Niels Lindner ${ }^{11}$, Berenike Masing ${ }^{2}$

On the Split Closure of the Periodic Timetabling Polytope

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30 84185-0
Telefax: +4930 84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de
ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

On the Split Closure of the Periodic Timetabling Polytope

Niels Lindner*
Freie Universität Berlin
lindner@zib.de
Berenike Masing ${ }^{\dagger}$
Zuse Institute Berlin
masing@zib.de

June 6, 2023

Abstract

The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixedinteger programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless $\mathrm{P}=\mathrm{NP}$, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances.

Keywords: Periodic Event Scheduling Problem, Periodic Timetabling, Split Closure, MixedInteger Programming

Mathematics Subject Classification (MSC2020): 90C11, 90C35, 90B35, 90B20

1 Introduction

The timetable is the core of a public transportation system. It serves as a basis for cost-sensitive tasks such as vehicle and crew scheduling, and is required for accurate planning of passenger routes. A high-quality timetable is thus of utmost importance for a well-planned transportation system. Particularly in the context of urban traffic, a large number of transportation networks are operated with a periodic pattern, creating the demand to optimize periodic timetables. The standard mathematical model for this task is the Periodic Event Scheduling Problem (PESP) introduced by Serafini and Ukovich (1989). PESP is a combinatorial optimization problem on a digraph with respect to a certain period time, and it is notoriously hard: Deciding whether a feasible periodic timetable exists is NP-complete for any fixed period time $T \geq 3$ (Odijk, 1994). The feasibility problem remains NP-hard on graphs with bounded treewidth

[^0](N. Lindner \& Reisch, 2022). The difficulty of PESP is also reflected in the fact that since its establishment in 2012, none of the instances of the benchmark library PESPlib could be solved to proven optimality up to date (Goerigk, 2022). Nevertheless, many primal heuristics have been developed (Borndörfer, Lindner, \& Roth, 2020; Bortoletto, Lindner, \& Masing, 2022; Goerigk \& Liebchen, |2017; Großmann et al., 2012; N. Lindner \& Liebchen, 2022; Nachtigall \& Opitz, 2008: Pätzold \& Schöbel, 2016), and there are success stories concerning the implementation of mathematically optimized timetables in practice (Kroon et al., 2009; Liebchen, 2008).

PESP can be formulated as a mixed-integer linear program (MIP) in a multitude of ways (Liebchen, 2006). Several studies of the periodic timetabling polytope have been conducted, leading to the discovery of families of cutting planes, such as, e.g., cycle inequalities (Odijk, 1994), change-cycle inequalities (Nachtigall, 1996), and more recently, flip inequalities(N. Lindner \& Liebchen, 2020). The separation of cycle and change-cycle inequalities is known to be NPhard (Borndörfer, Hoppmann, Karbstein, \& Lindner, 2020), and flip inequalities are a superset of both cycle and change-cycle inequalities (N. Lindner \& Liebchen, 2020). A common theme that cycle, change-cycle and flip inequalities share as well with other families of cutting planes (T. Lindner, 2000; Nachtigall, 1996) is that they are all described in purely combinatorial terms. For example, flip inequalities are determined by a cycle and a set of arcs of the underlying digraph of the PESP instance.

In this paper, we pursue a somewhat opposite strategy: Rather than starting with a combinatorial analysis, we investigate split inequalities, a general-purpose tool for treating MIPs introduced by Cook, Kannan, and Schrijver (1990) as an analogon to the Chvátal closure for pure integer programs. The split closure given by these inequalities has several nice properties: It is a polyhedron (Conforti, Cornuéjols, \& Zambelli, 2010, Cook et al., 1990), coincides with the closure given by mixed-integer rounding and Gomory mixed-integer cuts Cornuéjols \& Li, 2001; Nemhauser \& Wolsey, 1990), and leads to finite cutting plane algorithms for binary MIPs (Balas, Ceria, \& Cornuéjols, 1993).

While the second Chvátal closure for a pure IP formulation has already been investigated by Liebchen and Swarat (2008), we apply split closure techniques to proper mixed-integer formulations of PESP. Our first result is the following correspondence (Theorem 3.1): Every non-trivial split inequality is a non-trivial flip inequality, and vice versa. The split closure of the periodic timetabling polytope is therefore identical with the closure given by the flip inequalities. Moreover, the split inequalities coming from split disjunctions, where one of the two sides of the split is empty, coincide with Odijk's cycle inequalities (Theorem 3.3).

In general, the separation of split inequalities is NP-hard (Caprara \& Letchford, 2003). In the periodic timetabling situation, we show in Theorem 4.4 that it is weakly NP-hard to separate maximally violated split/flip inequalities. This is best possible unless $\mathrm{P}=\mathrm{NP}$, as N. Lindner and Liebchen (2020) have already outlined a pseudo-polynomial-time algorithm. The separation problem can however by solved by a parametric IP in the spirit of Balas and Saxena (2008) and Bonami (2012), which in the special case of PESP boils down to a sequence of $[T / 2\rfloor-1$ standard IPs (Theorem 4.5). In the event that the cycle defining a flip inequality is fixed, the separation becomes linear-time (Theorem 4.7).

So far, the results on the split closure of the periodic timetabling polytope apply for the cycle-based MIP formulation of PESP (Liebchen \& Peeters, 2009; Nachtigall, 1996). Another popular formulation is the incidence-based formulation that is straightforward from the original problem definition by Serafini and Ukovich (1989). In order to compare the split closures of two different MIP formulations, we introduce mixed-integer-compatible maps, i.e., affine maps that map mixed-integer points to mixed-integer points. These maps have the general property that they map split closures into split closures (Theorem 5.3). For PESP, the polytope defined by the cycle-based formulation turns out to be a mixed-integer-compatible projection of the
polytope defined by the incidence-based formulation. However, we show that the restriction of this projection to split closures is surjective, so that there is no gain in information concerning split cuts when switching to a different formulation (Theorem 5.11). More results that can be proven using mixed-integer-compatible maps are the following: The split closure commutes with Cartesian products (Theorem 5.5). This enables us to show that the split closure of PESP instances on cactus graphs is exact (Theorem 5.6).

The behavior of split or lift-and-project closures with respect to binarizations, i.e., MIP reformulations with only binary integer variables, have received some attention lately (Aprile, Conforti, \& Di Summa, 2021; Dash, Günlük, \& Hildebrand, 2018). In the context of PESP, the incidence-based MIP formulation can be binarized in a combinatorial manner by subdivision of arcs. Although split closures of binary MIPs are known to be much better behaved (Balas et al., 1993), we prove by another application of mixed-integer-compatible maps that this binarization procedure does also not lead to stronger split closures (Theorem 5.15).

Finally, we evaluate split closures in practice. To this end, we consider the 22 PESPlib instances and some derived subinstances. We devise an algorithmic procedure to optimize over the split closure making use of our theoretical insights. Our separation algorithm consists of a heuristic and an exact part. The outcome is that although the split closure closes a significant part of the primal-dual gap, it is almost never exact. However, our separation method produces incumbent dual bounds for 5 of the PESPlib instances.

The paper is structured as follows: We summarize the relevant definitions and notions for PESP in Section 2 . The correspondence between split and flip inequalities follows in Section 3 . The subsequent Section 4 is devoted to separation of split/flip inequalities. Mixed-integer compatible maps and the results on comparing split closures of different formulations are presented in Section 5. Our computational results can be found in Section 6. We conclude the paper in Section 7 .

2 Periodic Event Scheduling

The Periodic Event Scheduling Problem has originally been introduced by Serafini and Ukovich (1989), and has gained much attention ever since. In this chapter, we establish the basics, formally state the problem, introduce two equivalent model formulations and introduce our main object of interest, the periodic timetabling polytope.

2.1 Problem Definition

An instance of the Periodic Event Scheduling Problem (PESP) is given by a 5 -tuple (G, T, ℓ, u, w), where

- $G=(V, A)$ is a directed graph,
- $T \in \mathbb{N}, T \geq 2$, is a period time,
- $\ell \in \mathbb{Z}^{A}$ is a vector of lower bounds,
- $u \in \mathbb{Z}^{A}$ is a vector of upper bounds,
- $w \in \mathbb{R}^{A}$ is a vector of weights.

