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Zusammenfassung

Die gemischt-ganzzahlige Programmierung (MILP) ist ein wichtiges Teilgebiet im Be-
reich der mathematischen Optimierung und kommt bei der Modellierung und Lösung
einer Vielzahl von verschiedenen Anwendungsproblemen mit oft weitreichenden wirt-
schaftlichen Folgen zum Einsatz. Die am weitesten verbreiteten Löser für solche MILP-
Probleme verwenden den LP-basierten branch-and-cut-Ansatz. Hierbei wird die Ganz-
zahligkeitsbedingung relaxiert und das sich daraus ergebende lineare Programm (LP)
dazu verwendet, die Lösungsqualität abzuschätzen und den Lösungsraum schrittwei-
se aufzuteilen und zu verkleinern.

In dieser Arbeit vergleichen und analysieren wir verschiedene algorithmische Tech-
niken und Software-Implementierungen, die zur Optimierung dieser LP-Relaxierungen
herangezogen werden können. Wir benutzen dazu die SCIP Optimization Suite2, die es
aufgrund ihrer modularen Struktur erlaubt, solche Vergleiche zwischen freien Lösern
wie Clp oder SoPlex und kommerziellen Hochleistungscodes wie CPLEX, Gurobi oder
Xpress durchzuführen.

Wir untersuchen speziell, wie die von uns entwickelten Methoden LP solution po-
lishing und persistent scaling im LP-Löser SoPlex das Verhalten von SCIP bei der Lö-
sung von MILPs beeinflussen. Das erstere Verfahren dient dabei der Verminderung der
Fraktionalität der errechneten LP-Lösungen durch Ausnutzen von multiplen optimalen
Lösungen, während das zweite zu einer Verbesserung der numerischen Eigenschaften
beiträgt, indem die initialen Skalierungsfaktoren über den gesamten Lösungsprozess
weiterverwendet werden. Beide Verfahren erhöhen signifikant die Leistungsfähigkeit
von SCIP und sind standardmäßig aktiviert.

Außerdem beinhaltet diese Abhandlung eine Übersicht über sämtliche Eigenschaf-
ten und mathematischen Techniken, die im LP-Löser SoPlex implementiert sind und
diesen von anderen vergleichbaren Implementierungen des Simplex-Algorithmus ab-
heben. Obwohl SoPlex im direkten Vergleich weniger performant ist, zeugen diese
Erweiterungen vom wissenschaftlichen Fortschritt auf dem Gebiet der linearen Pro-
grammierung.

Weiterhin präsentieren wir Ergebnisse von Studien zur numerischen Stabilität von
2https://scipopt.org/
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SCIP während der unterschiedlichen Phasen des MILP-Lösens. Hierbei beleuchten wir
die Stabilität aus der Perspektive des LP-Lösers und stellen mit dem von uns entwi-
ckelten Python Paket TreeD3 eine neue Möglichkeit vor, wie der Suchbaum interaktiv
und animiert im dreidimensionalen Raum dargestellt werden kann. Diese Visualisie-
rungstechnik eignet sich zur anschaulichen Darstellung des MILP-Löseprozesses von
SCIP und kann somit zu einem besseren Verständnis dessen beitragen.

Darüber hinaus zeigen wir die schnelle und intuitive Erarbeitung algorithmischer
Prototypen auf, die mit der von uns entwickelten SCIP Optimization Suite-Erweiterung
PySCIPOpt4 möglich sind. Hiermit kann mittels der anwendungsfreundlichen Program-
miersprache Python auf viele interne Datenstrukturen von SCIP zugegriffen werden,
um in kurzer Zeit ohne C/C++-Kenntnisse neue Ideen zu implementieren, wie wir am
Beispiel von TreeD zeigen. Auch die intuitive Modellierung ganzer Optimierungspro-
bleme ist möglich, ohne die zugrundeliegenden Daten in eine weitere Modellierungs-
umgebung zu überführen.

Sämtliche Entwicklungen und Ergebnisse sind entweder bereits in die quelloffene
und für nicht-kommerzielle Nutzung verfügbare SCIP Optimization Suite eingeflossen
oder als separate Pakete über die Code-Plattform GitHub5 verfügbar und frei verwend-
bar.

3https://github.com/mattmilten/TreeD
4https://scipopt.github.io/PySCIPOpt
5https://github.com/
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Abstract

Mixed-integer linear programming (MILP) plays a crucial role in the field of mathe-
matical optimization and is especially relevant for practical applications due to the
broad range of problems that can be modeled in that fashion. The vast majority of
MILP solvers employ the LP-based branch-and-cut approach. As the name suggests,
the linear programming (LP) subproblems that need to be solved therein influence
their behavior and performance significantly.

This thesis explores the impact of various LP solvers as well as LP solving tech-
niques on the constraint integer programming framework SCIP Optimization Suite6.
SCIP allows for comparisons between academic and open-source LP solvers like Clp
and SoPlex, as well as commercially developed, high-end codes like CPLEX, Gurobi,
and Xpress.

We investigate how the overall performance and stability of an MILP solver can be
improved by new algorithmic enhancements like LP solution polishing and persistent
scaling that we have implemented in the LP solver SoPlex. The former decreases the
fractionality of LP solutions by selecting another vertex on the optimal hyperplane of
the LP relaxation, exploiting degeneracy. The latter provides better numerical proper-
ties for the LP solver throughout the MILP solving process by preserving and extending
the initial scaling factors, effectively also improving the overall performance of SCIP.
Both enhancement techniques are activated by default in the SCIP Optimization Suite.

Additionally, we provide an analysis of numerical conditions in SCIP through the
lens of the LP solver by comparing different measures and how these evolve during
the different stages of the solving process.

A side effect of our work on this topic was the development of TreeD7: a new and
convenient way of presenting the search tree interactively and animated in the three-
dimensional space. This visualization technique facilitates a better understanding of
the MILP solving process of SCIP.

Furthermore, this thesis presents the various algorithmic techniques like the row
representation and iterative refinement that are implemented in SoPlex and that dis-
tinguish the solver from other simplex-based codes. Although it is often not as per-

6https://scipopt.org/
7https://github.com/mattmilten/TreeD
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formant as its competitors, SoPlex demonstrates the ongoing research efforts in the
field of linear programming with the simplex method.

Aside from that, we demonstrate the rapid prototyping of algorithmic ideas and
modeling approaches via PySCIPOpt8, the Python interface to the SCIP Optimization
Suite. This tool allows for convenient access to SCIP’s internal data structures from
the user-friendly Python programming language to implement custom algorithms and
extensions without any prior knowledge of SCIP’s programming language C. TreeD is
one such example, demonstrating the use of several Python libraries on top of SCIP.
PySCIPOpt also provides an intuitive modeling layer to formulate problems directly in
the code without having to utilize another modeling language or framework.

All contributions presented in this thesis are readily accessible in source code in
SCIP Optimization Suite or as separate projects on the public code-sharing platform
GitHub9.

8https://scipopt.github.io/PySCIPOpt
9https://github.com/
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Notation

Z Set of integers
N Set of non-negative integers
R Set of real numbers
n Number of variables in the problem
m Number of constraints in the problem
C = {1, . . . , n} Set of problem variable indices
R = {1, . . . ,m} Set of slack variable indices
B Set of basic indices
N = (R ∪ C) ∖ B Set of non-basic indices
I ⊆ C Set of integer variable indices
A ∈ Rm,n Constraint matrix of the problem
A⊺ Transpose of matrix A, A⊺ ∈ Rn,m

aq qth column of A, aq = A.q

B Basic part of matrix A, B = AB
N Non-basic part of matrix A, N = AN
LP Linear programming problem (also refers to the problem class)
MILP Mixed-integer linear programming problem (also refers to the prob-

lem class)
κ Condition number of a square matrix, κ(A) = ∥A∥ ⋅ ∥A−1∥
κLP LP condition number (see Definition 6 in Chapter 6)
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Chapter 1

Introduction

In all my scientific presentations that dealt with the interaction between and the influ-
ence and importance of LP solving in the context of mixed-integer linear programming
(MILP), I learnt that there is a great interest in understanding this relationship or at
the very least in learning something new about it. Everyone from first-year PhD stu-
dents to experts with decades of experience showed interest in how SCIP behaves
with various different LP solvers and what takeaways we can get from that. This topic
has been fueled by numerous benchmarks comparing different LP and MILP solvers
over many years conducted by Prof. Hans Mittelmann as in Figure 1.1:

Figure 1.1.: Mittelmann benchmark results on MIPLIB 2010, November 2017.

This provided plenty of motivation to put in the time and effort of investigating the
impact of an LP solver in SCIP.

Prof. Thorsten Koch posed the provocative question “Why LP does not matter for
MILP” and motivated us to dive deep into investigating why a performance increase of
an LP code often does not seem to affect the respective MILP performance accordingly.
This is by no means a SCIP-specific question: The LP performance improvements of
new versions of commercial solvers may not carry over to the respective MILP bench-
marks. It takes more than just plugging a fast LP solver into SCIP to get a decent MILP
solver.

Nevertheless, implementing new and improved LP techniques remains important
and can significantly impact how an MILP is solved. In Chapter 3 we present several
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1. Introduction

such examples, ranging from more straightforward ideas like a stable sum implemen-
tation to improve the accuracy of long summations to more involved concepts like the
bound flipping ratio test or the row representation for the simplex algorithm.

A technique that is mostly relevant for solving LP relaxations in the MILP context
but still entirely implemented within the domain of the simplex solver SoPlex is LP
solution polishing (Chapter 5).

Numerics play an important role both in LP and MILP solving and may decide whether
an instance can be solved correctly or not. In Chapter 6 we explore the numerical
features during MILP solving from the perspective of the underlying LP solver. This
is guided mainly by inspecting condition numbers of matrices that occur during the
solving process. One goal of this thesis is to collect and share this information and to
investigate some of the folklore around LP and MILP numerics.

In summary, this work puts a focal lens on linear programming in MILP solving—quite
literally, even, as we demonstrate with our LP-based visualization package TreeD in
Section 4.8. This interactive visualization technique projects the LP relaxations en-
countered while traversing the branch-and-cut tree into a 3-dimensional space.

1.1. Contributions and Publications

Our work is mainly based on the MINLP solver framework SCIP Optimization Suite,
most notably including the LP solver SoPlex and the constraint integer programming
solver SCIP. While writing this thesis, we developed PySCIPOpt1 (Maher, Miltenberger,
et al., 2016), providing an interface to SCIP from the Python programming language.
This tool allows for rapid prototyping of new algorithmic ideas as well as analysis and
manipulation of internal solver data using Python. We present details about the core
concepts of the implementation and performance comparisons with SCIP’s C API in
Chapter 2.

Using PySCIPOpt, we developed an application named TreeD2 (Miltenberger, 2021b),
a novel 3D-visualization tool for branch-and-cut trees to provide a new perspective
and further insight on how an individual instance is solved by SCIP. TreeD also allows
for convenient data collection and is used to conduct many of the numerical experi-
ments presented in this thesis. See Section 4.8 for a description of the approach and
further details.

LP performance improvements like exploitation of sparse data structures and the
bound flipping ratio test discussed in Section 3.5 and Section 3.4 have already been
presented in Gamrath, Gleixner, et al. (2019) in the context of solving challenging real-
world problem instances (both LP and MILP) originating from supply chain optimiza-
tion models.

Cao, Gleixner, and Miltenberger (2016) discuss the benefits and disadvantages of dif-
ferent solvers and solver techniques for dealing with difficult LP models in the energy
and electricity markets. Such benchmarks remain of high interest in the optimization

1https://github.com/scipopt/PySCIPOpt
2https://github.com/mattmilten/TreeD
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1.2. Linear and Mixed-Integer Linear Programming

community. Prof. Hans Mittelmann3 dedicates a lot of time, effort, and computing re-
sources to provide up-to-date results online4 for a large variety of solvers covering a
wide field of disciplines beyond LP and MILP. We created a web service5 that takes
these raw performance numbers and individual log files and presents them in an in-
teractive and more intuitive way to make them more accessible to a wider range of
interested users. This project is presented in Appendix A.

The results of Chapter 6 are partly published in Miltenberger, Ralphs, and Steffy
(2018). We investigate numerical features during the MILP solving process and what
we can learn from this.

Furthermore, many smaller features and performance and stability improvements
have been implemented in both SCIP and SoPlex during the development of this thesis
and have been published in the different SCIP Optimization Suite reports for version
3.2 (Gamrath, Fischer, et al., 2016), version 4.0 (Maher, Fischer, et al., 2017), version
5.0 (Gleixner, Eifler, et al., 2017), version 6.0 (Gleixner, Bastubbe, et al., 2018), and
version 7.0 (Gamrath, Anderson, et al., 2020). We discuss these in Chapter 3.

Two other technical contributions are the transition to the modern version control
system git6 from the aging CVS and the introduction of the cross-platform build sys-
tem CMake7 that facilitates the creation of user-friendly installer packages and has
further improved the usability and distribution of the SCIP Optimization Suite. We
want to mention this here, because the accessibility of community-driven and open
source software development is an often overlooked aspect in academia.

Finally, we want to mention the development of a new LP interface between SCIP and
SoPlex that replaces the legacy one and facilitates several new features and algorith-
mic developments such as persistent scaling (Section 3.7) and LP solution polishing
(Chapter 5).

1.2. Linear and Mixed-Integer Linear Programming

In 2012, a feature story of the NewScientist magazine8 called the Simplex method
“The algorithm that runs the world”. This perfectly visualizes the impact on real-world
applications Linear and Mixed-Integer Linear Programming and especially the simplex
method have.

The simplex algorithm is among the top 10 algorithms of the 20th century (Cipra,
2000) and it’s very likely to stay among the most used algorithms for the foreseeable
future.

In mathematical notation a mixed-integer linear programming problem (MILP) can
be formalized in the following way:

3School of Mathematical and Statistical Sciences, Arizona State University
4http://plato.asu.edu/bench.html
5https://github.com/mattmilten/mittelmann-plots
6https://git-scm.com/
7https://cmake.org/
8http://www.newscientist.com/article/mg21528771.100-the-algorithm-that-runs-the-world
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1. Introduction

min c⊺x

s.t. Ax ≤ b
l ≤ x ≤ u
xj ∈ Z ∀ j ∈ I,

(1.1)

If the set I is empty, that is, if there are only continuous variables, problem (1.1)
reduces to a linear programming problem (LP):

min c⊺x

s.t. Ax ≤ b
l ≤ x ≤ u

(1.2)

There are also several other problem classes that can be distinguished: Binary op-
timization problems only allow variables to be either 0 or 1, while mixed-binary prob-
lems may also contain continuous variables. A problem that only consists of integer
variables is called an integer programming problem or IP. For most aspects of this
thesis, though, the general distinction between LP and MILP is sufficient. It should be
noted that these abbreviations are synonymous for both the problem class and the
specific problem instance.

With the growing popularity and applicability of mixed-integer non-linear program-
ming, or MINLP, people are more frequently using the term MIP or mixed-integer op-
timization (MIO) also to encompass non-linear models. We will explicitly mention it
whenever we are referring to non-linear problems and will otherwise restrict ourselves
to linear optimization, that is, MILP problems.

1.2.1. History and Impact

At the turn of the 21st century, Bixby, Fenelon, et al. (2000) reported how solving
techniques for MILPs have evolved over the last decades. Solvers have become re-
liable and performant enough to deal with all kinds of general problems in the field
of operations research and combinatorial optimization. The paper provides computa-
tional results using the CPLEX solver and gives an overview of the implementational
techniques—many of which still being state-of-the-art today.

About a decade later, Achterberg and Wunderling (2013) analyzed the progress since
then and we recommend this paper for readers interested in the evolution of algo-
rithmic and mathematical ideas developed for high-performance MILP solvers.

Cao, Gleixner, and Miltenberger (2016) showed how we can utilize existing methods
better via parameter tuning to achieve improved solving times on selected model
instances from the energy and power sector.

Pushing performance to solve harder and larger models both for general black-
box and specialized applications has always been the driving force of LP and MILP
development. It is worth noting that the most advanced codes available today are
actually able to handle general purpose models and the range of model types is ever
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1.3. LP Solving Approaches and Duality Theory

increasing. Still, there are also specialized implementations, for example Concorde9

to tackle the Traveling Salesman Problem (TSP) better than any other solver. We refer
to the excellent book by Cook (2011) for further information about this particular sub-
class of mathematical optimization problems.

Most recently, new exciting advancements using quantum computing (Nannicini,
2021) and machine learning (Nair et al., 2020) open new doors for further progress.

The area of mathematical optimization is fast-moving and interesting because it is
useful for practical applications, can be challenging and demanding from a computa-
tional perspective, and still provides lots of open academic research questions.

1.3. LP Solving Approaches and Duality Theory

The early history of linear programming starts with Fourier (1827), who introduces a
technique later called the Fourier-Motzkin elimination after its rediscovery by Motzkin
(1936). While this algorithm was designed to solve the feasibility problem for a set of
inequalities, it can also integrate an objective function that is to be minimized or
maximized.

In 1947, George Dantzig invented the simplex algorithm (see Dantzig (1987) for a ret-
rospective view). This method is now called primal simplex and has since been refined
and improved multiple times. One of the most notable advancements are arguably
the dual simplex method by Beale (1954) and Lemke (1954) and the first ideas to avoid
explicit matrix inversion (Dantzig and Orchard-Hays, 1954) in 1954.

From a theoretical perspective the simplex method is not an efficient method as it
has exponential run time, that is, the number of necessary iterations with respect to
the input size is not bounded by a polynomial term. Typically, such algorithms are
frowned upon because they are deemed impractical for solving real-world problems.
Khachiyan (1979) introduces the ellipsoid method which stands as the first method
to solve linear programming problems in polynomial time. Despite this theoretical
advantage, it could not outperform the simplex method on practical problems. This
changed when Karmarkar (1984) proposed the interior point method—a polynomial-
time algorithm that improved the theoretical run time of the ellipsoid method and
could also solve real-world LPs in a competitive time. Soon after, the primal-dual
interior point method by Kojima, Mizuno, and Yoshise (1989) became the basis for
state-of-the-art interior point implementations and is often faster than simplex-type
methods.

Bixby (2012) provides a comprehensive coverage of the history of linear and integer
optimization including corresponding implementations and is highly recommended
for further reading.

Since the simplex method and the interior point algorithm are the two fundamental
procedures to solve real-world linear optimization problems, we want to explain their
ideas and highlight their differences. We will only provide a short introduction to

9https://www.math.uwaterloo.ca/tsp/concorde/
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1. Introduction

these methods and would like to refer to Schrijver (1986) and Vanderbei (1996) for an
in-depth description and details about the underlying mathematical ideas.

The notion of duality is too important and too substantial to omit, so we will first
introduce this concept before describing the solving methods.

1.3.1. Duality

We want to illustrate duality using the famous diet problem (see Dantzig (1990) for an
interesting story about the beginnings of the simplex method). Recall the standard
LP from above:

min c⊺x

s.t. Ax ≥ b
x ≥ 0

(1.3)

Now, let the x variables symbolize amounts of various foods (measured in some
suitable units), while the constraints model the nutrient requirements of a specific
diet plan:

x = {xapple, xpotato, xcereal, . . .}
b = {bprotein, bfat, bsugar, . . .}

Each constraint’s coefficients represent the amount of a specific nutrient like car-
bohydrates, fat, sugar, etc., in one unit of that food item:

0.3xapple + 1.9xpotato + 4.5xcereal + ⋅ ⋅ ⋅ ≥ bprotein

Finally, the objective is to minimize the cost of the diet, hence, the c values specify
the price of a single unit of each food item. Such diet problems have actually been
among the first linear programming models to be investigated. Their practicality was
likely very limited due to the lack of variety and they are mostly interesting from a
theoretical point of view.

We can form the corresponding dual LP as follows:

max b⊺y

s.t. A⊺y ≤ c
y ≥ 0

(1.4)

In this dual version, the variables y are used to model prices for nutrient supple-
ments:

y = {yprotein, yfat, ysugar, . . .}

These supplements must be cheaper than the actual food items, so the right hand
side of the constraints is c and the constraint matrix is transposed to model the nu-
trient distribution of a single food item in each row:

8



1.3. LP Solving Approaches and Duality Theory

primal: min c⊺x dual: maxb⊺y

ith constraint Ai.x ≤ bi ith variable yi ≤ 0
ith constraint Ai.x ≥ bi ith variable yi ≥ 0
ith constraint Ai.x = bi ith variable yi free
jth variable xj ≥ 0 jth constraint y⊺A.j ≤ cj
jth variable xj ≤ 0 jth constraint y⊺A.j ≥ cj
jth variable xj free jth constraint y⊺A.j = cj

Table 1.1.: LP dualization formulas

0.3yprotein + 0.2yfat + 10.4ysugar + ⋅ ⋅ ⋅ ≤ capple

The objective is now to maximize the profit of selling these supplements according
to the nutrient demand of the chosen diet.

In this example, the optimum represents a cost equilibrium between consuming
regular food and relying only on food supplements. The dual variables y are also
referred to as shadow prices.

With this illustrative example, we hope to make the concept of duality more tangi-
ble. Table 1.1 states how to transform an LP into its dual form considering different
variations of constraint senses and variable bounds.

There are several important aspects of this duality that come in handy to work with
LPs.

Lemma 1 (Weak duality). If x̌ is a feasible solution to the LP maxx≥0 {c⊺x ∣ Ax ≤ b} and
y̌ is a feasible solution to the dual LP miny≥0 {b⊺y ∣ A⊺y ≥ c}, then

c⊺x̌ ≤ b⊺y̌.

Proof. This lemma follows directly from the feasibility conditions for x̌ and y̌:

Ax̌ ≤ b ⇒ y̌⊺Ax̌ ≤ y̌⊺b
A⊺y̌ ≥ c ⇔ y̌⊺A ≥ c⊺ ⇒ y̌⊺Ax̌ ≥ c⊺x̌

(1.5)

The two inequalities are preserved after multiplication with x̌ and y̌, respectively, be-
cause of the nonnegativity conditions x̌ ≥ 0 and y̌ ≥ 0, resulting in the desired state-
ment c⊺x̌ ≤ y̌⊺Ax̌ ≤ b⊺y̌.

Please note that we interchanged the terms primal and dual for the diet example
above because the primary formulation is usually referred to as primal problem. Most
textbooks use the definition from Lemma 1. Both variants are equivalent since the
dualizing the dual LP again yields the original primal problem.
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An immediate implication from weak duality is that as soon as equality is attained,
that is, c⊺x̌ = b⊺y̌, both solutions x̌ and y̌ are optimal for their respective problems—
any further improvement according to their objective functions would violate the weak
duality condition.

The fundamental theorem of linear programming is called the duality theorem:

Theorem 1 (Duality theorem).

1. If both primal and dual LPs have feasible solutions, then they also have an opti-
mal solution and the objective values of both optimal solutions coincide.

2. If one of the problems is unbounded, then the other has no feasible solution.

3. If one of the problems has no feasible solution, then the other problem is either
unbounded or infeasible.

Here is a small example to demonstrate the existence of an LP that is infeasible in
its primal form as well as in its dual:

max 2x1 − x2
s.t. x1 − x2 ≤ 1

−x1 + x2 ≤ −2
x ≥ 0

min y1 − 2y2

s.t. y1 − y2 ≥ 2
−y1 + y2 ≥ −1

y ≥ 0

The infeasibility can be seen by adding up both constraints: The primal system on
the left then reduces to 0 ≤ −1 while the dual reveals 0 ≥ 1.

For the proof of Theorem 1, we refer to the literature on LP theory, for example
Vanderbei (1996) or Schrijver (1986).

Another important result from duality theory is Farkas’ lemma (Farkas, 1902):

Lemma 2 (Farkas’ lemma). For given A ∈ Rn,m and b ∈ Rm exactly one of the following
statements is true:

1. There is x ∈ Rn with Ax = b and x ≥ 0.

2. There is y ∈ Rm with A⊺y ≥ 0 and b⊺y < 0.

It is fairly easy to see that both statements cannot be true at the same time:

A⊺y ≥ 0 x≥0⇒ x⊺A⊺y ≥ 0 ⇒ b⊺y ≥ 0 contradicting b⊺y < 0.
Figure 1.2 provides an intuitive geometrical interpretation of Lemma 2.
Lemma 2 actually provides a proof of infeasibility for LPs in form of the vector y that

is also commonly referred to as dual ray. This ray is used to derive further implications
when solving MILPs and coming across an infeasible node LP. This process is called
conflict analysis and can help to speed up the solution process, see Witzig, Berthold,
and Heinz, 2019 for a recent overview.

10



1.3. LP Solving Approaches and Duality Theory

A.1

A.2
b

A.1

A.2

b
z

y

Figure 1.2.: The condition Ax = b translates to b = ∑n
i=1 xiA.i for x ≥ 0, that is, on the

left, b is within the cone defined by the columns of A, hence, feasible. In
the right illustration, b is outside the feasible region and b⊺y < 0 while
y⊺A.i ≥ 0. Recall that b⊺y = ∥b∥∥y∥ cosα, so for non-zero vectors b and y

the angle α between them has to be obtuse to satisfy b⊺y < 0. The dotted
hyperplane y⊺z = 0 separates b from the cone.

1.3.2. Interior Point Method

Unlike simplex-type methods that proceed along the extreme points on the boundary
of the feasible region, the interior point method or barrier algorithm strictly moves
within the feasible set and converges towards the optimum.

For completeness and because of its mathematical elegance, we want to sketch the
general idea of an interior point method.

Let minx≥0 {c⊺x ∣ Ax = b} be the LP to be solved. The constraints and variable bounds
can be combined with the objective function to get the unconstrained Lagrangian
problem

Lp(x,y) = c⊺x − µ
n

∑
j=1

log(xj) − y⊺(Ax − b)

Here, µ > 0, the so-called barrier parameter controls the influence of the logarith-
mic term. The smaller µ gets, the more we allow the x variables to approach zero
when minimizing Lp(x,y). We can apply the same transformation on the dual LP
maxs≥0 {b⊺y ∣ A⊺y + s = c}:

Ld(x,y, s) = b⊺y + µ
n

∑
j=1

log(sj) − x⊺(A⊺y + s − c).

Minimizing or maximizing these L functions requires finding a point where their
derivatives reach zero. This is equivalent to these conditions:

Ax = b, x ≥ 0
A⊺y + s = c, s ≥ 0

xjsj = µ, ∀j ∈ {1, . . . , n}
(1.6)

These are relaxed Karush-Kuhn-Tucker or KKT conditions (Kuhn and Tucker, 1951),
which require µ to be zero in their original form.
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The main idea of IPM is now to find a starting point and then successively reduce µ

until the iterates are sufficiently close to optimality. This is carried out via solving a
sequence of systems of linear equations of this type:

⎡⎢⎢⎢⎢⎢⎣

A 0 0

0 A⊺ I

Sk 0 Xk

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

∆xk
∆yk

∆sk

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

rx
ry
rs

⎤⎥⎥⎥⎥⎥⎦
Here, Xk and Sk are just diagonal matrices consisting of the values of xk and sk

respectively, which correspond to the current iterates at step k. The actual right-hand
sides depend on which variant of IPM is used—see Mehrotra (1992) for a description
of the popular and well-established predictor-corrector method. The most important
aspect of these equations is that they can be reduced to this so-called normal equa-
tion:

AS−1k XkA
⊺∆yk = rx −AS−1k rs +AS−1k Xkrx (1.7)

Since both S−1k and Xk are diagonal, the constraint matrix of equation 1.7 is a normal
matrix, that is, a symmetric positive semi-definite matrix that is suitable to be decom-
posed using the Cholesky factorization (Mészáros, 2005). The structure of this matrix
remains unchanged throughout the solving process with only Xk and Sk varying so
an initial symbolic factorization and the sparsity structure can be preserved. This is a
major difference to simplex methods as we are going to see later.

Barrier methods are generally more susceptible to numerical issues and have a
higher tendency of breaking down and not converging to optimality compared to sim-
plex methods. On the other hand, they can also solve very large LP problems within a
small number of iterations—for state-of-the-art solvers typically less than 200—and
can make use of multi-threaded processor architectures to further improve the solv-
ing times. See Figure 4.3 for a comparison between the barrier and simplex methods
when solving MILPs with SCIP. The memory requirement of the barrier method is a lot
higher compared to simplex methods, especially when the instance has an unfavor-
able matrix structure leading to a very dense Cholesky factorization.

Another important aspect of IPM is its ability to also deal with non-linear continuous
optimization problems. Convex problems can be solved to optimality while for non-
convex problems they can find a local optimum. This feature makes IPMs an integral
part of mixed-integer non-linear programming solvers because they can often provide
better bounds than a linear relaxation could (Vigerske and Gleixner, 2018).

1.3.3. Simplex Algorithm

The simplex algorithm is built around the concept of a basis. This basis identifies
one of the vertices of the polyhedron defined by the constraints Ai. and the variable
bounds of the LP. Since there is always an optimal vertex solution, there also exists
an associated optimal basis. It goes without saying that this holds true only if there
exists an optimal solution in the first place. Please also note that there may be more
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than one optimal basis. See Definition 1 in Chapter 3 for a precise description and
more details.

Geometrically speaking, from one iteration to the next, the simplex method modi-
fies the basis in a way that resembles moving from the current vertex to a neighboring
one. The direction of movement is chosen to improve the value of the objective func-
tion c⊺x until no further progress can be made—we have arrived at the optimum.

There are two main variants of simplex methods: a primal and a dual one.

The primal simplex always preserves primal feasibility on its path to optimality.
The dual simplex, on the other hand, moves along the dual feasible vertices that lie
outside the primal feasible region. This can be seen as moving on the optimal side of
the polyhedron until the boundary of the feasible region is reached.

The dual simplex method is equivalent to applying the primal simplex to the dual
version of the original LP. There are some seemingly minor differences, though, that
are responsible for the typically observed superiority of the dual simplex. We will
highlight these in Chapter 3. See Algorithm 1.1 and Algorithm 1.2 for a side-by-side
comparison of the two simplex methods. We want to point out that the two vectors
âq = B−1A.q and â⊺p = (B−1N)p. are of different dimensions and refer to a column q

and a row p of the simplex tableau matrix B−1A. This slight abuse of notation allows
for a more intuitive description of the algorithm and also stresses that the value âpq =
âqp = â⊺pq

appears in both vectors.

To start the procedure we always need a primal feasible basis in case of the primal
simplex and a dual feasible basis in case of the dual simplex. We highlight one way
how to generate such a starting basis in Section 3.3.

The simplex algorithm is a myopic method in a way that it always only regards the
local neighborhood for finding the next step direction towards optimality. There are
different ways to decide where to go next from the current basis and this step of the
algorithm is commonly referred to as pricing. We explain some of the well-known
pricing alternatives in Section 3.5. One can say that this step is the most significant
one and provides the greatest amount of freedom. Therefore, it is also the decisive
factor in the total number of iterations required to reach optimality.

With its use of the basis the simplex algorithm also inhibits some elegant and con-
venient discrete features. In Section 3.9 we show how an exact solution can be com-
puted in an iterative, yet efficient way. Koch (2004b) uses the basis as a fundamental
tool to proof optimality of the NETLIB LP test set.
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c c

Figure 1.3.: Schematic of the solving processes of simplex and interior point methods.
The left picture shows the simplex path along the border of the feasible
region while the right image depicts the interior point or barrier method’s
central path through the interior of the feasible region.

