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Abstract

We consider a multi-queue multi-server system with n servers (pro-
cessors) and m queues. At the system there arrives a stationary and er-
godic stream of m different types of requests with service requirements
which are served according to the following k-limited head of the line
processor sharing discipline: The first k requests at the head of the m
queues are served in processor sharing by the n processors, where each
request may receive at most the capacity of one processor. By means
of sample path analysis and Loynes’ monotonicity method, a stationary
and ergodic state process is constructed, and a necessary as well as a
sufficient condition for the stability of the m separate queues are given,
which are tight within the class of all stationary ergodic inputs. These
conditions lead to tight necessary and sufficient conditions for the whole
system, also in case of permanent customers, generalizing an earlier re-
sult by the authors for the case of n = k = 1.
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1 Introduction

In telecommunication systems different processes consisting of requests have
to be served. For improving the performance, in modern systems several pro-
cessors are used in parallel for processing the requests. The system resources,
in particular the processor capacities, have to be shared between different
types of requests in such a way that on the one hand certain performance
characteristics for the different processes can be guaranteed and on the other
hand a high system utilization is ensured. Furthermore, the resources should
be allocated in a fair manner to the different processes. Various scheduling
disciplines are known and implemented for meeting these requirements. In
the Round Robin (RR) – also called time sharing – disciplines, cf. e.g. [8], a
scheduler allocates a fixed quantum of service, i.e. of processing time, to the
requests present under service in a RR manner. RR disciplines ensure that
requests with small service requirements have smaller sojourn times com-
pared to those with larger service requirements. For small service quanta the
RR disciplines are well approximated by corresponding Processor Sharing
(PS) disciplines, which are more convenient for the analysis of time sharing
systems, cf. e.g. [6]. PS systems have been studied by many researchers, cf.
e.g. [1], [2]-[4], [7], [11], [14], [18]-[24] and the references therein.

The fact that some requests may have to be served sequentially implies
for the system architecture that requests have to be queued appropriately
and that only the first request in each queue is processed under the PS
discipline. This discipline is known as Head of the Line Processor Sharing
(HOL-PS) discipline. In case of thread pools also more than one request of
a queued thread can be processed simultaneously by the processors. This
leads to a generalized HOL-PS discipline considered in this paper, which we
call k-limited HOL-PS discipline: the first k requests of all queues are served
by the processors in the PS mode.

More precisely, in this paper we consider a system consisting of m ≥ 1
queues and n ≥ 1 servers (processors), cf. Figure 1.1. At the system there
arrives a stream of m types of requests with service requirements. The input
is described by a marked point process Ψ = {[Tℓ, Iℓ, Sℓ]}

∞
ℓ=−∞ on the real

line with the mark space K = {1, . . . ,m}×R+ and . . . ≤ T0 ≤ 0 < T1 ≤ . . . ,
where Tℓ are the arrival instants of the requests, Iℓ ∈ {1, . . . ,m} indicates
the type, i.e. the queue where the request goes to, and Sℓ ∈ R+ denotes the
required service time of the ℓ-th request. We assume in the following that
Ψ is a stationary and ergodic marked point process, cf. e.g. [5]. Note that
batch arrivals are included and that there are no independence assumptions.

The input at queue i, i.e. the stream of type-i requests including their
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Figure 1.1: The multi-queue multi-server k-limited head of the line processor
sharing system with m queues and n processors in case of k = 2. The boxes

⊔
⊓ correspond to requests, the hatched boxes to requests in service.

required service times, is given by the stationary ergodic marked point pro-
cess

Ψi = {[Ti,ℓ, Si,ℓ]}
∞
ℓ=−∞ , (1.1)

where . . . ≤ Ti,0 ≤ 0 < Ti,1 ≤ . . . are the arrival instants of type-i requests
and Si,ℓ their required service times. For the offered load ̺i of the type-i
requests it holds