A periodic tension is a vector $x \in \mathbb{R}^{A}$ with $\ell \leq x \leq u$ such that

$$
\begin{equation*}
\exists \pi \in[0, T)^{V}: \quad \forall a=(i, j) \in A: \quad x_{a} \equiv \pi_{j}-\pi_{i} \quad \bmod T . \tag{1}
\end{equation*}
$$

In this case, the vector π is called a periodic timetable. In the context of periodic timetabling in public transport, the vertices of G typically correspond to arrival or departure events of vehicles at some station. The arcs of G are activities; they model relations between the events such as, e.g., driving between two stations, dwelling at a station, or passenger transfers (Liebchen \& Möhring, 2007). A periodic timetable π thus assigns timings in $[0, T)$ to each event, repeating periodically with period T. The periodic tension x collects the activity durations, which are supposed to lie within the feasible interval $[\ell, u]$. A typical source for the weight of an arc is the estimated number of passengers using the corresponding activity. A reasonable quality indicator of a periodic timetable is hence $w^{\top} x$, the total travel time of all passengers.
Definition 2.1 (Serafini and Ukovich 1989). Given ($G, T, \ell, u, w)$ as above, the Periodic Event Scheduling Problem is to find a periodic tension x such that $w^{\top} x$ is minimum, or to decide that none exists.

Example 2.2. Figure 1 shows a small PESP instance together with an optimal periodic tension and a compatible periodic timetable.

Figure 1: A PESP instance on a digraph $G=(V, A)$ with $T=10$. The upper label of an arc $a \in A$ is $\left[\ell_{a}, u_{a}\right], w_{a}$. The blue lower arc labels indicate a periodic tension x compatible with the periodic timetable π as given by the vertex labels.

Remark 2.3. As described, e.g., by Liebchen (2006), any PESP instance can be preprocessed in such a way that G contains no loops and is weakly connected, $0 \leq \ell<T$ and $\ell \leq u<\ell+T$.

2.2 Mixed-Integer Programming Formulations

PESP can be formulated as a mixed-integer linear program in several ways (Liebchen, 2006). The incidence-based model is a straightforward interpretation of the problem definition, introducing auxiliary integer periodic offsets to resolve the modulo constraints (1):

$$
\begin{array}{lrr}
\text { Minimize } & w^{\top} x & \\
\text { s.t. } & x_{a}=\pi_{j}-\pi_{i}+T p_{a} & a=(i, j) \in A \\
& \ell_{a} \leq x_{a} \leq u_{a}, & a \in A \\
& 0 \leq \pi_{i} \leq T-1, & \tag{2}\\
& p_{a} \text { integer, } & \\
& a \in V,
\end{array}
$$

When all periodic offsets p_{a} are fixed, (2) becomes a linear program with a totally unimodular constraint matrix. It is hence no restriction to assume that x and π are integral, so that the bound $\pi<T$ in (1) can safely be replaced with $\pi \leq T-1$. For the purpose of this paper, we will however not treat (2) as a pure integer program, as was done by Liebchen and Swarat (2008). We will instead investigate proper mixed-integer formulations, where the periodic tension variables x and the periodic timetable variables π are considered as continuous variables.

An alternative MIP formulation for PESP is the cycle-based formulation, which has been reported to be computationally beneficial (see., e.g., Borndörfer, Lindner, and Roth 2020; Liebchen 2008; Liebchen and Peeters 2009; Peeters 2003; Schiewe and Schöbel [2020):

$$
\begin{array}{lr}
\text { Minimize } & w^{\top} x \\
\text { s.t. } & \Gamma x=T z, \\
& \ell \leq x \leq u, \tag{3}\\
& z \text { integer. }
\end{array}
$$

In (3), x represents a periodic tension, and z is an integral cycle offset. A periodic timetable π can be recovered from x by a graph traversal.

To explain the further ingredients of the formulation (3), we will require more definitions about cycles, cycle spaces and cycle bases, see Kavitha et al. (2009) for an overview. The cycle space \mathcal{C} of G is the abelian group

$$
\mathcal{C}:=\left\{\gamma \in \mathbb{Z}^{A} \mid \forall i \in V: \sum_{a \in \delta^{+}(i)} \gamma_{a}=\sum_{a \in \delta^{-}(i)} \gamma_{a}\right\} .
$$

In terms of linear algebra, \mathcal{C} is the kernel over the integers of the incidence matrix of G; in the language of network flows, \mathcal{C} is the space of all integer-valued (and arbitrarily signed) circulations in G. The rank of \mathcal{C} is the cyclomatic number μ of G. We assume that G is weakly connected (Remark 2.3), so that $\mu=|A|-|V|+1$.

A vector $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$ will be called an oriented cycle. When ignoring arc directions, the support $\left\{a \in A \mid \gamma_{a} \neq 0\right\}$ makes up a possibly non-simple cycle in G. We call arcs a with $\gamma_{a}>0$ forward and those with $\gamma_{a}<0$ backward. Any $\gamma \in \mathcal{C}$ can be decomposed into its positive resp. negative part γ_{+}resp. γ_{-}, i.e., $\gamma_{+}:=\max (\gamma, 0)$ and $\gamma_{-}:=\max (-\gamma, 0)$. The length of an oriented cycle γ is $|\gamma|:=\left|\left\{a \in A \mid \gamma_{a} \neq 0\right\}\right|$.

A set B of μ oriented cycles is called an integral cycle basis of G if B is a basis for \mathcal{C} as an abelian group, i.e., if every element of the cycle space \mathcal{C} can be written as a unique integral linear combination of the oriented cycles in B. A particular class of integral cycle bases are the (strictly) fundamental cycle bases: Let \mathcal{T} be some spanning tree of G. Then the fundamental cycle induced by the co-tree arc a of \mathcal{T} is the unique cycle γ obtained by adding a to \mathcal{T} with the convention that $\gamma_{a}=1$. A fundamental cycle basis is then given by the collection of μ fundamental cycles of \mathcal{T}. Arranging the oriented cycles of an integral cycle basis B as rows of a matrix, we obtain a cycle matrix $\Gamma \in\{-1,0,1\}^{B \times A}$.

Example 2.4. In the example from Figure 1, we have $\mu=3$. An integral cycle basis B is outlined in Figure 2

The following theorem shows that the MIP (3) is indeed a valid formulation of PESP.
Theorem 2.5 (Cycle periodicity property, Liebchen \& Peeters. 2009). For a vector $x \in \mathbb{R}^{A}$, the following are equivalent:
(a) x satisfies condition (1),
(b) $\gamma^{\top} x \equiv 0 \bmod T$ for all $\gamma \in \mathcal{C}$,
(c) $\Gamma x \equiv 0 \bmod T$ for the cycle matrix Γ of an integral cycle basis of G.

In the sequel, we will focus on the cycle-based formulation (3), which is justified by the following remark.

Figure 2: In the instance from Figure 1 , the oriented cycles $\gamma_{1}, \gamma_{2}, \gamma_{3}$ constitute an integral cycle basis, as they are the fundamental cycles of the highlighted spanning tree. The cycle γ_{2} uses only forward arcs, while γ_{1} and γ_{3} have both forward and backward arcs. The tension $\gamma_{3}^{\top} x$ along γ_{3} is $1+1+9-1=10 \equiv 0 \bmod 10$, and $\gamma_{1}^{\top} x$ and $\gamma_{2}^{\top} x$ are integer multiples of $T=10$ as well.

Remark 2.6. The incidence-based formulation (2) is a particular incarnation of the cycle-based formulation (3) in the following sense: Let $I=(G, T, \ell, u, w)$ be a PESP instance. We can augment I to an instance I^{\prime} such that the incidence-based MIP formulation (2) for I coincides with the cycle-based MIP formulation (3) for I^{\prime} for a certain integral cycle basis B with cycle matrix Γ. To this end, we add a new vertex s and connect it to every original vertex $i \in V$. Set $\ell_{s i}:=0, u_{s i}:=T-1, w_{s i}:=0$. The subgraph \mathcal{T} on the arcs $\{(s, i) \mid i \in V\}$ is a spanning tree of the augmented graph. Each fundamental cycle has the vertex sequence (s, i, j, s) for some $\operatorname{arc} a=(i, j) \in A$; we assume that the $\operatorname{arcs}(s, i)$ and (i, j) are forward, and that the arc (s, j) is backward. The constraint in (3) for the cycle (s, i, j, s) is then given by $x_{s i}+x_{a}-x_{s j}=T z_{a}$. Relabeling $x_{s i}$ as π_{i} for $i \in V$ and z_{a} as p_{a} for $a \in A$, the formulation (3) for the augmented instance and the cycle matrix Γ given by the fundamental cycle basis with respect to \mathcal{T} indeed turns out to be the same as the formulation (2) for the original instance I. In particular, the PESP instances I and I^{\prime} can be considered equivalent.