Algorithm 1.1 Primal simplex algorithm
Input: LP (1.2) with l = 0, u = ∞, primal

feasible basis B, B = AB,N = AN
1: xB ← B−1b

2: d⊺
N
← c⊺

N
− c⊺
B
B−1N

3: while not dN ≥ 0 do
4: q← arg min{dk ∣ k ∈ N} (Pricing)
5: âq ← B−1aq (FTRAN)
6:
7: if âq ≤ 0 then
8: Return: LP is unbounded
9: end if

10: p← arg min{xBk/âqk
∣ âqk

> 0}
11: z⊺ = e⊺pB−1 (BTRAN)
12: â⊺p = z⊺N
13: αP ← xBp/âpq (primal steplength)
14: xB ← xB −αPâq

15: αD ← −dNq/âpq (dual steplength)
16: d⊺

N
← d⊺

N
+αDâ⊺p

17: Bp ← q (basis update)
18: end while
19: Return: optimal solution x and op-

timal basis B

Algorithm 1.2 Dual simplex algorithm
Input: LP (1.2) with l = 0, u = ∞, dual fea-

sible basis B, B = AB,N = AN
1: xB ← B−1b

2: d⊺
N
← c⊺

N
− c⊺
B
B−1N

3: while not xB ≥ 0 do
4: p← arg min{xBk ∣ k ∈ {1, . . . ,m}}
5: z⊺ = e⊺pB−1 (BTRAN)
6: âp = z⊺N
7: if âp ≤ 0 then
8: Return: LP is unbounded
9: end if

10: q← arg min{dk/âpk
∣ âpk

> 0}
11: âq ← B−1aq (FTRAN)
12:
13: αP ← xBp/âpq (primal steplength)
14: xB ← xB −αPâq

15: αD ← −dNq/âpq (dual steplength)
16: d⊺

N
← d⊺

N
+αDâ⊺p

17: Bp ← q (basis update)
18: end while
19: Return: optimal solution x and opti-

mal basis B
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1.3.4. SoPlex

SoPlex is an implementation of the revised primal and dual simplex algorithms and
combines several defining features not present in other solvers. It is a very mature
code base that has been in use in the academic world (Koch, 2004b) as well as in
industrial projects for more than two decades. Thorsten Koch prepared the initial
public version of the code and many other researchers mostly from the Zuse Institute
Berlin (ZIB) have been passing the torch to keep the solver updated and maintained
over the years until the present day.

The name of the code is an abbreviation for sequential object-oriented simplex hint-
ing at the object-oriented programming paradigm of C++ that became very popular
during the 1990s. The two major contributions in its first publication by Wunderling
(1996), were shared and distributed memory parallelization schemes (called SMoPlex
and DoPlex, respectively) as well as the use of either a column or a row represen-
tation of the simplex method. While the former is unfortunately lost in time, leaving
SoPlex to be a sequential code, the twofold basis representation is still actively main-
tained and put to good use to gain performance improvements (see Maher, Fischer,
et al., 2017). This feature is described in more detail in Section 3.2. Another impor-
tant aspect that distinguished SoPlex from most other LP solvers is its exact solving
capabilities using rational arithmetic and iterative refinement as laid out by Gleixner
(2015). We will present two other features that are especially useful within the branch-
and-bound approach to solve MILPs, namely LP solution polishing (see Chapter 5) and
the preservation of scaling factors throughout the solving process as described in Sec-
tion 3.7.

SoPlex is discussed in detail in Chapter 3.

1.3.5. Choosing the Method

We will further discuss which LP solving method—simplex or interior point—to use
in Chapter 4 for solving MILPs. Choosing the fastest method even for solving just an
isolated LP is a difficult question and it is still unclear how to answer it analytically.
From a computational perspective, whenever enough cores are available on the com-
puting hardware, the pragmatic way of solving or rather avoiding this question is to
simply run all the different methods in parallel. This is typically conducted in a con-
current fashion, that is, the method that finishes first, concludes the optimization and
is deemed the winner.

Unfortunately, this strategy will always be slower than selecting the fastest method
to run independently. This is mostly due to side effects on cache and memory band-
width and simply more work to be done by the processor and the operating system.
So, ideally, we would like to avoid this overhead and be able to figure out the fastest
method depending on certain problem data characteristics. There are a number of
heuristic methods that try to make an educated guess but are not always success-
ful. The most commonly used deciding metric is the sheer size of the model instance,
because with growing dimensions, the interior point method is increasingly likely to
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beat the simplex method. Recalling the way the two approaches work, this also ap-
pears apparent when considering the growing number of potential vertices the sim-
plex method may have to traverse. The interior point method on the other hand is
less affected by this increasingly complex geometry.

Still, to avoid choosing the slower method, either the concurrent approach or man-
ual tuning for similar models is utilized in practice. When a basic solution is needed,
the choice becomes even harder: Then, the interior point method’s solution requires
the application of a simplex-like procedure called crossover (Megiddo, 1991), effec-
tively employing both methods. Such a basic solution also has the added benefit of a
typically smaller support, that is, fewer variables have a non-zero value in the solution.
This makes it also attractive for use cases that do not utilize the basis information.

Again, this demonstrates that despite its age, there are still unsolved problems and
open questions in the research area of linear programming.

1.4. MILP Solving Approaches

Since MILP solving is NP-hard there are naturally several more or less efficient and
suitable solving approaches. In case the optimal solution or a proof of optimality
are not necessarily required, one may choose a heuristic-based method to produce
a feasible and hopefully acceptable solution as quickly as possible. We do not fur-
ther discuss such inexact methods because they are fundamentally different from the
exact approaches that can provide a proof of optimality together with the solution.
If the problem class is known beforehand, for example traveling salesman problems
(Applegate et al., 2006) or max-flow problems (Dantzig and Fulkerson, 2003), certain
specialized techniques from the field of combinatorial optimization can be employed
with very good results.

For many application areas, though, it is required to provide a proven optimal so-
lution or at the very least a reliable measure for how much a feasible solution might
still be improved upon. Furthermore, most applications do not revolve around the
solution of a pure combinatorial problem but are modeled as general mixed-integer
linear optimization problems. This is also the scenario we are regarding in this thesis.

The most popular and probably most investigated solving approach is the LP-based
branch-and-bound method. It is extended by various cutting plane techniques, primal
heuristics, presolving reductions and a variety of other methods—commonly referred
to as “bag of tricks”. This culminates into a powerful solver that is able to tackle
many problems from both academic as well as industrial background efficiently, de-
spite the daunting complexity. Several such solvers are currently developed both by
commercial vendors (for example CPLEX10, Gurobi11, Xpress12) and with an academic
10IBM. ILOG CPLEX: High-performance software for mathematical programming and optimization.

https://www.ibm.com/products/ilog-cplex-optimization-studio. 2021.
11Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. http://www.gurobi.com. 2021.
12FICO. FICO Xpress Optimization Suite. http://www.fico.com/en/products/fico-xpress-
optimization-suite. 2021.
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background (like Cbc13 or SCIP14). The focus of our work is on SCIP and especially the
SCIP Optimization Suite, with its MILP and MINLP solver SCIP and the LP solver SoPlex.

The branch-and-bound technique was first introduced by Land and Doig (1960).
Similar to the concept of divide and conquer a problem is solved recursively by re-
peated divisions into subproblems. The high complexity of MILP solving stems from
the fact that these subproblems are again MIPs—and often not significantly easier to
solve—and that the tree that is generated in the process can grow exponentially large.

LP solutions provide a so-called dual bound that limits the possible primal bound,
that is the value of an integer feasible solution, so entire subtrees can be safely ex-
cluded from the search. This pruning helps to keep the tree at a manageable size and
also hints at the importance of good branching decisions, that is which variables de-
fine new bounds in the child nodes. There is an abundance of research items that are
concerned with the design of branching rules: See Achterberg, Koch, and Martin, 2004;
Achterberg and Berthold, 2009; Berthold and Salvagnin, 2013; Gamrath, Berthold, and
Salvagnin, 2020 for details, especially regarding the branching rules of SCIP. The two
main reasons for making MILP problems tractable in practice even for larger instances
are powerful heuristics to find incumbent solutions and the clever exploitation of lin-
ear relaxations throughout the solving process. We refer to Berthold (2014) for a com-
prehensive analysis of primal heuristics.

Please note that the terms primal and dual appear both in the context of LP and
MILP but they are not the same. For instance, there is no straightforward notion of a
dual of an MILP. Instead, we typically only refer to primal and dual solutions with the
latter one still being rooted in the primal space of variables ignoring the integrality
restrictions. One can imagine the dual solution as the solution to the problem in an
ideal or fantasy world that does not need to adhere to integrality rules and allows,
for example, to send 1/3 of a truck to half a warehouse. Consequently, interpreting the
quality of the dual bound and the gap to the incumbent solution is strongly dependent
on the chosen formulation to model the real-world problem. Often, there are multiple
alternatives with various advantages and disadvantages and it is the task of an OR
practitioner or model expert to choose a suitable one; this work is sometimes referred
to as the “Art of Modeling”.

In addition to that, the term duality also comes into play when computing presolving
reduction to produce a more compact formulation. Here, dual reductions are based on
the objective as opposed to primal reductions that are based on the feasible domain.
For more information on duality of MILPs, we refer to Wolsey (1981).

Whenever we are speaking of a tree, we usually refer to the search tree that is gen-
erated by the branch-and-bound technique. In a similar manner, root—if not specified
otherwise—refers to the first node, that is, the root of said tree and includes all further
processing up until the first branching occurs.

To give this notion a more tangible representation we demonstrate what this tree

13J. J. Forrest, S. Vigerske, H. G. Santos, et al. coin-or/Cbc: Version 2.10.5. 2020. doi: 10.5281/zenodo.
3700700.

14SCIP: Solving Constraint Integer Programs. http://scip.zib.de. 2021.
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1. Introduction

Algorithm 1.3 Concept of LP-based Branch-and-Bound for MILP
Input: A,b, c, l, u,I as defined in MILP (1.1)

Lopen ← {MILP (1.1)} // initialize set of open (sub-) problems
ẑ←∞ // initialize primal bound
while Lopen ≠ ∅ do

select L ∈ Lopen // node selection
LLP ← linear relaxation of L
if LLP infeasible then

Lopen ← Lopen ∖ {L} // prune infeasible node
else

x⋆ ← optimal solution of LLP
if c⊺x⋆ ≥ ẑ then

Lopen ← Lopen ∖ {L} // prune non-improving subtree
else

xfrac ← {x⋆j ∉ Z , j ∈ I} // determine fractional variables
if xfrac = ∅ then

x̂← x⋆ // found new incumbent solution
ẑ← c⊺x⋆ // store new primal bound

else
select xk ∈ xfrac // choose branching candidate
L△ = {L ∣ xk ≥ ⌈x⋆k⌉} // new lower bound for xk in subproblem L△
L▽ = {L ∣ xk ≤ ⌊x⋆k⌋} // new upper bound for xk in subproblem L▽
Lopen ← Lopen ∖ {L} // remove L from open problems
Lopen ← Lopen ∪ {L△, L▽} // add new child nodes to open problems

end if
end if

end if
end while
if ẑ < ∞ then

Return: optimal solution x̂ with solution value ẑ

else
Return: MILP (1.1) is infeasible

end if

18



1.4. MILP Solving Approaches

looks like in various stages of the solving process in Figure 1.4. We can see how cutting
planes, bound propagation, and conflict graphs can already improve the quality of the
root relaxation by pushing the dual bound upwards. We explain the details of the used
visualization tool TreeD (Miltenberger, 2021b) in Section 4.8.

1.4.1. SCIP Optimization Suite

The SCIP Optimization Suite is a one-of-a-kind software project that has been used by
several generations of bachelor, master, and PhD students for their research. It is also
used by commercial software vendors to enable fast and reliable linear and integer
optimization applications. The SCIP Optimization Suite in version 7 comprises several
partly independent software packages and tools:

SCIP The constraint integer solving framework is the heart of the SCIP Optimization
Suite and ties all other packages together. SCIP provides code to handle a large
range of problem classes from LP over MILP to (mixed-integer) non-linear opti-
mization. It is written in C and started as PhD project of Achterberg (2009). SCIP
has a modular plug-in structure that allows for straightforward code extensions.

SoPlex The C++ implementation of the simplex method is the oldest component of
the project and provides LP solving capabilities to SCIP. We describe SoPlex in
more detail in Chapter 3 as it plays a major role in this thesis.

ZIMPL The Zuse Institute Mathematical Programming Language was developed by
Koch (2004a) to provide an open-source modeling tool to efficiently formulate
various kinds of optimization problems in an intuitive syntax.

GCG The Generic Column Generation framework extends SCIP to provide support for
solving extremely large instances that do not require to handle all variables
upfront but generates them during the solving process. This branch-and-price
project was started by Gamrath and Lübbecke (2010).

UG The Ubiquity Generator is another extension that facilitates running SCIP (and
other software that generate some kind of tree) on massively parallel hardware.
Shinano et al. (2012) describe the approach that has been successfully used to
find optimal solutions to several problem instances for the very first time.

There are several aspects that make SCIP unique: Firstly, and often taken for granted,
is the high-quality code with lots of documentation and several extensive release re-
ports that meticulously describe new features and improvements. The SCIP Optimiza-
tion Suite supports a wide range of APIs and is continuously tested for stability and
correctness. There is an active community all around the world engaging with the soft-
ware and its developers and also contributing to the project. The SCIP Optimization
Suite is actively developed at different research institutes and universities and used
for teaching in Operations Research and Discrete Mathematics. Numerous previous
developers are now working on commercial solvers like CPLEX, Gurobi, and Xpress
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(c) Finished optimization

Figure 1.4.: Visualization of the MILP solving process using TreeD and SCIP 7.0 of MI-
PLIB3 instance lseu. In Figure 1.4a, the dual bound (green line) is at root
node level before the first branching. Figure 1.4b shows the primal and dual
bounds moving towards each other while in Figure 1.4c, SCIP already found
the optimal solution and no open nodes are left. Note that the optimum is
only known at the final stage and has been added to the previous pictures
for a better understanding. The same applies for the already present tree
paths. The color of the individual nodes shows the age of those nodes, that
is, the order in which they are processed.

20



1.4. MILP Solving Approaches

while still keeping in touch with the SCIP community. It is also rare that an academic
software project is developed, maintained, and extended over several decades—and
to date, SCIP shows no sign of slowing down in the future.

1.4.2. Other Solvers

In the world of commercial integer optimization, there are the three dominant solvers
CPLEX (IBM, 2021), Gurobi (Gurobi Optimization, LLC, 2021), and Xpress (FICO, 2021). All
of them have a mature code base with Gurobi being the youngest. Most notably, CPLEX
has been very popular with academic research projects and to date is probably the
most prevalent also in the commercial sector—although there are barely any reliable
numbers about this. These solvers exhibit state-of-the-art performance and stability
and have been competing for the title of “fastest solver” for many years. Although
they provide solving capabilities beyond LP and MILP, we will not discuss this here.
Instead, we focus on their performance impact as LP solvers inside SCIP in Chapter 4.

There are also smaller commercial solver vendors like MOSEK (MOSEK ApS, 2016)
that specialize in certain problem classes or solving techniques. MOSEK is also in-
cluded in some of our experiments with SCIP.

In regards to academic or open-source MILP solvers, we want to mention Cbc (For-
rest, Vigerske, Santos, et al., 2020), supported by the COIN-OR Foundation15. Per-
formance-wise, this solver is lagging behind SCIP and often cannot handle larger or
harder models. The LP solver Clp (Forrest, Vigerske, Ralphs, et al., 2020) that is used in
Cbc, though, has a quite impressive performance and often beats SoPlex. Other well-
known open source solvers are GLPK16 and Lpsolve17. Despite their nominal emphasis
on linear programming, they can actually deal with integer problems as well. They are
still used fairly wide-spread due to their accessibility but they fall behind in terms of
performance and, unfortunately, development efforts for most of these codes appear
to have slowed down in recent years.

A relatively new solver is HiGHS18, headed by Dr. Julian Hall. HiGHS can handle both
LPs and MILPs and already surpasses Clp and Cbc in terms of performance and sta-
bility. Huangfu and Hall (2018) describe the main features of the solver, most notably
the parallel simplex implementation. We did not include HiGHS as an LP solver for
SCIP in our experiments in Chapter 4 because the corresponding interface is not yet
stable and reliable enough. We are confident that HiGHS will play a major role in the
academic and open-source linear and integer optimization community in the years to
come.

15http://www.coin-or.org
16https://www.gnu.org/software/glpk/
17https://web.mit.edu/lpsolve/doc/
18https://www.highs.dev
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1.5. Testing Methodology

This work contains several computational experiments to test and verify the different
implementations and algorithmic ideas. To facilitate fair and unbiased comparisons
we run the experiments on identical hardware and, if necessary, use aggregated re-
sults using different random seeds to limit white noise influence and performance
variability. Every job is executed exclusively on a single machine to avoid any side-
effects that usually occur when running multiple optimizations in parallel. The runs
were conducted on a cluster with Intel® Xeon® Gold 5122 processors running with a
clock speed of 3.6 GHz and 96 GB of memory.

We use the evaluation tool IPET (Hendel, 2021) and various common Python plotting
libraries like matplotlib, seaborn, and plotly. Unless mentioned otherwise, we use the
MIPLIB 2017 benchmark set (Gleixner, Hendel, et al., 2021) as the foundation for MILP-
based experiments. For most LP-based experiments, we use a modified SCIP version
that reads all input files as linear programming problems, effectively ignoring any
integer restrictions. This allows for LP solver comparisons in a controlled environment
with identical error checks and a unified output.

Our LP instance set consists of a culmination of several widely used and popular
test sets from the LP and MILP communities:

• Netlib LP test set19

• Csaba Mészáros’s LP collection20

• COR@L21

• MIPLIB (Bixby, Boyd, and Indovina, 1992), MIPLIB 3 (Bixby, Ceria, et al., 1998),
MIPLIB 2003 (Achterberg, Koch, and Martin, 2006), MIPLIB 2010 (Koch, Achter-
berg, et al., 2011), and MIPLIB 2017 (Gleixner, Hendel, et al., 2021)

The shifted geometric mean has been established as the standard measure for com-
paring performance across a set of instances. It is defined for a set of data points
t1, . . . , tk as

(
k

∏
i=1

(ti + s))
1/k

− s.

These data points are typically solving times or node counts of the MILP solver. The
corresponding shift value has to be chosen accordingly and serves to dampen the
effects of large relative differences in small numbers of t. We will note the shift values
for the single experiments whenever it is not 1 second for time measurements or 100
for node counts.
19University of Tennessee Knoxville and Oak Ridge National Laboratory. Netlib LP Library. http://
www.netlib.org/lp/, accessed December 2021.

20Csaba Mészáros. LP Test Set. http://www.sztaki.hu/~meszaros/public_ftp/lptestset/,
accessed December, 2021.

21Computational Optimization Research At Lehigh. MIP Instances. http://coral.ie.lehigh.edu/
data-sets/mixed-integer-instances/, accessed December, 2021.
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SoPlex with default settings. Sparsity is computed as non-zeros/ (n ∗m)

101 102 103 104 105 106 107

number of nonzero elements in problem matrix

10−1

100

101

102

103

tim
e

of
be

st
se

ed

100

101

102

103

104

105

106

si
m

pl
ex

ite
ra

tio
ns

of
be

st
se

ed

time
iterations

Figure 1.6.: Number of iterations and time to optimality (using a time limit of one hour)
with respect to the number of non-zero elements in the problem matrices

23





Chapter 2

PySCIPOpt

High-performance optimization solvers rely on an implementation that is close to the
machine, so all state-of-the-art codes—from commercial to free and open-source—are
written in a programming language that is considered low-level by today’s standards.
The most popular programming languages for this area are C/C++.

C/C++ enable the creation of very efficient solvers that can put the available hard-
ware resources to best use. This comes at the cost of a significantly higher develop-
ment cost, that is, a longer time from idea to prototype to production code than in
other higher-level programming languages. Python1, on the other hand, is one of the
languages that tries to minimize this development cost at the price of an often notably
worse performance when executing the code.

Bjarne Stroustrup, the author and designer of the C++ language once said: “There
are only two kinds of programming languages: those people always complain about,
and those nobody uses”2 – concisely making the point that there will always be certain
trade-offs in programming.

For prototyping new algorithmic concepts and for less performance-critical fea-
tures, Python is very well suited. One of its main charms is that Python is an in-
terpreted language and can be executed without a dedicated compilation step: Users
can write new code and immediately run it.

Using clever language extensions like Cython3 (Dalcin et al., 2011), we are able to
combine the best features of both programming language aspirations: PySCIPOpt (Ma-
her, Miltenberger, et al., 2016) leverages Python’s fast prototyping while relying on
SCIP’s C engine to avoid sacrificing too much performance. Coincidentally, Cython or
more precisely its predecessor Pyrex, is just as old as SCIP, celebrating its 20th an-
niversary in 20224.

1https://www.python.org/
2Stroustrup, B. (2000). The C++ programming language. Addison-Wesley Professional.
3https://cython.org/
4https://mail.python.org/pipermail/python-list/2002-April/126661.html
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2. PySCIPOpt

2.1. Concept

We were inspired by the popular and highly regarded design of Gurobi’s Python inter-
face when creating the concept for PySCIPOpt. Furthermore, Prof. João Pedro Pedroso5

encouraged this decision with his intent to publish a text book about mathematical
optimization with PySCIPOpt6 as a translation of the Japanese edition by Kubo et al.
(2012) that is built around Gurobi.

The core concept of PySCIPOpt consists of two components—modeling and feature
development—that we want to explain in the following paragraphs.

2.1.1. Modeling

When designing a tool for the creation of mathematical optimization models, one
important aspect is to have a close connection between the computer code and the
mathematical formulation. Ideally, one should be able to comprehend the meaning
of the individual sets of variables and constraints just as easy from reading the code
as from reading the mathematical formulation. To achieve this goal in PySCIPOpt,
we use operator overloading and intuitive object-oriented classes to represent the
entities of a model instance, like variables, constraints, and operators. The following
example taken from Maher, Miltenberger, et al. (2016) illustrates this:

from pyscipopt import Model

m = Model()
x = m.addVar("x")
y = m.addVar("y", vtype="I")
m.setObjective(x + 3*y)
m.addCons(2*x - y*y >= 10)

minimize x + 3y
subject to 2x − y2 ≥ 10

x,y ≥ 0
x ∈ R
y ∈ Z

We also see from this example that sensible default values are used to fill in method
parameters that are not set explicitly by the user. This allows the code to stay minimal
and readable while still providing all the advanced functionality from the underlying
SCIP methods. Additionally, Python also allows passing these parameters in any order
as long as the name of the parameter is specified. For completeness, this is the full
specification of the addVar() method:

5https://www.dcc.fc.up.pt/~jpp/, Faculdade de Ciências da Universidade do Porto Departa-
mento de Ciência de Computadores

6https://scipbook.readthedocs.io/
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2.2. Technical Details

def addVar(
self, # the PySCIPOpt model
name="", # variable name
vtype="C", # variable type ("C", "B", or "I")
lb=0.0, # lower bound
ub=None, # upper bound
obj=0.0, # objective coefficient
pricedVar=False) # whether this is a pricing candidate

This paradigm of staying close to SCIP while offering more convenience is consistent
throughout the package to appeal to newcomers and SCIP experts alike.

2.1.2. Feature Development

Employing PySCIPOpt purely as a framework to formulate and solve a model instance
programmatically and then querying the resulting solution values is a common use
case. However, many users would like to extend the available feature set in SCIP with
their own algorithmic ideas. To make this possible, we support the majority of SCIP’s
comprehensive API to allow fine-grained control of how the solver handles a certain
model instance.

SCIP’s modular structure provides callback functions for almost every component of
the branch-and-cut-and-price solving process. These callbacks can be implemented
in pure Python code and are then called through PySCIPOpt during runtime of the
solver. There is no compilation step necessary to make changes in the Python code,
which facilitates rapid prototyping.

The most popular callbacks include custom cutting plane separation techniques,
primal heuristics, and also constraint handlers that provide everything necessary to
define entirely new user-specific constraint types.

2.2. Technical Details

The methods implemented in PySCIPOpt can loosely be categorized into three groups:

convenience functions These are functions that have no direct counterpart in SCIP
but make feature development and model building more intuitive and straight-
forward. A good example is the addCons() method. It encapsulates multiple
SCIP functions to add linear, quadratic, and general nonlinear constraints in a
single function call. Convenience functions hide some of SCIP’s complexity and
make PySCIPOpt more appealing and user-friendly.

SCIP wrappers These are relatively straightforward wrappers of SCIP functions that
often do not consist of more than two or three lines of code and just replicate
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repetitions number of variables n PySCIPOpt SCIP
5 1000 0.09 sec 0.03 sec
5 10000 0.65 sec 0.09 sec
5 100000 6.34 sec 0.72 sec
5 1000000 64.41 sec 8.48 sec

Table 2.1.: Performance comparison of building model 2.1 in PySCIPOpt using Python
and in SCIP using C

a certain SCIP functionality. Wrapper functions account for the majority of func-
tions implemented in PySCIPOpt and can be used whenever there are no com-
plex data structures involved in the specific call, for example when changing the
bounds of a variable.

internal helper functions These are needed to organize the code better, to provide
improved structure, and to outsource some frequently needed functionality that
should be hidden from the user.

The individual plug-in types are implemented in an object-oriented fashion. Every
new user plug-in needs to be extended from the given base class, that provides the
function stubs. Some of these functions are mandatory for a working implementation
and some are optional.

To give an example: the heuristics plug-in needs to implement the heurexec()
function to tell SCIP what this custom heuristic is supposed to do. It is not necessary,
though, to also implement heurinit() if no additional initialization step is required
to run the heuristic.

We refer the interested reader to the many different examples and test cases avail-
able in PySCIPOpt that demonstrate typical use cases and should provide a good start-
ing point for further code development.

2.3. Performance

We compare the performance of building a simple LP model like this:

min 1
⊺x

s.t. xi + xi+1 ≥ 1 ∀i ∈ {1, . . . , n}
x ≥ 0.

(2.1)

This model is built five times for different values of n to get a reliable performance
measure. As we can see from Table 2.1, building a model from formulation 2.1 takes
about eight times longer with PySCIPOpt than using SCIP’s C API directly.

While this undoubtedly is a significant disadvantage for PySCIPOpt, the amount of
code required to formulate this model in the two programming languages also differs
dramatically:
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PySCIPOpt:

def buildmodel(nvars):
m = Model("bench")
x = {}

for i in range(nvars):
x[i] = m.addVar(name=f"x_{i}", obj=1)

for i in range(nvars - 1):
m.addCons(x[i] + x[i + 1] >= 1, name=f"c_{i}")

C API of SCIP:

static
SCIP_RETCODE buildmodel(int nvars)
{

char name[SCIP_MAXSTRLEN];
SCIP* scip;
SCIP_VAR** x;
SCIP_CONS* c;
int i;

SCIP_CALL(SCIPcreate(&scip));
SCIP_CALL(SCIPincludeDefaultPlugins(scip));
SCIP_CALL(SCIPcreateProbBasic(scip, "bench"));

SCIP_CALL(SCIPallocMemoryArray(scip, &x, nvars));

for(i = 0; i < nvars; ++i)
{

(void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "x_%d", i);
SCIP_CALL(SCIPcreateVarBasic(scip, &x[i], name, 0,

SCIPinfinity(scip), 1.0, SCIP_VARTYPE_CONTINUOUS));
SCIP_CALL(SCIPaddVar(scip, x[i]));

}

for(i = 0; i < nvars-1; ++i)
{

(void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "c_%d", i, i);
SCIP_CALL(SCIPcreateConsBasicLinear(scip, &c, name, 0,

NULL, NULL, 1, SCIPinfinity(scip)));
SCIP_CALL(SCIPaddCoefLinear(scip, c, x[i], 1.0));
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SCIP_CALL(SCIPaddCoefLinear(scip, c, x[i+1], 1.0));
SCIP_CALL(SCIPaddCons(scip, c));
SCIP_CALL(SCIPreleaseCons(scip, &c));

}

for(i = 0; i < nvars; ++i)
SCIP_CALL(SCIPreleaseVar(scip, &x[i]));

SCIPfreeMemoryArray(scip, &x);
SCIP_CALL(SCIPfree(&scip));
return SCIP_OKAY;

}

After the model is created and the optimize call is executed, both approaches
will perform the actual optimization in the same time because PySCIPOpt is then just
calling SCIP’s solving routines without any further detours.

PySCIPOpt is not the only software package with the aim to make mathematical
programming more accessible but, to date, it is arguably the best solution to work
with the deeper data structures and algorithmic components of SCIP without requiring
C/C++ proficiency. For plain modeling or basic callback interfaces from Python, we
would also like to mention the frameworks Pyomo (Hart, Watson, and Woodruff, 2011;
Bynum et al., 2021) and PuLP7. These tools enable the user to run different commercial
and academic or open-source LP, MILP, or general solvers with the same Python code
to formulate the models. Because of this flexibility, they lack the functionality and
deeper integration of PySCIPOpt and other custom-built or proprietary tools.

JuMP (Dunning, Huchette, and Lubin, 2017) is a software package for the program-
ming language Julia (Bezanson et al., 2017) and has potential to rival PySCIPOpt and
other Python-based tools in its usability and performance. Until now, Julia is still a
niche programming language that does not yet have a large community and ecosystem
of libraries compared to other languages.

2.4. Licensing and Impact

PySCIPOpt is licensed under the permissive free software MIT license making it easy
for contributors to extend the feature set or provide bug fixes or other code improve-
ments. There are automatic builds and a large test suite configured to verify every
single commit that is pushed to the public GitHub repository. This Continuous Inte-
gration approach allows for better maintainability and consistent code quality. There
is a growing number of researchers that prefer using PySCIPOpt for their work to avoid
technical complications with C/C++. PySCIPOpt is also increasingly popular with aca-
demic lectures and courses teaching applied mathematical programming. A famous

7https://coin-or.github.io/pulp
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example is the ecole8 framework for combining machine learning with combinatorial
optimization.

It is safe to say that PySCIPOpt has become the main entry point for users of the
SCIP Optimization Suite with more than 500 stars on GitHub, 200 repository forks, and
multiple dependent projects and packages as of October 2022.

8https://www.ecole.ai/
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Chapter 3

Implementational Aspects of the
Simplex Algorithm

The original publication of SoPlex by Wunderling (1996) is written in German and
therefore inaccessible for large parts of the world of operations research. We want
to remedy this by providing a description of the algorithm and explaining its advan-
tages and unique features compared to other implementations.

SoPlex uses the revised primal and dual simplex algorithm to solve linear opti-
mization problems. It is implemented in C++ and a core component of the SCIP Opti-
mization Suite. SoPlex embraces object-oriented programming leading to a modular
structure of the different algorithmic components, like presolving, pricing, or scaling.
A variety of presolving techniques help to reduce the problem size and speed up the
solving process.

The name SoPlex is an abbreviation for sequential object-oriented simplex, with its
two parallel variants DoPlex and SMoPlex, referring to distributed and shared memory
implementations respectively. While those parallel versions did show performance
improvements in the original work of Wunderling (1996), they have never been made
publicly available.

Until early 2018, SoPlex was used in the SPEC benchmark suite for CPU intensive
codes SPEC CPU20061.

3.1. Stable Summation

There are ways to achieve summation results with double precision arithmetic that
have smaller errors than a straightforward implementation (see Rump (2005) for fur-
ther reference). This can be especially useful for summations of many values and
for summations that are prone to numerical cancellation. Elimination happens when
subtracting values of almost equal size. In this case most of the significant digits of
both numbers vanish, leaving mainly numerical noise as the result.

1http://www.spec.org
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We identified several places in both SCIP and SoPlex that might result in inaccurate
summation results and applied a more sophisticated approach to compute the sum.
For SoPlex this is done in all scalar products of any type of vector as well as in the
different summations necessary for solving linear systems of equations using the LU
factorization of the basis matrix.