̺i = E

∞
∑

ℓ=−∞

Si,ℓI{0<Ti,ℓ≤1} = E

∫

(0,1]×R+

yΨi(d(x, y)) = λimB0
i

,

where λi = EΨi((0, 1] × R+) is the intensity of Ψi and mB0
i

= ES0
i is the

expectation of the service time S0
i of a typical type-i request, which is given

by the Palm distribution of P (Ψi ∈ (·)), cf. e.g. [10] formula (1.2.8).
The requests in the queues are served by the processors according to the

above mentioned k-limited HOL-PS discipline: The first k ≥ 1 requests of
the m queues are served in PS by the n processors. This means, if there are
ki requests in queue i, i = 1, . . . ,m, then there are altogether

b :=
m
∑

i=1

min(ki, k) (1.2)
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requests in service, and, if b is positive, each of the first min(ki, k) requests
from queue i receives the fraction

ϕ(b) := min
( n

b
, 1
)

(1.3)

of the capacity of one processor.
Note that the case of k = 1 corresponds to the ordinary multi-queue

multi-server HOL-PS system, which we simply call multi-queue multi-server
HOL-PS system. In case of k = ∞ the system is just a G/G/n−PS system,
where G/G corresponds to the cumulative arrivals and service times of all
requests. If mk ≤ n then the m queues act as Gi/Gi/k/∞−FCFS queues,
where Gi/Gi stands for the arrival process and service times of the type-i
requests.

The multi-queue single-server HOL-PS (k = 1) system with Poisson
arrival processes and exponential service times has been considered and an-
alyzed by several authors: In [13] the generating function of the occupancy
distribution is derived in case of a completely symmetric system with two
queues. In [12] a representation of the joint distribution of the queue length
is derived by using power series expansions with respect to the offered load;
the established radius of convergence decreases rapidly in the number of
queues. For heavy traffic approximations we refer to [9], [13], [16]. HOL-PS
systems with limited capacities are analyzed in [9], [17]. In [14] approxima-
tions of the mean sojourn time for a PS system with Background Jobs are
derived, which covers the HOL-PS model with exponential service times.
The multi-queue single-server HOL-PS system with permanent customers
is investigated in [2], where partially general service time distributions are
considered. The single-queue multi-server system with k-limited HOL-PS
discipline is a special case of the multi-programmed system given in [21].
For the multi-queue multi-server system with a k-limited HOL-PS discipline
general results seem not to be known, even for k = 1, for our best knowledge.

The paper is organized as follows. In Section 2 by means of Loynes’
monotonicity method, for the multi-queue multi-server k-limited HOL-PS
system with a general stationary and ergodic input, a stationary state pro-
cess is constructed. In Section 3 a necessary as well as a sufficient condition
for the stability of the separate queues (Theorem 3.1, Corollary 3.1) are
given. These stability conditions are tight, i.e., they cannot be improved
within the class of all stationary and ergodic inputs (Example 3.1). They
lead to tight necessary and sufficient conditions for the stability of the whole
system (Corollary 3.2), also in case of permanent customers (Corollary 3.3),
generalizing a corresponding result for the multi-queue single-server HOL-
PS (k = 1) system with permanent customers given in [3]. The gap between
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the necessary and sufficient stability conditions for the system is illustrated
(Example 3.2).

2 Construction of a stationary state process

Let Ri,ℓ(t) ∈ R+ the residual service time at time t of the ℓ-th request
arrived at queue i before t, ℓ = 1, 2, . . ., ordered in the reversed order of the
numbering of the arrival instants. Thus Ri,ℓ(t) denotes the residual service
time at time t of a ℓ-th last arrived request at queue i before t where all
requests arrived before t are counted. Further let

Ri(t) = (Ri,1(t), Ri,2(t), . . .) – infinite vector of the residual service
times in queue i at time t,

R(t) := (R1(t), . . . , Rm(t)) – vector of the residual service times at
time t.