Example 2.7. Figure 3 shows the augmented instance I^{\prime} obtained from the instance I from Figure 1 according to Remark 2.6 .

Figure 3: Augmentation of the instance in Figure 1 according to Remark 2.6. The new vertex s and the new arcs (s, i) are highlighted in green. The highlighted arcs form a spanning tree of the augmented instance. The periodic tension $x_{s i}$ of a highlighted arc (s, i) can be read off the timetable value π_{i} given as vertex label at the gray vertex i.

2.3 The Periodic Timetabling Polytope

Before analyzing the split closure, we need to understand the geometric object behind the feasible region of a PESP instance, and also of its natural LP relaxation.

Definition 2.8. For a PESP instance ($G, T, \ell, u, w)$ and a cycle matrix Γ of an integral cycle basis B, define

$$
\begin{aligned}
\mathcal{P} & :=\left\{(x, z) \in \mathbb{R}^{A} \times \mathbb{R}^{B} \mid \Gamma x=T z, \ell \leq x \leq u\right\} \\
\mathcal{P}_{\mathrm{I}} & :=\operatorname{conv}\left\{(x, z) \in \mathbb{R}^{A} \times \mathbb{Z}^{B} \mid \Gamma x=T z, \ell \leq x \leq u\right\} .
\end{aligned}
$$

We will call \mathcal{P} the fractional periodic timetabling polytope and \mathcal{P}_{I} the integer periodic timetabling polytope.
\mathcal{P}_{I} is the convex hull of the feasible solutions to (3), and the fractional periodic timetabling polytope \mathcal{P} is the polyhedron associated to the natural linear programming relaxation of (3). Observe that this relaxation is very weak: \mathcal{P} is combinatorially equivalent to the hyperrectangle $\prod_{a \in A}\left[\ell_{a}, u_{a}\right]$, and an optimal vertex of the LP relaxation of (3) is given by $(\ell, \Gamma \ell / T)$.

Remark 2.9. The choice of a cycle basis Γ is not essential for the definition of \mathcal{P} and \mathcal{P}_{I} : If Γ^{\prime} is the cycle matrix of another integral cycle basis, then there is a unimodular matrix U such that $\Gamma^{\prime}=U \Gamma$, and $(x, z) \mapsto(x, U z)$ is a \mathbb{Z}-linear isomorphism.

Several classes of valid inequalities for \mathcal{P}_{I} are known (N. Lindner \& Liebchen, 2020; T. Lindner, 2000; Nachtigall, 1996, 1998; Odijk, 1994). We will focus on those that are defined in terms of elements of the cycle space \mathcal{C}. The cycle periodicity property (Theorem 2.5) immediately shows:

Theorem 2.10 Odijk, 1994). Let $\gamma \in \mathcal{C}$. Then the following cycle inequality holds for all $(x, z) \in \mathcal{P}_{\mathrm{I}}$:

$$
\begin{equation*}
\left\lceil\frac{\gamma_{+}^{\top} \ell-\gamma_{-}^{\top} u}{T}\right\rceil \leq \frac{\gamma^{\top} x}{T} \leq\left\lfloor\frac{\gamma_{+}^{\top} u-\gamma_{-}^{\top} \ell}{T}\right\rfloor . \tag{4}
\end{equation*}
$$

Since the rows of the cycle matrix Γ are oriented cycles, Theorem 2.10 implies bounds on the z-variables in Definition 2.8 as well, so that \mathcal{P} and \mathcal{P}_{I} are indeed polytopes.

Let $[\cdot]_{T}$ denote the modulo T operator with values in $[0, T)$. Another well-known class of inequalities is the following:

Theorem 2.11 (Nachtigall, 1996). Let $\gamma \in \mathcal{C}$ and $\alpha_{\gamma}:=\left[-\gamma^{\top} \ell\right]_{T}$. Then the following change-cycle inequality holds for all $(x, z) \in \mathcal{P}_{\mathrm{I}}$:

$$
\begin{equation*}
\left(T-\alpha_{\gamma}\right) \gamma_{+}^{\top}(x-\ell)+\alpha_{\gamma} \gamma_{-}^{\top}(x-\ell) \geq \alpha_{\gamma}\left(T-\alpha_{\gamma}\right) . \tag{5}
\end{equation*}
$$

A class generalizing both cycle and change-cycle inequalities are the flip inequalities introduced by N. Lindner and Liebchen (2020). Let I be a PESP instance and let $F \subseteq A$ be an arbitrary subset of arcs. We construct a new PESP instance I_{F} from I by "flipping" the arcs in F : We replace each arc $a=(i, j) \in F$ by an arc $\bar{a}=(j, i)$, and set $\ell_{\bar{a}}:=-u_{a}, u_{\bar{a}}:=-\ell_{a}$, and $w_{\bar{a}}:=-w_{a}$. From any periodic tension x for I, we obtain a periodic tension x_{F} for I_{F} by defining $x_{F, a}:=x_{a}$ for $a \in A \backslash F$, and $x_{F, \bar{a}}:=-x_{a}$ for $a \in F$. In particular, I is feasible if and only if I_{F} is feasible, and in case of feasibility, both I and I_{F} have the same optimal objective value. Moreover, for any $\gamma \in \mathcal{C}$, we obtain an element γ_{F} in the cycle space of I_{F} by setting $\gamma_{F, a}:=\gamma_{a}$ for $a \in A \backslash F$, and $\gamma_{F, \bar{a}}:=-\gamma_{a}$ for $a \in F$. We can hence consider the change-cycle inequality for γ_{F} on I_{F} and transform it back to I :

Theorem 2.12 (N . Lindner \& Liebchen, 2020). Let $\gamma \in \mathcal{C}$ and $F \subseteq A$. Set

$$
\alpha_{\gamma, F}:=\left[-\sum_{a \in A \backslash F} \gamma_{a} \ell_{a}-\sum_{a \in F} \gamma_{a} u_{a}\right]_{T} .
$$

Then the following flip inequality holds for all $(x, z) \in \mathcal{P}_{\mathrm{I}}$:

$$
\begin{align*}
& \left(T-\alpha_{\gamma, F}\right) \sum_{\substack{a \in A \backslash F: \\
\gamma_{a}>0}} \gamma_{a}\left(x_{a}-\ell_{a}\right)+\alpha_{\gamma, F} \sum_{\substack{a \in A \backslash F: \\
\gamma_{a}<0}}\left(-\gamma_{a}\right)\left(x_{a}-\ell_{a}\right) \tag{6}\\
& +\alpha_{\gamma, F} \sum_{\substack{a \in F ; \\
\gamma_{a}>0}} \gamma_{a}\left(u_{a}-x_{a}\right)+\left(T-\alpha_{\gamma, F}\right) \sum_{\substack{a \in F: \\
\gamma_{a}<0}}\left(-\gamma_{a}\right)\left(u_{a}-x_{a}\right) \geq \alpha_{\gamma, F}\left(T-\alpha_{\gamma, F}\right) .
\end{align*}
$$

Remark 2.13. The flip inequalities (6) for $F=\varnothing$ give exactly the change-cycle inequalities (5). Moreover, by flipping all backward resp. all forward arcs of some $\gamma \in \mathcal{C}$, we obtain Odijk's cycle inequalities (4). Since the left-hand side of (6) is always non-negative for $(x, z) \in \mathcal{P}$, flip inequalities with $\alpha_{\gamma, F}=0$ are trivial. Due to symmetry reasons, the flip inequalities for (γ, F) and $(-\gamma, F)$ coincide, and $\alpha_{\gamma, F}=T-\alpha_{-\gamma, F}$ when $\alpha_{\gamma, F} \geq 1$.
Definition 2.14. We define the flip polytope as

$$
\mathcal{P}_{\text {flip }}:=\{(x, z) \in \mathcal{P} \mid(x, z) \text { satisfies the flip inequality for all } \gamma \in \mathcal{C} \text { and } F \subseteq A\} .
$$

Apart from the trivial relation $\mathcal{P}_{\mathrm{I}} \subseteq \mathcal{P}_{\text {flip }} \subseteq \mathcal{P}$, the flip polytope has some interesting properties (N. Lindner \& Liebchen, 2020): Every vertex of \mathcal{P}_{I} is a vertex of $\mathcal{P}_{\text {flip }}$, but in general not a vertex of \mathcal{P}. Moreover, if G is a cactus graph, i.e., every arc is contained in at most one simple cycle, then $\mathcal{P}_{\text {flip }}=\mathcal{P}_{\mathrm{I}}$. However, there are PESP instances with $\mu=2$ and $\mathcal{P}_{\text {flip }} \neq \mathcal{P}_{\mathrm{I}}$.