The method splits the summation values into two double precision numbers and
performs basis arithmetic on those pairs of high and low nominal values. While such
methods can replace all basic arithmetic operations (sum, difference, product, and
quotient), they are most important for summation due to its inherent numerical in-
stability. There is a negligible performance impact compared to the usual computa-
tion because the additional internal additions can be performed efficiently, that is, in
parallel, on modern CPUs.

It is difficult to assess the benefit of such a feature because in most cases those tiny
numerical inaccuracies do not impede the computation of a correct solution within the
usual tolerances. Still, we do see a positive effect of the stable summation when ana-
lyzing SCIP’s performance solving MILPs as shown in Table 4.2. Note that although SCIP
itself also implements the stable sum technique in various places, we only consider
the performance impact of this feature within SoPlex.

3.2. Row Representation

The feature that makes SoPlex stand out from most other simplex implementations
is its two-fold basis representation. While typical solvers—as well as the majority of
textbooks—define the basis to be a subset of columns, one can also use a subset of
rows. This can be seen as dualizing the perspective. There are several advantages
of working with a so-called row basis, like easier addition and removal of rows, or a
reduced basis size for certain problems.

Before we go into detail regarding the consequences, let us first formally define the
row basis using this extended version of a linear programming problem:

min c⊺x

s.t. [L
l
] ≤ [Ax

x
] ≤ [U

u
]

A ∈ Rm,n, c, l, u ∈ Rn, L,U ∈ Rm

(3.1)

Effectively, we remove the variable bounds and extend the constraint matrix from
A to [A⊺ I]⊺.

The dual of (3.1) reads

max l⊺d+ −u⊺d− +L⊺y+ −U⊺y−

s.t. d+ −d− +A⊺y+ −A⊺y− = c
d+, d−, y+, y− ≥ 0.

(3.2)
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The value dj = d+j −d−j is commonly called the reduced cost of variable xj. Note that
these values are uniquely determined by the dual solution y = y+ − y−.

Usually, bounds can also take values∞ or −∞, for ease of notation we are assuming
them to be finite.

Definition 1 (basis, basic solution). Given a linear programming problem in form (3.1).
Let C ⊆ {1, . . . , n} andR ⊆ {1, . . . ,m} be index sets of variables and constraints of (3.1),
respectively.

1. We call B ∶= (C,R) a basis of (3.1) if ∣C∣ + ∣R∣ = m. Variables and constraints
with index in C̄ ∶= {1, . . . , n} ∖ C and R̄ ∶= {1, . . . ,m} ∖ R, respectively, are called
non-basic.

2. We call a basis (C,R) regular if the vectors A⋅j, j ∈ C, and ei, i ∈ R, are linearly
independent.

3. We call a primal-dual pair (x,y) ∈ Rn ×Rm a basic solution of (3.1) if there exists
a regular basis (C,R) such that

xj = lj or xj = uj, j /∈ C,
Ai⋅x = Li or Ai⋅x = Ui, i /∈ R,

y⊺A⋅j = c⊺j , j ∈ C,
yi = 0, i ∈ R.

(3.3)

4. A solution (x,y) is called primal feasible if L ≤ Ax ≤ U, l ≤ x ≤ u. It is called dual
feasible if

yi = 0 ∨ (yi ≥ 0 ∧Ai⋅x = Li) ∨ (yi ≤ 0 ∧Ai⋅x = Ui) ∀i ∈ {1, . . . ,m} (3.4)

and with dj = cj − y⊺A⋅j

dj = 0 ∨ (dj ≥ 0 ∧ xj = lj) ∨ (dj ≤ 0 ∧ xj = uj) ∀j ∈ {1, . . . , n} (3.5)

holds.

B is the well known definition of a basis and in our work is referred to as the column
basis.

Let us now define the row basis.

Definition 2 (row basis). The row basis N = (C̄, R̄) is an n-dimensional subset of the
(extended) rows of this LP.

As we can see, the general concept of partitioning variable and constraint indices
into the four sets C,R,C̄, and R̄ allows us to define both a column basis B and a row
basis N . In Definition 1 we require the basis matrix B, corresponding to the column
basis B, to be regular. This is necessary for properly defining e.g., the solution values
xC that are not on their bounds, as we will see later. It is not immediately apparent
that this regularity also holds for the row basis matrix N.
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Lemma 3. Let B = (C,R) be a basis of (3.1) according to Definition 1. The vectors A.j, j ∈
C and ei ∈ Rm, i ∈ R are linearly independent if and only if the (row) vectors Ai., i ∈ R̄
and e⊺j ∈ Rn, j ∈ C̄ are linearly independent.

Proof. Partition constraint matrix A according to basis (C,R):

A = [ARC A
RC̄

A
R̄C

A
R̄C̄

]

This leads to the following partitioning of the basis matrices B and N:

B = [ARC IR
A
R̄C

0
] N = [ 0 I

C̄

A
R̄C

A
R̄C̄

]

For their determinants the following holds.

det (B) = −det (A
R̄C
) ⋅ det (IR) = −det (A

R̄C
) ⋅ det (I

C̄
) = det (N) .

Here, we are using the fact that the determinant of a block-triangular matrix is equal
to the product of the determinants of the blocks on the diagonal:

det([A B

0 C
]) = det (A) ⋅ det (C)

Furthermore, the two block matricesB andN can be transformed into the above block-
triangular form by multiplication of a (block-) permutation matrix with determinant
-1 that exchanges the two block rows.

Corollary 1. Forming the inverse matrices of the basis matrices B and N shows that
both rely only on the inversion of sub-matrix A

R̄C
:

B = [ARC IR
A
R̄C

0
] N = [ 0 I

C̄

A
R̄C

A
R̄C̄

]

B−1 = [ 0 A−1
R̄C

IR −ARCA−1R̄C
] N−1 = [−A

−1
R̄C

A
R̄C̄

A−1
R̄C

I
C̄

0
]

From Corollary 1 we see that it is possible to compute the inverse matrix of one
representation using only the inverse of the other representation and some matrix-
vector products. We can transform data between representations as is required e.g.,
when using the row basis internally but need to communicate results in column rep-
resentation, as is done in tableau-based cut generation.

The potential of this connection has already been explored by Gleixner (2012), where
it is demonstrated that the inversion of A

R̄C
is enough to formulate the entire simplex

method in both primal and dual form. This technique has been called kernel simplex
by Wunderling (2012) and is available for the dual simplex algorithm in CPLEX. From
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personal communications with the author it seems that the proposed symmetrical
simplex algorithm unifying primal and dual methods could not outperform the exist-
ing code base in CPLEX. We are not aware of any competitive implementation of this
idea.

Note that the term kernel has also been used by various authors in the linear pro-
gramming community, see e.g., Maros, 2003; Luce et al., 2009, to describe the non-
trivial block during the LU factorization after performing some permutations.

The row representation seems not very intuitive when one is already familiar with
the classical approach. On second thought, though, it can help to understand or visu-
alize the concept of a simplex basis in the first place:

The intersection of all basic rows, be it a proper problem constraint or just a variable
bound, defines the current vertex that corresponds to this basis. The connection to
active set methods may also become more obvious as the row basis is precisely the
active set in the simplex algorithm, as opposed to the set of non-basic variables in
the traditional column representation.

Essentially, basic rows are tight, whereas the activity of a non-basic row is deter-
mined by the basic ones. This is the direct opposite of the definition of the column
basis and explains the above notion of duality between the two representations.

From an algorithmic point of view, the primal simplex in column representation can
be seen as an entering simplex since the arguably most significant part is selecting an
entering index in the pricing step to improve the reduced costs. Equivalently, for the
dual simplex in the same representation, we are searching for a leaving candidate in
the pricing step to become primal feasible. Using a row basis, this notion of enter-
ing/leaving and primal/dual is interchanged and Table 3.1 captures this duality in the
two representations quite nicely:

column representation row representation

entering type primal simplex dual simplex
leaving type dual simplex primal simplex

Table 3.1.: Overview of the different basis representations and simplex variants.

Let us now discuss conceptional and especially computational advantages of the
two representations.

3.2.1. Addition of Cutting Planes

When we add valid inequalities to an existing LP and a corresponding optimal basis,
we lose primal feasibility but retain dual feasibility. The following re-optimization
with the dual simplex can then be started at the previous basis and usually takes
few iterations. As we also modify the dimensions of the problem, the basis size will
increase when using the column representation making it necessary to compute a
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new LU factorization or adapt the existing one—SoPlex recomputes the factorization
in most cases.

In the row representation, though, this is not necessary as the basis size is not
linked to the number of constraints in the problem, so the factorization remains valid.
Multiple new valid inequalities can be added to the set of LP rows without invalidating
the factorization. This provides a computational advantage for problems that rely on
a cut-focused solution approach.

See Section 4.5 for more details on the concept of cutting planes for solving MILPs.

3.2.2. Column Generation

In the column generation approach as described for example by Desaulniers, Desros-
iers, and Solomon (2006), new variables or columns are generated during the opti-
mization process and re-optimizations based on the previous LP basis are required.
Analogous to Section 3.2.1, the existing LU factorization can be reused when working
with the column representation but not with the row representation. In the latter, the
basis size depends on the number of variables and changes throughout the solving
process. Hence, we can expect a computational advantage of using the conventional
column representation of the simplex method for this type of approach.

3.2.3. Different Problem Dimensions

Following the arguments in the preceding paragraphs, it should come as no surprise
that there are advantages and disadvantages between the two representations just by
regarding the dimensions of the problem in question as we can also see in Figure 3.2.
Whenever there are more rows than columns, the row representation should be used
to be able to work with a smaller basis matrix and profit from less memory consump-
tion and shorter data arrays in the factorization. SoPlex automatically switches to the
row representation when there are more than 1.2 times as many rows than columns
in the problem. This threshold is not set to 1.0 because of some additional overhead
with operations like computing the solution of a linear system with the basis matrix
that require a transformation to the standard column representation. Such operations
happen frequently when running SoPlex within a MILP solver.

Figure 3.1 visualizes how the choice of representation affects the solving times for
the allLP test set. We only compare instances that can be solved with both settings
and choose the best solving time over all seeds. Every instance has a data point either
in the upper or lower part of the image depending on whether the row or the column
representation yields better performance.

We can observe a trend of the column representation dominating the results for
instances with more columns than rows. On the other hand, the winning instances for
the row representation are more evenly distributed across the horizontal axis.

We use the instance dimensions after applying presolve reductions. The color in-
tensity is calculated in the same manner as the row-column ratio and represents how
strongly the other representation is dominated:

38



3.2. Row Representation

101

103

so
lv

in
g

tim
e

column rep. (228 wins) row rep. (229 wins)

10−3 10−2 10−1 100 101 102 103

(#cols/#rows)
←− more rows more columns −→

101

103

so
lv

in
g

tim
e

Figure 3.1.: Minimum solving times for row and column representation depending on
row to column ratio on the allLP test set.

trow − tcol
max(trow, tcol)

Of the 489 instances, 229 were won by the row representation and 228 were won
by the column representation. For the remaining instances both settings yield similar
performances. Please note that we only considered instances where the slower setting
took more than one second to solve. An interesting result from this comparison is
that many instances are solved faster despite a technically disadvantageous basis
representation. The more suited representation usually pays off, though, when dealing
with longer-running problem instances.

It is important to note that both basis matrix representations carry the same amount
of meaningful information—the remaining entries of the basis matrices are merely
filled up with the corresponding parts of an identity matrix. This also means that
despite the greater matrix dimensions, the amount of work required to factorize the
matrix into LU form is not growing in the same ratio and can be carried out by simple
permutations. Luce et al. (2009) showed that for most problems in practice, this is
even true in general, that is, also for the smaller of the two variants. The so-called
Markowitz pivoting technique (Markowitz, 1957) is used in most simplex implemen-
tations to perform the LU factorization and is able to handle these identity parts as
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A1 B1

N1

A2 B2

N2

Figure 3.2.: Row (N) and column (B) basis matrix sizes for different problem dimen-
sions A1 and A2

well. The main idea here is to construct a permutation that favors elements of max-
imal sparsity while preserving numerical stability—a row and column singleton with
a 1 as only entry is always going to be preferred over any other rows and pushes all
rows associated to the identity matrix to the front. We refer to the paper of Luce et al.
(2009) for a comprehensive coverage of this part in the simplex algorithm.

3.3. Shifting to Generate a Feasible Basis

The primal and dual simplex algorithms require either a respectively primal or dual
feasible starting basis. For a general LP instance it is unlikely that the typical starting
basis consisting of all slack variables is feasible right away. In that case we need to
perform some kind of transformation or solve an auxiliary problem to satisfy the nec-
essary working conditions of the simplex algorithm. In a very recent paper, Huang et
al. (2021) list several different simplex initialization variants and provide an overview
as well as an outlook on the possibilities of using machine learning techniques to fur-
ther improve upon the existing ideas. Their paper mainly discusses methods to create
advanced starting bases that go beyond mere feasibility and also aim to achieve bet-
ter numerical properties and a shorter iteration count to reach optimality. See also
Galabova and Hall (2020) for a comprehensive description of one such method. One
drawback of these initialization heuristics is that they are more expensive and do not
provide a guarantee of leading to fewer iterations. Furthermore, the computation of
accurate steepest edge weights is more time consuming compared to using the iden-
tity matrix as starting basis. Although SoPlex also implements code to compute an
advanced starting basis, in our experience this did not result in improved overall per-
formance.

Commonly, finding a feasible basis involves solving the so-called phase-1 problem.
A rather straightforward way is the following: every constraint is extended by a new
artificial variable rendering the trivial starting basis feasible so the primal simplex
algorithm can be applied. Additionally, the objective function is modified to minimize
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the value of these new artificial variables:

min1⊺z

s.t. Ax + z = b
x ≥ 0
z ≥ 0

(3.6)

We can use a primal feasible starting basis that sets all artificial variables z to be
basic and all structural variables x onto their lower bounds. Optimizing this auxiliary
LP should end up with a basis that is primal feasible for the original problem if and
only if the objective function value is 0, that is, all artificial variables z are 0.

In case where the optimal basis does have a positive objective function value, the
original problem instance is infeasible: There is no variable setting for x that satisfies
all constraints without the help of adding z variables.

SoPlex on the other hand performs a so-called shifting technique to set up a fea-
sible starting basis for either the primal or dual simplex method. In the primal case
we require a basis that satisfies all bound and side constraints. Instead of modifying
the basis, we simply relax all those violated constraints until they are satisfied. The
resulting modified LP will be primal feasible for the trivial slack basis that sets all
structural variables to either of their bounds and consists of only row variables.

After the primal simplex has found an optimal solution, that is, an optimal basis
is available, we can tighten the previously relaxed constraints again. While this op-
eration is breaking primal feasibility it is not going to impact the dual feasibility of
the basis, so the dual simplex method can be started from this basis to eliminate all
primal violations.

In a similar fashion we can also relax dual violations and start the optimization
process with the dual simplex method and clean up using the primal method.

3.4. Long Steps in the Dual Simplex

This section is about a modification of the ratio test in the dual simplex that allows
for a reduction of iterations by essentially performing multiple iterations combined.
We implemented this technique in SoPlex version 1.6.0 and it has since become the
default ratio test when using the dual simplex.

3.4.1. Mathematical Background

The idea of long steps in the dual simplex method has been known for a long time.
It was introduced in a Russian article (Kirillova, Gabasov, and Kostyukova, 1979) and
later translated into English by Kostina (2002) making it available to wider audience.
Even before, the method is mentioned in an unpublished draft report by Fourer (1994).
Maros (2003) and Koberstein (2005) give a detailed description of the procedure and
explain how it can be implemented. Still, there are a few aspects of the method also
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known as bound flipping ratio test that have not yet been mentioned in the literature.
We need to sketch the algorithmic idea to be able to formulate them.

The bound flipping ratio test is only applicable in the dual simplex method and
for problem instances that have variables or constraints with both upper and lower
bounds. Its main idea is that dual feasibility can be maintained by switching or flipping
the bound a non-basic variable is set to. This happens during the ratio test, that is,
when determining the next non-basic index that needs to become basic to not violate
feasibility. From Definition 1 we know that dual feasibility depends on the sign of the
dual variable yi or dj in conjunction with the upper or lower bound being tight for
the respective primal variable xj or constraint Ai.x. Hence, when the dual step length
exceeds beyond the first break point, the corresponding dual variable changes its
sign, rendering it infeasible for the current bound setting. Flipping the bound allows
to further enlarge the step length. This can be repeated until no progress in the dual
objective function is possible anymore.

3.4.2. Dual Pivot

In the following we want to explain the steps involved in a dual pivot, that is, a ba-
sis change that conserves dual feasibility and increases the dual objective function
value while trying to reduce primal infeasibility. This example is done by using the
column representation and follows the detailed description found in the PhD thesis
of Koberstein (2005).

Beginning with a dual feasible basis B with p ∈ B being a violated primal variable,
say xp > up, that was chosen during the pricing step. This variable will be set to up

and therefore leaves the basis. The corresponding reduced cost value dp moves from
0 to some non-positive value. To compensate this change, also the dual variables y

need to be modified to preserve dual feasibility.
Summarizing, the dual pivot can be described by the change t ∈ R of the pth dual

basic constraint y⊺A⋅p = y⊺B⋅p:

t = y⊺B⋅p − ỹ⊺B⋅p (3.7)
ỹ(t)⊺ = y⊺ − t ⋅ e⊺pB−1 (3.8)

d̃N (t)⊺ = d⊺N + t ⋅ e⊺pB−1AN (3.9)
Z̃(t) = Z + t ⋅ (xp − up) (3.10)

Here, Z represents the current dual objective value. For this example, we require
t ≥ 0 to ensure Z̃ ≥ Z because we need to maximize the dual objective when solving
LP 1.2 and xp > up. The dual ratio test determines the correct size of t and therefore
also the non-basic index that should become basic. The final dual step length t = αD

(see also Algorithm 1.2) is computed according to (3.8) and (3.9) to satisfy ỹq = 0 or
d̃q = 0 for one q ∈ N .
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In the conventional ratio test, the first entry dq, q ∈ N in the reduced cost vector to
become 0 while enlarging the absolute value of t, will define the entering pivot index.
As soon as the step length is increased further, dual feasibility will be violated.

The bound flipping ratio test, on the other hand, allows us to choose such a larger
step length to improve the objective function value even further. Since the dual sim-
plex algorithm needs to preserve dual feasibility, it is necessary to repair the intro-
duced violations. This can be done by flipping the corresponding primal non-basic
variables from their lower to their upper bound or vice versa according to the feasi-
bility conditions (3.5) and (3.4). This technique can only work for variables or slacks
that are (finitely) bounded from both sides, of course. Another point to consider is
that with every performed bound flip the following objective function improvement
step is decreased. It is important to keep track of this behavior and to stop enlarging
the step length before the dual objective function value is reduced again and bound
flips become detrimental.

From (3.10) we can see that the initial slope of Z̃(t) is the primal violation of the
leaving variable. This variable xp depends on the values of the non-basic variables.
If, for instance xqk

, qk ∈ N is flipped from lqk
touqk

the new value x̂p of xp is computed
as follows:

x̂p = e⊺pB−1 (sR̄ −A⋅C̄xC̄ +A⋅qk
(uqk

− ℓqk
))

Therefore, the update formula for the dual objective function value needs to incor-
porate the new slope after the bound flip (note that we use ẋp to denote a single step
update):

Z̃(t) = Z − t1(xp − up) − (t2 − t1)(ẋp − up)
= Z − t1(xp − up) − (t2 − t1)(xp + e⊺pB−1A⋅q1

(uq1
− ℓq1

) − up)
The dual objective function increase is a piecewise linear function as depicted in

Figure 3.3. The number of bound flips that can be performed in one iteration depends
on how quickly the slope flattens. In case there is a pivot candidate xqk

with an infinite
bound the slope would be −∞ and the procedure needs to be stopped.

After a number of bound flips have been performed and the entering index is cho-
sen, it is necessary to update the basic solution as well to correspond to the changed
non-basic values. This requires one additional solve with the basis matrix that can be
done together with the mandatory FTRAN operation at the end of every simplex pivot.
The change in the basic solution is determined by the difference between two flipped
bounds:

[x̂C
ŝR
] = [xC

sR
] + B−1 (ŝ

R̄
−A

⋅C̄
x̂
C̄
)

with
ŝ
R̄
= ∑

i∈{Li↗Ui}

(Ui − Li)ei + ∑
i∈{Ui↘Li}

(Li −Ui)ei
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Figure 3.3.: Development of the dual objective function value with bound flips: t1
refers to the step length of the conventional ratio test, Z2 and Z3 are fur-
ther improvements on the objective function, ẋp and ẍp are new values for
xp after the first and the second bound flip, respectively.

and
x̂
R̄
= ∑

j∈{lj↗uj}

(uj − lj)ej + ∑
j∈{uj↘lj}

(lj − uj)ej.

3.4.3. Technical Improvements

We want to mention two technical improvements that can be implemented with the
bound flipping ratio test and that to the best of our knowledge have not been de-
scribed in the literature before.

Early Termination The textbook ratio test is usually performing two passes over the
pivotal row. This is commonly known as Harris ratio test after Harris (1973) and tries
to make a more stable pivot selection by allowing a small violation of feasibility. This
violation can later be repaired by switching the simplex type from primal to dual or
vice-versa. In the bound flipping ratio test the same approach can be applied while
also storing the individual pivot candidates for subsequent sorting. We can save the
best candidate during this collection phase and immediately return the selection in
case no bound flips are possible. This avoids having to sort the candidates first and
is a rather straightforward technique to avoid unnecessary operations.

Quick Selection When traversing the collected break points, we require them to be
sorted in ascending order. This can be done by means of algorithms like quick-sort. In
SoPlex, we use a partial quick-sort to avoid having to arrange the entire list beyond
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the final flip that still improves the objective. The sorted part of the list is iteratively
extended whenever more bound flips can be performed, providing at least the next k
smallest elements in every new call—in SoPlex, k is set to four. This ensures that all
predecessors of the selected element can be processed accordingly and dual feasi-
bility is maintained.

In fact, the order of the flipped candidates is irrelevant, as long as they are not
larger than the selected one. For such a scenario an implementation of the weighted-
median-selection algorithm can be applied. This method selects the maximal num-
ber of smallest elements—according to their weights—to not exceed a certain capac-
ity. This capacity is represented by the dual objective improvement. As this precisely
meets the requirements of the bound flipping ratio test, we can save some computa-
tional overhead by not having to sort the flipped candidates.

While appearing computationally inferior, we still use the partial quick-sort imple-
mentation in SoPlex because a prototype version of the weighted-median-selection
approach did not result in a positive performance impact.

3.4.4. Performance Impact

To demonstrate the effect of the bound flipping ratio test we compare the perfor-
mance on the Netlib LP instance fit2d (see Table 3.2). This instance is well-suited
for the bound flipping ratio test with its 10 500 variables, all of which are boxed, that
is, have lower and upper bounds. The problem instance is also very dense with just
25 constraints and exhibits a 10-fold improvement in solving time and a 20 to 30-fold
reduction of iterations compared to the simpler ratio test without bound flips.

steepest edge devex

time iterations time iterations

no bound flips 0.8 6168 1.37 12841
long step rule 0.08 283 0.13 432

Table 3.2.: Performance impact of the bound flipping ratio test on Netlib instance
fit2d with SoPlex 5.0.2 and two different pricing variants.

Of course, we cannot evaluate the performance of any feature by inspecting just a
single instance, so please refer to Table 3.4 for a more comprehensive LP performance
impact analysis. We see an increased iteration count of 17% when disabling long steps
and an increase of 7% with regards to the overall solving time. This benchmark com-
pares the pure LP performance across the allLP instance set.

Still, we want to emphasize that this technique is very much dependent on the prob-
lem instance to be solved. We would also like to note that, keeping true to the object-
oriented design of SoPlex, the bound flipping ratio test is implemented as sub-class of
the previous default method fast ratio test and is able to fall back easily if no bound
flips are possible for a specific instance. Every 100th iteration, another try with the
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bound flipping ratio test is performed when otherwise no successful long steps could
have been performed.

Finally, we need to add that despite our best efforts the bound flipping ratio test
does not have a significant performance impact on SCIP when running the MIPLIB 2017
benchmark as shown in Table 4.2. There is a considerable reduction in the number of
simplex iterations but this does not carry over to an improved overall solving time.

3.5. Pricing Variants

The pricing step in the simplex algorithm determines which edge of the polyhedron
to cross in order to reach a neighboring vertex. Often, there are multiple options to go
from one basis to an improving one. The choice of the pricing method can drastically
impact the number of iterations, as it is defining this path to optimality.

There have been numerous studies about simplex pricing rules and the two most
popular and successful methods have proven to be devex pricing and steepest edge
pricing. The pricing rule chooses the next step direction based on the currently not
fulfilled optimality conditions—dual infeasible variables in the primal simplex and
primal infeasible variables in the dual simplex—a natural approach is to always take
the most violated candidate. This pricing rule is known as Dantzig pricing, named after
the simplex inventor George Dantzig, but just like the most infeasible branching rule in
MILP solving it turns out to be a very impractical technique as shown by Achterberg,
Koch, and Martin (2004). Its bad performance with respect to the total number of
iterations is due to its lack of direction optimality. This is exactly where other pricing
rules step in and try to improve upon by computing a weighted pricing score.

3.5.1. Steepest Edge Pricing

Steepest edge pricing is a rather expensive pricing rule that requires the solution of
an additional system of linear equations involving the current basis matrix in every
single iteration. The benefit is that the selected edge directions are typically leading
to a smaller iteration count than other methods. The technique was introduced by
Forrest and Goldfarb (1992) with an efficient update technique for the pricing weights.
This paper also thoroughly describes different steepest edge variants and is highly
recommended for further information on the topic.

In a nutshell, steepest edge pricing chooses the direction that has the most obtuse
angle with the objective function and hence is expected to result in a short path to
optimality.

3.5.2. Devex Pricing

At the most general level, devex pricing can be seen as an approximation of steep-
est edge pricing, saving computational cost per iteration when calculating the edge
weights in exchange for a usually higher iteration count. This method was introduced
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by Harris (1973). Interestingly, devex derives from the Latin term devexus meaning
steep.

3.5.3. Shadow Pricing

This pricing rule is mostly relevant for theoretical purposes with respect to investigat-
ing computational complexity of the simplex algorithm as performed by Dadush and
Huiberts (2019). SoPlex does not implement a shadow pricing rule, we still want to
mention this technique for completeness.

3.5.4. Parallel Pricing Rules

There are also some variations of the above rules that can be employed for parallel
implementations. In the original SoPlex publication (Wunderling, 1996), the parallel
multiple pricing rule is described which inspects several pricing directions at the same
time.

In Huangfu and Hall (2018) the authors also describe an elaborate pricing scheme
that works well when executed in parallel.

The current version of SoPlex is entirely sequential and does not implement any
parallel pricing rules.

3.5.5. Automatic Pricing Rule Selection

There have also been attempts to decide automatically which pricing rule might be the
best for the current problem instance. We investigated three different applications for
automatic algorithm selection for mixed-integer optimization (Hendel, Miltenberger,
and Witzig, 2018): A multi-armed bandit implementation has been used to choose be-
tween devex pricing, steepest edge pricing and steepest edge pricing using non-exact
initial weights. The results have been partly successful, demonstrating that SCIP us-
ing CPLEX as LP solver could benefit from slight performance improvements, while for
SoPlex as LP solver this was not the case. Here, the criteria for a successful pricing
rule was defined as the number of LP solves or processed branch-and-bound nodes
in a fixed amount of time—the LP throughput. This setup is flawed with respect to
determinism because the actual running time influences the solver’s behavior. Im-
plementing a deterministic clock is a major effort and usually involves tracking every
single memory access as an alternative means of measuring the amount of performed
work. Without this, the practicality of the approach is very limited.

Other applications for the multi-armed bandit approach inside SCIP’s repertoire
of algorithms have been proven to be more suitable to improve the performance.
Especially the diving and large neighborhood search heuristics can benefit from this
adaptive algorithm selection.

It is important to note that SoPlex implements a static heuristic pricing rule by de-
fault, that switches to steepest edge after 10 000 iterations of devex have been per-
formed. The rationale of this pricing scheme is that steepest edge is more expensive,
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so we try to solve the model instance with the cheaper method and only switch over
for harder problems. This is clearly a compromise that will rarely result in a minimal
number of iterations when compared to the fixed methods. Still, experimental stud-
ies over very diverse test sets and parameter combinations have revealed that this a
viable approach—especially when SoPlex is being used as LP solver within SCIP. We
will go into more detail in Section 4.9.

3.6. Exploiting Sparsity

The majority of real-world problems from all kinds of applications and backgrounds
rely on sparse data: The actual information is diminishing in comparison to the di-
mensions. Take a realistic supply chain management problem: To produce a certain
product in a machine or factory, only a very small number of different resources are
required, while the entire supply chain may comprise many more resources that are
used in other contexts. This culminates in problem instances that have few non-zero
variable coefficients in their constraints despite a high number of total variables.

We then speak of sparse data and the solvers need to implement specialized data
structures to store and manipulate these values. It is not affordable to store all the
zero values so SoPlex—just like any other modern solver—keeps index lists to store
the mathematical position of the values while the values themselves are packed one
after another to allow for fast access.

There are variations of this storage technique, like scattering the values into a larger
array to facilitate adding new non-zero entries at the correct place.

Huangfu and Hall (2018) give a detailed description of a high performance sim-
plex solver and also explain how to exploit the sparsity effects. The term hyper-
sparsity was introduced for the linear programming context by Hall and McKinnon
(2005) and has been extensively studied by the authors. In contrast to sparse in-
put data, hyper-sparse is referring to sparse output data in certain computations in
the simplex method, like the solutions of linear systems with the basis matrix or its
transpose. Exploiting hyper-sparsity requires to assess where in the output data non-
zero values may appear. This can significantly reduce the computational time for the
affected operations and leads to an average speed-up of more than 5 for instances
where the techniques can be applied.

In SoPlex version 2.2 (Gamrath, Fischer, et al., 2016), we implemented such a sparsity-
exploiting technique to accelerate the pricing process. This has been especially help-
ful for solving large-scale linear programs originating from supply-chain management
optimization as demonstrated by Gamrath, Gleixner, et al. (2019). Figure 3.4 shows the
number of necessary comparisons to determine the best pricing candidate for the
next pivot. We need to scan the vector of basic variables for primal violations. Since
only a subset of these violations have been modified during a simplex iteration, we
can keep a dynamically updated list of candidates that can be much smaller than the
basis size.

Despite all three methods shown in Figure 3.4 being mathematical equivalent, we
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can see that a majority of comparisons can be avoided when only taking the updated
violations into account—note that the the number of comparisons is depicted in log-
arithmic scale.
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Figure 3.4.: Pricing statistics: The total number of current violations is several orders
of magnitude larger than the number of updated violations per iteration.

Another application for exploiting sparsity is located in the PRICE step. Here, a
matrix-vector multiplication needs to be performed. Depending on the sparsity of the
multiplied vector, it can be beneficial to perform a row-wise rather than column-wise
operation. This requires a row-wise storage of the constraint matrix A, which can
be made available once without significant additional cost. What is more difficult to
exploit is the fact that only the non-basic columns of AN are required because the
multiplying vector π⊺ = e⊺jB−1 is the result of solving a linear system with B = AB that
involves the basic columns. We know that the resulting values will be 0 or 1 for those
indices corresponding to basic variables. Hence, we can skip these operations and
perform the multiplication only with AN like it is presented in most text book de-
scriptions. In the row-wise storage of A we need to update the partitions of basic and
non-basic columns after every iteration to have all non-basic values in a consecutive
block in memory:

AROW = [ANAB]

From personal communications with Julian Hall we have learnt that this additional
overhead is usually worth it when weighed against the computational benefit of a
shorter matrix-vector product.