We want to construct a stationary state process based on Loynes’ mono-
tonicity method, cf. e.g. [5], [15]. Let

MK = {ψ = {[tℓ, iℓ, sℓ]}
∞
ℓ=−∞ : . . . ≤ t0 ≤ 0 < t1 ≤ . . . ,

lim
ℓ→±∞

tℓ = ±∞, iℓ ∈ {1, . . . ,m}, sℓ ∈ R+} (2.1)

be the set of point process realizations where Ψ is concentrated on, i.e.
P (MK) = 1. For τ > 0, let

r
(τ)
i (t, ψ) = (r

(τ)
i,1 (t, ψ), r

(τ)
i,2 (t, ψ), . . .), i = 1, . . . ,m, (2.2)

r(τ)(t, ψ) = (r
(τ)
1 (t, ψ), . . . , r(τ)

m (t, ψ)) (2.3)

be the state of the system at t if it was started at time t− τ from the empty
system with input realization ψ ∈ MK , where the residual service times of
the arrivals until t− τ are 0 by definition. The workload in queue i at t is
given by

v
(τ)
i (t, ψ) =

∞
∑

ℓ=1

r
(τ)
i,ℓ (t, ψ), i = 1, . . . ,m, (2.4)

and the number of requests in queue i at t is given by

k
(τ)
i (t, ψ) =

∞
∑

ℓ=1

I{r
(τ)
i,ℓ (t, ψ) > 0}, i = 1, . . . ,m. (2.5)
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Note that requests arriving or departing at t are not counted in (2.5). As ϕ(b)
is non-increasing with respect to b, cf. (1.3), it follows from the dynamics of
the k-limited HOL-PS discipline, in particular from the fact that all requests
under service receive an equal fraction of the processor capacity, that the
vector of the residual service times r(τ)(t, ψ), i.e. each partial component

r
(τ)
i,ℓ (t, ψ), is non-decreasing with respect to τ , which is crucial in Loynes’

method. Because of this monotonicity, the limit as τ → ∞ exists:

ri,ℓ(t, ψ) := lim
τ→∞

r
(τ)
i,ℓ (t, ψ), i = 1, . . . ,m, ℓ = 1, 2, . . . , (2.6)

r(t, ψ) := lim
τ→∞

r(τ)(t, ψ). (2.7)

The state r(t, ψ) corresponds to the system state at t if the system was
started at time −∞ from the initial state where all residual service times
are 0. Of course, the number of requests in queue i

ki(t, ψ) :=

∞
∑

ℓ=1

I{ri,ℓ(t, ψ) > 0}, i = 1, . . . ,m, (2.8)

may be infinite for some queues. However, r(t, ψ) satisfies the system dy-
namics due to continuity arguments. From now on let

R(t) := r(t,Ψ), t ∈ R, (2.9)

which is a stationary and ergodic process due to the monotonicity property
and since the residual service times of the arrivals until t − τ are 0 by
definition. Note that R(t), t ∈ R, is the minimal stationary state process.
Let

Ki(t) := ki(t,Ψ), t ∈ R, (2.10)

the corresponding stationary number of requests in queue i at t.

3 Stability conditions

A reasonable definition of stability for the model considered, cf. Theorem 3.1
(i), is the following one:

Definition 3.1 Queue i ∈ {1, . . . ,m} is stable if P (Ki(0) < k) > 0. The
processor sharing system is stable if P (Ki(0) < k) > 0 for i = 1, . . . ,m.
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Let

pi := P (Ki(0)≥k), i = 1, . . . ,m, (3.1)

be the probability that at time 0 there are at least k type-i requests in the
system. Note that in case of k = 1, i.e. in case of the ordinary HOL-PS
system, pi is the probability that queue i is non-empty at time 0. Because
of the stationarity and ergodicity of R(t), it holds

pi = lim
t→∞

1

t

t
∫

0

I{Ki(x)≥k}dx P-a.s., i = 1, . . . ,m. (3.2)

By Definition 3.1 queue i is stable if and only if pi < 1.