3 The Split Closure of the Periodic Timetabling Polyhedron

The relation between the periodic timetabling polytope and the flip polytope seems close and deserves more attention. In fact, in this section, we will establish that the flip polytope can be identified with the split closure.

3.1 Preliminaries

We will now recall the definition of split inequalities, split disjunctions, and the split closure, following the treatment by Conforti, Cornuéjols, and Zambelli (2014). To two matrices $A_{\mathrm{C}} \in$ $\mathbb{Q}^{m \times n}, A_{I} \in \mathbb{Q}^{m \times p}$ and a vector $b \in \mathbb{Q}^{p}$, we associate the mixed-integer set

$$
S:=\left\{(x, z) \in \mathbb{R}^{n} \times \mathbb{Z}^{p} \mid A_{C} x+A_{I} z \leq b\right\}
$$

and the two polyhedra

$$
P:=\left\{(x, z) \in \mathbb{R}^{n} \times \mathbb{R}^{p} \mid A_{C} x+A_{I} z \leq b\right\}, \quad P_{\mathrm{I}}:=\operatorname{conv}(S)
$$

A split is a pair $\left(\beta, \beta_{0}\right) \in \mathbb{Z}^{p} \times \mathbb{Z}$. The disjunction

$$
\beta^{\top} z \leq \beta_{0} \quad \vee \quad \beta^{\top} z \geq \beta_{0}+1
$$

is satisfied for all $(x, z) \in \operatorname{conv}(S)$ and is called a split disjunction. In particular, the polyhedron

$$
P^{\left(\beta, \beta_{0}\right)}:=\operatorname{conv}\left(\left\{(x, z) \in P \mid \beta^{\top} z \leq \beta_{0}\right\} \cup\left\{(x, z) \in P \mid \beta^{\top} z \geq \beta_{0}+1\right\}\right)
$$

contains conv (S). The split closure is now defined as

$$
\begin{equation*}
P_{\text {split }}:=\bigcap_{\left(\beta, \beta_{0}\right) \in \mathbb{Z}^{p} \times \mathbb{Z}} P^{\left(\beta, \beta_{0}\right)}=\bigcap_{\beta \in \mathbb{Z}^{p}} \operatorname{conv}\left(\left\{(x, z) \in P \mid \beta^{\top} z \in \mathbb{Z}\right\}\right) \tag{7}
\end{equation*}
$$

The split closure $P_{\text {split }}$ is a polyhedron (Cook et al. 1990) with the property that conv $(S) \subseteq$ $P_{\text {split }} \subseteq P$. It is identical to the closure given by Gomory's mixed-integer (GMI) cuts or mixedinteger rounding (MIR) cuts (Nemhauser \& Wolsey, 1990). On the downside, optimization and hence separation are in general NP-hard (Caprara \& Letchford, 2003).

The split closure can be described as well in terms of defining inequalities: Define

$$
\Lambda:=\left\{\lambda \in \mathbb{R}^{m} \left\lvert\, \begin{array}{c}
\lambda^{\top} A_{C}=0, \lambda^{\top} A_{I} \in \mathbb{Z}^{p}, \lambda^{\top} b \notin \mathbb{Z}, \text { and the rows of }\left(A_{C} A_{I}\right) \\
\text { corresponding to non-zero entries of } \lambda \text { are linearly independent }
\end{array}\right.\right\}
$$

Each multiplier vector $\lambda \in \Lambda$ defines the split inequality

$$
\begin{equation*}
\frac{\lambda_{+}^{\top}\left(b-A_{C} x-A_{I} z\right)}{\left[\lambda^{\top} b\right]_{1}}+\frac{\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right)}{1-\left[\lambda^{\top} b\right]_{1}} \geq 1 \tag{8}
\end{equation*}
$$

Here, we decompose λ into its positive part λ_{+}and negative part λ_{-}, and denote by $[\cdot]_{1}$ the fractional part in $[0,1)$. The split inequality (8) for $\lambda \in \Lambda$ is valid for $P^{\left(\lambda^{\top} A_{I},\left\langle\lambda^{\top} b\right\rfloor\right)}$. Conversely, any facet of $P^{\left(\beta, \beta_{0}\right)}$ is defined by an inequality of the form (8) for some $\lambda \in \Lambda$ with $\lambda^{\top} A_{I}=\beta$ and $\left\lfloor\lambda^{\top} b\right\rfloor=\beta_{0}$. Consequently,

$$
P_{\text {split }}=\{(x, z) \in P \mid(x, z) \text { satisfies the split inequality (8) for all } \lambda \in \Lambda\} .
$$

3.2 Flipping is Splitting for Periodic Timetabling

We investigate now the split closure for the cycle-based MIP formulation (3) for the Periodic Event Scheduling Problem. Thus let $(G=(V, A), T, \ell, u, w)$ be a PESP instance, and let B be an integral cycle basis of G with cycle matrix Γ. Rewriting in the form $A_{C} x+A_{I} z \leq b$, the fractional periodic timetabling polytope \mathcal{P} is defined by

$$
\underbrace{\left(\begin{array}{cc}
\Gamma & -T I \tag{9}\\
-\Gamma & T I \\
I & 0 \\
-I \\
0
\end{array}\right)}_{A_{C}} \underbrace{\binom{x}{z} \leq\left(\begin{array}{c}
0 \\
0 \\
u \\
-\ell
\end{array}\right), ~, ~ . ~}_{A_{I}}
$$

where I denotes the identity matrix. We will write a multiplier vector $\lambda \in \Lambda$ as

$$
\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}\right) \in \mathbb{R}^{B} \times \mathbb{R}^{B} \times \mathbb{R}^{A} \times \mathbb{R}^{A}
$$

corresponding to the four row blocks in (9).
Theorem 3.1. Every flip inequality with $\alpha_{\gamma, F} \neq 0$ is a split inequality for the cycle-based MIP formulation of PESP (3) and vice versa. In particular, $\mathcal{P}_{\text {split }}=\mathcal{P}_{\text {flip }}$.

Proof. We analyze the set Λ for the MIP (3). For $\lambda \in \Lambda$, we have

$$
\lambda^{\top} A_{C}=\left(\lambda_{1}-\lambda_{2}\right)^{\top} \Gamma+\left(\lambda_{3}-\lambda_{4}\right)^{\top} \quad \text { and } \quad \lambda^{\top} A_{I}=-T\left(\lambda_{1}-\lambda_{2}\right)^{\top}
$$

As $\lambda^{T} A_{I}$ is integer, we find that $\gamma:=T\left(\lambda_{1}-\lambda_{2}\right)^{\top} \Gamma$ is an integer linear combination of the rows of the cycle matrix Γ, so that $\gamma \in \mathcal{C}$. From $\lambda^{T} A_{C}=0$ we infer that $\lambda_{3}-\lambda_{4}=-\gamma / T$. By
the linear independence condition, for an arc $a \in A$, not both of $\lambda_{3, a}$ and $\lambda_{4, a}$ can be non-zero. Hence, when we set $F:=\left\{a \in A \mid \lambda_{3, a} \neq 0\right\}$, we have

$$
\lambda_{3, a}=\left\{\begin{array}{ll}
-\gamma_{a} / T & \text { if } a \in F, \tag{10}\\
0 & \text { if } a \in A \backslash F,
\end{array} \quad \text { and } \quad \lambda_{4, a}= \begin{cases}\gamma_{a} / T & \text { if } a \in A \backslash F, \\
0 & \text { if } a \in F\end{cases}\right.
$$