Unfortunately, we were not able to speed up SoPlex with an implementation of this
modified PRICE multiplication. Koberstein (2005) also explains the different ways of
computing the pivotal row as a result of either a matrix-vector-multiplication using the
row-wise or the column-wise storage of A. They, too, admit that they were not able
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to implement an efficient method of skipping and updating the unnecessary basic
indices in the row-wise multiplication.

There are two different data structures implemented in SoPlex to support sparse
vectors: SVector to store only the value and index pairs including some additional
slot for the number of non-zeros. The other is a semi-sparse vector called SSVector
with length equal to the actual dimension of the vector it represents and all non-zero
elements at their corresponding position. Additionally, it also holds an index list of
all non-zero entries to allow faster access to them and facilitate easy inclusion of new
entries. What makes these data structures different from conventional sparse vectors
is the fact that they use a tuple of value and index to store the data. Typically, there are
two separate vectors for the values and for the indices, respectively. All underlying
linear algebra sub-routines are built on these data structures and we suspect that
an extensive rewrite is necessary to implement sparsity-exploiting algorithms more
efficiently.

Finally, we would like to mention a rather straight-forward performance improve-
ment technique that is especially useful for an LP solver within an MILP solver. It
is common to have an incumbent integer feasible solution at some point during the
solving process without the proof of optimality, so further branch-and-bound nodes
need to be explored. For the corresponding LP relaxations, we can set an objective
cutoff limit, because we are not interested in nodes that exhibit a worse dual bound
than the objective value of the current incumbent. Those nodes can be pruned and
the LP relaxation can be aborted at an early stage. To determine when the objective
limit has been reached, we need to compute the current dual objective value at every
iteration, which can be costly if not implemented carefully. Intuitively, one would just
compute the new objective value based on the current values of the variables. We
added an update method for the non-basic part of the objective function value to re-
duce the computation to only the basic part. This prevents repeated multiplications
of the objective coefficients cj with those variables xj that did not change from the
previous iteration. As typically only one non-basic variable changes its value during
a simplex iteration, the complexity of computing the non-basic part of the objective
value reduces from O(n −m) operations to a constant factor.

This update is of course not necessary if only lower bounds of 0 and no upper
bounds are present—in this case, it suffices to compute the basic part because c⊺

B
xB =

c⊺x. In virtually all cases, though, the LP solver is faced with non-zero lower and finite
upper bounds coming from domain propagation or branching decisions of the MILP
solver or simply from upper bounds on integer and binary variables of relaxations of
combinatorial optimization problems.

The above technique has a greater performance impact on larger instances, like the
ones investigated by Gamrath, Koch, et al. (2015) and Gamrath, Gleixner, et al. (2019).
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3.7. Persistent Scaling

The main goals of scaling are different for LP and MILP solvers. When dealing with
MILPs, one typically scales to improve the integrality, that is, a constraint like the
following can be easier handled after applying a row scaling factor of 3:

1/3 ⋅ x + 2/3 ⋅ y ≤ 13/6 ⋅3Ð→ x + 2 ⋅ y ≤ 6.5.

For LPs, on the other side, we employ scaling to improve the numerical features of
the basis matrix to reduce the chance of introducing errors that might invalidate the
correctness of our solutions.

An example in Gurobi’s documentation demonstrates2 the effect of scaling by ex-
plicitly increasing the ranges of coefficients for a specific model instance. With further
increasing detrimental scaling factors, the performance deteriorates until eventually
the problem is incorrectly detected to be infeasible. This example shows that scaling
affects not only the numerical conditions and the quality of the solutions but also the
time and number of iterations required to solve a problem instance.

For an LP relaxation within an MILP solver, the simple way of using scaling—as well
as presolving for that matter—is to apply it before the root node solving when there
is no other information to be taken care of. After the root LP has been solved, all the
data structures in the LP solver are transformed back into the original space to allow
the MILP solver to easily apply modifications like bound changes or the addition of
new LP rows.

Preserving the LP presolving transformations and translating all changes coming
from the MILP solver into this transformed space is quite involved and likely too ex-
pensive to be useful. This is different for the less involved scaling, though, and our
persistent scaling implementation proves that we can keep using scaled data even for
later LP solves during the MILP solving process.

After the initial scaling has been computed, every change to the LP data and almost
every information coming back from the LP solver needs to be scaled accordingly, to
avoid having to scale the LP itself back and forth. Newly introduced columns or rows
need to be assigned corresponding scaling factors, accordingly, extending the initial
set of scaling factors stemming from the root LP. Additionally, results from computa-
tionally more involved operations like computing a certain row of the current basis
matrix’ inverse to generate cutting planes need to be un-scaled as well.

This extension to the API of SoPlex has been implemented since version 3.0 and al-
lows preserving the scaling factors throughout the MILP solving process without nega-
tively impacting the overall performance. To be able to use this in SCIP, we also had to
rewrite the LP interface entirely as it was previously accessing internal data structures
directly, circumventing the dedicated API.

Persistent scaling for SoPlex has been enabled by default since SCIP version 4.0.
Table 4.2 shows that about five more instances can be solved to optimality, five less

2https://www.gurobi.com/documentation/9.5/refman/why_scaling_and_geometry_i.
html
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instances run into the time limit of one hour, and the average solving time is reduced
by around 9%. The number of simplex iterations is also positively affected by persis-
tent scaling and goes down by about 15% while the average number of nodes is largely
the same. We used SCIP version 6.0.2 for this experiment and manually disabled per-
sistent scaling in SoPlex as there is no parameter in SCIP to control this directly.

In the following, we discuss how scaling is actually implemented for SoPlex and
other simplex solvers.

When we talk about LP scaling we think of two scaling matrices R and C. Those are
diagonal square matrices of size m and n respectively. For all scaling factors we do not
store and use the actual floating point values computed by the scaling methods but
the closest base-2 exponents. This enables us to perform scaling operations without
introducing any numerical noise because only the exponent of the value to scale is
modified. The mantissa holding the digits remains untouched. Even though this pro-
cedure slightly modifies the actual scaling factors that are computed by the different
methods, error-free computations are more crucial. Other benefits of this setup are
reduced storage size for the factors (int instead of double or rational) and faster
scaling operations since we only need to shift the exponent.

Besides the constraint matrix, also the upper and lower bounds of both columns
and rows need to be scaled accordingly:

RACx ′ = Rb
C−1l ≤ x ′ ≤ C−1u

x = Cx ′

Now, consider a scaled constraint matrix A ′ that is extended by artificial slack vari-
ables resulting in the matrix (A ′, I). A basis matrix B ′ = [(A ′, I)P]1∶m,1∶m (with P being
a permutation matrix) for the scaled problem corresponds to the basis

B = R−1 [(A ′, I)P]
1∶m,1∶m

[P⊺C̃−1P]
1∶m,1∶m

.

In this equation, C̃ is of the form

[ C 0

0 R−1
] .

We can see from those formulas that changes to the LP—as they frequently happen
during MILP solving—need to be transformed carefully between the scaled and the
original space. In case of the row representation it is additionally necessary to trans-
late the values between the representations because the interface to SoPlex needs to
provide the common column representation data of the basis matrix. This turns the
seemingly simple task of storing scaling factors into a considerable implementational
effort.
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3.7.1. Scaling Methods

There are different ways to scale an LP and it cannot be easily determined which will
lead to the best performance. Generally, we aim to move all coefficients of the prob-
lem as close as possible towards 1 or −1. This is to reduce the numerical noise that is
introduced when working with floating point numbers. Whenever we are performing
operations using floating point arithmetic, there is a certain inexactness, mostly be-
cause the number of precisely representable values is rather small and we usually end
up with the closest approximation to the real value. We trust the numbers only until
the first nine or ten digits, although a double precision floating point number consists
of 15 to 17 significant decimal digits (see also Table 6.1 for a comparison of different
floating point precisions). Some operations like subtraction of equally large numbers
can then push those not trust worthy digits to the front and cause the aforementioned
numerical noise.

A related issue is introduced by numerical tolerances: Take a commonly used fea-
sibility tolerance of 10−6 for example. Then, a simple constraint of the form

200 ⋅ x − y = 0

is feasible for values x = 1 and y = 200 but infeasible for x̃ = 1 + 10−8 and y = 200 with

200 ⋅ x̃ − y = 200.000002 − 200 = 2 ⋅ 10−6 > 10−6.

This is despite the value of x̃ being even within the integrality tolerances of most
solvers, so being treated as an integer value.

SoPlex supports different scaling methods that we will describe briefly:

Equilibrium Scaling. This scaling method simply divides all coefficients in a row or
column by the largest one. This trivially guarantees that the largest coefficient is of
absolute value 1. There is still a degree of freedom in the order of the scaling, that is
whether row or column scaling is applied first. Since this seemingly minor detail can
lead to different outcomes as Example 1 shows, we employ a simple heuristic based
on the row and column ratios to determine the order: The method that is applied first
is the one that has the smaller maximal ratio of largest divided by smallest entry.

Two variants of this scaling method are implemented in SoPlex: Uni-equilibrium
does only one pass, either over columns or rows, depending on the ratio, while bi-
equilibrium always does both with the order being chosen by the ratio.

Example 1.

A = [0.1 1

10 1
]

Matrix A has a maximum row ratio of 100 and a maximum column ratio of 10, when
dividing the largest coefficient by the smallest in every row and column respectively.
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row scaling first: A ′ = [0.1 1

1 0.1
] column scaling first: A ′ = [0.01 1

1 1
]

Geometric Scaling. This method computes scaling factors based on the square root
of the product of the largest and the smallest value in each respective row or column.
There is also an extension called iterated geometric scaling that performs several of
such sweeps over the constraint matrix to achieve a more balanced result. A maximum
iteration count of 8 has proven to be enough—subsequent sweeps do not improve the
result considerably.

Least Squares. This is the most sophisticated and also most expensive scaling vari-
ant. It has been implemented for SoPlex version 3.1 (Gleixner, Eifler, et al., 2017). The
goal of least squares scaling is to achieve the best possible numerical stability of A
with respect to Gaussian elimination or LU factorization. This method is also known
as Curtis-Reid scaling (Curtis and Reid, 1972). Similar to equilibrium scaling it tries to
even out outliers and smooth all entries of the matrix. Unlike the simpler methods
this is carried out by solving a least squares problem:

min ∑
Aij≠0

(log2Aij − ρi − γj)2 , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} (3.11)

The resulting ρ andγ values are rounded and define the scaling factors asRii = 2−[ρi]

and Cjj = 2−[γj] respectively.
We can solve the least squares problem 3.11 using the conjugate gradients method

(Hestenes and Stiefel, 1952) applied to this system of linear equations:

Mρ + EAγ =
⎡⎢⎢⎢⎢⎣
∑
j

log2A1j, . . . ,∑
j

log2Amj

⎤⎥⎥⎥⎥⎦

⊺

E⊺Aρ +Nγ = [∑
i

log2Ai1, . . . ,∑
i

log2Ain]
⊺

Here, EA is a 0-1-matrix with the same non-zero pattern as A whereas M and N

are diagonal matrices that contain the numbers of non-zero entries for each row and
column of A respectively.

Computing these least squares scaling factors is computationally more expensive
than the other methods but still does not impair the performance on most instances.

Elble and Sahinidis (2012b) compare different scaling methods specifically for scal-
ing linear programming problems. Their main result is that equilibrium scaling pro-
vides the best results under the assumption that computational costs cannot be ne-
glected. SoPlex uses equilibrium scaling by default. When applied inside SCIP, users
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can enable aggressive scaling to switch to least squares for numerically more chal-
lenging problem instances.

Note that interior point solvers are less susceptible to scaling as explained by An-
derson et al. (1996).

3.8. LU Factorization and Update

We will not go into detail on how to implement an efficient and numerically robust LU
factorization including the necessary update methods for the simplex algorithm. As
this is a crucial ingredient in any simplex code, we give an overview of the standard
methods and some fairly recent developments in this field.

In a nutshell, our task is to solve two systems of linear equations in every iteration
of the simplex algorithm. Both involve the current basis matrix B while one uses the
transpose B⊺:

BTRAN: B⊺z = ep
FTRAN: Bâq = aq

These two operations are historically called FTRAN and BTRAN—short for forward
transformation and backward transformation—and hark back to the very first com-
puter implementations using punch cards to encode the machine instructions: As
BTRAN uses the transpose of the basis matrix, its implementation is equivalent to
inserting the punch card backwards. It is interesting to see this naming convention
still being present and used even today in state-of-the-art high-performance simplex
implementations.

For solving these two systems of linear equations, a prior LU factorization of B has
been proven highly useful and efficient:

factorize: B = LU
solve: LUx = b⇒ Ly = b and Ux = y

Note that, while this factorization is less numerically stable than for example a QR
factorization, that is, a factorization into an orthogonal matrix Q (Q⊺ = Q−1) and an
upper triangular matrix R, the sparsity preservation and update functionalities of the
LU factorization are more important for application in the simplex method. The two
resulting systems involve lower and upper triangular matrices L and U that facilitate
a straightforward solution process as shown in Algorithm 3.1.

The procedure for U can be carried out analogously, starting from the bottom and
moving upwards. Due to the non-unit diagonal of U we need to add a multiplication
with 1/Ujj to achieve the correct result, see Algorithm 3.2.

As we can see from those algorithms, sparsity in the input data, that is, in the re-
spective right-hand sides and in the triangular matrices, can already be used to skip
certain operations. This is only scratching the surface of what is possible to speed up
these computations as demonstrated by Hall and McKinnon (2005). One important
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Algorithm 3.1 lower triangular solve: FTRAN-L

Input: b ∈ Rm and L ∈ Rm,m lower triangular and unit diagonal
y← b

for j ∈ {1, . . . ,m} do
if yj ≠ 0 then

for i ∈ {j + 1, . . . ,m} with Lij ≠ 0 do
yi ← yi − Lijyj

end for
end if

end for
Return: y with Ly = b

Algorithm 3.2 upper triangular solve: FTRAN-U

Input: x ∈ Rm and U ∈ Rm,m upper triangular
x← y

for j ∈ {m, . . . , 1} do
if xj ≠ 0 then

xj ← 1/Ujjxj
for i ∈ {j − 1, . . . , 1} with Uij ≠ 0 do

xi ← xi −Uijxj
end for

end if
end for
Return: x with Ux = y

56



3.9. Iterative Refinement

aspect is the accurate prediction of where the so-called fill-in happens. These are
non-zero elements in the solution vector that do not already have a corresponding
non-zero entry at the same position in the right-hand side vector. Graph algorithms
applied to the non-zero structures of the triangular matrix and the right-hand side
can be used to determine these positions. Of course, this introduces some significant
overhead and needs to be adaptively activated depending on the sparsity of the cur-
rent system. SoPlex only implements a subset of these techniques resulting in a worse
performance than other solvers when dealing with highly sparse model instances.

In every iteration of the simplex method, we update the basis matrix by exchanging
a column vector with one of the non-basic columns aq of the constraint matrix A or
a unit column. This can be formalized as

B̃ = B + (aq − Bep)e⊺p
with the incoming column aq replacing the pth basic column in B and the basis itself

is updated to B̃ = B ∪ {q} ∖ {p}. Every such update needs to be integrated into the
factorization to properly represent the current basis matrix and in regular intervals a
fresh factorization is computed to clean up the accumulated updates. Huangfu and
Hall (2015) provide a survey of the standard methods and several variants further
improving speed and efficiency. SoPlex implements both the rather straightforward
method of representing the updated LU factorization as series of rank-one matrices
called the product-form update developed by Dantzig and Orchard-Hays (1954) as well
as the more technical Forrest-Tomlin update as described by Forrest and Tomlin (1972)
and Suhl and Suhl (1993).

For a comprehensive overview of all the different basis inverse update techniques
we refer to Elble and Sahinidis (2012a).

3.9. Iterative Refinement

The term iterative refinement was coined by Wilkinson (1963) for a more accurate so-
lution of systems of linear equations. The main idea is to solve multiple auxiliary
systems of linear equations that iteratively minimize the error in the solution of the
original problem.

This technique can be applied to linear programming using the simplex method
in an elegant way as demonstrated by Gleixner, Steffy, and Wolter (2012), Gleixner
(2015), and Gleixner, Steffy, and Wolter (2016). The authors exploit the discrete nature
of the simplex basis to perform subsequent optimizations of scaled versions of the
original problem that aim for minimizing the error of the solution. This is achieved
by using higher-precision arithmetic like in other simplex implementations, see for
instance QSopt_ex (Espinoza, 2006). The main advantage, though, is that only very
few iterations using expensive computations in rational arithmetic are necessary to
improve upon the initial solution provided by the standard solver in double precision
arithmetic.
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Figure 3.5.: LP iterative refinement to compute more accurate solutions

The authors came up with a very nice visualization of the technique as shown in
Figure 3.5, where the refinement LPs can be seen as zoomed-in versions of the original
formulation. While a potential bound or optimality violation is not visible in the first
depiction, we can spot the infeasibility in the scaled version on the right.

3.10. Decomposition Based Dual Simplex

The decomposition based dual simplex (DBDS) is a method to exploit and avoid dual
degeneracy in a given linear programming problem to reduce the number of itera-
tions until optimality (Maher, Fischer, et al., 2017). Its core idea is based on the work
of Elhallaoui et al. (2011), that introduces a column generation approach to deal with
primal degeneracy, called Improved Primal Simplex Algorithm. This is especially help-
ful for solving instances of set partitioning problems. The method implemented in
SoPlex can be seen as the dual version of this approach. It decomposes a problem
that shows dual degeneracy at the current basis into a reduced and a complementary
problem, that are non-degenerate. This reduces the total number of iterations, since
fewer degenerate steps are taken.

DBDS relies on the row representation of the basis and is an iterative algorithm that
keeps adding rows to the reduced problem until all primal violations are resolved.

In its current state, DBDS is an experimental algorithm that does not outperform the
default simplex method in SoPlex in terms of time or iterations on general problems.
There have been significant reductions in iterations on certain problem instances
which shows that the method has potential as a problem specific implementation.
It is unclear, though, what characteristics of a problem make it suitable for DBDS. The
amount of degeneracy alone is not enough as experiments by Maher, Fischer, et al.
(2017) have shown.
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3.11. Performance Variability

The term performance variability was coined by Danna (2008) and further investi-
gated by Koch, Achterberg, et al. (2011). Generally speaking, it refers to how much a
seemingly insignificant change in the solver or the model data can introduce a drastic
performance fluctuation. It is a stability measure that often helps assessing whether
the results obtained on one machine will be reproducible on a different machine. Inte-
ger programming has been the focus of the mentioned works, while the class of linear
programming problems is believed to be less impacted by this effect. We show how
much the solving times and iteration counts vary after choosing a different random
seed in SoPlex. The random seed determines the sequence of generated (pseudo)
random numbers that are used throughout the code. This can be seen as a minimal
change to impact the algorithmic behavior and is frequently used to stabilize perfor-
mance benchmarks carried out by SCIP.

To measure performance variability, Koch, Achterberg, et al. (2011) use the variability
score VS for every single instance in the different experiments:
Definition 3 (Variability score).

VS(t, k) = 1

∑k
i=1 ti

⋅

¿
ÁÁÁÀ

k

∑
i=1

(ti −
∑k

i=1 ti

k
)
2

VS(t, k) measures how strongly a set of observations ti, i = 1, . . . , k differs from one
another.

From Figure 3.6 we see that there is actually only a small number of instances that
are sensitive with respect to the random seed choice. For those extreme cases, the
solving times can vary by a factor of almost 10, as listed in Table 3.3. The vast majority
of instances, though, does not show a strong performance variability.

3.12. Performance Impact of Selected Features

To assess how the mentioned features impact the performance of SoPlex we analyze
computational experiments on the allLP test set. Table 3.4 compares default settings
and runs with one of those features disabled and aggregate the results over three
different random seeds. The iteration ratio column covers only those 1336 instances
that have been solved by all settings.

We see that for all features except quick start steepest edge pricing, it is worthwhile
to use default settings when aiming for the best solving time. There is a strong impact
on the number of iterations when using a different pricing method that also leads to
different solving times. On this test set, that includes many pure LP problems besides
relaxations from MILP instances, we might as well use quick start steepest edge pricing
for a slight performance increase.

In Chapter 4, Table 4.2, we compare how these LP improvements carry over to SCIP’s
performance on the MIPLIB 2017 benchmark set.
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3. Implementational Aspects of the Simplex Algorithm

iterations time

instance max min ratio VS max min ratio VS

cdma 260271 56336 4.6 0.3 158.2 16.2 9.3 0.4
cont1 107902 41395 2.6 0.3 3600.0 1570.2 2.3 0.2
dbic1 217952 64009 3.4 0.2 1132.7 189.3 6.0 0.3
mzzv42z 35020 16664 2.1 0.2 15.9 5.4 2.6 0.3
neos-2075418 116602 46961 2.5 0.3 698.4 95.3 7.3 0.6
neos-3402454 57951 16023 3.6 0.4 3600.0 609.0 5.9 0.5
neos-777800 11398 2398 4.8 0.3 1.3 0.3 1.8 0.3
rlfdual 12298 8317 1.5 0.1 5.7 1.3 2.9 0.3

Table 3.3.: allLP instances with a time or iterations ratio larger than 2.5 when solved
with SoPlex 4.0.2 and a different random seed value. The test set contains
1382 instances, 1336 of which can be solved to optimality.

setting wins losses iter ratio (all opt) time ratio

no presolving 398 390 1.49 1.25
column representation 277 375 1.08 1.08
row representation 336 437 1.06 1.43
devex pricing 281 431 2.30 1.90
qsteep pricing 502 299 0.78 0.96
no bound flips 425 308 1.17 1.07
Curtis-Reid scaling 303 458 1.12 1.09
solution polishing 247 424 1.05 1.03

Table 3.4.: Performance impact of selected features on allLP
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Figure 3.6.: Distribution of variability scores > 10−6 for solving time and iterations of
SoPlex 4.0.2 across three different seeds for the allLP test set
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Chapter 4

Impact of Linear Programming in
MILP

There are many situations in the MILP solving process where the solution of an LP
is required. The most prominent one is arguably the root LP. This initial relaxation
provides a first so-called dual bound for the MILP and determines the first branching
decision—given that integer variables with fractional solution values are present. Of-
ten, it takes up a significant part of the overall solving time. During the tree search,
on the other side, LP solutions of the branch-and-bound node relaxations can be ob-
tained a lot faster with the help of previously processed nodes. This is mainly due to
the warm-starting capabilities of the simplex algorithm. Here, an existing basis, for
example from the parent node, can be used as a dual feasible starting basis for the
next sub-problem and very few iterations suffice to solve it to optimality.

Dual feasibility is maintained throughout the tree search if only variable bounds
or constraint sides are tightened. Table 4.1 lists the different problem modifications
and whether they maintain primal or dual feasibility of the current basic (optimal)
solution.

problem modification primal feasibility dual feasibility

additional variables ✓ -
additional constraints - ✓
modified objective coefficients ✓ -
modified right-hand sides - ✓
modified matrix coeffs (basic variables) - -
modified matrix coeffs (non-basic vars) ✓ -

Table 4.1.: Feasibility implications of different types of LP problem data modifications

While these two types of LPs—root LP and node relaxations—already cover the gen-
eral branch-and-bound scheme, there are many sophisticated techniques that also
rely on LP solutions, like heuristics, cutting plane generation or conflict analysis.
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4. Impact of Linear Programming in MILP

All this suggests that LP solving performance has got a major influence on the over-
all MILP solving performance. In this chapter we will investigate this impact and also
show the fundamental differences of the two scenarios LP and MILP solving.

Koch, Martin, and Pfetsch (2013) mention the peculiar fact that the pure LP or sim-
plex performance does not translate to a comparable MILP solving performance. This
effect can also be observed for commercial solvers like Gurobi: A ∼20% LP perfor-
mance gain of version 9.1 compared to the previous version only resulted in a ∼5%
speed-up for solving MILPs. We want to investigate this unintuitive discrepancy using
SCIP and its capability to plug-in various LP solvers.

Beside the widely used approach of using either a variant of the simplex method or
the barrier algorithm internally, there are also other ways of computing feasible solu-
tions to MILPs that we want to mention briefly: The commercial solver LocalSolver1,
for example, is using fast heuristics and a variety of combinatorial methods to find
feasible solutions to MILPs without necessarily proving optimality. This is especially
relevant and useful for model instances that have a very difficult and time consuming
LP relaxation to solve or for very specific problem types. We will not go into detail for
such approaches because they are fundamentally different from the LP-based branch-
and-cut approach and usually do not provide a proof of optimality. Additionally, there
are heuristic methods implemented in conventional MILP solvers that do not require
an LP solution or even a dual bound in the first place.

We are only aware of few publications that are concerned with LP and MILP perfor-
mance comparisons of different solvers. Meindl and Templ (2012) discuss the use of
different LP solvers within SCIP and benchmark this against other implementations—it
does not go into much detail, though, and mainly provides an overview.

In the following sections, we want to point out the different areas where LP solutions
are most prominently used during the MILP solving process. To give a rough idea of
the individual components that directly depend on the availability of LP solutions, we
took the infamous “SCIP flower” and colored all buds red that actively solve new LPs
(Figure 4.1).

4.1. Implementational Details

SCIP has an open interface to connect to many different LP solvers that are treated as
black box. This is implemented through two main layers in the SCIP code: One is the
internal LP object that represents the current relaxation and keeps information on
pending bound changes and several other pieces of information and statistics. This
layer is oblivious of the actual LP solver that is connected to the second layer—the LP
interface or LPI. This interface implements methods to pass data to and from the con-
nected LP solver and controls the LP solving process. Since the LP solver relies on its
own data structures it cannot use the problem data that is stored in the LP object. In-
stead it has to construct a new copy of the relaxation and every modification to SCIP’s

1http://www.localsolver.com/
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Figure 4.1.: Abstract visualization of SCIP’s components with those colored in red that
heavily rely on LP solutions or trigger new LP solves. The image depicts
version 3.2 of SCIP and is only intended for the purpose of illustration and
makes no claims of being complete.
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4. Impact of Linear Programming in MILP

internal LP needs to be transferred before initiating a new solve or re-optimization.
Naturally this setup leads to some overhead both memory- and performance-wise

when compared to an implementation that uses an integrated LP solver as is the case
for most other especially commercial MILP solvers. This is also one reason why SCIP
will never reach the same level of performance and efficiency.

On the other hand, we can use this versatile interface to investigate how different
LP solvers impact the overall optimization process.

We are aware that SCIP is not the only option to compare different LP solvers within
a branch-and-bound based MILP code. Cbc of the COIN-OR Foundation2 is arguably
the most popular alternative. Still, we do not include this solver framework into our
experiments because of its considerable weaker performance on general MILP prob-
lems when compared to SCIP and especially when competing against commercial MILP
solvers.

4.2. Root and Node LPs

We have already mentioned in Chapter 1 that the initial LP relaxation is one of the
most time-consuming aspects of many MILP instances. On the other hand, there are
also instances with easy-to-solve LP relaxations that still require a lot of time to find
the optimal solution because of excessively large branch-and-bound trees.

From personal experience, we can attest that most practical MILPs fall into one of
the three categories:

• Easy instances that can be solved quickly to optimality. The definition of quick
is of course subject to the actual application at hand and may differ quite a lot
from case to case.

• Instances that require a lot of time to process the root LP but can be solved to
optimality with a small search tree or even just in the root node.

• Instances that do not pose any difficulties to the LP solver but make it very
hard to find good feasible solutions or prove optimality because of a very large
branch-and-bound tree. Often, such instances have a weak formulation, that is,
the linear relaxation is not helping much in guiding the search towards optimal-
ity and therefore results in a large number of nodes.

Of course, there are also instances that have a very difficult LP relaxation and a very
large branch-and-bound tree; due to this inconvenience, they are usually transferred
back to the modeling stage to find alternative formulations or to split up the problem
into smaller, more manageable pieces.

In Figure 4.2 we show the amount of time that is spent solving LPs during the MILP
solving process. This scatter plot shows how different the LP time fractions are dis-
tributed among the instances and that they do not correlate with the overall solving

2http://www.coin-or.org/
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4.2. Root and Node LPs

time—independent of the LP solver used. The widely scattered fractions for those in-
stances that are exhausting the time limit, visible as a vertical wall at the one hour
mark, are a good indicator for that. Only with Clp as LP solver, a number of instances
break this barrier. This is because of a less responsive termination behavior after the
time limit has already been exceeded. For a more detailed breakdown of the different
types of LPs that are solved, please refer to Figure 4.5.
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Figure 4.2.: Fraction of time spent solving LPs during MILP solving. We compare dif-
ferent LP solvers in SCIP on on the MIPLIB 2017 benchmark set, including
instances that are not solved within one hour. We can see that with Clp,
the time limit is not always respected.
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4. Impact of Linear Programming in MILP

Typically, we solve MILPs without any starting information, so the root LP needs to
be solved from scratch. This is in stark contrast to practically every other LP solve
that needs to be performed afterwards. Here, we can draw on useful data to warm-
or hot-start the optimization of the relaxations.

Warm-starting, usually refers to providing the simplex algorithm with a feasible
basis that is ideally already close to being optimal, that is, only a small number of
iterations are necessary to reach it. This is the case during the cutting phase: whenever
a new cut is added, the current basis remains dual feasible, but the dimension of the
basis matrix is different and often a new LU factorization needs to be computed. See
Section 4.5 for additional information.

Hot-starting on the other hand, denotes a similar process that leaves the factor-
ization intact and allows an even faster re-optimization of the new LP. The simplest
use-case is the actual branching process as detailed in Section 4.3: fixing a binary
variable to either 0 or 1 or restricting the domain of an integer variable by includ-
ing a disjunction to cut off the current node’s LP solution. Since this is only further
restricting the feasible domain of the active LP just like in the cutting step, the dual
feasibility of the basis is preserved. Additionally, the basis matrix is not modified, the
factorization remains also valid.

Here, we silently assume that the simplex method is used to solve those node LPs.
While this is the most practical approach due to the mentioned warm- and hot-starting
effects, there are also instances that are solved significantly faster using the barrier
method and even the node LPs profit from using this method over the simplex algo-
rithm. Berthold, Perregaard, and Mészáros (2018) give an overview of the other lesser
known applications for an interior point or barrier solver when dealing with an MILP,
including primal heuristics and presolving techniques that would not be possible with
the simplex method.

Unfortunately, if both approaches are viable, it is extremely difficult to predict which
method will be better suited for a specific LP or MILP instance. Usually, some heuristic
guess is made based on the dimensions and sparsity of the problem matrix—larger
problems generally being solved faster with the barrier. In case enough computing
resources are available in form of parallel threads, most solvers actually run several
methods concurrently when solving the root LP or a similar problem without useful
warm-starting information to kick-start the simplex. This inability to reliably predict
a certain method’s performance even extends into whether to use the primal or dual
variant of the simplex, so these are also often run in parallel. Typically, commercial
MILP solvers use the available computing threads for other tasks like parallel node
processing or running heuristics. So this concurrent approach is only feasible for the
root node when the progress is largely dependent on the initial LP solution and not
enough other work can be parallelized, yet.

Figure 4.3 shows how using either the simplex or barrier method affects the frac-
tionality, iterations, and solving time of the root LPs of the MIPLIB 2017 benchmark
set. We have been performing this experiment with MOSEK as LP solver because the
other applicable solvers (CPLEX, Gurobi, and Xpress) have been reporting too many
spurious iteration counts in SCIP. The qualitative results for the time and fractional-
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ity comparisons have been similar, though. Please refer to Table B.5 for the detailed
results.
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Figure 4.3.: Comparison between different LP solving methods in SCIP 6.0.2 using
MOSEK 8.1.0.21 as LP solver (single-threaded). Barrier iteration counts are
largely independent of the problem sizes, whereas the simplex iterations
increase with growing dimensions. The respective solving times remain
very comparable across the MIPLIB 2017 benchmark set. The right plot
shows the difference in root LP fractionality when using either the simplex
or the barrier method. Performing the additional crossover step reduces
the fractionality dramatically.

