only
ones possibly close to the non-scaled instance’s performance. As instances,
instead, we took R1L1, R2L2, R3L3, R4L4, R1L4, R2L3, R3L2, R4L1. The



time limit was one hour. A picture of these test runs is shown in Figure 1.
In all of these tests there were satisfactory speed improvements in the
primal search. For example, for R3L2, the test on the original instance
finds a primal ∼11.4% above the current PESPlib incumbent in terms
of weighted slack w⊤(x − ℓ), compared to only ∼3.4% above on Ĩ5,ot.
Sometimes the scaled instances outright beat the non-scaled instance, on
the whole time window, and sometimes it only was better for certain
time intervals. This suggests it could be beneficial to implement these
strategies in a concurrent fashion. Regardless, it still seems unpredictable
which scaling factors k perform well or not.

Concerning dual bounds, our tests with instances of the form Ĩk,ow
remained inconclusive, with no clear winner.
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2. Bortoletto, E., Lindner, N., and Masing, B. Tropical Neighbourhood Search:
A New Heuristic for Periodic Timetabling. In 22nd Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022) (Dagstuhl, Germany, 2022), M. D’Emidio and N. Lindner, Eds., vol. 106 of
Open Access Series in Informatics (OASIcs), Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, pp. 3:1–3:19.

3. Goerigk, M. PESPlib - A benchmark library for periodic event scheduling, 2012.
4. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.
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