With that, the fractional part $\left[\lambda^{\top} b\right]_{1}$ evaluates to

$$
\left[\lambda^{\top} b\right]_{1}=\left[\lambda_{3}^{\top} u-\lambda_{4}^{\top} \ell\right]_{1}=\left[-\sum_{a \in F} \frac{\gamma_{a} u_{a}}{T}-\sum_{a \in A \backslash F} \frac{\gamma_{a} \ell_{a}}{T}\right]_{1} .
$$

Observe that for any $y \in \mathbb{R}$, we have

$$
T\left[\frac{y}{T}\right]_{1}=T\left(\frac{y}{T}-\left\lfloor\frac{y}{T}\right\rfloor\right)=y-T\left\lfloor\frac{y}{T}\right\rfloor=[y]_{T},
$$

so that

$$
\begin{equation*}
T\left[\lambda^{\top} b\right]_{1}=T\left[\lambda_{3}^{\top} u-\lambda_{4}^{\top} \ell\right]_{1}=\alpha_{\gamma, F}, \tag{11}
\end{equation*}
$$

where $\alpha_{\gamma, F}$ is as in Theorem 2.12, and we have $\alpha_{\gamma, F} \neq 0$ because $\lambda^{\top} b \notin \mathbb{Z}$.
We now consider the expressions $\lambda_{ \pm}^{\top}\left(b-A_{C} x-A_{I} z\right)$. Since for $(x, z) \in \mathcal{P}$,

$$
b-A_{C} x-A_{I} z=(-\Gamma x+T z, \Gamma x-T z, u-x, x-\ell)^{\top}=(0,0, u-x, x-\ell)^{\top},
$$

we have

$$
\begin{align*}
& \lambda_{+}^{\top}\left(b-A_{C} x-A_{I} z\right)=\frac{1}{T} \sum_{\substack{a \in F \\
\gamma_{a}<0}} \gamma_{a}\left(u_{a}-x_{a}\right)+\frac{1}{T} \sum_{\substack{a \in A \backslash F \\
\gamma_{a}>0}} \gamma_{a}\left(x_{a}-\ell_{a}\right), \tag{12}\\
& \lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right)=\frac{1}{T} \sum_{\substack{a \in F_{F} \\
\gamma_{a}>0}} \gamma_{a}\left(u_{a}-x_{a}\right)+\frac{1}{T} \sum_{\substack{a \in A \backslash F \\
\gamma_{a}<0}} \gamma_{a}\left(x_{a}-\ell_{a}\right) .
\end{align*}
$$

It is now evident from (11) and (12) that multiplying the split inequality (8) for λ with $\alpha_{\gamma, F}(T-$ $\left.\alpha_{\gamma, F}\right)$ yields the flip inequality (6) for (γ, F).

To prove the converse, starting from $\gamma \in \mathcal{C}$ and $F \subseteq A$ with $\alpha_{\gamma, F} \neq 0$, we define λ_{3} and λ_{4} as in (10), so that $\lambda_{3}-\lambda_{4}=-\gamma / T$. Moreover, as (11) holds, we have that $\lambda^{\top} b$ is not an integer. Since $\gamma \in \mathcal{C}$, there is an integral vector $\eta \in \mathbb{Z}^{B}$ with $\eta^{\top} \Gamma=\gamma$. Then $\lambda:=\left(\eta / T, 0, \lambda_{3}, \lambda_{4}\right) \in \Lambda$, and the split inequality for λ is equivalent to the flip inequality for (γ, F).
N. Lindner and Liebchen (2020) proved that $\mathcal{P}_{\text {flip }}=\mathcal{P}_{\mathrm{I}}$ if the cyclomatic number μ of G is at most one by analyzing the combinatorial structure of $\mathcal{P}_{\text {flip }}$. In terms of the split closure, this result becomes almost trivial:

Corollary 3.2. Suppose that $\mu \leq 1$. Then $\mathcal{P}_{\text {split }}=\mathcal{P}_{\mathrm{I}}$.
Proof. This is clear for $\mu=|B|=0$, as

$$
\mathcal{P}=\mathcal{P}_{\text {split }}=\mathcal{P}_{\mathrm{I}}=\left\{(x, z) \in \mathbb{R}^{A} \mid \ell \leq x \leq u\right\} .
$$

For $\mu=|B|=1$, there is only a single integer variable z, and by virtue of (7),

$$
\mathcal{P}_{\text {split }}=\bigcap_{\beta \in \mathbb{Z}} \operatorname{conv}\{(x, z) \in \mathcal{P} \mid \beta z \in \mathbb{Z}\}=\operatorname{conv}\{(x, z) \in \mathcal{P} \mid z \in \mathbb{Z}\}=\mathcal{P}_{\mathrm{I}} .
$$

3.3 Chvátal Closure

For any mixed-integer set S defined by $\left(A_{C}, A_{I}, b\right)$ with associated polyhedron P, one can define the Chvátal closure as a "one-side split closure" by

$$
P_{\mathrm{Ch}}:=\bigcap\left\{P^{\left(\beta, \beta_{0}\right)} \mid\left(\beta, \beta_{0}\right) \in \mathbb{Z}^{p} \times \mathbb{Z} \text { s.t. } P \cap\left\{\beta^{\top} z \leq \beta_{0}\right\}=\varnothing \text { or } P \cap\left\{\beta^{\top} z \geq \beta_{0}+1\right\}=\varnothing\right\}
$$

see, e.g., Conforti et al. (2010, 2014). It is clear that $P_{\text {split }} \subseteq P_{\mathrm{Ch}} \subseteq P$. For Periodic Event Scheduling, we find:

Theorem 3.3. The Chvátal closure of the MIP (3) is given by

$$
\mathcal{P}_{\mathrm{Ch}}=\{(x, z) \in \mathcal{P} \mid(x, z) \text { satisfies the cycle inequality (4) for all } \gamma \in \mathcal{C}\} .
$$

Proof. We need to determine those $\left(\beta, \beta_{0}\right) \in \mathbb{Z}^{B} \times \mathbb{Z}$ for which one of $\mathcal{P} \cap\left\{\beta^{\top} z \leq \beta_{0}\right\}$ or $\mathcal{P} \cap\left\{\beta^{\top} z \geq \beta_{0}+1\right\}$ is empty. Since $\Gamma x=T z$ holds for all $(x, z) \in \mathcal{P}$, we have $\beta^{\top} z=\frac{\gamma^{\top} x}{T}$ for $\gamma:=\beta^{\top} \Gamma \in \mathcal{C}$ for an arbitrary choice of $\beta \in \mathbb{Z}^{B}$. Let

$$
\begin{aligned}
& k_{1}:=\left\lceil\left.\min \left\{\left.\frac{\gamma^{\top} x}{T} \right\rvert\,(x, z) \in \mathcal{P}\right\} \right\rvert\,=\left\lceil\left.\frac{\gamma_{+}^{\top} \ell-\gamma_{-}^{\top} u}{T} \right\rvert\,\right.\right. \\
& k_{2}:=\left\lfloor\left.\max \left\{\left.\frac{\gamma^{\top} x}{T} \right\rvert\,(x, z) \in \mathcal{P}\right\} \right\rvert\,=\left\lfloor\frac{\gamma_{+}^{\top} u-\gamma_{-}^{\top} \ell}{T}\right\rfloor\right.
\end{aligned}
$$

Then $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \leq \beta_{0}\right\}=\varnothing$ for all $\beta_{0} \leq k_{1}-1$ and $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \geq \beta_{0}+1\right\}=\varnothing$ for $\beta_{0} \geq k_{2}$. If $k_{1} \geq k_{2}+1$, then $\mathcal{P}_{\mathrm{Ch}}=\varnothing$, and no $(x, z) \in \mathcal{P}$ satisfies the cycle inequality (4) for γ. Otherwise, both polyhedra $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \geq k_{1}\right\}$ and $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \leq k_{2}\right\}$ are non-empty, and they are defined by \mathcal{P} and Odijk's cycle inequalities (4).