We have also been running various experiments with the different LP solving meth-
ods in SCIP but decided that the results were too unreliable and unstable to make
further conclusions. SCIP—at least in version 6.0.2—should mainly be used with the
simplex method to solve the occurring LP relaxations.

In Figure 4.4 we can see that with Clp there is a large number of instances whose
solving time is spent entirely or almost entirely by the LP solver. With SoPlex and
MOSEK, there is still a strong tendency towards the right-most third of the histogram,
meaning that a significant portion of the instances’ solving time is spent by the re-
spective LP solver. CPLEX, Gurobi, and to a lesser extent also Xpress display a more
balanced time distribution and consequently, allow more time to be spent in SCIP
itself instead of computing an LP solution.

The bad performance of Clp is likely due to the extremely high number of unstable
resolves, as depicted in Figure 4.5. This instability detection is based on violations
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Figure 4.4.: Histogram depicting the fraction of time spent by the LP solver during MILP
optimization. The bars depict how often a certain fraction of the total solv-
ing time is consumed by the respective LP solver. This also includes in-
stances from the MIPLIB 2017 benchmark set that exhausted the one hour
time limit.

in the LP solutions. Such solutions are then rejected by SCIP and another try with
different parameters or tolerances is initiated. If necessary, the warm-start basis is
even thrown away in hopes of avoiding numerical difficulties when performing a fresh
start. This also explains the poor performance of Clp in SCIP and we should take those
results with a grain of salt. Interestingly, with Xpress there is not a single LP that is
rejected by SCIP, indicating a very stable implementation of the solver.

4.3. Branching Rules

Branching Rules are the different strategies of choosing the variable to branch on
in the branch-and-bound process. Usually, we select one of the integer or binary
variables, say xi, that has a fractional value x̌i in the LP relaxation’s solution of the
current node. Forcing this variable xi to be either ≤ ⌊x̌i⌋ (the down branch) or ≥ ⌈x̌i⌉
(the up branch) invalidates the current LP solution in both child nodes and reduces
the search space in the new subproblems. Figure 4.6 provides a visual aid. There
are many different strategies for selecting the next variable, often strongly affecting
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Figure 4.5.: Distribution of the different types of LPs that need to be solved during an
MILP optimization on MIPLIB 2017 benchmark instances with SCIP in one
hour. Only optimally solved instances are included. Noteworthy is the very
high number of unstable LP solves with Clp and the relatively large num-
ber of primal LP solves with CPLEX. Gray markers represent outliers with
respect to the interquartile range.

the overall number of nodes visited in the tree and the total time to optimality. The
various branching rules can also involve very time-intensive computations to reduce
the number of nodes so we need to be careful when comparing their efficiency as
explained by Gamrath and Schubert (2018). As an example, imagine a branching rule
that solves multiple LPs in an internal subroutine, essentially hiding these processed
nodes from the global node counter.

In the following paragraphs, we give a short overview of the most popular and
well-known branching rules that are available in typical branch-and-bound solvers
for MILPs.

Most infeasible branching This branching rule is a very simple strategy that chooses
the variable that violates its bounds the most to branch on, that is, the variable that
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x̌−
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Figure 4.6.: Visualization of the branching procedure with the MILP imposed by inter-
section of the blue region and the orange integrality conditions. LP solu-
tion x̌ on the left is removed from the two subproblems on the right that
include restrictions in horizontal direction: xi ≤ ⌊x̌i⌋ and xi ≥ ⌈x̌i⌉, respec-
tively. The resulting LP solutions x̌− and x̌+ are integer feasible and x̌+is
the optimal solution.

is closest to 0.5 in the LP relaxation’s solution. This sounds like a good idea on paper
because it is very easy to compute and one might think that the less violated variables
may become feasible on their own when forcing the other ones onto one of their
bounds. Additionally, this should have a larger impact on the LP relaxations in the
new child nodes. In practice, though, Achterberg, Koch, and Martin (2004) showed
that this branching strategy turns out to be as good as random branching, showing
once more how intuition can fail us in mathematical programming.

Pseudo-cost branching This is a more involved branching rule that was first de-
scribed by Bénichou et al. (1971). It basically tracks the objective gain of every up
and down branch each variable has already taken part of. This provides a history of
efficacy for each variable that is used to compute a score to determine the next vari-
able to branch on. There are multiple variants of how exactly to compute the score
and weigh the past results and we refer to Achterberg, Koch, and Martin (2004) for
further details.

Strong branching This branching scheme is very expensive but often results in a
significantly reduced tree size. The main idea here is to solve multiple LPs corre-
sponding to some or even all available branching candidates. This provides a good
overview of the actual effect of branching on those variables and we can choose the
variable based on some score that is determined by the solution of the respective LP
solutions. To save time, most implementations do not inspect all available fractional
candidates and also limit the number of simplex iterations in each LP solve—the re-

72



4.3. Branching Rules

sulting scores are usually still very informative. To push this to an extreme, there are
even approaches that merely run the first simplex iteration with the newly modified
variable until the ratio test is done. The resulting step length is then used to get
some idea about the corresponding pivot or basis change without actually executing
it. That way, practically all data structures are left unchanged and many variables can
be probed without investing too much time.

Running the branching rule without those limits is commonly referred to as Full
Strong Branching. For more information, we refer to the original authors Applegate
et al. (1995) and to Gamrath (2014) for an extension that also includes domain propa-
gation within the branching candidates’ LP solves.

One trait that is present in all strong branching implementations is their depen-
dency on quickly available LP solutions. In SCIP this is realized by backing up the
current basis information before starting the strong branching process so the dual
simplex can start from that base and can be reset just as quickly to the initial state
right before strong branching.

Inference branching Especially when dealing with a feasibility problem, that is, a
model instance with a constant objective function, we cannot rely on improvements
or changes in the dual values of the branching candidates. Instead, we can use a tech-
nique from the field of Constraint Programming and satisfiability problems: inference
branching tracks the amount of deductions and implications that a branching candi-
date entails. Hence, branching on a variable with a high inference rate is supposed to
achieve a greater reduction of the remaining solution space to explore.

Hybrid branching To avoid the expensive cost of strong branching and to get around
the missing historic information of pseudo-cost branching in the early stages of the
tree search, we can also combine both ideas and initialize the pseudo-cost values by
running strong branching for the first few levels of the tree search. Further down in the
tree, pseudo-cost branching is used to speed up the branching decisions. In addition
to that, we can also include the inference score in case the information gained from
the objective is not meaningful enough.

Reliability branching This branching rule is a further extension of hybrid branching
and uses strong branching not only to initialize the pseudo-costs but also whenever
these pseudo-costs are not reliable, that is, when not enough previous branching data
exists to make an informed decision. Achterberg, Koch, and Martin (2004) show how
these last four branching rules are related to each other and provide extensive com-
putational data that shows how modifying the parameters of these rules impact the
solving time as well as the tree size. A version of reliability branching is still the default
branching rule in SCIP.
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Neural branching This is a very recent development extending the classical branch-
ing schemes. In Nair et al. (2020), the authors show how the branching decision can be
improved significantly by collecting branching scores for possible candidates in a full
strong branching manner. As explained above, this requires solving a lot of LPs—one
for each candidate—so the benefit of better branching decisions will be overshad-
owed by the excessive computational overhead of the LP solves. Instead, the authors
opted for approximated LP solutions and employed a GPU-accelerated ADMM method
(Alternating Direction Method of Multipliers, Boyd et al., 2011) to solve these LPs in par-
allel to generate the learning data. This Neural Branching approach works because
determining a good branching candidate does not rely on exact LP solutions as has
been already discovered by Achterberg, Koch, and Martin (2004). So, machine learn-
ing appears to be a good fit to estimate the branching scores and the paper provides
computational evidence.

In summary, we see that (most) branching rules heavily rely on LP solutions to de-
termine the next variable to branch on. While we can expect the smallest tree using
the full strong branching approach, the additional cost of computing all these LP so-
lution need to be accounted for to still achieve an overall speedup. This balancing act
is what makes branching rules an interesting field of MILP solving that is still in the
focus of active research and development and further advances can be expected in
the years to come.

Dey et al. (2021) provide a recent analysis regarding the performance of (full) strong
branching for a variety of combinatorial problem classes using randomly generated
data. One of the most interesting findings is that full strong branching keeps the
search tree within at most twice the number of nodes of the optimal, that is, the
smallest search tree for any of the analyzed instances. The authors also note that
the underlying LP solver plays an important part, especially regarding whether an
integer or fractional LP solution is returned (given that there is an integer LP solution
at the current node). One important aspect that is largely ignored in this paper is
the amount of work necessary to actually carry out a full strong branching approach
throughout the entire MILP solving process—they focus on the size of the tree instead
of the solving time.

4.4. Node Selection

Every branching decision typically creates two new subproblems. Naturally, the ques-
tion arises which node to process next. In addition to the two child nodes at the
current node, we may also decide to switch to another open node somewhere else
in the tree. There are different strategies in choosing the next node to continue the
search and they generally need to satisfy the following two goals:

1. Improve the primal bound by quickly finding new incumbent solutions.
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2. Improve the dual bound by further exploring nodes with a very small LP objective
value.

The first strategy tends to favor deep dives into the tree because we expect to find
integer feasible solutions easier after many branching decisions and possibly variable
fixings have been already performed. The second strategy on the other hand will
explore the tree in a breadth-first manner to work on those nodes that have a very
small dual bound and are typically found close to the root node where less restrictions
have been imposed on the LP.

Intuitively, we want to combine both approaches to improve the dual bound while
also finding new primal solutions as soon as possible. SCIP provides several different
node selection rules and uses a method called best estimate that assesses how likely
new solutions will be found in the corresponding subtree by calculating a measure
based on pseudo-cost values and the current LP objective value. We refer to Achter-
berg (2007) for detailed descriptions.

The chosen node selection variant has a smaller impact on the MILP solving perfor-
mance than other parameters, like for example the branching rule, and just using the
straightforward best bound approach is still a viable choice.

Note that in Chapter 6, we are using breadth-first search as node selection rule
to collect more balanced statistics across the entire tree. Otherwise, we might have
to deal with deeper plunges down the tree without visiting other nodes of the same
depth.

4.5. Cutting Planes

The idea of cutting in MILP solving is based on the idea of separating the current LP
solution from the convex hull of the integer feasible points of the MILP as visualized
in Figure 4.7: Let x̌ be a solution to the LP relaxation of MILP (1.1). Then, a valid cutting
plane can be defined as a pair (α,α0) ∈ Rn+1 such that for all x = (x1, . . . , xn) in the
convex hull of all integer feasible points of MILP (1.1) the following hold.

n

∑
j=1

αjxj ≤ α0 and
n

∑
j=1

αjx̌j > α0.

Finding such a pair (α,α0) is also known as the separation problem for x̌, as the
corresponding hyperplane separates the point x̌ from the convex hull.

Typically, this requires a valid LP solution in the first place to have a point to sepa-
rate from the convex hull. Additionally, many cutting plane methods also directly use
the current simplex basis to compute valid inequalities that cut off the corresponding
LP solution.

Such cuts are known as Gomory cuts or Gomory fractional cuts.
Assuming an IP problem {min c⊺x ∣ Ax = b, x ∈ N} and applying the fractionality op-

erator f (a) ∶= a − ⌊a⌋, we can use the following transformation to generate a valid
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Gomory inequality from the ith row:
n

∑
j=1

aijxj = bi

n

∑
j=1

f (aij)xj + ⌊aij⌋xj = f (bi) + ⌊bi⌋

n

∑
j=1

f (aij)xj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≥0

= f (bi)
²
<1

+⌊bi⌋ −
n

∑
j=1

⌊aij⌋xj

n

∑
j=1

f (aij)xj ≥ f (bi)

(4.1)

The last inequality follows from ⌊bi⌋ − ∑n
j=1⌊aij⌋xj ≥ 0. This approach can not only

be applied to all rows but to all weighted combinations of rows, especially using any
row of the inverse of the current optimal basis matrix B as weights:

B−1Ax = B−1b
xB + B−1ANxN = B−1b

Hence, for an optimal solution x̌ to any LP relaxation with fractional integer variable
xi, we can construct a Gomory cut based on the corresponding basic row:

∑
j∈N

f (B−1AN )i.xj ≥ f (B−1bi) = f (x̌i)

With 0 < f (x̌i) < 1 and the non-basic variables x̌N = 0, we can see that the LP
solution x̌ violates the cut since the left-hand side of the inequality is 0.

These cuts are also called basis-dependent and a similar approach is also possible
for MILPs. The resulting inequalities are then known as Gomory mixed-integer cuts.
Consequently, SCIP’s LP interface needs to provide functionality to get these vectors
based on the current optimal basis and every newly generated cutting plane requires
the solution of one linear system of equations and the corresponding multiplication
with the constraint matrix. This observation also implies that an accurate solution to
this system of equations is necessary to avoid computing incorrect cutting planes that
may even cut off integer feasible solutions.

Interestingly, we can also use sub-optimal bases to generate such cutting planes as
shown by Conforti, Cornuéjols, and Zambelli (2014). During the optimization procedure
of the dual simplex algorithm, we compute one row of the form â⊺p = e⊺pB−1AN in every
single iteration so it just needs to be stored for later use. After completing the simplex
optimization, we can then generate Gomory cuts from those rows without having to
compute additional weights. There are even cases where such inequalities from dual
feasible bases lead to a tighter LP relaxation than with regular Gomory cuts generated
from the optimal basis.

Unfortunately, we have not been able to develop this idea beyond a prototype im-
plementation and could not integrate this approach into the full cut generation and
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x̌

c

x̌

c

x̌cut

Figure 4.7.: Visualization of the cutting procedure with the MILP imposed by intersec-
tion of the blue region and the orange integrality conditions. LP solution
x̌ on the left is cut off by adding a new valid inequality (red) to better ap-
proach the convex hull of feasible points and thereby provide a new relax-
ation solution x̌cut.

filtering system of SCIP. It was unclear how to collect only the interesting data from
the LP solver without incurring a prohibitively high computational cost.

There are also combinatorial or other structure-dependent cutting plane methods
that do not rely on the simplex basis when generating new valid inequalities. The
subtour elimination constraints for solving the traveling salesman problem (TSP) are
a popular example. These cuts invalidate the current solution of the relaxed TSP by
explicitly forbidding a specific subtour in that solution to force the solver in the sub-
sequent iterations to find a different solution. As there are exponentially many pos-
sible subtours, it is not feasible to include them into the formulation directly. Maher,
Miltenberger, et al. (2016) demonstrate how such a TSP-solving algorithm can be im-
plemented using PySCIPOpt.

Interestingly, cutting plane methods can be used exclusively to solve MILPs as dis-
cussed by Zanette, Fischetti, and Balas (2011). Manfred Padberg (see Grötschel, 2004
for a portrait of his work) is even credited with stating “branching is a sign of math-
ematical defeat” (Koch, Martin, and Pfetsch, 2013), essentially elevating cutting over
branching. But cutting planes work best when used in combination with the afore-
mentioned branch-and-bound scheme, because they complement each other, typi-
cally providing better performance than each approach individually. The details of
this synergy are well explained by Basu et al. (2022).

The application of several cutting planes in one round instead of separating them
one-by-one was a ground-breaking finding concerning the practical impact of cuts in
general.

One obvious disadvantage of adding cutting planes to a problem is that the size of
rows increases, making each new LP relaxation slightly more difficult to solve. Further-
more, adding lots of cutting planes also introduces the risk of getting more numerical
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instabilities or even losing integer feasible solutions to inaccurate cutting.
SCIP implements various techniques to filter cutting planes before adding them to

the LP. For example, sparse cuts, that is, cuts with few non-zero coefficients are pre-
ferred. Then, subsequent cutting planes are required to not be too parallel to the
already added rows to avoid numerical issues like singular or near-singular basis ma-
trices. Another filtering step limits the allowed range of cut coefficients.

Finally, SCIP also implements a row aging mechanism that tracks for how long a
certain cutting plane has been included in the LP without being active or tight at the
optimal basis. As soon as a certain age limit has been reached, the corresponding cut
is removed from the LP again as it appears to be redundant and does not help tighten
the LP relaxation further.

Please note that this is just a rough and incomplete description of the cutting and
separation techniques used in SCIP and meant to provide a minimal understanding of
the general procedure.

4.6. Conflict Analysis

Conflict analysis is the tool to learn from infeasible nodes in the branch-and-bound
tree. Infeasibility can result from a branching decision that led to an infeasible LP re-
laxation in one of the child nodes or from a not improving one with respect to the cur-
rent best incumbent—a so-called objective cutoff. This objective cutoff can be thought
of as additional constraint, hence rendering the LP relaxation infeasible once more.

These infeasible LPs generate a proof of infeasibility in the dual space. This dual
ray can be used to derive useful information on the variable bounds to further shrink
the feasible domain and reduce the solution space.

There are multiple ways to learn from infeasibility and a good introduction on the
topic is presented in Witzig, Berthold, and Heinz, 2019.

Arguably the most involved technique is to add so-called conflict constraints to the
LP relaxation. These are additional constraints that encode a specific root cause for
infeasibility and learning a good set of conflicts often provides an effective way of
improving the quality of the LP relaxations—similar to how cutting planes work.

From the experimental data shown in Figure 4.5, we can see that the time spent in
conflict analysis LPs is negligible for almost all instances in our test set.

4.7. Primal Heuristics

One of the key components that allow MILP solvers to find optimal or at least very
good solutions to NP-hard problem instances is the clever use of heuristics. We es-
tablished in Algorithm 1.3 that primal solutions can be found by branching on a vari-
able and discovering that the resulting LP relaxation has an integer feasible solution.
In reality, many solutions are found by heuristics to push the primal bound down in
a shorter amount of time. The most helpful ingredients in that process are the LP
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solutions that can provide a starting point or target for the heuristic. We typically
distinguish heuristics into two parts: those that require an integer feasible initial so-
lution and those that do not. Even the former group of improvement heuristics draw
on available LP solutions to guide their search.

We are not discussing primal heuristics in detail and rather refer to Berthold (2014)
for a comprehensive overview of the topic. We feel that we cannot completely omit
these techniques as they usually make up a significant portion of any competitive MILP
solver’s code base. This is also visible in the chart of SCIP’s components in Figure 4.1.

4.8. Visualization of MILP Search Trees

Despite the frequent application of MILP models for real world problems, visualizing
the actual solving procedure is not straight forward. This can be useful for under-
standing the process and detecting possible bottlenecks or peculiarities of the solver
or of a certain problem instance. A common visualization technique for depicting the
solving progress is to plot the advancement in dual and primal solution quality over
time. For a minimization problem, the dual solution values are going to be continu-
ously increasing while the primal ones often behave in a piecewise constant fashion,
decreasing towards the optimal solution value as depicted in Figure 4.8:

time

va
lu

e

primal dual optimal

Figure 4.8.: Visualization of the MILP solving progress.

Such charts hide the complexity present in the form of the actual branch-and-bound
tree that is constructed and traversed during the optimization.

A natural visualization of the branch-and-bound tree is to draw this exact tree, that
is, every branching decision leads to two new child nodes until all open nodes are
processed. This is a very detailed way to present the solution process and is well
suited to show among other things how balanced a search tree is.

Still, there is room for improvement as the distance between the nodes does not
represent the actual distance with respect to the model data. One of the defining
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aspects of a node is its LP relaxation and the corresponding LP solution. This is the
foundation for a visualization technique that tries to preserve the spatial dimension
when drawing the tree. Every LP solution has to be mapped to a two-dimensional
point, while maintaining distance in the original space as well as possible. Such a
projection can be achieved in several ways. In the following, we use the two tech-
niques multi-dimensional scaling (MDS) and t-distributed stochastic neighborhood
embedding (t-SNE) to create a new perspective on MILP search trees. We refer to
Kruskal (1964) and Borg and Groenen (2005) for more information on MDS and to Van
der Maaten and Hinton (2008) for details on the t-SNE method.

In Figure 4.9 we demonstrate how this transformation works by projecting a simple
two-dimensional point cloud onto a line—a one-dimensional space. While it is impos-
sible even for such a simple and low-dimensional example to keep all distances intact,
the overall structure—like the two clusters—can be preserved by the transformation.
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Figure 4.9.: MDS transformation of a cloud of random points from the two-dimension-
al plane onto a one-dimensional space. The right image shows the intro-
duced error between pairwise distances of points in the original and the
transformed space.

To get a feeling for the quality of distance preservation, a so-called Shepard plot
(Shepard, 1962) can be used. This is a simple scatter plot comparing the original with
the projected distances for every single pair of points—in our case the individual node
LP solutions.

In Figure 4.10 we see a visualization of the MDS-transformed LP solutions of the
branch-and-cut tree generated while solving the MIPLIB3 instance lseu. Such three-
dimensional plots have the tendency to be quite hard to read in print, so we encourage
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LP solutions
Primal Bound
Dual Bound
Optimum
projection of LP solutions
Edges

Figure 4.10.: TreeD visualization of MIPLIB3 instance lseu (89 binary variables, 28 con-
straints)

the reader to run their own experiments with the TreeD3 code and inspect the interac-
tive visualizations themselves. The module can be installed via the standard Python
package repository PyPI using the following command:

$> pip install treed

The main dependencies are PySCIPOpt and hence also the SCIP Optimization Suite
to provide all the LP data during the solving process. The transformation of LP solu-
tions is carried out with the help of the Python module Scikit-learn (Pedregosa
et al., 2011). In Chapter 6, we show a different use of TreeD that does not produce
instance-wise visualizations but collects various LP solving data in a convenient form
as pandas DataFrame for subsequent analysis.

The corresponding Shepard plot is shown in Figure 4.11 together with a histogram
depicting the distribution of absolute errors in the transformed distances. We can
see that despite the stronger reduction in dimensionality, most distances are still
preserved reasonably well. Note that instance lseu has 89 binary variables and is
solved in 61 nodes.

Apart from the data exploration functionality of TreeD, we believe that the gener-
ated visualizations also provide a certain artistic value to the field of MILP solving.

We refrain from listing the exact tabular data that was used to generate these plots
because of the incurred randomization during the MDS transformation performed in
TreeD and the very limited additional value.

3https://github.com/mattmilten/TreeD

81

https://github.com/mattmilten/TreeD


4. Impact of Linear Programming in MILP

0 1 2 3 4
original distances

0

1

2

3

4

5

tra
ns

fo
rm

ed
 d

ist
an

ce
s

error
0.6
1.2
1.8
2.4
3.0

0 1 2 3
absolute error

0

50

100

150

200

250

Co
un

t

Figure 4.11.: Shepard plot of original and transformed pairwise distances of all encoun-
tered node LP solutions after applying the MDS transformation as seen in
Figure 4.10. The absolute errors between the distances are color-coded as
seen in the legend. The histogram on the right-hand side provides another
view on the same data, revealing that most transformation errors are well
below 1.
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iterations nodes time timeout optimal
settings

default 126613.7 1686.6 124.9 51.75 123.00
no bound flips 134477.1 1668.2 122.4 51.25 120.75
no persistent scaling 147041.8 1792.2 137.1 55.75 114.50
no sparse pricing 126936.9 1685.8 126.0 51.00 122.50
no stable sum 131192.6 1736.3 125.3 53.00 120.00

Table 4.2.: Impact of selected SoPlex features on the MIPLIB 2017 benchmark in-
stances. The numbers for iterations, nodes, and time refer to those 96 in-
stances that have been solved to optimality by all solver variants. Columns
timeout and optimal show the average number of instances that exceeded
the time limit of one hour or could be solved to optimality, respectively.
Experiments have been repeated with four different random seeds.

4.9. Computational Study

Now that we have established an understanding of the fundamental influence of LP
solutions and their solution values throughout the solving process, we want to com-
pare and investigate how changing the specific LP solver impacts the performance of
the MILP solver and alters the path to optimality.

First, to see how SCIP performs when deactivating certain features in SoPlex, we use
the MIPLIB 2017 benchmark of 240 instances. Every experiment has been performed
with four different random seeds to get reliable numbers. The results for SCIP 6.0.2
are shown in Table 4.2. Just as expected from the LP experiments in Chapter 3, we see
that without the bound flipping ratio test, more iterations are necessary to solve the
instances and we even fail to solve two to three instances within the time limit of one
hour. Disabling sparse pricing has barely any impact on SCIP’s performance, while
persistent scaling clearly helps to solve more instances in less time, fewer nodes,
and considerably fewer iterations. The stable sum implementation in SoPlex also
has a measurable effect by reducing the number of nodes and simplex iterations and
helps to increase the number of solved instances. Note that we are using the shifted
geometric mean to compute the average values with a shift of 100 for iterations and
nodes and a shift of 1 for the solving time. Timeouts and instances solved to optimality
are compared using the arithmetic mean over the four seeded runs.

There is no reasonable way of swapping out the used LP solver without impacting
the behavior of the MILP solver. Even if we kept a single, fixed search tree with all the
associated node relaxations and starting bases, we could not get a sound comparison
of LP solving performance because we would neglect hot-starting effects: restarting
the LP solver from just the current basis without a ready-to-use factorization and other
internal data structures. This is the reason for not pursuing this approach and rather
comparing LP solvers within their respective SCIP LP interfaces. This is a more realistic
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take and enables our results to be reproduced without excessive code modifications.
Maher, Ralphs, and Shinano (2019) suggest an interesting visualization technique

to compare performance across problem instances that are solved within the given
time limit as well as instances that can only be solved to some non-zero optimality
gap. Usually, these two sets of instances are separated or the analysis only focuses
on those instances that could be solved to optimality by every solver or setting.

This cumulative performance comparison has first been proposed by Dinh, Fuka-
sawa, and Luedtke (2018). In Figure 4.12, we see an example of such a plot comparing
the performance of different LP solvers in SCIP on the MIPLIB 2017 benchmark.

We also prefer this combined way of visualizing benchmark results over the tra-
ditional performance profiles because the results are presented in a very intuitive
way without neglecting suboptimal results. Furthermore, performance profiles can be
misleading and are generally harder to interpret as demonstrated by Gould and Scott
(2016).
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Figure 4.12.: Overall performance comparison of different LP solvers used in SCIP 6.0.2
with default settings solving the MIPLIB 2017 benchmark test set. The hor-
izontal axis is split up into two parts to depict the number of solved in-
stances within the time limit of one hour and the final gap of the remaining
instances.

We can see a clear trend of Clp and MOSEK being outperformed by all other solvers,
while Gurobi solves the most instances within the time limit and SoPlex being a close
runner-up to the three commercial solvers CPLEX, Gurobi, and Xpress.

On the other hand, when comparing the pure LP performance of those solvers, we
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shifted geometric mean solving time
1365 instances, all optimal 128 instances, min 5 sec

SCIP settings default presoloff default presoloff

LP solver
Gurobi 8.1.0 0.980 0.800 49.100 39.372
CPLEX 12.8.0.0 1.026 0.866 49.814 41.954
Xpress 33.01.09 1.155 1.111 68.037 70.770
MOSEK 8.1.0.21 1.327 1.172 96.868 85.126
Clp 1.16.11 1.411 1.460 101.645 112.102
SoPlex 4.0.2 1.564 1.691 123.616 150.762

Table 4.3.: Comparison of different LP solvers in SCIP 6.0.2 on the allLP test set for
two settings: default and without SCIP’s presolving, each with two random
seeds. Times are computed as shifted geometric means (shift of one sec-
ond) over two sets of instances: those solved to optimality and those that
need at least five seconds to be solved.

can observe a different ranking as shown in Table 4.3
These results are also aligned with the LP and MILP benchmark results of Hans

Mittelmann4 that we will discuss further in Appendix A. Note that we used a modified
SCIP code to ignore all integrality information and treat all models as LPs. Please refer
to Table B.1 for the detailed results.

In the following, we want to investigate why SoPlex performs so well when solving
MILPs, despite its significantly worse pure LP performance.

Iteration count. When comparing the iteration counts of SoPlex with those of the
other solvers, we often observe significantly higher numbers. Take for example prob-
lem instance 10teams: SCIP with SoPlex needs between 7019 and 8033 iterations
while all other LP interfaces show an iteration count between 911 and 1730.

Further experiments reveal that—at least for this specific model instance—this is
due to the pricing method being used. By default, SCIP uses the LP solver’s preferred
pricing rule and for most solvers that is a variant of steepest edge pricing. SoPlex, on
the other hand, uses its automatic pricing scheme described in Chapter 3 that starts
off with devex and then switches over to steepest edge after 10 000 iterations. When
using the steepest edge pricing rule to solve this instance, SoPlex takes between 1260
and 1550 iterations to find the optimal LP solution—so this is well within the range of
the other solvers.

Naturally, the question arises, why this is not the default pricing scheme and com-
puting the shifted geometric mean over all solving times and seeds exposes the rea-

4http://plato.asu.edu/bench.html
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son: For the test set of all instances solved to optimality the time increases to 1.814
whereas for the harder instances that take at least five seconds for any solver we
get an aggregated result of 117.815 seconds. So, while on the second set, there is a
slight speed-up, we can observe a slow-down on the first benchmark. This experi-
ment shows that it is not sufficient to judge the LP performance based on the number
of simplex iterations alone.

In Figure 4.13, we can see that the times for the different LP solvers to solve the root
LPs of the MIPLIB 2017 benchmark instances is less varied than the number of simplex
iterations necessary.
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Figure 4.13.: Distribution of solving time and iteration ratios for different LP solvers in
SCIP to solve the root LPs of the MIPLIB 2017 benchmark instances

Model size and difficulty. Table 4.3 also reveals that SoPlex struggles more with
harder instances. There is a factor of about 1.6 between Gurobi and SoPlex regarding
the shifted geometric mean time of all instances solved within the time limit. That
factor grows to 2.5 for those instances that take more than five seconds for any solver.
Furthermore, we can also see that SoPlex (and Clp for that matter) is affected differ-
ently by SCIP’s presolving: while the faster solvers Gurobi, CPLEX, and MOSEK (Xpress
is barely affected here) are actually able to achieve better times without SCIP pre-
solving the instances, the performance of SoPlex and also Clp deteriorates. Since the
primary goal of presolving is to make an instance more compact, we can accredit this
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slowdown to the larger model sizes that the LP solver has to handle when using the
presoloff setting.

In practice, hard LPs are often larger than hard MILPs, so it is more likely to see
SoPlex struggle on its own than within SCIP when confronted with such a hard problem
instance.

LP iterations and solving times in the tree. As we have established and discussed
before, the node LP relaxations are significantly easier to solve, due to to the avail-
able warm-start information from a previously processed node. From Figure 4.14, we
can deduce that both SoPlex and Clp require more time and iterations to solve the
node LPs relative to the root. What is arguably most surprising here, is that at about
depth 30, the numbers are increasing for those two solvers. Concerning the other four
commercial solvers, we see that those relative numbers are clearly smaller leading to
a better node throughput as we also confirm in Figure 4.16. And for LPs further down
the tree, we can even observe a slight decrease, especially regarding the iteration
counts.

Gap closed after the root node. The gap between current dual bound xdual and in-
cumbent value xprimal is a good measure for progress in an MILP solver. Hence, we
want to compare how the choice of a specific LP solver affects the gap closed after
the root node. It is important to note that we are using the gap definition of SCIP
that differs from those of other solvers like Gurobi and CPLEX. While the latter ones
compute the gap as

∣xprimal − xdual∣
∣xprimal∣

,

SCIP uses the formula
∣xprimal − xdual∣

min{∣xprimal∣ , ∣xdual∣}
.

When both bounds have the same sign, the first gap variant moves between zero
and one or 0% and 100%, whereas the one used by SCIP often exceeds the value of
100%.

