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Abstract. We describe the development of a test library for the rolling
stock rotation problem with predictive maintenance (RSRP-PdM). Our
approach involves the utilization of genuine timetables from a private
German railroad company. The generated instances incorporate proba-
bility distribution functions for modeling the health states of the vehicles
and the considered trips possess varying degradation functions. RSRP-
PdM involves assigning trips to a fleet of vehicles and scheduling their
maintenance based on their individual health states. The goal is to min-
imize the total costs consisting of operational costs and the expected
costs associated with vehicle failures. The failure probability is depen-
dent on the health states of the vehicles, which are assumed to be random
variables distributed by a family of probability distributions. Each distri-
bution is represented by the parameters characterizing it and during the
operation of the trips, these parameters get altered. Our approach incor-
porates non-linear degradation functions to describe the inference of the
parameters but also linear ones could be applied. The resulting instances
consist of the timetables of the individual lines that use the same vehi-
cle type. Overall, we employ these assumptions and utilize open-source
data to create a library of instances with varying difficulty. Our approach
is vital for evaluating and comparing algorithms designed to solve the
RSRP-PdM.

Keywords: Rolling stock rotation planning · Predictive maintenance ·
Test library.

1 Introduction

Rolling stock rotation planning is an important topic that has been investigated
by a variety of authors, see for example [11] and the citations therein. The plan-
ning of these rotations is often combined with the scheduling of maintenance
but mainly preventive maintenance regimes are considered. However, predictive
maintenance has some benefits compared to preventive maintenance: On the one
hand, it offers the advantage that components with a high level of wear can be
detected and serviced before a failure occurs. On the other hand, components
that have not yet reached their end of life can continue to be used. Due to the
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advances in sensor technique and machine learning necessary to process the sen-
sor measurements, predictive maintenance can now be put into practice. There
already exists a variety of approaches for determining the remaining useful life
(RUL) of mechanical components but we are only aware of few articles, i.e.,
[3,6,7,13,14], incorporating the RUL and its predictions into rolling stock rota-
tion planning and maintenance scheduling. Furthermore, there exists a lack of
test instances concerning predictive maintenance, which was already stated by
[2] claiming that the authors of predictive maintenance approaches only com-
pare their work to other maintenance regimes instead of comparing it to the
methods of other authors. In order to overcome these problems, we present the
construction of a set of test instances originating from genuine timetables of a
private German railroad company enriched by some realistic assumptions.

2 Timetables, Network & Vehicles

Timetables, Stations and Distances The timetables are taken from a private
German railroad company and are all genuine and in operation in 2023. Informa-
tion about the vehicle types operating the individual lines are taken from public
sources of the railroad company. The distances between the stations of the rail
network are taken from [9] using [4], while the maintenance locations origin from
the official website of the railroad company. A visualization of the rail network
on which the trips of the timetables are operated is given in Figure 1a.

Costs The costs can be distinguished into distance- and time-dependent costs,
as well as failure-related costs. The first are assumed, depending on the vehicle
type, to vary between 6.80 and 11.20 per km. This information is taken from
[8], where the given values have been reduced by 38%, i.e., by the share of
costs for profit, maintenance, and capital costs. Next, we determined the yearly
costs. Therefore, we took the purchase prices of the vehicles and combined them
with the associated amortization rates and expected costs for the respective
maintenance facilities. These costs range from 120,000 to 1,340,000 depending
on the vehicle type. The maintenance costs themselves are assumed to be 2,000
based on the assumption that the average maintenance costs for regional trains
are about two-thirds of the maintenance costs for the German high-speed train
ICE, see [1]. Finally, we assume that the breakdown of a vehicle causes costs of
5,000 – 50,000 depending on its number of seats.

Maintenance & Vehicle Specifications We assume that maintenance ser-
vices on the train doors take 02:15 hours. The considered vehicle types are taken
from the railroad company’s website and we have used the manufacturer’s in-
formation on the drive type of the trains and the number of their seats. Fur-
thermore, we assume that the driving speed of the vehicles is 80 km/h when
deadheading.
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3 Modeling the Degradation

Degradation Caused by Trips In this article, the components of interest are
the train doors. We measure their service life and the load they endure by the
number of opening-closing cycles they undergo. The number of possible cycles
is taken from [12], who observed that 4,630 opening-closing cycles led to three
failures, i.e., a failure occurred approximately every 1,500 cycles. We assume
that the number of cycles that occur at each stop of a trip varies between zero
and four, depending on the number of passengers waiting at the platform of
the station. To determine this number, we take data on the hourly passenger
volume, multiply it by the total number of stops occurring at each station,
and scale it s.t. the maximal value is equal to three. This procedure yields an
individual parameter λ ∈ (0, 3] for each of the stations that we associate with a
Poisson distribution. Afterwards, to obtain the degradation caused by each trip,
we sample from the probability distribution function (PDF) of each station,
where we round values greater than four down to four, and sum up all samples.
This procedure is repeated multiple times and gives rise to a histogram, to which
we fit a normal distribution describing the number of cycles that occur during
each trip. Here, we utilize the Poisson distribution since it is widely used to
model the arrival of passengers, see e.g. [10], and the normal distribution since
Poisson distributions are stable and approximately normal for large values of λ.