Moreover, since $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \geq k_{1}\right\} \subseteq \mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \geq \beta_{0}\right\}$ for any $\beta_{0} \leq k_{1}$ and $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \leq k_{2}\right\} \subseteq$ $\mathcal{P} \cap\left\{\frac{\gamma^{\top} x}{T} \leq \beta_{0}\right\}$ for $\beta_{0} \geq k_{2}$, we can conclude that

$$
\bigcap_{\beta_{0} \leq k_{1}-1} P^{\left(\beta, \beta_{0}\right)}=P^{\left(\beta, k_{1}-1\right)} \text { and } \bigcap_{\beta_{0} \geq k_{2}} P^{\left(\beta, \beta_{0}\right)}=P^{\left(\beta, k_{2}\right)} .
$$

We conclude that for each $\beta \in \mathbb{Z}^{B}$ and k_{1} and k_{2} as above,

$$
\begin{aligned}
& \cap\left\{P^{\left(\beta, \beta_{0}\right)} \mid \beta_{0} \in \mathbb{Z} \text { s.t. } P \cap\left\{\beta^{\top} z \leq \beta_{0}\right\}=\varnothing \text { or } P \cap\left\{\beta^{\top} z \geq \beta_{0}+1\right\}=\varnothing\right\} \\
& =P^{\left(\beta, k_{1}-1\right)} \cap P^{\left(\beta, k_{2}\right)},
\end{aligned}
$$

from which the claim follows.

4 Separation of Split Cuts

From a practical point of view, the split closure can be a valuable tool to provide dual bounds for mixed integer programs. Of course, this requires efficient separation methods. As we have established that the split closure is of a specific form in the case of periodic timetabling, we can make use of the combinatorial structure behind flip inequalities to separate cuts.

4.1 Simple Cycles

We show at first that for separating split/flip inequalities, it suffices to consider simple oriented cycles, i.e., oriented cycles $\gamma \in \mathcal{C} \cap\{-1,0,1\}^{A}$ that yield a simple cycle on the underlying undirected graph of G.

Lemma 4.1 (Orientation-preserving cycle decomposition). Let $\gamma \in \mathcal{C}$. Then there are simple oriented cycles $\delta_{1}, \ldots, \delta_{r} \in \mathcal{C}$ such that $\gamma=\sum_{k=1}^{r} \delta_{k}, \gamma_{+}=\sum_{k=1}^{r} \delta_{k,+}$, and $\gamma_{-}=\sum_{k=1}^{r} \delta_{k,-}$.

Proof. Let $A^{+}:=\left\{a \in A \mid \gamma_{a}>0\right\}$ and $A^{-}:=\left\{a \in A \mid \gamma_{a}<0\right\}$ be the set of forward and backward arcs of γ, respectively. Construct a digraph G_{γ}, whose set of arcs A_{γ} is given by

$$
A_{\gamma}:=A^{+} \cup\left\{(j, i) \mid(i, j) \in A^{-}\right\} .
$$

Define $g_{i j}:=\gamma_{i j}$ if $(i, j) \in A^{+}$and $g_{j i}:=-\gamma_{i j}$ if $(i, j) \in A^{-}$. Then $g \geq 0$ is a circulation in G_{γ}, so that it decomposes into simple directed cycles d_{1}, \ldots, d_{r}. Finally set $\delta_{k, i j}:=d_{k, i j}$ if $(i, j) \in A^{+}$ and $\delta_{k, i j}:=-d_{k, j i}$ if $(i, j) \in A^{-}$.

Theorem 4.2. Let $F \subseteq A$ and $(x, z) \in \mathcal{P}$. If (x, z) satisfies all flip inequalities w.r.t. F and all simple oriented cycles γ, then it satisfies all flip inequalities $w . r$. . F and all $\gamma \in \mathcal{C}$. In particular,

$$
\mathcal{P}_{\text {split }}=\mathcal{P}_{\text {flip }}=\left\{(x, z) \in \mathcal{P} \left\lvert\, \begin{array}{c}
(x, z) \text { satisfies the flip inequality } \\
\text { for all simple oriented cycles } \gamma \in \mathcal{C} \text { and all } F \subseteq A
\end{array}\right.\right\} .
$$

Proof. The inclusion (\subseteq) is clear, it remains to show (\supseteq). Suppose that (x, z) satisfies the flip inequalities w.r.t. F and all simple oriented cycles. Moving to the flipped instance I_{F} as in Section 2.3, we can assume that $F=\varnothing$, so that it suffices to consider the change-cycle inequality (5) for an arbitrary $\gamma \in \mathcal{C}$. Let $\gamma=\delta_{1}+\cdots+\delta_{r}$ be an orientation-preserving decomposition as in Lemma 4.1. We proceed by induction on r.

If $r \leq 1$, then $\gamma=0$ or γ is simple, and there is nothing to show.
Now assume $r \geq 2$. There is nothing to show if $\alpha_{\gamma}=0$, as the left-hand side of the changecycle inequality is always non-negative. We hence assume $\alpha_{\gamma}>0$.

By induction hypothesis, (x, z) satisfies the change-cycle inequality for the cycles $\delta:=\delta_{1}$ and $\varepsilon:=\delta_{2}+\cdots+\delta_{r}$. If $\alpha_{\delta}=0$ resp. $\alpha_{\varepsilon}=0$, then we have $\alpha_{\gamma}=\alpha_{\varepsilon}$ resp. $\alpha_{\gamma}=\alpha_{\delta}$, as $\alpha_{\gamma}=\left[\alpha_{\delta}+\alpha_{\varepsilon}\right]_{T}$. The validity of the change-cycle inequality for γ then follows immediately because the right-hand side equals the one for ε resp. δ, while the left-hand side can only become larger.

We are hence left with the case $\alpha_{\gamma}, \alpha_{\delta}, \alpha_{\varepsilon}>0$. In this case we can rewrite the change-cycle inequality (5) so that it is of the form

$$
\frac{\gamma_{+}^{\top}(x-\ell)}{\alpha_{\gamma}}+\frac{\gamma_{-}^{\top}(x-\ell)}{T-\alpha_{\gamma}} \geq 1,
$$

which will be the key ingredient in our argumentation. Define

$$
\kappa_{\delta}:=\min \left\{\frac{\alpha_{\delta}}{\alpha_{\gamma}}, \frac{T-\alpha_{\delta}}{T-\alpha_{\gamma}}\right\} \quad \text { and } \quad \kappa_{\varepsilon}:=\min \left\{\frac{\alpha_{\varepsilon}}{\alpha_{\gamma}}, \frac{T-\alpha_{\varepsilon}}{T-\alpha_{\gamma}}\right\} .
$$

With $y:=x-\ell$, using that (x, z) satisfies the change-cycle inequality w.r.t. both δ and ε,

$$
\begin{aligned}
\frac{\gamma_{+}^{\top} y}{\alpha_{\gamma}}+\frac{\gamma_{-y}^{\top} y}{T-\alpha_{\gamma}} & =\frac{\delta_{+}^{\top} y}{\alpha_{\gamma}}+\frac{\delta_{-}^{\top} y}{T-\alpha_{\gamma}}+\frac{\varepsilon_{+}^{\top} y}{\alpha_{\gamma}}+\frac{\varepsilon_{-}^{\top} y}{T-\alpha_{\gamma}} \\
& =\frac{\alpha_{\delta}}{\alpha_{\gamma}} \frac{\delta_{+}^{\top} y}{\alpha_{\delta}}+\frac{T-\alpha_{\delta}}{T-\alpha_{\gamma}} \frac{\delta_{-}^{\top} y}{T-\alpha_{\delta}}+\frac{\alpha_{\varepsilon}}{\alpha_{\gamma}} \frac{\varepsilon_{+}^{\top} y}{\alpha_{\varepsilon}}+\frac{T-\alpha_{\varepsilon}}{T-\alpha_{\gamma}} \frac{\varepsilon_{-}^{\top} y}{T-\alpha_{\varepsilon}} \\
& \geq \kappa_{\delta}\left(\frac{\delta_{+}^{\top} y}{\alpha_{\delta}}+\frac{\delta_{-}^{\top} y}{T-\alpha_{\delta}}\right)+\kappa_{\varepsilon}\left(\frac{\varepsilon_{+}^{\top} y}{\alpha_{\varepsilon}}+\frac{\varepsilon_{-}^{\top} y}{T-\alpha_{\varepsilon}}\right) \\
& \geq \kappa_{\delta}+\kappa_{\varepsilon},
\end{aligned}
$$