Figure 4.15 shows how the different solvers frequently achieve a worse gap than
possible with another solver. The gap is displayed on a logarithmic scale so all those
results with a zero gap after the root node had to be slightly increased to appear
in the chart. This explains the gap in the beginning of the otherwise rather smooth
distribution of the best gap per instance.

Table 4.4 lists how often which LP solver reached the best possible gap using the
default settings of SCIP and a node limit of one. We see that SCIP with CPLEX is able
to provide the best results with regards to this performance measure.

From this experiment we conclude that the choice of LP solver within SCIP strongly
affects already the first stage of the solving process before any branching decisions
have to be made. Please refer to Table B.3 for the full results.
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Figure 4.14.: Development of node LP solving times and simplex iterations when going
down the tree. The metrics are relative to the respective number in the
root LP. We only compare MIPLIB 2017 instances that have been solved
within the time limit of one hour by all solvers (54 instances).

Node throughput. Another interesting measure for LP performance when solving an
MILP is the node throughput. Here, we compute how many nodes can be processed
in a given time. We restrict the results to instances that had at least a tree size of
100 with the respective solver. For this experiment we also deactivated both separa-
tion and heuristics to generate larger tree sizes—without this modification the results
would look similar but less pronounced and would be based on a smaller data set.
The enhanced box plot or letter value plot in Figure 4.16 is trying to convey more infor-
mation about the distribution of the results than a conventional box plot. The central
box is identical and represents the median with the central line and the two 25% quar-
tiles next to it. Additional boxes subdivide the values outside of the typical quartiles
to provide a more intuitive understanding of the distribution. For more information
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Figure 4.15.: Comparison of the gap after the root node processing for the different LP
solvers. A node limit of one and a time limit of one hour was used on the
MIPLIB 2017 benchmark set. The instances are sorted by the smallest gap
of all solvers.

Table 4.4.: Number of times the respective LP solver reached the best gap after the
root node on the MIPLIB 2017 benchmark instances. The root nodes of 177
instances could be finished by at least one solver within the one hour time
limit.

CPLEX Clp Gurobi MOSEK SoPlex Xpress

79 48 53 55 59 51

about this visualization, please refer to Hofmann, Wickham, and Kafadar (2017).
We can see from this chart that SCIP’s node throughput is significantly reduced when

using Clp as the LP solver. There is only little difference between the throughput
averages of CPLEX, Gurobi, SoPlex, and Xpress, with CPLEX taking the lead. MOSEK
takes the second last place in this ranking which confirm our previous findings about
their respective performance within SCIP.

The full data set for this experiment can be found in Table B.6.
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Figure 4.16.: Comparison of the node throughput for the different LP solvers with a
time limit of one hour on the MIPLIB 2017 benchmark set. Cutting plane
generation and primal heuristics are deactivated. Results are restricted
to instances with a tree size of at least 100. The number of such instances
is given underneath the LP solver name.

90



Chapter 5

LP Solution Polishing

Solutions to linear programs are rarely unique. Instead, due to the presence of dual
degeneracy and the use of numerical tolerances, multiple distinct solutions may fulfill
the optimality and feasibility conditions. Whenever there is a truly unique LP solution,
we can often assume the problem to be of artificial nature or a miniature model.

This is especially true for LP relaxations in MILP solvers and one of the main rea-
sons for their performance variability as observed by Koch, Achterberg, et al. (2011). A
logical implication of this is trying to use the additional degree of freedom to improve
the stability or the performance of the MILP solver. In this chapter, we describe our
approach to realize this idea and a computational evaluation of our implementation.

cx̌

x̂

Figure 5.1.: Visualization of two distinct optimal LP solutions x̌ and x̂, with only x̂ being
integer feasible. Here, the highlighted constraint is parallel to the objec-
tive, resulting in degenerate solutions on this optimal facet. LP solution
polishing tries to find solutions with fewer fractional integer variables.
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5.1. Related Work

Searching for another alternative LP solution on the optimal facet is not a new idea
and has been investigated in different ways. For a good introduction to degeneracy in
MILP problems, we refer to the works of Gamrath, Berthold, and Salvagnin (2020) and
Berthold, Gamrath, and Salvagnin (2019) that focus on how branching decisions can be
improved by exploiting multiple LP optima. Zanette, Fischetti, and Balas (2011) show
how to exploit dual degeneracy by using the lexicographic simplex algorithm to find
an optimal basis that is better suited to compute numerically stable cutting planes. A
related approach for mixed-integer programming is k-sample (Fischetti et al., 2016).
This approach runs the initial root LP and the cut loop several times on multiple cores
using different random seeds, effectively exploiting the inherent variability. The aim
is to collect different LP optima that provide richer cuts for the MILP solver. Alter-
natively, CPLEX implements an algorithm called pump-reduce (Achterberg, 2013) that
fixes several variables and modifies the objective function value to explore different
optimal LP solutions to improve cut selection and to reduce the fractionality of the
solution.

Please note that there is also a technique called solution polishing by Rothberg
(2007) that uses an evolutionary approach to improve upon a given integer feasible
solution for MILPs. This is not related to our work—we coincidentally chose a similar
name.

5.2. Description of the Approach

LP solution polishing tries to improve the quality of an existing LP optimum. The
measure of solution quality in this case is the number of integer variables contained
in the optimal basis. Since a non-basic variable is always at one of its bounds, it is
also integral in the current LP solution because of the integrality of those bounds.
Therefore, the fewer basic integer variables are present in an LP solution, the less
fractional it can be—typically, a desired feature of solutions within an MILP solver. Of
course, basic variables can have integral values as well, but this is less common and
happens just by chance, due to their values being determined by the solution of a
linear system with the optimal basis matrix, see Algorithm 1.2.

LP solution polishing, as described in Algorithm 5.1, starts after an optimal LP so-
lution is found. The primal simplex method is employed to preserve feasibility of the
solution while the pricing step is modified to only look for non-basic continuous vari-
ables or slack variables with zero reduced costs or dual multipliers to not deteriorate
the objective function value. Then, a modified ratio test only accepts the pivot can-
didate to leave the basis if it is an integer variable. Otherwise, no basis change is
performed. That way, in every successful iteration, the number of integer variables in
the basis can be reduced by one.

Initially, the integrality information needs to be communicated from SCIP to SoPlex
to avoid pivoting continuous variables out of the basis and thereby not reducing the
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fractionality.
In contrast to the method described in Achterberg (2013), the presented algorithm

does not modify the problem data internally. Furthermore, it is also possible to polish
the solution of a pure linear program by treating all variables as integer variables. In
general, we consider a polished solution to be superior, because more variables are
precisely on their bounds rather than on some arbitrary value within the respective
feasibility range.

Algorithm 5.1 LP solution polishing in SoPlex
Input: Optimal solution x,y,d with basis B of LP (1.2)

1: C = {1, . . . , n} // set of problem variable indices
2: R = {1, . . . ,m} // set of slack variable indices
3: N = (R ∪ C) ∖ B // set of non-basic indices
4: I ⊆ C // set of integer variable indices
5: P ← N ∩ (R ∪ (C ∖ I)) // list of non-basic slack or continuous variables
6: while P ≠ ∅ do
7: for i ∈ P do // find entering candidate among non-basic indices
8: if (c −A⊺y)i = 0 then // reduced cost or dual multiplier of 0
9: select j ∈ B // primal ratio test

10: if j ∈ I then // found integer variable xj to leave the basis
11: B ← B ∖ {j} ∪ {i} // perform regular basis update
12: N ←N ∖ {i} ∪ {j}
13: update x and y

14: P ← P ∖ {i} // remove i from candidate list
15: else
16: no suitable index found to leave the basis, reject candidate i

17: end if
18: end if
19: end for
20: if no pivot performed or iteration limit reached then
21: break
22: end if
23: end while
24: Return: polished solution x,y, d and basis B

It has to be considered that the algorithm as it is presented here, does not compute
the least fractional LP solution but instead represents a greedy approach. Further-
more, as outlined in Algorithm 5.1, we keep a candidate list of non-basic slack and
non-basic continuous variables to speed up the outer selection loop that replaces the
pricing step of the simplex algorithm. Degenerate candidates that had to be skipped
in a previous round are then tried again for a successful pivot with the updated basis.
We employ a small tolerance when checking the reduced costs for degeneracy since
these values are rarely exactly zero due to inaccuracies in their computation. The pro-
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cedure is terminated when no more successful pivots could be made, the candidate
list is exhausted, or the maximum number of iterations has been reached.

5.3. Impact on Numerical Stability

We want to investigate how our method influences the numerical features of the fi-
nal optimal basis. LP solution polishing has the potential to improve the condition
numbers of these bases: Pivoting more slack variables into the basis increases the
number of unit vectors in the matrix and should result in a smaller condition num-
ber (see Chapter 6 for more details on the condition number and numerics in LPs and
MILPs).

On the other hand, we can also construct matrices with orthogonal columns—the
numerically most stable form with the smallest possible condition number of 1—and
have some of them be almost parallel to a unit vector:

A1 =
⎡⎢⎢⎢⎢⎢⎣

−ϵ/α 1/α 0
1/α ϵ/α 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, with α =

√
1 + ϵ2, κ(A1) = 1

Swapping the first column of A1 for such a unit vector deteriorates the condition
number as the columns are not orthogonal anymore and the new matrix A2 can be
arbitrarily close to singularity:

A2 =
⎡⎢⎢⎢⎢⎢⎣

1 1/α 0

0 ϵ/α 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
, with α =

√
1 + ϵ2, κ(A2) ≈ 1/ϵ

Our experiments on pure LPs from the allLP test set do not show a trend towards
improved final condition numbers. This contradicts our intuition towards lower con-
dition numbers with more unit columns in the basis matrix.

Furthermore, the number of new slack variables introduced into the basis is rather
insignificant compared to the matrix dimensions of most instances. We also want
to stress that due to the utilization of integrality information, we do not necessarily
increase the number of slacks in the basis but may also pivot in some continuous
variables.

Besides, we know from our experimental results in Figure 6.3 that the condition
numbers in the simplex algorithm are very stable as the method iterates toward opti-
mality so we should not expect the additional LP solution polishing to have a strong
effect.

Still, we want to present our findings in this area:
Figure 5.2 displays the differences of (logarithms of) the condition numbers of the

optimal basis matrices with and without polishing applied to the first LP relaxation.
The difference of logarithms relates to the original values a and b as follows:

loga − logb = c⇔ a = 10c ⋅ b

94



5.4. Reduced Costs on the Optimal Facet

instances sorted by relative fractionality reduction
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Figure 5.2.: Effect of LP solution polishing on the condition numbers of the optimal
basis matrix of first LP relaxations of the MIPLIB 2017 benchmark instances.
Condition number changes are differences in log10 between a run with and
one without enabling polishing.

There is not a single instance exhibiting a change that exceeds more than one order
of magnitude and hence we shall not draw any conclusions about the numerical effect
of LP solution polishing here. At first glance, there is a trend of increasing condition
numbers but this is too small to have any significance. Especially, if we recall that the
condition number represents just an upper bound on the input error amplification.

Another metric concerning numerics is the following: SCIP counts the number of
unstable LP solves, that is, the number of LP solutions that did not pass the feasibility
or optimality check and triggered a fresh LP solve with different parameters. It turned
out, though, that in the MIPLIB 2017 benchmark set, there are too few instances that
exhibit these unstable solves (only nine across the different polishing settings and
seeds) to make any sound conclusion about whether LP solution polishing can help
in reducing this number. There were also no noticeable improvements when spot
testing on instances that are numerically more challenging.

5.4. Reduced Costs on the Optimal Facet

Here, we want to mention another use-case for LP solution polishing with an entirely
different goal. Instead of trying to reduce the integrality of a relaxation solution, we
want to learn more diverse reduced cost values. In line with the definition of a basis
(see Definition 1), only non-basic (slack or structural) variables can have non-zero
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dual multipliers or reduced costs. By performing additional simplex steps along the
optimal facet we are able to collect a wider range of reduced costs as more variables
can be made non-basic. This is only possible in the state of degeneracy, that is when
further iterations can be performed without losing optimality of the solution.

The reduced cost values of the current LP solution are used in various places in
SCIP. A popular technique is reduced cost strengthening (Nemhauser and Wolsey,
1988; Achterberg, 2009).

5.4.1. Reduced Cost Strengthening

Let B be a basis of an LP in equality form:

min c⊺x

s.t. Ax = b
x ≥ 0

(5.1)

Then, using B = AB and N = AN , this LP is equivalent to

min cBB
−1b + (cN − cBB−1N)xN

s.t. xB = B−1b − B−1NxN

xB, xN ≥ 0.
(5.2)

As we have already established earlier, when the basic variables xB = B−1b ≥ 0 and
the reduced costs dN = cN − cBB−1N ≥ 0, then zLP = cBB

−1b is the optimal value of
LP 5.1 and B an optimal basis—recall that both dB = 0 and xN = 0.

Now, assume that LP 5.1 is the relaxation of an IP, that is, all variables are required
to be integer (x ∈ Nn). Given an upper bound ẑ of this IP, we know that an optimal IP
solution x̂ must satisfy

zLP + dN x̂N ≤ ẑ (5.3)
because of the equality

{min c⊺x ∣ Ax = b, x ∈ Nn} = {min zLP + dNxN ∣ Ax = b, x ∈ Nn}.

Due to the lower bounds of xN ≥ 0 and dN ≥ 0, when propagating the previous
inequality 5.3 we obtain

xj ≤
ẑ − zLP

dj

for j ∈ N such that dj > 0. This is known as reduced cost strengthening and can provide
tighter variable bounds.

Note that if we obtain another optimal basis B ′, with different reduced costs d ′, the
propagation of variable xj if d ′j > 0 is

xj ≤
ẑ − zLP

d ′j
.
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In fact, we just need to store the largest reduced costs for each variable and use
that value to apply the bound strengthening technique.

We implemented a prototype to collect the largest reduced costs during the solution
polishing process and use them in SCIP but our experiments have been inconclusive
and did not show a significant enough performance improvement to justify the addi-
tional overhead of maintaining the modified reduced cost storage. Still, we believe
that there is some hidden potential here that should be investigated further.

5.4.2. Cutting Plane Evaluation

Another application area for reduced costs in an MILP solver is during the cut filter-
ing process. A cutting plane that has non-zero coefficients for variables with positive
reduced costs is expected to result in an improved dual bound in the next LP solu-
tion. Hence, more diverse reduced costs may enable a more reasonable cut selection.
This idea has first been presented by Achterberg1 and is described in the patent by
Achterberg (2013). We did not test this extension in our implementation.

5.5. Computational Study

Since the choice of a different LP basis can drastically alter the solution path of SCIP,
we need to carefully separate random effects from actual influences of our algorithm.

While the procedure is not supposed to change the objective function value, it may
still happen in rare cases—especially when dealing with numerically sensitive models.

In Figure 5.3, we demonstrate the effect of LP solution polishing on the very first
LP that is solved for each of the MIPLIB 2017 benchmark instances. We can see that
for about half of the instances, there is a reduction in the number of fractional inte-
ger variables in that first LP solution and there are several instances with a drastic
fractionality reduction of up to 80%. The additional simplex iterations incurred by
the polishing procedure correspond to that reduction: For those instances that do
not benefit from our technique, there is also barely any overhead—with a few excep-
tions. The iteration increase is at most about 40% and often a lot less. The extra time
required to perform those polishing iterations displays a more erratic behavior: The
largest increase is almost 80% but only nine instances require 20% or more additional
solving time. The majority of samples remains well below 10% time increase. Note
that we used averages from three different random seeds running with and without
polishing in the root node. For the full data behind this chart, please refer to Table B.2.

Evaluating the effect of LP solution polishing on the overall performance of SCIP
reveals a positive impact. Here, we compare four different settings: polishing for all
LPs, polishing only for the root LP, polishing disabled, and the default mode. This
default mode activates LP solution polishing during the probing and diving stages of

1LP basis selection and cutting planes. Mixed Integer Programming Workshop, Atlanta. 2010
https://www.isye.gatech.edu/news-events/events/past-conferences/
2010-mixed-integer-programming-workshop
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Figure 5.3.: Effect of solution polishing on the fractionality of the first LP solution for
the MIPLIB 2017 benchmark instances. The green line depicts the relative
fractionality reduction while the blue and orange bars show the relative
increase in iterations and solving time for that specific instance. We used
the averages of three random seeds running with SCIP version 7.

SCIP. These are used for various purposes in SCIP to initiate a quick LP exploration
path where fewer fractional variables are deemed to be very useful. Experiments have
revealed that this slightly reduced application of polishing leads to the best perfor-
mance as also Table 5.1 demonstrates.

We can see from these results that our technique helps to solve three more in-
stances to optimality while reducing the shifted geometric time to optimality by more
than 6%. The number of nodes can be reduced by almost 8% and the primal-dual-
integral (Berthold, 2014) for the solved instances is reduced by 3%. The latter mea-
sure indicates how quickly the primal and dual bounds move towards each other by
computing the integral of the difference of those two numbers over the solving time.

Figure 5.4 overlays the root node fractionality reduction with the speedup factors of
the total solving times. We see that instances with a larger speedup due to polishing,
that is, instances with a downward-pointing bar, are more often showing a reduced
root node fractionality. We can also observe that for instances with no root node
fractionality reduction there is a higher chance of a slow-down when using polishing.
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count solved limit time nodes PDI

sgm Q sgm Q am Q
group settings

all default 240 103 137 809.09 1.000 4489 1.000 97716.1 1.000
nopolish 240 100 139 816.89 1.010 4598 1.024 98661.6 1.010
rootpolish 240 105 135 792.32 0.979 4561 1.016 97344.9 0.996
alwayspolish 240 104 136 789.83 0.976 4294 0.957 98724.2 1.010

affected default 101 94 7 159.49 1.000 3103 1.000 21059.6 1.000
nopolish 101 92 9 163.56 1.026 3242 1.045 21123.4 1.003
rootpolish 101 96 5 158.30 0.993 3070 0.989 21292.3 1.011
alwayspolish 101 95 6 152.11 0.954 2753 0.887 20056.9 0.952

all-optimal default 92 92 0 90.12 1.000 1717 1.000 9015.7 1.000
nopolish 92 92 0 95.87 1.064 1851 1.078 9297.9 1.031
rootpolish 92 92 0 93.80 1.041 1815 1.057 8764.8 0.972
alwayspolish 92 92 0 92.84 1.030 1692 0.985 9196.5 1.020

Table 5.1.: Different LP solution polishing settings on the MIPLIB 2017 benchmark in-
stances with SCIP 7, a time limit of one hour, and three random seeds for
every setting. Shifted geometric means are computed with a shift of 1 for
the time values and a shift of 100 for the node counts. The quotients for
respective numbers is always using the default settings as comparison.

5.6. Conclusion

This chapter demonstrates how the simplex method can be tweaked to exploit degen-
eracy in MILP relaxations to provide a better solution with fewer fractional variables.
LP solution polishing can strongly reduce the LP fractionality on certain instances, of-
ten without considerably increasing the solving time. This has also a positive effect
on the overall MILP performance on SCIP helping to solve more instances in a shorter
amount of time.

LP solution polishing is not affecting numerical stability in a significant way, neither
by observing condition number changes nor by counting the number of unstable LP
solves within SCIP. Note that we did not test this on numerically challenging instances
but on the MIPLIB 2017 benchmark instances that have rather reasonable numerical
features. The following chapter deals with the topic of numerics and explains the
concept of stability and condition numbers.
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instances sorted by relative fractionality reduction

1/8

1/4

1/2

1

2

4

8

0.0

0.2

0.4

0.6

0.8
total time factor
relative root fractionality reduction

Figure 5.4.: Effect of solution polishing on the total solving time for the MIPLIB 2017
benchmark instances. The green line depicts the relative fractionality re-
duction while the blue bars show the speedup of using the default polish-
ing mode compared to disabled polishing. The numbers are in log2 scale,
so factors below zero indicate a speedup. We used the averages of three
random seeds running with SCIP version 7.
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Chapter 6

Numerics in Branch & Bound & Cut

Whenever we are dealing with numerical computations we need to be aware of in-
accuracies that can be related to the problem to solve, the data that comprise the
problem, and the specific algorithm employed.

Let us open the discussion with an extreme example: Due to the necessary use
of numerical tolerances, it may happen that an ill-posed problem can be correctly
regarded as both feasible and infeasible. An analogy outside of the mathematical
context is the image presented in Figure 6.1 that can be read as two very different
words:

Figure 6.1.: Calligraphic illusion “Laurel & Yanny”. Image credit: https://twitter.
com/AriadneRem/status/996609946228703232

A corresponding LP example is the following feasibility problem:

x + 10−8 ⋅ y = 10−7

x,y = 0.
(6.1)

Using the commonly used tolerance of ϵ = 10−6, there clearly are feasible solu-
tions to this mathematically infeasible problem: Consider x to be basic, the non-basic
variable y is then set to zero. This results in the numerically tolerated solution of
(x,y) = (10−7, 0). For y basic, though, the simplex method cannot find a solution
and reports infeasibility because with non-basic variable x set to zero, y has to be
10, strongly exceeding its bound regardless of the tolerance ϵ. Both results are nu-
merically correct. While this is an artificial example, such inaccuracies are a frequent
issue and may lead to serious complications when the precise results are required.
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6. Numerics in Branch & Bound & Cut

Chip design verification—one of the earliest application areas for SCIP as presented
by Achterberg (2007)—is a good example of such a problem class.

There have been various attempts to use a “condition number” to assess the numer-
ical difficulty or categorize problem instances. We want to give an overview and com-
parison on a number of different conditions and measures suitable for MILP solvers.
Usually, the field of numerical analysis focuses on continuous problems and we want
to transfer these methods and techniques over to the discrete world of mixed-integer
linear programming. Furthermore, we focus on the applied component rather than
the theoretical part because the traditional ideas of stability and convergence do not
fit the discrete nature of MILPs.

First, we need to give a short introduction to the general concepts used in this chap-
ter.

6.1. Background on Numerical Analysis

Two terms are frequently used when discussing numerical properties of a problem
or an implementation: stability and condition. Stability usually refers to backward
stability and measures the deviation between the algorithmically calculated solution
to a problem and the true solution to a slightly perturbed problem. This quantity
is independent of the data of the problem and is instead a property of the algorithm
used to find the solution. Hence, it is also often referred to as stability of an algorithm.
Condition on the other hand, is independent of the algorithm and is bound to the input
data. For a given problem f with input x it can be defined as

κ = lim
ϵ→0

sup
errrel(x)≤ϵ

errrel (f(x))
errrel (x)

.

The relative error is defined as

errrel (x) =
∥x − x̃∥
∥x∥ .

Of course, these definitions are dependent on a certain norm ∥ ⋅ ∥. Whenever it is
not explicitly mentioned, we assume the Euclidean norm ∥ ⋅ ∥2 for vector spaces.

The condition number κ measures how much the input error magnifies the output
error when using exact arithmetic. It is important to understand that the stability
of an algorithm cannot mitigate a high condition number of the numerical problem
statement.

We can formulate this rule of thumb for numerical computations: A stable algorithm
for a well-conditioned problem is expected to compute an accurate solution.

Arguably the most important condition number is the one for inverting a square
matrix A and is commonly known as the condition number of a matrix1 that was intro-

1https://nickhigham.wordpress.com/2019/01/23/who-invented-the-matrix-condition-number/
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duced by Turing (1948). We also stick to this convention and recall its commonly used
computational form:

Definition 4 (Condition number of a matrix). The condition number κ of a square matrix
A ∈ Rn,n is defined as

κ(A) = ∥A∥∥A−1∥.

This is actually a result of a more fundamental and geometric way of thinking about
the condition of a problem using the notion of ill-posedness attributed to Hadamard
(1902):

Definition 5 (Ill-posedness). A problem is well-posed if it has a (unique) solution and
the solution depends continuously on the input. A problem that is not well-posed is
ill-posed.

This definition is kept vague on purpose because the meaning of ill-posedness de-
pends heavily on the actual problem in question.

For the problem of inverting a square matrix, though, the setΣ of ill-posed problems
consists of all singular matrices. Then the distance to ill-posedness can be defined as

d(A,Σ) =min{∥A − S∥, S ∈ Σ}.

Theorem 2. For A ∈ Rn,n the following holds.

d(A,Σ) = 1

∥A−1∥ .

Using Definition 4, we can connect the condition number with the distance to ill-
posedness:

κ(A) = ∥A∥
d(A,Σ) .

This allows us to interpret the condition number of matrix A as the inverse of the
relative minimum distance to an ill-posed or singular matrix. Depending on the used
norm ∥ ⋅ ∥, there are also techniques for estimating the condition number as shown by
(Hager, 1984) for the ℓ1-norm. Bürgisser and Cucker (2013) provide both an excellent
overview and an in-depth analysis of condition numbers and the stability of numerical
algorithms.

An illustrative use of condition numbers comes in the form of the stability analysis
of an algorithm that is sketched in Figure 6.2. Let f̂ ∶ X↦ Y be the algorithm to solve a
given problem f. For any input x the result f̂(x)may differ from the true solution f(x).
Yet, there is a x̃ ∈ X that satisfies f(x̃) = f̂(x). The difference between x and x̃ is called
backward error, while the forward error is the difference between f(x) and f̃(x). The
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Figure 6.2.: Forward and backward error

algorithm f̃ is said to be stable or backward stable if the backward error is bounded
by the forward error multiplied with the condition number of the problem:

errrel (f) ≤ κf(x) ⋅ errrel (x)

There are several studies on the condition number of convex optimization problems,
which are generalizations of LP problems. Ordonez and Freund (2003) and Epelman
and Freund (2002) measure the condition by looking at the entire problem, including
right-hand side and objective function. The main focus of the work of Ordonez and
Freund (2003) was to find a correlation between the condition number and the number
of iterations an interior point algorithm would need to solve an LP instance.

Another result is that the majority of NETLIB LP instances (see Koch, 2004b for an
overview) are actually ill-posed with respect to this condition metric. This is inter-
esting in so far as those instances have been used for decades in benchmarks and
publications and are nowadays considered mere toy problems that most solvers can
easily deal with. So, we are inclined to find another condition metric that hopefully
gains a better understanding of whether an instance is numerically difficult.

Important to note is that Ordonez and Freund (2003) succeeded using their LP condi-
tion number to estimate the necessary number of iterations an interior point method
would need to solve a given instance. They achieved this by applying industry-standard
presolving reductions to the models, before computing the condition number. The
presolved NETLIB instances are also mostly well-defined with respect to their con-
dition number. This presolved model then also corresponds to the actual data the
solver uses to compute the solution, so there is a stronger relationship compared to
using the instances in their original form.

We re-implemented this condition metric and will apply it to MILP instances later
in this chapter.

LP condition number Bürgisser and Cucker (2013) extend the definition of condition
as distance to ill-posedness to linear programs in the following way:

Definition 6 (LP condition number). For a feasible and well-posed LP min{cTx ∣ Ax =
b, x ≥ 0} with optimal basis B we define the condition number as

κLP(A)rs ∶=
∥A∥rs

dLP(A, ΣLP)
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This requires the definition of the distance dLP of an LP to ill-posedness and also a
classification of ill-posed LPs. In line with the above notion we declare every LP ill-
posed, that does not have a unique solution. This also includes all LPs with degenerate
optimal solutions. Furthermore, infeasible or unbounded LPs are only ill-posed if they
are sufficiently close to an LP that has an optimal solution.

We call this set of ill-posed LPs ΣLP.

Definition 7 (LP distance to ill-posedness). For a feasible and well-posed LP with data
A we define the distance to ill-posedness as

dLP(A, ΣLP) = inf{∥∆A∥, A+∆A ∈ ΣLP}.

Naturally, this distance is zero for ill-posed LPs. Note that A ∶= [A b

c⊺ 0
].

For infeasible or unbounded LPs that are not in ΣLP, dLP is undefined. Just like in
Definition 4 for square matrices, we want to have an alternative formulation for the
condition number of LPs that is more concrete and computationally tractable. A re-
sult from Bürgisser and Cucker (2013) about the distance to ill-posedness delivers the
necessary tool:

Theorem 3. For a feasible and well-posed LP with data A and optimal basis B the
following holds for the distance to ill-posedness:

dLP(A, ΣLP) =minS∈S1∪S2
{∥∆S∥, S +∆S is singular}

with
S1 ∶= {m ×m submatrix of [AB b]}

S2 ∶= {m + 1 ×m + 1 submatrix of [A
c⊺
] containing AB}.

Applying Theorem 2 allows us to formulate the LP condition number of Definition 6
with respect to those matrix sets:

κLP(A)rs = ∥A∥rs ⋅ max
S∈S1∪S2

∥S−1∥sr

with A, S1, and S2 as above.
Computing this number is possible but rather expensive: In the set S1∪S2 there are

n + 1 matrices of which we need to calculate the norm of the inverse. Depending on
the norm, that is, the choice of r and s, it can be computationally tractable.

There are further metrics that can be studied to gain an understanding of the nu-
merical properties of a problem.
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Determinant The determinant det(A) of a square matrix A ∈ Rn,n is equal to the
product of its eigenvalues. Geometrically, it is the volume of the convex hull spanned
by the columns of A. There are some interesting algebraic properties of the determi-
nant:

det(I) = 1
det(A−1) = 1/det(A)

det(cA) = cn det(A)
det(AB) = det(A)det(B), for B ∈ Rn,n.

Furthermore, the determinant of a triangular matrix is the product of its diagonal
entries ∏aii. Together with the above multiplicativity, we can easily compute the
determinant of a matrix factorized as LU with lower and upper triangular matrices L

and U:
det(A) = det(LU) = det(L)det(U) =

n

∏
i=1

lii

n

∏
i=1

uii

Since the diagonal entries of L are usually set to one, the computation is further
simplified to the product of the diagonal elements of U. Additionally, one needs to
be aware that due to permutations in the factorization, det(A)might have a different
sign than det(U), which can be avoided by just regarding the absolute values.

Trefethen and Bau (1997) comment on the determinant: “The determinant, though
a convenient notion theoretically, rarely finds a useful role in numerical algorithms”.
Take for instance the diagonal matrixA = diag(1−3, . . . , 1−3). Its determinant is det(A) =
1−5n which can be arbitrarily close to zero, indicating closeness to singularity. The cor-
responding condition number on the other hand is κ(A) = 1, specifying that it is far
away from singularity or ill-posedness.

Nevertheless, Zanette, Fischetti, and Balas (2011) investigate how cutting planes af-
fect the determinant of optimal basis matrices. The determinant is also a measure
of the size of the matrix coefficients: It is the (signed) volume of the parallelepiped
constructed of the columns of the matrix. For their example with stein15—a pure 0/1
problem—it is reasonable that the matrix coefficients grow if cuts are added with co-
efficients larger than 1. Also, when using the lexicographic simplex to perform the re-
optimizations, the added cuts are less likely to be active and the following cut round
is not going to base new cuts on top of them. While it might be worthwhile to inves-
tigate determinants in addition to condition numbers for certain problem classes, we
could not find a good use of this metric for general LPs or MILPs.

Trace The trace tr(A) of a square matrix A ∈ Rn,n is defined as the sum of its di-
agonal entries ∑n

i=1 aii. Interestingly, the trace is also the sum of eigenvalues of the
matrix:

tr(A) = ∑λi.

Unfortunately, the trace is not multiplicative, that is tr(AB) ≠ tr(A) ⋅ tr(B), so we
cannot directly compute this metric from the LU factorization. Still, we implemented
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the computation of the sum of diagonal elements of U in SoPlex but could not find a
useful application for this measure.

As the eigenvalues of a triangular matrix are the elements on its diagonal, we can
easily determine the smallest and largest eigenvalues. We use this ratio of diagonal
extreme values of U as estimate for the condition number κ of A = LU.