Health States of the Vehicles Since the health states of the vehicles cannot
be measured directly, i.e., we have to rely on indirect measurements like counting
the number of operated cycles or evaluating sensor measurements, they have to
be assumed as uncertain and considered as random variables. The same applies
to the degradation caused by the trips since the number of opening-closing cycles
that occur during their operation can only be estimated. Thus, in the case of
a linear degradation behavior, we would need to determine the convolution of
both PDFs. Measurement errors are often modeled by normal distributions and
we chose to model the number of opening-closing cycles occurring during the
operation of the trips as normally distributed as well. Since normal distributions
are uniquely determined by their mean µ ∈ R and variance σ2 ∈ R>0, we identify
each random variable by its corresponding parameters. Furthermore, we assume
that the health state of a vehicle is a random variable Hv ∼ N (µv, σ

2
v), where

Hv = 1 indicates that v is as good as new and Hv ≤ 0 corresponds to a failure
of the vehicle. Hence, the failure probability of vehicle v is given by

Pf (µv, σ
2
v) := P[Hv ≤ 0] =

1

2

(
1 + erf

(
−µv√
2σ2

v

))
.

Next, we describe the degradation function ∆ mapping the parameters of a ve-
hicle and those of the trip it performs to the parameters of the health state
after the trip is operated. This degradation function needs to take into account
that already worn out vehicles deteriorate faster than new or recently maintained
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ones. Additionally, it should exhibit a non-linear behavior since mechanical com-
ponents usually show non-linear degradation patterns, as for example described
by [5]. Therefore, we define ∆ as follows:

∆ : R2 × R2
>0 → R× R>0,

µv

µt

σ2
v

σ2
t

 7→

(
µv − 1
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− 3µt

5,000

σ2
v +

1
7,5002 (2−σ2
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+
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t

1,5002

)
,

where (µv, σ
2
v) are the parameters corresponding to the PDF of the health state

of vehicle v and (µt, σ
2
t ) characterize the normal distribution of the number of

operated cycles that occur during trip t. We designed ∆ so that a new or recently
maintained train door would fail after approximately 1,500 cycles and that the
rate of degradation increases with time. Finally, we assume that maintenance
resets the parameters of a vehicle to µ = 0.95 and σ2 = 0.0003.

4 The Resulting Instances

The instances resulting from the previously described construction procedure can
be found on a server operated by our institute1 and are completely anonymized.
As already mentioned, the instances are based on the timetables of lines sharing
the same vehicle type. The characteristics of the instances can be found in Table 1
containing the number of lines in the instance, the number of trips that need to be
operated within one week, the number of considered locations, and the number
of vehicles that may be used to operate the timetables. Figures 1b – 1g show the
underlying rail networks of each instance. The objective for each of the instances
is to determine rolling stock rotations and maintenance schedules, s.t. all trips of
the given timetable are operated with minimum total costs. These costs consist
of the operation costs of trips, deadhead trips, and maintenance activities, as
well as the expected failure costs of the vehicles during trip operation. Here, the
failure probability of a vehicle during a trip is determined by the health state of
the vehicle after the operation of this trip.

5 Conclusion

Throughout this article, we described the construction of a test library for the
RSRP-PdM. The instances of the library are based on genuine timetables of
a German railroad company, publicly available real-world data, and were sup-
plemented by meaningful assumptions. These assumptions include a non-linear
degradation behavior and provide the opportunity to establish a maintenance
regime scheduling the service tasks based on the failure probability of the ve-
hicles, rather than setting thresholds for the health states. The instances vary
in size and difficulty, and can be used to evaluate and compare algorithms for
RSRP-PdM, filling the gap identified by [2].

1 https://cloud.zib.de/s/NZSWpyWL5YXS5ww

https://cloud.zib.de/s/NZSWpyWL5YXS5ww
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Table 1: Number of lines, trips, locations, and vehicles of the resulting instances.

Instance Lines Trips Locations Vehicles

T1 2 566 8 6
T2 2 608 10 7
T3 1 636 15 16
T4 3 679 9 8
T5 5 813 16 14
T6 2 919 17 29

combined 15 4,221 52 80

(a) Complete rail network.

(b) T1 (c) T2 (d) T3

(e) T4 (f) T5 (g) T6

Fig. 1: The underlying rail network of the timetables (a), and the rail network
restricted to the stations and routes used in each instance (b) – (g). Note that
the straight lines possess the rail distance, but the intermediate stations have
been omitted for the sake of simplicity since they are not stops of the considered
trips.
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