Claim. $\kappa_{\delta}+\kappa_{\varepsilon}=1$.
If the claim holds, then the change-cycle inequality w.r.t. γ holds for (x, z), and we are done. Recall that $\alpha_{\gamma}=\left[\alpha_{\delta}+\alpha_{\varepsilon}\right]_{T}$, so that

$$
\alpha_{\gamma}= \begin{cases}\alpha_{\delta}+\alpha_{\varepsilon} & \text { if } \alpha_{\delta}+\alpha_{\varepsilon}<T \\ \alpha_{\delta}+\alpha_{\varepsilon}-T & \text { otherwise }\end{cases}
$$

If $\alpha_{\delta}+\alpha_{\varepsilon}<T$, then $\alpha_{\gamma}=\alpha_{\delta}+\alpha_{\varepsilon}$, hence $\alpha_{\delta} \leq \alpha_{\gamma}$ and $T-\alpha_{\gamma}=T-\alpha_{\delta}-\alpha_{\varepsilon} \leq T-\alpha_{\delta}$, so that $\kappa_{\delta}=\alpha_{\delta} / \alpha_{\gamma}$. Analogously, $\kappa_{\varepsilon}=\alpha_{\varepsilon} / \alpha_{\gamma}$, so that $\kappa_{\delta}+\kappa_{\varepsilon}=1$.

In the other case, we have $\alpha_{\gamma}=\alpha_{\delta}+\alpha_{\varepsilon}-T$. From this, we infer $\alpha_{\delta}=\alpha_{\gamma}+T-\alpha_{\varepsilon} \geq \alpha_{\gamma}$ and $T-\alpha_{\gamma}=2 T-\alpha_{\delta}-\alpha_{\varepsilon} \geq\left(T-\alpha_{\delta}\right)+\left(T-\alpha_{\varepsilon}\right) \geq T-\alpha_{\delta}$, so that $\kappa_{\delta}=\left(T-\alpha_{\delta}\right) /\left(T-\alpha_{\gamma}\right)$. Analogously, $\kappa_{\varepsilon}=\left(T-\alpha_{\varepsilon}\right) /\left(T-\alpha_{\gamma}\right)$, so that again $\kappa_{\delta}+\kappa_{\varepsilon}=1$.

Using Theorem 3.3 and Remark 2.13. Theorem 4.2 implies the analogous result for the Chvátal split closure and the cycle inequalities:

Corollary 4.3. Let $(x, z) \in \mathcal{P}$. If (x, z) satisfies all cycle inequalities w.r.t. all simple oriented cycles γ, then it satisfies all cycle inequalities for all $\gamma \in \mathcal{C}$. In particular,

$$
\mathcal{P}_{\mathrm{Ch}}=\left\{\begin{array}{l|l}
(x, z) \in \mathcal{P} & \begin{array}{c}
(x, z) \text { satisfies the cycle inequality } \\
\text { for all simple oriented cycles } \gamma \in \mathcal{C}
\end{array}
\end{array}\right\} .
$$

4.2 Separation Hardness

N. Lindner and Liebchen (2020) outline a pseudo-polynomial time algorithm based on the dynamic program by Borndörfer, Hoppmann, et al. (2020) that finds a maximally violated flip inequality (if there is any), i.e., a simple cycle γ and a set $F \subseteq A$ such that the difference of the right-hand and left-hand sides of (6) is maximum. We prove here that pseudo-polynomial time is best possible unless $\mathrm{P}=\mathrm{NP}$:

Theorem 4.4. Given $(x, z) \in \mathcal{P}$ and $M \geq 0$, it is weakly $N P$-hard to decide whether there exist a simple cycle γ and a subset $F \subseteq A$ such that (x, z) violates the flip inequality for (γ, F) by at least M.

Proof. We reduce the weakly NP-hard Ternary Partition Problem (Borndörfer, Hoppmann, et al. 2020): Given $m \in \mathbb{N}$ and $c \in \mathbb{N}^{m}$, is there $a \in\{-1,0,1\}^{m}$ such that $\sum_{i=1}^{m} a_{i} c_{i}= \pm \frac{1}{2} \sum_{i=1}^{m} c_{i}$? For a Ternary Partition intance (m, c), we define a PESP instance (G, T, ℓ, u, w) as follows: The digraph $G=(V, A)$ is given by a complete directed graph on the vertex set

$$
V:=\left\{1^{+}, 1^{-}, 2^{+}, 2^{-}, \ldots, m^{+}, m^{-}\right\},
$$

where we delete the arcs $\left(1^{-}, 1^{+}\right),\left(2^{-}, 2^{+}\right), \ldots,\left(m^{-}, m^{+}\right)$. We set $T:=\sum_{i=1}^{m} c_{i}$ and

$$
\ell_{i^{+} i^{-}}:=c_{i}, \quad u_{i^{+} i^{-}}:=T, \quad w_{i^{+} i^{-}}:=1 \quad \text { for all } i \in\{1, \ldots, m\} .
$$

For all other arcs a, we set $\ell_{a}:=u_{a}:=w_{a}:=0$. As for any PESP instance, the optimal solution to the LP relaxation of (3) is given by $x^{*}=\ell$.

Suppose now that $x^{*}=\ell$ violates some flip inequality (6) for some simple oriented cycle γ and some $F \subseteq A$ by at least $M:=\frac{T^{2}}{4}$. Since $x^{*}=\ell$, only arcs in F contribute non-trivially to the left-hand side of (6), moreover, these arcs are all of the form $\left(i^{+}, i^{-}\right)$. We hence obtain

$$
\begin{equation*}
\alpha_{\gamma, F} \sum_{\left(i^{+}, i^{-}\right) \in F, \gamma_{i^{+}+}-=1}\left(T-c_{i}\right)+\left(T-\alpha_{\gamma, F}\right) \sum_{\left(i^{+}, i^{-}\right) \in F, \gamma_{i^{+}+}-=-1}\left(T-c_{i}\right) \leq \alpha_{\gamma, F}\left(T-\alpha_{\gamma, F}\right)-M, \tag{13}
\end{equation*}
$$

where $\alpha_{\gamma, F}=\left[-\sum_{\left(i^{+}, i^{-}\right) \notin F} \gamma_{i^{+} i^{-}} \mathcal{C}_{i}\right]_{T}$. As the left-hand side of (6) is non-negative, we have that $\alpha_{\gamma, F}\left(T-\alpha_{\gamma, F}\right) \geq M=T^{2} / 4$, which implies $\alpha_{\gamma, F}=T / 2$. Set $a_{i}:=-\gamma_{i^{+}, i^{-}}$for all $i \in\{1, \ldots, m\}$. Then $\left[\sum_{i=1}^{m} a_{i} c_{i}\right]_{T}=\alpha_{\gamma, F}=T / 2$, and as $-T \leq \sum_{i=1}^{m} a_{i} c_{i} \leq T$, we find that $\sum_{i=1}^{m} a_{i} c_{i}= \pm T / 2$. In particular, a violated flip inequality leads to a positive answer to the Ternary Partition instance.

Conversely, suppose that there is $a \in\{-1,0,1\}^{m}$ such that $\sum_{i=1}^{m} a_{i} c_{i}= \pm T / 2$. Construct a simple oriented cycle γ with $\gamma_{i^{+} i^{-}}:=-a_{i}$ for all $i \in\{1, \ldots, m\}$. Then $\alpha_{\gamma, \varnothing}=T / 2$, and the flip inequality for γ and $F=\varnothing$ (i.e., the change-cycle inequality for γ) is violated by at least $T^{2} / 4=M$, because the left-hand side of (13) vanishes.