In total, SoPlex provides the following matrix metrics for the current basis matrix
AB = LU at every iteration of the simplex algorithm:

• determinant of the basis matrix AB

• trace of U from the current LU factorization AB = LU

• estimated condition number of AB by computing the ratio of largest and small-
est absolute values of the diagonal elements of U

Skeel’s condition number Yet another metric one might consider is Skeel’s condition
number. This is defined as

κskeel(B) = ∥∣B−1∣ ⋅ ∣B∣∥∞
and has been proposed by Skeel (1979), although the naming convention followed
later by other authors. It differs from the classical condition number κ(B) by taking
the element-wise absolute values of all matrix coefficients. This results in a condition
number that is always less or equal to κ and most importantly invariant to row scaling:

B = [1 0

0 109
] , κ(A) = 109, κskeel(B) = 1.

Unfortunately, this variant of the condition number is even more difficult to compute
and this is likely the reason for it not being used more often in practice. We did not
perform any experiments or analyses with Skeel’s condition number but still feel that
mentioning it here is justified and may inspire future research.

We investigate and analyze how the numerical features of an MILP instance evolve
during the solving process.

6.2. Numerical Analysis for LP and MILP

In this section we are going to explore the numerical stability of the branch-and-cut
algorithm. There is a strong connection between the geometry of a specific instance
and its numerical properties. Unfortunately, it is not known how to visualize or grasp
this geometry for any reasonable problem sizes, so various abstractions and approx-
imations are required. One such measure is the condition number of the basis matrix
that is used in the simplex algorithm. Recall the definition of the traditional condition
number κ of a (regular square) matrix A:

κ(A) ∶= ∥A∥ ⋅ ∥A−1∥.
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Although this number specifies the condition or distance to ill-posedness of solving
a linear system of equations, it is still an appropriate measure for several other op-
erations with this matrix or its inverse—especially as we are dealing with many linear
systems when solving LPs and MILPs.

Let us inspect some examples to illustrate the expressiveness of the condition num-
ber. First, a matrix with a large range of coefficients:

A = [10
5 1

0 10−5
] , A−1 = [10

−5 −1
0 105

] with ∥A∥ ≈ 105 and ∥A−1∥ ≈ 105.

Hence, for the condition number κ(A) ≈ 1010. We see that mixing coefficients of
vastly different magnitudes easily lead to large error amplifications and should be
avoided in the modeling phase. Of course, scaling can be used to reduce the range
but, as noted before, may then cause an increase of violations in the original space
when there are (numerically tolerated) violations in the scaled space.

Next, let us consider a matrix with large coefficients and a reduced range:

A = [10
5 1

0 105
] , A−1 = [10

−5 −10−10
0 10−5

] with ∥A∥ ≈ 105 and ∥A−1∥ ≈ 10−5.

Here, the condition number κ(A) ≈ 1 is a lot smaller than the former case and is
not going to cause numerical issues—it is very close to a diagonal matrix. Still, those
large coefficients can deteriorate violations in the transformed or presolved space
depending on the bounds of the variables and right-hand sides of the constraints.
Again, despite this case being way less critical than the first example, we should still
aim for reducing the overall magnitude of coefficients.

Finally, we want to demonstrate the case of a deceptively well-behaved matrix A ∈
Rn,n:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 0 . . . 0

0 1 −2 .. .
...

...
. . .

. . .
. . . 0

0 . . . 0 1 −2
0 . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 4 . . . 2n−1

0 1 2
.. .

...
...

. . .
. . .

. . . 4

0 . . . 0 1 2

0 . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix has a very small range of coefficients, the norm is also very small, but
the coefficients of the inverse grow exponentially with the size of the matrix. Such a
banded matrix appears in a benchmark set of quadratic programming instances col-
lected by Maros and Mészáros (1999). Thislaser orilasermodel instance originates
from the field of electrical engineering and has caused us some headaches when try-
ing to avoid numerical resonance catastrophes in the solving process; eventually, we
concluded that there is no cure for this instance and a warning message alerts the
user that the model is likely ill-posed.

A common guideline and recommendation is to inspect the ranges of the coeffi-
cients of a problem instance. As the last example shows, this is not sufficient to guard
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against all numerical issues. For a more informed analysis, we need to include further
metrics like the condition number as proxy for the problem’s geometry.

To estimate the condition number of the current basis matrix, we implemented the
power method in SoPlex. After repeated multiplication with A followed by a normal-
ization, a randomly chosen vector converges to the largest eigenvector that can be
used to get the corresponding eigenvalue. In a similar fashion, we can repeatedly
apply A−1 to get the smallest eigenvalue. Typically, a few iterations are enough to
converge and the computational overhead is relatively small due to the readily avail-
able LU-factorization of the basis matrix. Given that the condition number is merely
providing a rough upper bound on the expected error when solving a linear system
with this matrix, we do not require high accuracy and focus on the magnitude by in-
specting the logarithmic value, instead.

We use TreeD to collect the condition numbers for all the simplex bases in a SCIP
optimization run. Since TreeD utilizes the LP event handler of SCIP, it allows easy
access to various LP statistics that can then be stored for later analysis. The LP event
handler is a callback that is executed whenever an LP is solved and allows capturing
the relevant data for this specific LP. In the interactive version of TreeD the user is
able to choose those metrics to be displayed in the nodes of the tree visualization.

Discussing the condition of a discrete problem is in fact quite complicated. Formally,
the slightest deviation of an integer variable from its value in an optimal (or feasible)
solution will render the new solution infeasible. This is due to the solution set being an
entirely discrete and hence discontinuous set. The classical concept of conditioning
on the other side is tailored to continuous or smooth neighborhoods around the data
points. Accordingly, we would have to set the condition number to∞ rendering every
single integer programming problem ill-conditioned. We refer to the work of Jarck
(2020) for a detailed discussion on the topic.

This discrepancy is a stark contrast to the practical applicability of integer program-
ming, so we retreat to inspecting condition numbers originating from LP relaxations
of those problems. As large parts of the computational MILP solving process rely on
LP solving as we have seen in Chapter 4, we believe that it is reasonable to do so.

Recently, developers of the FICO Xpress solver presented a “numerical attention”
prediction based on machine learning2. The attention level α, that is estimated using
this approach, is defined as follows:

α ∶= 0.01 ∗ psus + 0.3 ∗ punstab + pill

with
psus ∶= percent of suspicious LP bases, 107 ≤ κ < 1010

punstab ∶= percent of unstable LP bases, 1010 ≤ κ < 1014

pill ∶= percent of ill-posed LP bases, 1014 ≤ κ.

(6.2)

The reasoning behind those classification ranges is explained in Section 6.6 when
discussing different data types and how those influence the accuracy of our results.

2https://fico.force.com/FICOCommunity/s/blog-post/a5Q2E000000wvf6UAA/fico2388
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This definition has first been published in a patent from IBM for CPLEX3. The concept
of collecting various κ values during the MILP solving process is also known as MIP-
Kappa or MIP-κ.

Both CPLEX and Xpress use the same definition of the attention level α and recom-
mend users to be careful as soon as α > 0. Since computing α can be expensive be-
cause many condition numbers need to be computed, a cheaper way of getting an idea
of the numerical stability is certainly welcome. Furthermore, α is only available after
the optimization has already been finished. The prediction takes into account several
readily-available characteristics of the model data like coefficient ranges and bound
sizes. Its quality is reportedly good enough to serve as a warning indicator: Models
with a problematic α are reliably detected, while false positives, that is, instances
that do not turn out to be numerically challenging, might still provoke a warning. Es-
sentially, when the prediction is incorrect, in most cases it provides an unnecessary
warning. This is not an issue for real-world applications and operations research prac-
titioners.

6.2.1. Conditioning of the Simplex Algorithm

There are elaborate and quite complex definitions of the stability of a linear program-
ming problem—independent of the used solving technique—as described by Bürgisser
and Cucker (2013). These take the entire problem instance—including right-hand side
and objective function—into account to provide a more general view on its numerical
features.

We choose a simpler approach that relies only on the current basis matrix and the
corresponding conventional condition number. This provides both a computationally
feasible implementation as well as a reliable and expressive assessment of the actual
numerical stability.

Figure 6.3 shows the condition number of each basis matrix encountered during the
solving process of the initial LP relaxation and during each iteration of the re-solve
occurring after adding a new round of cuts for selected instances from our test set.

One can observe that during the early iterations—especially of the initial relaxation
in the root node—the condition numbers of the basis matrices grow quickly. This is
expected, as more structural variables are pivoted into the basis, while slack variables
are pivoted out. As the initial basis is typically the identity matrix which has a condi-
tion number of one, the conditioning can only degrade at first. We can conclude that
during the simplex algorithm, condition numbers of the basis matrices grow quickly
until the characteristic condition number magnitude is reached.

We expect the condition numbers of the basis matrices to degrade further as a re-
sult of operations performed in the root node and our initial computations are aimed
at confirming this. After the initial optimization, the MILP solver adds cutting planes
to the LP that are computed using the current basis matrix itself as explained in Sec-

3https://patents.google.com/patent/US8712738B2/
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Figure 6.3.: Condition number development (vertical axis, in log scale) for every sim-
plex iteration in the root node (horizontal axis) including re-optimizations
after adding cutting planes in multiple rounds (vertical lines). A plot of ob-
jective values at each iteration is overlaid as a dashed gray line with the
scales given to the right of each plot.
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during the cutting stage and when this process is completed.
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tion 4.5. Consequently, an ill-conditioned basis matrix may lead to an imprecise cal-
culation of the coefficients of the new inequality.

Moreover, adding these new rows to the LP often further deteriorates its condition
number as can be seen in Figure 6.3. This sample of MIPLIB instances clearly shows
the expected behavior.

Figure 6.4 is a visualization of the difference between the condition number of the
optimal basis of the original LP and two other metrics: (1) the average over all bases
encountered during the cutting procedure and (2) the condition number of the final
optimal basis. While for some instances there is a slight improvement after adding
cuts, in most cases addition of cuts leads to the expected increased condition number.

Please note that these plots are taken from Miltenberger, Ralphs, and Steffy (2018)
with an earlier version of the analysis code.

6.2.2. Condition Number Trend in the Tree

When inspecting condition numbers, there can be pretty large differences between
individual instances and aggregating those numbers can easily be misleading. We
demonstrate this in Figure 6.5 that shows the expected range of condition numbers
for a specific tree depth and parameter setting. We use the breadth-first search node
selection rule (see Section 4.4) to generate a more balanced tree.

Additionally, we adjust SCIP’s separation emphasis parameter to compare runs with
disabled cutting plane generation, runs with more aggressive separation, and the
default cut setting. One might expect larger condition numbers when more cutting
planes are added to the problem and smaller condition numbers when there are no
additional cutting planes. However, this is not something we can deduce from this
chart. It is apparent that cutting planes contribute to a smaller tree size and that
condition numbers appear to decrease for LPs in deeper nodes of the tree.

The latter observation is flawed, though, because the number of instances that
reach a certain tree depth is also diminishing accordingly. We are effectively com-
paring different sets of instances when descending the depth level in this chart.

An alternative might be to use a relative depth measure to normalize the different
tree sizes. Unfortunately, this produces even more distorted results and prevents any
sensible deduction or conclusions.

We actually need to inspect either individual instances to get a feeling for the con-
dition number development or compute a trend per instance and then investigate
similarities.

As we can see from Figures 6.6 and 6.7, the condition number trend in the branch-
and-cut tree can be quite unpredictable and does not necessarily follow the intuitive
expectation of more cutting planes implying larger condition numbers.

112



6.3. Tailing-off Effect of Cutting Planes

0 50 100 150 200 250
depth

0

2

4

6

8

10

12

14

va
lu

e settings
bfs
bfs-sepaaggr
bfs-sepao�

Figure 6.5.: Aggregated condition numbers (in log10 scale) for different tree depths.
This chart contains data for all instances from the different MIPLIB bench-
mark sets that could be solved in one hour and that have at least reached a
tree depth of 10. The line represents the mean value of condition numbers
at this level while the shaded area shows the respective 95% confidence
interval. Compared parameter sets are using breadth-first search with dif-
ferent cutting plane separation strategies (default, aggressive, and off).

6.3. Tailing-off Effect of Cutting Planes

The tailing-off effect of cutting planes describes the diminishing dual bound improve-
ment of additional cutting planes during the separation procedure.

While it is possible to reach optimality with cutting planes alone, most solvers rely
on further techniques like branching to reach optimality. Zanette, Fischetti, and Balas
(2011) discuss this topic in more detail.

One of the main culprits for cuts having less impact over time is the fact that more
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Figure 6.6.: Expected developments of condition numbers (in log10 scale): aggressive
separation (sepaaggr) leads to an increased condition number across the
entire tree while disabled cutting plane separation generates a larger tree
but has smaller condition numbers.

cuts of higher rank have to be added and those tend to cause numerical difficulties.
The rank of a cut describes whether the cut is coming directly from the LP formulation
or is derived from a previous cutting round.

Intuitively, one can imagine this process as slowly shaving off the edges of the
polyhedron making it harder for the simplex method to determine an optimal ver-
tex among many very similar sub-optimal ones. Many almost parallel rows in the LP
naturally lead to high condition numbers and may induce inaccurate results.

Following this train of thought, we seek to find a correlation between the stagnating
bound improvement and an increased condition number of the corresponding basis
matrices. In other words, we want to predict when the tailing-off phase starts by
monitoring the geometry of the current LP polytope via the condition number. We
hoped to find a holistic metric to be used as proxy for determining when no more cuts
should be added.

Unfortunately, we have not been able to determine any kind of such a relationship
in our experiments. Even disabling most of the advanced tricks of an MILP solver to get
a clearer picture did not help to provide a better understanding of condition numbers
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Figure 6.7.: Unexpected developments of condition numbers (in log10 scale): Disabling
cutting plane generation (sepaoff) leads to worse condition numbers. The
left instance exhibits decreasing condition numbers going down the tree
while for the right instance, the numbers are growing.

for this context.
Furthermore, identifying the actual tailing-off effect can be difficult for many prac-

tical instances. Often, jumps in the bound improvement suggest that the tailing-off
has not yet begun. This makes it hard to label the corresponding condition numbers
to train a machine learning algorithm or even just to compute a regression model.

For general purpose MILP instances we are not optimistic that we can provide mean-
ingful algorithmic control of the solver to detect tailing-off based on condition num-
bers. The currently used methods in SCIP of discontinuing the cutting phase, for ex-
ample when detecting stalling, appear to be sufficient if not superior because of the
reduced computational requirements: Inspecting the bound and gap improvement is
significantly less expensive than computing condition numbers.

After investigating many different experiments, Prof. Ted Ralphs compared our at-
tempts to predict and learn a pattern from condition numbers during the MILP solving
process with “doing a weather forecast for different planets”, each planet resembling
an individual problem instance.

In Figure 6.6 and Figure 6.7 we can see that the condition number trend in the
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branch-and-cut tree can be very unexpected.

6.4. LP Condition Numbers for MILPs

The difficulty of defining a condition number for LPs mainly lies in the fact that there
are so many different basis matrices that are encountered along the way and even
neighboring bases may have significantly different condition numbers. We end up
with even more possibilities when considering the additional degrees of freedom in-
troduced by numerical tolerances.

In this section, we compute LP condition numbers κLP as defined in Ordonez and
Freund (2003) for a range of MILPs and compare those numbers to other metrics like
the attention level. We want to investigate if this a priori measurement can be used
to provide additional information about the expected numerical features of the in-
stances during the optimization process.

We follow the proposed approach of Ordonez and Freund (2003) in computing the
this condition number measure κLP(d)

κLP(d) ∶=
∥d∥

min{ρP(d), ρD(d)}

for a general LP d with

d ∶= min c⊺x

s.t. Ai.x ≤ bi, for i ∈ L,
Ai.x = bi, for i ∈ E,
Ai.x ≥ bi, for i ∈ G,

xj ≥ 0 for j ∈ LB,
xj ≤ 0 for j ∈ UB.

(6.3)

The components ρP(d) and ρD(d) are calculated as

ρP(d) = min
i∈{1,...,m}
j∈{−1,1}

min
y,s+,s−,v

max{∥A⊺y + s+ − s−∥
1
, ∣b⊺y − v∣}

s.t. yi = j,
yl ≤ 0 for l ∈ L,
yl ≥ 0 for l ∈ G,

s−k = 0 for k ∈N ∖UB,

s+k = 0 for k ∈N ∖ LB,
v + ∑

k∈LB

lks
+
k − ∑

k∈UB

uks
−
k ≥ 0,

s+, s− ≥ 0

(6.4)
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and
ρD(d) = min

i∈{1,...,n}
j∈{−1,1}

min
x,p,g

max{∥Ax − p∥1 , ∣c⊺x + g∣}

s.t. xi = j,
xk ≥ 0 for k ∈ LB,
xk ≤ 0 for k ∈ UB,

pl ≤ 0 for l ∈ L,
pl = 0 for l ∈ E,
pl ≥ 0 for l ∈ G,

g ≥ 0.

(6.5)

As we can see from the definitions of ρP and ρD, we need to solve 2n + 2m LPs to
compute these values: there are two LPs for every j and every i, spanning the number
of rows and the number of columns. Since there is only a minor change between the
individual LPs, we can warm-start the solving process from the previous iteration.

Furthermore, we need to compute the scaling value ∥d∥ as:

∥d∥ =max{∥A∥∞,1, ∥b∥1, ∥c∥1} .

Here, the vector norm for b and c is chosen as the 1-norm ∥b∥1 ∶= ∑n
i=1 ∣bi∣ while the

matrix norm for A is

∥A∥∞,1 ∶=max{∥Ax∥1 with ∥x∥∞ = 1} .

To avoid the expensive computation of this norm, we follow the approach of Or-
donez and Freund (2003) and employ lower and upper bounds instead as

max{∥A∥1,1, ∥A∥2,2, ∥A∥F, ∥Ae∥1, ∥Aã∥1} ≤ ∥A∥∞,1 ≤min{∥A∥L1
,
√
nm∥A∥2,2}

where e is the vector of ones and ãj ∶= sign(Ai∗,j) with i∗ ∶= argmaxi=1,...,m∥Ai.∥1.
The amount of work to compute κLP for any given LP or MILP is significant and we

cannot hope to use this approach in practice for reasonably sized problems.
Nevertheless, we hoped to predict or estimate the numerical difficulties solvers

might encounter—as the plots of the collected data in Figure 6.8 show, there is no
identifiable trend or correlation between the different metrics. We include runs with
both CPLEX and Xpress to provide more solver-agnostic results.

It appears there is no clear connection between (the logarithm of) this a priori com-
puted stability measure κLP and those that can be extracted during or after the solv-
ing process. Neither the attention level, that is, the aggregation of all κ values, nor
the maximal κ itself relate to the κLP value. We can also see that there is a fairly
large number of instances with an infinite κLP value, here represented by those values
≥ 1020 while the largest condition numbers in the tree are almost always smaller than
1015 and often a lot smaller. We can also spot this discrepancy in the comparison
with the attention level that is also not signalling a numerically difficult model. This
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once again demonstrates how hard it is to grasp and understand numerical issues
that occur in MILP solvers. Table B.4 lists all our collected κLP values as well as the
largest encountered condition numbers in the tree and the attention level as defined
in Equation (6.2).

The code to reproduce these computations is available on GitHub4, both as up-
dated version of the original code from Ordonez and Freund (2003) using CPLEX and
as Python version using Gurobi as LP solver.

6.5. Geometry of the Polyhedron and its Impact on Branching

The geometry of the polyhedron, that is, whether it is very thin in a few directions
can make a difference in how many branch-and-bound nodes are necessary to find
the optimal solution. Here, it can also be useful to know the thin directions and focus
on the corresponding variable axis when deciding how to branch. This relation has
been investigated by Derpich and Vera (2006) with somewhat promising results. By
intuition it seems clear that one should incorporate the thinness of the polyhedron
to avoid branching on directions that may generate a larger number of nodes. On the
other hand, we also need to keep track of the remaining branching criteria so only a
combined strategy can be successful.

Krishnamoorthy (2017) constructed counter examples to show that our intuition
fails us when it comes to branching in thin directions and Mahajan and Ralphs (2010)
proved that finding the best direction is an NP-hard problem itself.

What might be interesting to investigate is whether problems with a rather thin
feasible region are more difficult to solve than those with a more uniform shape.

6.6. Exact MILP Solving

There have also been multiple attempts to mitigate the numerical issues of tradi-
tional solvers based on double precision arithmetic and implement exact rational
MILP solvers, instead.

Typically, computers use a floating point representation for numbers. Computer
codes can make use of different data types that determine the accuracy of this digital
representation and a short comparison of some of those is given in Table 6.1.

A consequence of this limited binary representation of an uncountably infinite set
of numbers is that there are numbers, for example 1/3, that cannot be represented
accurately. Instead, the digital number may deviate from the exact value up to the
epsilon value of the chosen data type.

This is also why computations with the prevalent double data type are using a
tolerance value of about 10−6: As long as our condition numbers remain well below a
value of 1010 we can expect accurate results of up to a relative error of 10−6. In other
words, unavoidable double precision errors of magnitude 10−16 are amplified up to

4https://github.com/mattmilten/condition
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data type number of bits mantissa exponent epsilon

float 32 23 8 2−23 ≈ 1 × 10−7
double 64 52 11 2−52 ≈ 2 × 10−16
__float80 80 63 15 2−63 ≈ 1 × 10−19
__float128 128 112 15 2−112 ≈ 2 × 10−34

Table 6.1.: Different accuracies of floating point representations and their respective
number of bits in mantissa and exponent as defined in the IEEE standard
754.

10−6 for computations that involve a condition number of 1010. That is the reason for
the attention level classification of condition number ranges in Equation (6.2).

In addition to the floating point data types in Table 6.1, SoPlex has the ability to use
rational arithmetic throughout the most important parts of the solver and can also
make use of the much faster iterative refinement technique presented in Section 3.9.
In combination with the rational extension of SCIP that was first developed by Cook
et al. (2013) and then further improved and refined by Eifler and Gleixner (2021) very
impressive speedups could be achieved. This makes exact rational MILP solving a
viable alternative when faced with instances that cannot be solved to satisfactory re-
sults with conventional codes. Most commercial MILP solvers like Gurobi, or Xpress
have options to switch to a higher precision arithmetic mode, often called quad pre-
cision using the __float128 data type. They do not implement a rational arithmetic,
though.

Unfortunately, the use of rational arithmetic comes with a significant computational
overhead because most CPU chips are not optimized to perform these operations ef-
ficiently, in sharp contrast to their double precision counterparts. This makes it often
impractical for real-world applications and a numerically careful and stable imple-
mentation remains unavoidable.

6.7. Outlook and Future Work

We want to stress the exploratory nature of the results of this chapter. We believe
that the fascinating topic of numerics in LP and MILP solvers is far from covered and
well-understood but our computational results and analysis provide another useful
contribution to guide and inspire future research.

Currently, the best practice is to inspect conspicuous models individually and trying
to understand how to treat or circumvent numerical issues. Firstly, the main question
is whether the bounds, right-hand sides, and matrix and objective coefficients are all
in some reasonable and confined range. Secondly, we can analyze more complicated
features that for example take into account certain condition number measures. Still,
careful modeling will remain key in avoiding numerically difficult instances yielding
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questionable results.
From working with the large-scale supply network planning instances from our in-

dustry partner SAP (see Gamrath, Gleixner, et al., 2019), we realized a rather obscure
numerical detail: The infinity value of SCIP (all larger values are treated as infinity)
had to be increased from 1020 to 1030 to account for the huge solution values that
otherwise triggered incorrect results. Furthermore, numerical tolerances frequently
allowed small violations in the presolved space and got amplified in the original for-
mulation, effectively rendering the solution to be infeasible. In those cases, expecta-
tions regarding the interpretability or correctness of the reported results need to be
adjusted accordingly.

As mentioned earlier, also a very stable algorithm cannot prevent numerical issues
stemming from a high condition number because of an unfavorable formulation. A
solution that is applicable to all kinds of problems is not likely to be found without
sacrificing a lot of performance by using exact arithmetic during the computations.

At the moment, the most promising direction is to implement reliable warning mes-
sages that alert users when a solution may not be fully trusted. Ideally, these warnings
should be accompanied by hints and suggestions pointing to the root causes and how
to avoid them in the future. Klotz (2014) provides an excellent practical guide about
this topic. Machine learning techniques could be a suitable tool to help with these
tasks as proposed by FICO Xpress blog post mentioned before and by Berthold and
Hendel (2021).

In addition, we need to keep looking for even more stable and numerically robust
algorithms and implementations as well as to develop new measures to analyze our
model instances and to enhance the prediction of their behavior during the solving
process.
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Chapter 7

Conclusion

Linear programming is the central theme of this dissertation—from simplex techniques
to numerical experiments to LP-based visualizations of MILP solving.

In this thesis we presented various ways how LP solving influences and impacts the
MILP solver SCIP. We gave an overview of the implementational details of the simplex
solver SoPlex and explained how the MILP performance can be improved by treating
the LP solver less like a black box.

With LP solution polishing in Chapter 5, we demonstrated an efficient way to exploit
degeneracy effects during the optimization of LP relaxations to return less fractional
variable assignments in the computed solutions. Due to the abundance of degener-
ate LP relaxations in general MILPs, this technique could be applied frequently without
introducing a detrimental overhead. The reduced fractionality of these polished LP
solutions provided a decent performance benefit for SCIP. We also discussed how
further insight from the additional simplex iterations might be useful for other com-
ponents of an MILP solver.

In this regard, SCIP’s restricting interface to the LP solver can be detrimental to sim-
ilar algorithmic developments as it always requires a certain overhead and additional
implementational effort. On the other hand, SCIP’s modularity allowed for many of
our investigations and experiments in the first place. Our experiments in Chapter 4
compared the performance of the available LP solvers in SCIP and how this can impact
important metrics like the root gap and the node throughput.

We also learnt that persistent scaling is causing a significant positive performance
impact—something quite unexpected but very welcome. The initial goal of implement-
ing this advanced scaling feature was merely to improve the numerical stability and
to reduce the number of rejected solutions containing too large violations. This also
demonstrated that numerical features are important to consider when trying to im-
prove the sheer performance of a solver.

Unfortunately, regardless of our best efforts to push the general MILP performance
using some of the simplex additions and improvements presented in Chapter 3, like
the bound flipping ratio test or sparsity exploitation techniques, we could only achieve
a measurable effect on LP models or on selected MILP instances. In Chapter 4 we also
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demonstrated the often unpredictable nature of MILP solving and how the LP solver
influences the overall MILP performance of SCIP.

Going back to our initial conjecture of “LP not mattering for MILP”, we showed that
it is not just about the speed of an LP solver but also, and maybe more importantly,
how stable and reliable it is implemented and integrated into the MILP framework.
Furthermore, our numerous experiments showed that the fraction of time spent in
the LP solver is very similar across most solver implementations. This indicated that
even a considerable performance difference between them did not carry over as pro-
nounced to the MILP performance.

We are certain that the competitive landscape in the field of mathematical optimiza-
tion is going to keep on changing and adapting to new technologies and new research
advancements. We also tried to capture and honor this remarkable progress in our
work presented in Appendix A.

We hope that our experiments concerning numerical features of LP and MILP solving
shined a light on this topic and helped to gain a better understanding of the effects
of branching and cutting. Despite the somewhat inconclusive results in Chapter 6, a
very positive and successful outcome has been the TreeD project. TreeD provided
interesting visualizations of MILP solving trees and can also conveniently be used as
an analytics framework to collect various data during the solving process.

With TreeD, we also demonstrated the practicality of PySCIPOpt and showed how
new tools can be built and distributed on the provided framework and foundation that
are presented in Chapter 2. The PySCIPOpt project proved to be a reliable and wel-
come addition to the SCIP Optimization Suite and has since been used in numerous
academic projects. This has been an important step in making the field of mathemat-
ical programming and optimization more accessible to a wider audience who may not
be willing to dive into the technical details of SCIP.

Concerning the implications of the numerical experiments in Chapter 6, we are still
confident that incorporating the condition number into algorithmic decisions in the
MILP solver can be beneficial—we may just have to find the right questions to ask in
this regard. We are expecting further developments in this field of interest and are
convinced that our contributions can be useful to provide a better understanding of
numerical features in MILP solvers.
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Appendix A

Mittelmann Benchmark Plots

Prof. Hans Mittelmann (Arizona State University) maintains the largest publicly avail-
able benchmark data set for linear, mixed-integer, nonlinear, and combinatorial opti-
mization problems1. His benchmarks are unique in the way that they allow compar-
isons between both commercial and open-source solvers and are usually kept up-to-
date with new versions of these solvers.

Solvers are compared on a set of instances for every class of problems, using a cer-
tain time limit. Runs that do not end in an optimal solution are counted as timeouts,
without further penalization added. The number of correctly solved instances is also
displayed.

The benchmarks themselves are performed without any stabilization techniques
like different random seeds and some of the test sets are too small to provide a clear
assertion of each solvers general performance.

Nevertheless, we are very happy that these benchmarks exist and are maintained
with such passionate commitment. As the results are only available in plain text for-
mat and hence quite hard to process and analyze, we created an interactive web appli-
cation called mittelmann-plots (Miltenberger, 2021a) that uses the Python graph-
ing library Plotly2 to illustrate the individual results.

For every single class of benchmarks there is a table that automatically sorts the
solvers by their respective scores and also displays the percentages of solved in-
stances. The scores are computed by taking the shifted geometric mean of all solving
times or time outs. The solver with the smallest mean is declared the winner and
all scores are divided by the best score to achieve a relative comparison amongst
all solvers. In addition to that, we include a “virtual best” or “portfolio” solver that
assumes the best results for every single instance. This also depicts how much vari-
ability is present in the benchmarks and how much potential is still attainable by the
individual solvers.

Such aggregated numbers can easily be misleading and it is always a good idea to
also inspect the individual instance-wise performance results. Our tool provides an

1http://plato.asu.edu/bench.html
2https://plotly.com/
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A. Mittelmann Benchmark Plots

interactive chart that displays both the absolute solving times for a selected solver
as well as the relative speedup factors to all other solvers for every single instance
as shown in Figure A.1. To account for huge differences in solving times ranging from
fractions of a second to hours, we use a logarithmic scale for the relative numbers as
well as the absolute solving times.

We believe that this visualization tool provides significantly added value to the raw
benchmark results on Hans Mittelmann’s webpage.
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Appendix B

Experimental Data and Results

This appendix provides full data tables of the experiments conducted for the thesis
and presented in the respective chapters.