Theorem 3.1 Let

̺1 ≥ ̺2 ≥ . . . ≥ ̺m > 0. (3.3)

For the minimal stationary state process R(t) given by (2.9), (2.7) it holds:

(i) If queue i is stable then queue j is stable if ̺j ≤ ̺i.

If queue i is unstable then queue j is unstable if ̺j ≥ ̺i.

(ii) Queue i ∈ {1, . . . ,m} is stable if there exists a h ∈ {ik, ik+1, . . . ,mk}
such that

(h/k)̺i + (⌈h/k⌉−h/k)̺⌈h/k⌉ +

m
∑

j=⌈h/k⌉+1

̺j < min(n, h). (3.4)

(iii) If queue i ∈ {1, . . . ,m} is stable then

̺i < k, i̺i +
m
∑

j=i+1

̺j ≤ n (3.5)

with equality only in case of ̺i = ̺1.

Proof If the system is non-empty at t then any served request receives the
random fraction

C∗(t) = min

(

n
m
∑

j=1
min(Kj(t), k)

, 1

)

(3.6)
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of the capacity of one processor at t, cf. (1.2), (1.3). For technical conve-
nience, let C∗(t) := 1 if the system is empty at t. Thus queue i receives the
random multiple

Ci(t) = min(Ki(t), k)C
∗(t), i = 1, . . . ,m, (3.7)

of the capacity of one processor at time t. Because of the stationarity and
ergodicity of R(t), for the mean multiple of the processor capacity received
by queue i it holds

ECi(0) = lim
t→∞

1

t

t
∫

0

Ci(x)dx P-a.s., i = 1, . . . ,m. (3.8)

Let

̺∗ := kEC∗(0). (3.9)

Then from (3.1), (3.6), (3.7), (3.9) it follows

̺∗ − k(1−pi) ≤ ECi(0) ≤ ̺∗ − min
( n

mk
, 1
)

(1−pi), i = 1, . . . ,m.

(3.10)

We use Loynes’ construction (2.1)–(2.7). Let τ > 0 be fixed. Starting
the dynamics of the processor sharing system at time −τ from the empty
system then

c
(τ)
i (Ψ) := v

(τ)
i (0+0,Ψ) − v

(τ+1)
i (1+0,Ψ) +

∞
∑

ℓ=−∞

Si,ℓI{0<Ti,ℓ≤1},

i = 1, . . . ,m, (3.11)

is just the amount of service that receive the type-i requests during the
interval (0, 1] by the processors. Taking expectations we find

Ec
(τ)
i (Ψ) = Ev

(τ)
i (0+0,Ψ) − Ev

(τ+1)
i (1+0,Ψ) + ̺i. (3.12)

By the stationarity of Ψ and since v
(τ)
i (0 + 0,Ψ) is non-decreasing with

respect to τ , it holds

Ev
(τ+1)
i (1+0,Ψ) = Ev

(τ+1)
i (0+0,Ψ) ≥ Ev

(τ)
i (0+0,Ψ).

Thus (3.12) yields

Ec
(τ)
i (Ψ) ≤ ̺i, i = 1, . . . ,m.
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By the stationarity of Ψ, taking the limit as τ → ∞ we obtain

ECi(0) ≤ ̺i, i = 1, . . . ,m. (3.13)

Let pi < 1. Because of (3.2), then we conclude that in any neighborhood
of infinity queue i possesses periods where less than k requests are in queue i.
Thus, in view of the stationarity of Ψ and of the system dynamics, all
requests arriving at queue i will be served. Since

∫ t
0 Ci(x)dx is the amount

of service received by queue i during the interval (0, t], we find

̺i = lim
t→∞

1

t

∫

(0,t]×R+

yΨi(d(x, y)) = lim
t→∞

1

t

t
∫

0

Ci(x) dx = ECi(0), (3.14)

i.e., ̺i is just the mean multiple of the processor capacity received by queue i
provided pi < 1.