We mark unsuccessful optimizations with an asterisk “*” at the respective times for
that instance and setting. Additionally, we use an exclamation mark “!” to highlight
infeasible instances and a “+” when a node limit has been reached.
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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Table B.4.: κLP and κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

10teams ∞ 0.0 0.0 5.2 4.98
22433 9.42 0.0 0.0 5.4 4.31
23588 8.68 0.0 0.0 4.46 4.58
30n20b8 9.04 0.0 0.0 6.11 6.78
50v-10 ∞ 0.0196 0.0054 9.87 8.15
Test3 ∞ 0.0 0.0 6.26 5.54
a1c1s1 7.03 0.0088 0.0153 9.88 9.83
acc-tight4 ∞ 0.0145 0.0 8.95 5.29
acc-tight5 ∞ 0.0093 0.0 7.08 6.08
acc-tight6 ∞ 0.0096 0.0 7.57 5.78
aflow30a 5.97 0.0024 0.0 8.71 6.34
aflow40b 6.27 0.002 0.0 8.89 7.12
air03 7.74 0.0 0.0 2.93 2.85
air04 ∞ 0.0 0.0 6.11 5.44
air05 ∞ 0.0 0.0 5.15 4.87
aligninq 8.73 0.0026 0.0 8.1 4.82
ash608gpia-3col 4.74 0.0936 0.0 12.3 6.16
b2c1s1 7.06 0.0314 0.0306 11.9 8.91
bab1 ∞ 0.0 0.0 6.97 6.41
bab5 7.73 0.0 0.0022 7.4 7.45
bc 5.04 0.0236 0.0 11.87 6.98
bc1 5.04 0.0058 0.0 8.48 6.79
beasleyC3 ∞ 0.0063 0.0447 7.81 7.31
bell3a 8.86 0.0 0.0 5.28 3.91
bell5 10.12 0.0 0.0 4.39 4.38
berlin_5_8_0 ∞ 0.0 0.0017 10.59 9.25
bg512142 ∞ 0.0172 0.0399 10.07 9.7
bienst1 ∞ 0.001 0.008 7.15 7.56
bienst2 ∞ 0.0 0.001 7.53 7.31
binkar10_1 8.26 0.0 0.0 4.66 6.66
blend2 ∞ 0.002 0.0 7.2 4.48
blp-ar98 ∞ 0.0 0.0 6.84 6.69
blp-ic97 ∞ 0.0 0.0 6.53 7.09
bnatt350 ∞ 0.0 0.002 6.71 7.74
bnatt400 ∞ 0.0 0.0022 7.24 7.24
co-100 ∞ 0.0091 0.0022 8.57 7.28
cov1075 3.5 0.0 0.0 5.82 6.89
csched007 ∞ 0.0022 0.0 8.48 6.5
csched008 ∞ 0.012 0.001 12.33 7.87
csched010 ∞ 0.0017 0.0 10.21 6.07
d10200 ∞ 0.0 0.0 7.08 7.3
d20200 6.39 0.0 0.0022 6.58 7.57
dano3_3 ∞ 0.0237 0.1 7.81 7.57
dano3_4 ∞ 0.056 0.1 8.61 8.0
dano3_5 ∞ 0.0536 0.1 8.24 8.67
dano3mip ∞ 0.0603 0.0987 8.8 8.92
danoint ∞ 0.0054 0.0014 10.08 7.73
dcmulti 6.88 0.0 0.0 5.9 4.14
dfn-gwin-UUM ∞ 0.0042 0.0014 7.59 7.54
disctom ∞ 0.0 0.0 3.65 3.63
egout ∞ 0.0 - 2.87 -
eil33-2 6.09 0.0 0.0 4.69 4.77
eilA101-2 7.04 0.0 0.0 6.25 5.12
eilB101 5.58 0.0 0.0 5.76 5.48
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

enigma ∞ 0.003 0.0 7.34 5.1
enlight13 2.49 0.0 - 0.3 -
enlight14 2.55 0.0 - 0.3 -
enlight15 2.62 0.0 - 0.3 -
enlight16 2.67 0.0 - 0.3 -
enlight9 2.15 0.0 - 0.3 -
ex9 ∞ 0.0 0.0 5.84 0.0
f2000 4.65 0.0 0.0 5.09 6.48
fast0507 ∞ 0.0 0.0 4.52 5.18
fiball ∞ 0.0 0.0 6.47 4.65
fiber ∞ 0.0 - 3.8 -
fixnet6 ∞ 0.0 0.0 6.58 6.21
flugpl 6.89 0.0 0.0 2.2 0.0
g200x740i ∞ 0.0064 0.0089 10.14 7.96
gen 8.77 0.0 0.0 3.18 3.38
germany50-DBM ∞ 0.0 0.0 6.91 7.01
gesa2 10.11 0.0 - 4.2 -
gesa2-o 10.11 0.0 - 4.44 -
gesa3 10.03 0.0 0.0 5.27 4.98
gesa3_o 10.03 0.0 0.0 4.52 5.2
gmu-35-40 7.88 0.001 0.002 11.33 8.73
gmu-35-50 8.17 0.0125 0.0 12.2 7.9
go19 ∞ 0.0 0.0 6.82 6.28
gt2 5.95 0.0 0.0 3.6 3.1
hanoi5 ∞ 0.001 0.0118 7.33 9.99
haprp ∞ 0.0 - 2.8 -
ic97_potential ∞ 0.001 0.0 10.34 7.13
iis-100-0-cov 3.96 0.0 0.0 5.86 6.27
iis-bupa-cov 4.11 0.0 0.0 6.87 6.33
iis-pima-cov 4.31 0.0 0.0 6.84 6.35
janos-us-DDM ∞ 0.0 0.0 7.27 7.0
k16x240 ∞ 0.0049 0.001 9.18 8.75
khb05250 ∞ 0.0266 0.0 7.24 6.72
l152lav 5.88 0.0 0.0 5.64 4.27
lectsched-1 ∞ 0.0 0.0 4.32 6.7
lectsched-1-obj ∞ 0.0 0.0085 6.52 8.53
lectsched-2 ∞ 0.0 0.0 3.71 5.21
lectsched-3 ∞ 0.0 0.0 3.72 5.84
lectsched-4-obj ∞ 0.0 0.0 3.46 5.8
liu 7.27 0.0 0.0077 7.58 9.81
lotsize 9.7 0.1385 0.103 14.97 11.99
lrsa120 ∞ 0.0216 0.0017 12.19 7.62
lseu 5.01 0.0 0.0 3.22 4.88
m100n500k4r1 3.3 0.0014 0.0 8.68 5.26
macrophage 3.64 0.0 0.0 4.5 5.13
manna81 4.5 0.0 0.0 1.21 4.19
map06 ∞ 0.0039 0.0048 7.42 7.08
map10 ∞ 0.0 0.004 6.7 7.42
map14 ∞ 0.0 0.0045 6.56 7.3
map18 ∞ 0.0 0.0 6.23 6.49
map20 ∞ 0.0 0.0 6.13 6.04
markshare1 4.16 0.0 0.0 8.08 6.45
markshare2 4.32 0.0 0.0 8.32 6.15
markshare_5_0 4.03 0.0 0.0 5.12 6.42
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

mas74 ∞ 0.0 0.0 5.41 4.54
mas76 ∞ 0.0 0.0 4.06 4.35
maxgasflow 8.98 0.1608 0.4991 13.23 12.96
mc11 ∞ 0.0112 0.0269 9.84 8.66
mcsched ∞ 0.0 0.0 5.75 5.17
methanosarcina 4.4 0.0 0.0 5.64 5.85
mik-250-1-100-1 4.44 0.0 0.0 4.99 5.08
misc03 ∞ 0.0 0.0 3.12 4.26
misc06 ∞ 0.0 0.0 3.61 4.27
misc07 ∞ 0.0 0.0 3.76 5.14
mitre 8.76 0.0 0.0 4.16 3.8
mkc 5.13 0.0026 0.001 8.85 7.7
mkc1 5.13 0.0 0.0 5.78 6.83
mod008 2.5 0.0 0.0 3.77 3.77
mod010 ∞ 0.0 0.0 3.83 3.38
modglob ∞ 0.0 0.0 6.82 5.65
momentum1 ∞ 0.1184 0.1181 14.47 12.77
mspp16 ∞ 0.0 0.0 4.36 3.46
mzzv11 ∞ 0.0107 - 7.19 -
mzzv42z ∞ 0.0 0.0 6.05 6.27
n15-3 ∞ 0.0803 0.0817 9.18 7.48
n3700 ∞ 0.0901 0.0826 10.42 9.33
n3705 ∞ 0.0877 0.0844 10.06 9.81
n370a ∞ 0.0876 0.0888 10.32 9.26
n3div36 8.81 0.0 0.0 5.28 6.23
n3seq24 ∞ 0.0 0.0 5.51 6.0
n4-3 ∞ 0.0041 0.0055 7.66 8.0
n9-3 ∞ 0.0036 0.0098 7.6 7.77
neos-1053234 ∞ 0.0 0.0995 6.7 9.22
neos-1056905 5.23 0.0 0.0022 5.8 9.31
neos-1061020 ∞ 0.0323 0.0175 9.44 8.03
neos-1067731 ∞ 0.0 0.0 7.56 6.91
neos-1109824 4.98 0.0 0.0 3.63 5.34
neos-1120495 4.86 0.0 0.0 3.57 3.66
neos-1121679 4.16 0.0 0.0 7.47 6.45
neos-1151496 4.57 0.0 0.0 3.65 4.71
neos-1171448 6.49 0.0 0.0 4.36 5.11
neos-1171692 6.42 0.0 0.0 4.41 5.04
neos-1171737 6.28 0.0039 0.0 7.39 7.16
neos-1173026 ∞ 0.0014 0.0 7.15 5.16
neos-1200887 5.87 0.0 0.0 5.15 5.67
neos-1208069 4.62 0.0 0.0 5.72 6.01
neos-1208135 4.56 0.0 0.0 4.95 5.27
neos-1211578 5.79 0.0 0.0 4.6 4.35
neos-1215259 4.86 0.0095 0.0 13.08 5.59
neos-1215891 ∞ 0.0 0.0 4.25 4.98
neos-1228986 5.96 0.0 0.0 4.32 4.19
neos-1281048 5.86 0.0 0.0 6.53 5.63
neos-1311124 6.33 0.0 0.0 4.62 4.97
neos-1324574 ∞ 0.0 0.0 5.4 5.44
neos-1330346 ∞ 0.0 0.0 5.96 5.74
neos-1330635 ∞ 0.0 - 1.62 -
neos-1337307 7.73 0.0 0.001 6.5 7.44
neos-1346382 6.31 0.0 0.0 7.25 7.17
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

neos-1396125 ∞ 0.002 0.0014 7.67 7.38
neos-1407044 ∞ 0.0263 0.0 11.95 6.51
neos-1413153 7.51 0.0 0.0 4.24 5.06
neos-1415183 7.64 0.0 0.0 4.16 4.47
neos-1417043 ∞ 0.0 0.0 4.16 4.32
neos-1420790 4.37 0.0 0.0 8.87 7.27
neos-1423785 7.65 0.0 0.001 5.92 7.17
neos-1425699 12.35 0.0 0.0 1.86 1.77
neos-1426662 5.62 0.0 0.0 5.26 7.85
neos-1427181 5.92 0.0 0.0 4.5 5.94
neos-1427261 6.01 0.0 0.0 5.76 6.64
neos-1429185 5.79 0.0 0.0 5.11 6.55
neos-1429212 ∞ 0.0065 0.011 9.46 7.44
neos-1429461 5.89 0.0 0.0 5.21 5.74
neos-1430701 5.79 0.0 0.0 4.48 5.82
neos-1436709 6.0 0.0 0.0 5.58 6.7
neos-1436713 6.09 0.0 0.0 5.62 5.79
neos-1437164 6.87 0.0 - 3.44 -
neos-1439395 6.16 0.0 0.0 6.91 6.19
neos-1440225 ∞ 0.0151 0.0 9.49 6.1
neos-1440447 5.89 0.0 0.0 4.4 4.48
neos-1440457 6.14 0.0 0.0 5.6 6.68
neos-1440460 6.14 0.0 0.001 4.54 7.65
neos-1441553 6.63 0.0 - 4.03 -
neos-1442119 6.16 0.0 0.0 5.21 7.31
neos-1442657 6.09 0.0 0.0 4.98 7.56
neos-1445532 4.79 0.0 0.0 3.67 4.09
neos-1445738 4.78 0.0 0.0 5.88 5.34
neos-1445743 4.79 0.0 0.0 6.17 5.64
neos-1445755 4.78 0.0 0.0 5.79 5.44
neos-1445765 4.79 0.0 0.0 5.79 5.57
neos-1451294 ∞ 0.0014 0.0014 7.7 7.59
neos-1456979 ∞ 0.0 0.0 6.94 6.75
neos-1460246 5.33 0.0 0.0 6.63 6.17
neos-1460265 5.89 0.0 0.0 4.15 3.77
neos-1460543 5.9 0.001 0.0 7.54 6.79
neos-1460641 6.5 0.001 0.0 7.54 6.72
neos-1461051 ∞ 0.0 0.0 3.6 4.0
neos-1464762 6.48 0.0 0.0 3.6 6.72
neos-1467067 3.67 0.0 0.0 3.96 4.78
neos-1467371 6.47 0.0 0.0 3.96 6.68
neos-1467467 6.47 0.0 0.0 6.17 6.72
neos-1480121 5.38 0.0035 0.0037 7.79 7.47
neos-1489999 3.78 0.0 0.0 2.61 4.18
neos-1516309 7.23 0.0 0.0 2.96 3.16
neos-1582420 5.03 0.0 0.0 6.26 6.31
neos-1593097 8.46 0.0 0.0 4.42 4.95
neos-1595230 3.77 0.0 0.0 5.35 5.5
neos-1599274 7.22 0.0 0.0 2.56 3.39
neos-1601936 ∞ 0.0 0.0 5.53 6.68
neos-1603512 ∞ 0.0 0.0 3.7 5.34
neos-1603518 ∞ 0.0 0.0 5.59 5.21
neos-1605061 ∞ 0.0 0.0056 6.18 8.17
neos-1605075 5.3 0.0 0.0 6.24 5.47
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

neos-1616732 3.9 0.0 0.0 5.38 5.76
neos-1620770 4.56 0.0 0.0 4.85 6.29
neos-1620807 3.68 0.0 0.0 3.73 4.17
neos-1622252 4.57 0.0 0.001 6.14 7.04
neos-430149 ∞ 0.0033 0.0085 7.25 8.77
neos-480878 7.65 0.0054 0.0182 7.84 8.02
neos-494568 5.63 0.0 0.0 2.6 3.17
neos-495307 1.81 0.0 0.0 4.1 4.24
neos-498623 ∞ 0.0 0.0 2.84 4.56
neos-501453 6.93 0.0 0.0 3.92 1.94
neos-501474 6.93 0.0 0.0 4.29 4.21
neos-503737 ∞ 0.0 0.0 4.4 4.61
neos-504674 5.18 0.0 0.0 6.89 6.89
neos-504815 4.94 0.001 0.0 7.25 5.78
neos-506422 5.47 0.0 0.0 4.19 5.78
neos-512201 5.18 0.0 0.0 5.97 5.88
neos-522351 10.86 0.0902 0.0 8.11 6.23
neos-525149 ∞ 0.0 0.0 2.8 3.75
neos-538867 ∞ 0.0 0.0 4.92 5.56
neos-538916 4.27 0.0 0.0 4.18 5.08
neos-544324 6.25 0.0 0.0 4.53 5.15
neos-547911 5.79 0.0 0.0 4.84 5.24
neos-548047 4.73 0.0 0.0 7.38 5.93
neos-548251 4.79 0.0099 0.0028 9.63 9.27
neos-551991 5.26 0.001 0.0 7.52 5.68
neos-555001 ∞ 0.0 0.0 3.42 4.06
neos-555298 6.46 0.0 0.0 4.54 4.67
neos-555343 ∞ 0.0 0.0 4.55 5.42
neos-555424 ∞ 0.0 0.0 4.12 6.32
neos-555694 ∞ 0.0 0.0 3.2 3.71
neos-555771 ∞ 0.0 0.0 2.94 3.36
neos-555884 ∞ 0.0 0.0 6.49 7.35
neos-555927 ∞ 0.0 0.0 4.07 5.31
neos-565815 ∞ 0.0 0.0 5.24 5.76
neos-570431 4.79 0.0 0.0 6.38 5.11
neos-582605 ∞ 0.0 0.0 6.73 6.69
neos-583731 ∞ 0.0 0.0 1.32 4.28
neos-584146 ∞ 0.0 0.0 6.13 6.57
neos-584851 2.96 0.0 0.0 4.71 4.56
neos-584866 3.84 0.001 0.0 8.43 6.27
neos-585192 ∞ 0.0156 0.0391 9.33 9.71
neos-585467 ∞ 0.0216 0.016 9.62 7.97
neos-595904 7.18 0.004 0.0 8.66 2.26
neos-595905 6.61 0.0 - 6.26 -
neos-595925 6.93 0.0024 0.0 7.91 6.65
neos-598183 6.39 0.0026 0.0 7.39 5.24
neos-603073 6.36 0.0014 0.003 7.66 7.42
neos-611135 7.7 0.001 0.0014 9.23 7.62
neos-611838 6.55 0.0 0.0 6.1 6.71
neos-612125 6.53 0.0 0.0 5.57 6.61
neos-612143 6.54 0.0 0.0 5.79 6.47
neos-612162 6.55 0.0 0.0 6.36 6.76
neos-619167 ∞ 0.1314 1.0 15.68 19.54
neos-631164 11.96 0.0 0.0 11.28 5.37
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

neos-631517 11.92 0.0095 0.001 10.91 7.23
neos-631694 5.63 0.0 0.0 5.2 3.97
neos-632335 ∞ 0.0 0.0 2.0 4.4
neos-633273 ∞ 0.0 0.0 1.76 4.27
neos-655508 10.16 0.0 - 0.3 -
neos-662469 7.11 0.0 0.0 5.57 5.73
neos-686190 ∞ 0.0039 0.0037 8.18 7.3
neos-691058 ∞ 0.0 0.0 3.44 4.46
neos-691073 ∞ 0.0 0.0 3.52 4.7
neos-693347 ∞ 0.0 0.0045 6.3 8.16
neos-709469 ∞ 0.0045 0.0 7.1 4.25
neos-717614 ∞ 0.0032 0.0 7.25 6.43
neos-738098 ∞ 0.0 0.0 5.76 5.39
neos-775946 ∞ 0.0 0.0 3.48 4.37
neos-777800 ∞ 0.0 0.0 6.26 3.98
neos-780889 ∞ 0.0 0.0 5.62 5.22
neos-785899 ∞ 0.0 0.0 4.36 4.25
neos-785912 ∞ 0.0017 0.0 8.02 5.0
neos-785914 ∞ 0.0 - 3.88 -
neos-787933 4.62 0.0 0.0 1.93 3.14
neos-791021 ∞ 0.0 0.0 4.28 4.67
neos-796608 6.91 0.0 0.0 3.01 2.84
neos-799838 ∞ 0.0 0.0 5.94 6.18
neos-801834 7.04 0.0 0.0 5.36 5.87
neos-803219 5.72 0.0 0.0 6.52 5.97
neos-803220 5.74 0.001 0.0 7.0 6.16
neos-806323 7.19 0.0072 0.0068 7.42 7.64
neos-807454 ∞ 0.0 0.0 3.84 4.62
neos-807456 ∞ 0.0832 0.0 13.64 6.2
neos-807639 8.57 0.0037 0.0 7.95 5.99
neos-807705 8.23 0.0024 0.0048 7.07 7.59
neos-808072 ∞ 0.0 0.0 5.33 6.21
neos-808214 ∞ 0.0 0.0 4.31 5.81
neos-810286 ∞ 0.0 0.0 4.7 5.19
neos-810326 ∞ 0.0 0.0 6.25 5.12
neos-820146 3.42 0.0 0.0 5.11 5.12
neos-820157 ∞ 0.0 0.0 5.98 5.15
neos-820879 ∞ 0.0 0.0 6.0 5.35
neos-825075 ∞ 0.0 0.0 3.56 4.31
neos-826250 6.03 0.0 0.0 5.08 4.8
neos-826650 ∞ 0.0 0.0 6.92 6.89
neos-826694 ∞ 0.0 0.0 5.12 4.88
neos-826841 6.56 0.0 0.0 5.3 5.49
neos-830439 5.46 0.0 0.0 3.31 3.3
neos-831188 4.15 0.005 0.0 7.54 5.37
neos-841664 7.14 0.0751 0.1 8.5 8.68
neos-847302 ∞ 0.001 0.0 7.36 6.46
neos-848150 ∞ 0.0 0.0 4.34 5.09
neos-848198 5.96 0.0461 0.0848 9.12 9.07
neos-848845 ∞ 0.0017 0.0 7.37 6.83
neos-849702 ∞ 0.0075 0.0 10.13 5.9
neos-850681 7.18 0.0 0.0 3.69 4.08
neos-856059 4.85 0.0 0.0 4.98 6.74
neos-859770 ∞ 0.0071 0.0 8.58 6.51
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

neos-860244 ∞ 0.0 0.0 5.15 4.57
neos-860300 ∞ 0.0 0.0 6.53 5.82
neos-862348 ∞ 0.0 0.0 3.88 4.62
neos-863472 ∞ 0.0 0.0 5.62 5.22
neos-880324 ∞ 0.0 0.0 5.88 5.06
neos-881765 ∞ 0.0 0.0 3.24 3.71
neos-886822 10.34 0.0 0.0 7.81 4.87
neos-892255 ∞ 0.0 0.0 5.16 5.77
neos-905856 ∞ 0.0 0.0 6.85 7.15
neos-906865 5.43 0.0 0.0 6.21 5.68
neos-911880 4.87 0.001 0.0 8.77 7.66
neos-911970 5.1 0.0 0.0 6.64 7.28
neos-912015 ∞ 0.0 0.0 4.33 5.02
neos-912023 ∞ 0.0 0.0 4.36 6.19
neos-913984 5.59 0.0 - 4.09 -
neos-916173 7.3 0.029 0.0026 10.43 7.43
neos-916792 ∞ 0.0037 0.0 10.59 6.71
neos-930752 5.86 0.0 0.0 6.47 5.21
neos-931517 4.77 0.0 0.0 6.44 6.05
neos-931538 4.77 0.0 0.0 5.84 5.2
neos-933364 4.8 0.0 0.0 6.92 7.45
neos-933550 ∞ 0.0 - 0.0 -
neos-933562 ∞ 0.0 0.0 6.03 6.85
neos-933815 4.63 0.0 0.0 5.68 6.59
neos-934531 ∞ 0.0 - 3.12 -
neos-935496 ∞ 0.0 0.0 6.77 6.9
neos-935674 ∞ 0.001 0.0 7.41 6.62
neos-935769 5.2 0.0 0.0 6.02 5.43
neos-941698 ∞ 0.0 0.0 4.36 4.33
neos-941717 ∞ 0.0 0.0 6.41 6.86
neos-941782 ∞ 0.0 0.0 6.23 6.55
neos-942323 ∞ 0.0 0.0 6.52 5.05
neos-942830 ∞ 0.0 0.0 5.69 6.53
neos-942886 ∞ 0.0 0.0 5.69 3.58
neos-948268 ∞ 0.0 - 0.0 -
neos-948346 7.04 0.0 0.0 4.38 4.96
neos-952987 5.97 0.0102 0.0 10.17 6.9
neos-953928 6.33 0.0 0.0 4.87 4.19
neos-954925 6.99 0.0 0.0 4.98 5.34
neos-955215 4.58 0.0 0.0 5.05 5.84
neos-955800 ∞ 0.0 0.0024 4.45 7.42
neos-956971 6.51 0.0 0.0 5.25 4.67
neos-957143 6.65 0.0 0.0 6.23 4.79
neos-957270 7.13 0.0 0.0 2.02 3.87
neos-957323 6.65 0.0 0.0 4.0 4.38
neos-957389 7.2 0.0 - 2.62 -
neos-960392 7.03 0.0 0.0 5.6 5.82
neos-983171 5.31 0.0 0.002 6.64 7.57
neos13 6.36 0.0017 0.0 7.48 6.0
neos15 6.38 0.0099 0.012 10.9 9.3
neos16 6.49 0.0 0.0 5.57 5.67
neos18 ∞ 0.0 0.0 4.44 6.99
neos6 6.14 0.0 0.0 4.42 6.24
neos788725 ∞ 0.0 0.0 4.96 5.84
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B. Experimental Data and Results

Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

neos858960 ∞ 0.0082 0.0 10.41 6.71
net12 ∞ 0.0 0.0 5.37 6.67
newdano ∞ 0.0 0.0014 7.25 7.78
nobel-eu-DBE ∞ 0.0033 0.0261 9.42 8.87
noswot 3.8 0.0 0.0 5.27 6.34
ns1158817 ∞ 0.1 - 9.68 -
ns1606230 ∞ 0.0 0.001 5.36 7.07
ns1631475 ∞ 0.0076 0.0521 9.89 7.56
ns1663818 ∞ 0.1 0.0745 8.94 8.41
ns1685374 ∞ 0.0119 0.0 9.01 6.91
ns1686196 ∞ 0.0 0.0 6.7 6.3
ns1688347 ∞ 0.0 0.0 5.89 6.77
ns1696083 ∞ 0.0315 0.1011 10.44 11.31
ns1702808 ∞ 0.0035 0.5478 9.47 13.61
ns1745726 ∞ 0.0 0.0 6.09 3.89
ns1766074 ∞ 0.0 0.0 4.65 4.47
ns1769397 ∞ 0.011 0.0 8.01 6.82
ns1830653 ∞ 0.0 0.0 5.13 6.79
ns1854840 ∞ 0.0 - 5.21 -
ns1905797 ∞ 0.0058 0.0068 11.15 8.36
ns1905800 ∞ 0.0159 0.001 12.71 7.38
ns1952667 4.92 0.014 0.0 8.52 6.11
ns2081729 6.35 0.0 0.0089 5.96 10.17
ns2137859 ∞ 0.0047 0.0032 8.27 7.73
ns4-pr9 ∞ 0.0 0.0 5.69 6.3
ns894236 ∞ 0.0057 0.0 9.97 6.94
ns894244 ∞ 0.0199 0.0039 12.36 7.52
ns894786 ∞ 0.0099 0.0139 9.83 8.19
ns894788 ∞ 0.014 0.0 10.15 6.49
ns903616 ∞ 0.0093 0.0128 11.91 8.15
ns930473 ∞ 0.0372 0.0812 10.43 9.75
nsa 5.33 0.0 0.0 4.58 4.4
nsrand-ipx 12.1 0.0 0.0 5.94 5.55
nu120-pr3 ∞ 0.0 0.0 6.05 6.86
nu60-pr9 ∞ 0.0 0.0 7.56 6.54
nug08 ∞ 0.0 0.0 5.8 6.23
nw04 8.68 0.0 0.0 3.91 3.04
opm2-z7-s2 7.82 0.0022 0.0 7.42 6.17
opt1217 3.66 0.0 0.0 3.91 3.11
p0033 ∞ 0.0 0.0 2.17 3.4
p0201 ∞ 0.0 - 3.48 -
p0282 6.42 0.0 0.0 3.57 1.23
p0548 ∞ 0.0 - 3.64 -
p100x588b ∞ 0.0074 0.0098 12.15 8.99
p2756 6.56 0.0 0.0 3.87 3.65
p6b 4.07 0.0 0.0 6.61 5.57
p80x400b ∞ 0.0115 0.0078 10.14 9.44
pb-simp-nonunif ∞ 0.0094 0.0 8.19 6.49
pg 2.92 0.0 0.0 6.21 5.81
pg5_34 3.0 0.0024 0.0 7.07 6.13
pigeon-10 ∞ 0.0 0.0 4.64 5.33
pigeon-11 ∞ 0.0 0.0 5.31 5.87
pigeon-12 ∞ 0.0 0.0 4.42 2.92
pigeon-13 ∞ 0.0 0.0 5.24 2.51
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Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

pigeon-19 ∞ 0.0 0.0 5.37 3.61
pk1 4.57 0.0 0.0 6.5 5.91
pp08a 4.27 0.0 0.0 6.38 6.39
pp08aCUTS 4.39 0.0 0.0 5.58 6.2
probportfolio 4.79 0.0 0.0 7.16 6.83
prod1 3.8 0.001 0.0 7.91 4.9
prod2 4.02 0.0022 0.0 9.57 6.34
protfold ∞ 0.0073 0.0217 10.59 11.91
pw-myciel4 4.53 0.0 0.0 5.06 5.33
qap10 ∞ 0.0174 0.1 7.0 7.55
qiu 5.4 0.002 0.0 7.41 6.33
qnet1 ∞ 0.0 0.0 4.73 3.43
qnet1_o ∞ 0.0 0.0 4.73 2.98
queens-30 4.09 0.0 0.0 7.06 6.17
r80x800 ∞ 0.0024 0.0017 8.4 8.57
rail507 ∞ 0.0 0.0 6.08 4.97
ramos3 3.67 0.0 0.0 6.6 7.0
ran14x18 ∞ 0.001 0.0 7.63 6.96
ran14x18-disj-8 ∞ 0.001 0.0 9.11 7.81
ran14x18_1 ∞ 0.0 0.0 7.73 7.38
ran16x16 ∞ 0.0 0.0 6.69 6.38
rd-rplusc-21 ∞ 0.0039 0.0288 11.35 10.72
rgn 3.72 0.0 0.0 3.49 3.03
rlp1 ∞ 0.0 0.0 4.05 4.04
rmatr100-p10 4.81 0.0 0.0 4.81 5.23
rmatr100-p5 5.09 0.0 0.0 5.87 5.84
rmine6 5.32 0.0028 0.0 8.11 6.62
rocII-4-11 ∞ 0.002 0.001 8.2 7.25
rocII-7-11 ∞ 0.001 0.0036 9.67 7.67
rocII-9-11 ∞ 0.0024 0.0014 10.67 7.76
rococoB10-011000 ∞ 0.0 0.0 7.46 6.7
rococoC10-001000 ∞ 0.0017 0.0052 8.68 8.14
rococoC11-011100 ∞ 0.001 0.001 8.02 7.44
rococoC12-111000 ∞ 0.0014 0.0075 9.13 7.72
rout 7.42 0.0 0.0 6.83 5.36
roy 4.7 0.0 0.0 3.81 4.82
rvb-sub ∞ 0.0079 0.0 13.29 5.08
satellites1-25 ∞ 0.0987 0.0973 11.02 11.34
satellites2-60-fs ∞ 0.3341 0.1099 11.02 10.47
set1ch 5.98 0.0 0.0 5.99 6.35
set3-10 9.94 0.0141 0.0315 10.06 8.7
seymour ∞ 0.0 0.0 7.43 6.62
seymour-disj-10 4.94 0.003 0.0014 9.92 7.31
shipsched ∞ 0.0108 0.1054 10.11 11.11
shs1023 ∞ 0.0532 0.1 7.75 8.24
sp97ar ∞ 0.0 0.0 7.72 6.6
sp97ic ∞ 0.0 0.0 7.75 6.76
sp98ar ∞ 0.0 0.0 7.44 6.61
sp98ic 11.69 0.0 0.0 6.07 6.35
sp98ir ∞ 0.0 0.0 6.17 6.0
stein27 2.58 0.0 0.0 2.46 3.05
stein45 3.32 0.0 0.0 4.06 3.92
stockholm ∞ 0.0208 0.1005 11.05 10.91
sts729 5.42 0.0 0.0277 6.91 7.14

Continued on next page

207



B. Experimental Data and Results

Table B.4.: κLP and MILP κ statistics for various MILPs
attention level

√
α max log κ (tree condition number)

instance log κLP CPLEX 12.10.0.0 FICO Xpress v8.8.3 CPLEX 12.10.0.0 FICO Xpress v8.8.3

swath ∞ 0.0 0.0 7.06 5.92
tanglegram2 4.13 0.0 0.0 4.39 3.65
timtab1 5.22 0.0014 0.0 8.23 6.35
timtab2 5.38 0.002 0.0 10.94 7.16
toll-like 3.83 0.0 0.0 6.91 6.36
tr12-30 5.8 0.0058 0.0236 8.51 9.33
tw-myciel4 ∞ 0.0 0.0 6.66 6.73
uc-case11 ∞ 0.0356 0.0359 12.1 9.71
uct-subprob ∞ 0.0 0.0 6.43 6.2
umts ∞ 0.0037 0.0032 8.91 8.58
usAbbrv-8-25_70 ∞ 0.0 0.0049 7.01 9.96
vpm1 ∞ 0.0 0.0 2.52 3.07
vpm2 ∞ 0.0 0.0 5.49 4.21
vpphard ∞ 0.0 0.0 7.91 6.18
vpphard2 ∞ 0.0 0.0 4.93 5.8
wachplan ∞ 0.001 0.0 7.57 7.04
zib54-UUE ∞ 0.0286 0.0101 9.99 8.24
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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B. Experimental Data and Results
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