If ̺i < ̺∗ then from (3.13) it follows ECi(0) < ̺∗, and hence from (3.10)
we find pi < 1, i.e., queue i is stable. Let ̺i ≥ ̺∗. Assuming pi < 1, from
(3.14) it follows ECi(0) = ̺i ≥ ̺∗, and hence (3.10) provides a contradiction.
Therefore pi = 1, and queue i is unstable if ̺i ≥ ̺∗. Summarizing, it holds
the following necessary and sufficient stability condition for queue i: queue i
is stable if and only if

̺i < ̺∗. (3.15)

This stability condition implies (i).
From (3.15), (3.14), (3.10), (3.7) and (3.6) we find

m
∑

j=1

min(̺j, ̺
∗) =

m
∑

j=1

(I{pj<1}̺j + I{pj =1}̺∗) =
m
∑

j=1

ECj(0)

= E

[

min
(

n,

m
∑

j=1

min(Kj(0), k)
)

]

. (3.16)

Let us assume pi = 1. Because of (3.3) and (i), then queue j is unstable for
j ∈ {1, . . . , i}, i.e.

1 = pj = P (Kj(0)≥k), j = 1, . . . , i. (3.17)

Hence from (3.16) it follows

m
∑

j=1

min(̺j, ̺
∗) ≥ E

[

min
(

n,

i
∑

j=1

min(Kj(0), k)
)

]

= min(n, ik). (3.18)
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Taking into account (3.3) and (3.15), thus we find

i̺i +

m
∑

j=i+1

̺j =

m
∑

j=1

min(̺j, ̺i) ≥

m
∑

j=1

min(̺j, ̺
∗) ≥ min(n, ik). (3.19)

This estimate can be tightened as follows.
Firstly, we consider the modified system with mk queues and nk proces-

sors where the input at queue j is given by

Ψ
(1)
j := Ψ⌈j/k⌉, j = 1, . . . ,mk. (3.20)

Thus for the offered load at queue j in the modified system it holds

̺
(1)
j = ̺⌈j/k⌉, j = 1, . . . ,mk. (3.21)

Note that the input at the modified system consists of k copies of the input at
the original system and that moreover the dynamics of the modified system
consist of k copies of the dynamics of the original system. Hence queue j
in the modified system is stable if and only if queue ⌈j/k⌉ in the original
system is stable, in particular, in the modified system queue ik is unstable.

Let h ∈ {ik, ik + 1, . . . ,mk}. Secondly, we scale the service times per

queue in the modified system such that for the offered load ̺
(2)
j of type-j

requests in the newly modified system it holds

̺
(2)
j :=



















̺
(1)
j , j = 1, . . . , ik,

̺
(1)
ik , j = ik+1, . . . , h,

̺
(1)
j , j = h+1, . . . ,mk.

(3.22)

In view of ̺
(2)
j ≥ ̺

(1)
j for j = 1, . . . ,mk, from the monotonicity property of

Loynes’ construction with respect to the service times it follows that also in
the newly modified system queue ik is unstable. Because of (3.22), (3.21),
(3.3) and (i), thus queue j is unstable for j ∈ {1, . . . , h} in the newly modified
system. Hence (3.19) applied to the newly modified system provides

h̺
(2)
h +

mk
∑

j=h+1

̺
(2)
j ≥ min(nk, hk).

In view of (3.22), (3.21), thus we obtain

h̺i +

mk
∑

j=h+1

̺⌈j/k⌉ ≥ min(nk, hk),
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which is equivalent to the following tightening of (3.19):

(h/k)̺i + (⌈h/k⌉−h/k)̺⌈h/k⌉ +

m
∑

j=⌈h/k⌉+1

̺j ≥ min(n, h). (3.23)

Thus queue i in the original system is stable if there exists a h ∈ {ik, . . . ,mk}
such that

(h/k)̺i + (⌈h/k⌉−h/k)̺⌈h/k⌉ +
m
∑

j=⌈h/k⌉+1

̺j < min(n, h), (3.24)

which is part (ii).
Let pi < 1. From (3.15), (3.9) and (3.6) it follows the first part of (iii):

̺i < ̺∗ ≤ k. (3.25)

Because of (3.16), it holds
m
∑

j=1

min(̺j, ̺
∗) ≤ n, (3.26)

and in view of (3.3) and (3.15), we obtain the second part of (iii):

i̺i +
m
∑

j=i+1

̺j =
m
∑

j=1

min(̺j, ̺i) ≤
m
∑

j=1

min(̺j, ̺
∗) ≤ n (3.27)

with equality of the last both sums only if ̺i = ̺1 as the first summands
are equal only if ̺i = ̺1.

Choosing h = ik for n < ik, h = n for ik ≤ n < mk and h = mk for
mk ≤ n in Theorem 3.1, respectively, we obtain the following corollary:

Corollary 3.1 Let ̺1 ≥ ̺2 ≥ . . . ≥ ̺m > 0.

(i) Let n < ik. Queue i is stable if

i̺i +
m
∑

j=i+1

̺j < n, (3.28)

and if queue i is stable then

i̺i +

m
∑

j=i+1

̺j ≤ n (3.29)

with equality only in case of ̺i = ̺1.
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(ii) Let ik ≤ n < mk. Queue i is stable if

(n/k)̺i + (⌈n/k⌉−n/k)̺⌈n/k⌉ +
m
∑

j=⌈n/k⌉+1

̺j < n, (3.30)

and if queue i is stable then

̺i < k, i̺i +

m
∑

j=i+1

̺j ≤ n (3.31)

with equality only in case of ̺i = ̺1.

(iii) Let mk ≤ n. Queue i is stable if and only if

̺i < k. (3.32)

The following example tells us that the sufficient as well as the necessary
stability conditions given in Corollary 3.1 are tight, i.e., they cannot be
improved within the class of all stationary and ergodic inputs.

Example 3.1 Let n < mk and ̺1 ≥ ̺2 ≥ . . . ≥ ̺m > 0 be given and U be
uniformly distributed on [0, 1].

(i) Consider the case of batch arrivals of size mk where at the time in-
stants ℓ+U , ℓ ∈ Z, k requests with service time ̺j/k arrive at queue j,
j ∈ {1, . . . ,m}.

In this case the service of an arriving batch at queue i takes at least the
time

∑m
h=i(̺h − ̺h+1)max(h/n, 1/k) where ̺m+1 := 0. The stability

of queue i implies that this duration has to be less than 1, i.e. (3.28)
if n < ik and (3.30) if ik ≤ n < mk. Thus the sufficient stability
conditions are tight.

(ii) Consider the case where at the time instants ℓ+
∑j−1

h=1 ̺h + U , ℓ ∈ Z,
j ∈ {1, . . . ,m}, a request with service time ̺j arrives at queue j.

Let n < ik, ̺i = ̺1 and (3.29) be fulfilled or let ik ≤ n < mk, ̺i = ̺1

and (3.31) be fulfilled. Then it holds ̺1 = ̺i < k and
∑m

h=1 ̺h ≤ n.
Therefore at any time t there are altogether at most ⌈

∑m
h=1 ̺h⌉ ≤ n

requests which arrived at any queue j during [t− ̺j, t) where at most
k requests arrived at the same queue due to ̺j < k, and thus all these
requests receive the capacity of one processor. Hence queue i is stable
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as ̺i < k. Thus the necessary stability condition (3.29) is tight, and
the necessary stability conditions (3.31) are tight in case of ̺i = ̺1.

Let ik ≤ n < mk, ̺i < ̺1 and let (3.31) be fulfilled. Assume that
queue i is unstable. In view of Theorem 3.1 (i), then the first i queues
are unstable. In case of

∑m
h=i+1 ̺h ≤ n − ik at any time t there are

altogether at most ⌈
∑m

h=i+1 ̺h⌉ ≤ n − ik requests which arrived at
any queue j during [t − ̺j , t) for any j > i where at most k requests
arrived at the same queue due to ̺j < k for j > i, and thus all
served requests in the system receive the capacity of one processor.
Thus queue i receives almost surely the capacity of k processors in
contradiction to ̺i < k and (3.13). In case of

∑m
h=i+1 ̺h > n − ik at

any time t there are altogether at least ⌊
∑m

h=i+1 ̺h⌋ ≥ n− ik requests
which arrived at any queue j during [t− ̺j , t) for any j > i where at
most k requests arrived at the same queue due to ̺j < k for j > i. As
any served request receives at most the capacity of one processor thus
there are almost surely at least n served requests in the system, and
thus the n processors are almost surely busy. Hence each of the queues
j ≤ i receives at least the mean multiple (n−

∑m
h=i+1 ̺h)/i > ̺i of the

capacity of one processor in contradiction to (3.13) applied to queue i.
Thus queue i is stable, and the necessary stability conditions (3.31) are
tight in case of ̺i < ̺1, too.

Choosing i := 1 in Corollary 3.1 provides tight stability conditions for
the whole system:

Corollary 3.2 Let ̺1 ≥ ̺2 ≥ . . . ≥ ̺m > 0.

(i) Let n < mk. The system is stable if

(n/k)̺1 + (⌈n/k⌉−n/k)̺⌈n/k⌉ +
m
∑

j=⌈n/k⌉+1

̺j < n, (3.33)

and if the system is stable then

̺1 < k,

m
∑

j=1

̺j ≤ n. (3.34)

(ii) Let mk ≤ n. The system is stable if and only if

̺1 < k. (3.35)
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Example 3.2 Let m = 3, n = 2, k = 1 and ̺1 ≥ ̺2 = 0.7, ̺3 = 0.5. Then
the sufficient stability condition (3.33) reads ̺1 < 0.75, and the necessary
stability conditions (3.34) reads ̺1 ≤ 0.8. Therefore the system is stable if
̺1 < 0.75 and unstable if ̺1 > 0.8.

Simulations of the HOL-PS system with Poisson arrival streams of in-
tensity ̺i, i = 1, 2, 3, and exponential service times with mean 1 provide
the approximate necessary and sufficient stability condition ̺1 < 0.76 in the
special case of the Markov model with equal mean service times.

Consider the modified k-limited HOL-PS system where in each of the
first l < m queues there are k permanent customers, i.e., where in each of
the first l queues there are k requests with infinite service requirement. In
this case a reasonable definition of stability for the whole system would be
the stability of the remaining m− l queues, cf. [3].

We model the case of permanent customers as described above by choos-
ing the offered loads for the first l queues sufficiently large. Thus we may
assume that ̺1 ≥ . . . ≥ ̺l > ̺l+1 ≥ . . . ≥ ̺m > 0. Choosing now i := l + 1
in Corollary 3.1 provides tight stability conditions for the whole multi-queue
multi-server k-limited HOL-PS system with permanent customers, general-
izing a corresponding result for the ordinary multi-queue single-server HOL-
PS system with permanent customers given in [3] Theorem 3.5 (iv):

Corollary 3.3 Consider the modified processor sharing system where in
each of the first l queues there are k permanent customers and 0 < l < m.
Let ̺l+1 ≥ ̺l+2 ≥ . . . ≥ ̺m > 0.

(i) Let (l + 1)k < n < mk. The system is stable if

(n/k)̺l+1 + (⌈n/k⌉−n/k)̺⌈n/k⌉ +

m
∑

j=⌈n/k⌉+1

̺j < n, (3.36)

and if the system is stable then

̺l+1 < k, l̺l+1 +

m
∑

j=l+1

̺j < n. (3.37)

(ii) Let n ≤ (l+ 1)k or mk ≤ n. The system is stable if and only if (3.37)
holds.
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