In practice, the dynamic program indicated in (N. Lindner \& Liebchen, 2020) consumes too much memory. It is therefore advantageous to switch to a cut-generating MIP. Balas and Saxena (2008) describe a parametric MIP with a single parameter $\theta \in[0,1]$ for this purpose. We are however in a better situation: Translating to periodic timetabling via Theorem 3.1, the parameter θ essentially corresponds to $\alpha_{\gamma, F}$, which is always an integer between 0 and $T-1$. This means that the parametric MIP can be replaced by a finite sequence of standard IPs for each such integer $\alpha_{\gamma, F}$. The formulation of the IP (14) is straightforward from the definition (6) of flip inequalities:
Theorem 4.5. Let $(x, z) \in \mathcal{P} \backslash \mathcal{P}_{\text {flip }}$ and $\alpha \in\{1, \ldots, T\}$. Then a maximally violated flip inequality w.r.t. (x, z) with $\alpha_{\gamma, F}=\alpha$ among all oriented cycles γ and all $F \subseteq A$ is found by the following integer program:

Minimize

$$
\begin{array}{r}
\quad(T-\alpha) \sum_{a \in A}\left(x_{a}-\ell_{a}\right) y_{a}^{+}+\alpha \sum_{a \in A}\left(x_{a}-\ell_{a}\right) y_{a}^{-} \\
+\alpha \sum_{a \in A}\left(x_{a}-\ell_{a}\right) f_{a}^{+}+(T-\alpha) \sum_{a \in A}\left(u_{a}-x_{a}\right) f_{a}^{-}
\end{array}
$$

s.t.

$$
\begin{align*}
\sum_{a \in A} \ell_{a}\left(y_{a}^{-}-y_{a}^{+}\right)+\sum_{a \in A} u_{a}\left(f_{a}^{-}-f_{a}^{+}\right)+k T & =\alpha \\
\sum_{a \in \delta^{+}(v)} \gamma_{a}-\sum_{a \in \delta^{-}(v)} \gamma_{a} & =0, \tag{14}\\
f^{+}-f^{-}+y^{+}-y^{-} & =\gamma, \\
0 \leq f^{+}+f^{-}+y^{+}+y^{-} & \leq 1, \\
f^{+}, f^{-}, y^{+}, y^{-} & \in\{0,1\}^{A}, \\
\gamma & \in\{-1,0,1\}^{A}, \\
k & \in \mathbb{Z} .
\end{align*}
$$

Any feasible solution of (14) with objective value less than $\alpha(T-\alpha)$ will produce a violated flip inequality. Recall from Remark 2.13 that flip inequalities with $\alpha_{\gamma, F}=0$ are trivial and cannot be violated, and that due to symmetry, it is not necessary to consider the IP (14) for $\alpha \geq T / 2$.

4.3 Separation for a Fixed Cycle

We discuss now how to find a maximally violated flip inequality in linear time when the cycle γ is already fixed. To this end, we take the perspective of split cuts. Consider again a mixedinteger set defined by $\left(A_{C}, A_{I}, b\right)$ and the associated polyhedron $P=\left\{A_{C} x+A_{I} z \leq b\right\}$. When a split $\left(\beta, \beta_{0}\right)$ is fixed, then the separation problem on $P^{\left(\beta, \beta_{0}\right)}$ can be solved as follows Balas et al. 1993: Bonami, 2012; Conforti et al. 2014): Given $(x, z) \in P$, check whether $\beta^{\top} z \leq \beta_{0}$ or $\beta^{\mid} z \geq \beta_{0}+1$. If yes, then $(x, z) \in P^{\left(\beta, \beta_{0}\right)}$. Otherwise, solve the linear program

Minimize $(s-t)^{\top} b+\frac{1}{\beta^{\top} z-\beta_{0}} \cdot t^{\top}\left(b-A_{C} x-A_{I} z\right)$
s.t.

$$
\begin{align*}
(s-t)^{\top} A_{C} & =0 \tag{15}\\
(s-t)^{\top} A_{I} & =\beta^{\top} \\
s, t & \geq 0 .
\end{align*}
$$

If the value of 15 is at least $\beta_{0}+1$, then $(x, z) \in P^{\left(\beta, \beta_{0}\right)}$, otherwise it is not. In the latter case, if we take a basic optimal solution $\left(s^{*}, t^{*}\right)$, then (x, z) is separated by the split inequality w.r.t. $s^{*}-t^{*}$. This cut-generating LP (15) finds a maximally violated split inequality in the following sense:

Lemma 4.6. Suppose that $(x, z) \in P \backslash P^{\left(\beta, \beta_{0}\right)}$. Let $\left(s^{*}, t^{*}\right)$ be an optimal basic solution of (15), $\lambda^{*}:=s^{*}-t^{*}$. Then

$$
\begin{equation*}
\left[\lambda^{* \top} b\right]_{1}\left(1-\left[\lambda^{* \top} b\right]_{1}\right)-\left(1-\left[\lambda^{* \top} b\right]_{1}\right) \lambda_{+}^{* \top}\left(b-A_{C} x-A_{I} z\right)-\left[\lambda^{* \top} b\right]_{1} \lambda_{-}^{* \top}\left(b-A_{C} x-A_{I} z\right) \tag{16}
\end{equation*}
$$

is maximum among all $\lambda=s-t$ such that (s, t) is feasible for (15) and $\lambda^{\top} b \in\left[\beta_{0}, \beta_{0}+1\right)$.
Proof. Since $\left(s^{*}, t^{*}\right)$ is basic, we have $\lambda_{+}^{*}=s$ and $\lambda_{-}^{*}=t$. As $(x, z) \in P \backslash P^{\left(\beta, \beta_{0}\right)}, \beta^{\top} z-\beta_{0}>0$. Then λ^{*} maximizes

$$
-\left(\beta^{\top} z-\beta_{0}\right) \lambda^{\top} b-\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) .
$$

Adding a constant term, λ^{*} also maximizes

$$
\begin{aligned}
& \left(\beta^{\top} z-\beta_{0}\right)\left(\beta_{0}+1\right)-\left(\beta^{\top} z-\beta_{0}\right) \lambda^{\top} b-\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) \\
& =\left(\beta^{\top} z-\beta_{0}\right)\left(\beta_{0}+1-\lambda^{\top} b\right)-\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) .
\end{aligned}
$$

Observing that $\lambda^{\top}\left(b-A_{C} x-A_{I} z\right)=\lambda^{\top} b-\beta^{\top} z$, this is the same as

$$
\begin{aligned}
= & \left(\lambda^{\top} b-\lambda^{\top}\left(b-A_{C} x-A_{I} z\right)-\beta_{0}\right)\left(\beta_{0}+1-\lambda^{\top} b\right)-\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) \\
= & \left(\lambda^{\top} b-\beta_{0}\right)\left(\beta_{0}+1-\lambda^{\top} b\right)-\left(\beta_{0}+1-\lambda^{\top} b\right) \lambda^{\top}\left(b-A_{C} x-A_{I} z\right)-\lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) \\
= & \left(\lambda^{\top} b-\beta_{0}\right)\left(\beta_{0}+1-\lambda^{\top} b\right)-\left(\beta_{0}+1-\lambda^{\top} b\right) \lambda_{+}^{\top}\left(b-A_{C} x-A_{I} z\right) \\
& -\left(\lambda^{\top} b-\beta_{0}\right) \lambda_{-}^{\top}\left(b-A_{C} x-A_{I} z\right) .
\end{aligned}
$$

Since $\lambda^{\top} b \in\left[\beta_{0}, \beta_{0}+1\right),\left[\lambda^{\top} b\right]_{1}=\lambda^{\top} b-\beta_{0}$ and $1-\left[\lambda^{\top} b\right]_{1}=\beta_{0}+1-\lambda^{\top} b$, and we arrive at (16).

Note that the condition $\lambda^{\top} b \in\left[\beta_{0}, \beta_{0}+1\right)$ in Lemma 4.6 is no restriction, since it suffices to consider λ for which $\left\lfloor\lambda^{\top} b\right\rfloor=\beta_{0}$ (cf. Section 3). We obtain the following in the context of periodic timetabling:

Theorem 4.7. Let \mathcal{P} be a fractional periodic timetabling polytope. Let $(x, z) \in \mathcal{P}, \gamma \in \mathcal{C}$ with $\gamma^{\top} x \notin T \mathbb{Z}$, and set $g:=T /\left[-\gamma^{\top} x\right]_{T}$. Then the flip inequality w.r.t. γ and

$$
F:=\left\{a \in A \mid \gamma_{a}>0 \text { and } u_{a}-\ell_{a} \geq g\left(u_{a}-x_{a}\right)\right\} \cup\left\{a \in A \mid \gamma_{a}<0 \text { and } u_{a}-\ell_{a} \leq g\left(x_{a}-\ell_{a}\right)\right\}
$$

is maximally violated by (x, z) among the flip inequalities w.r.t. γ. In particular, a maximally violated flip inequality w.r.t. γ can be found in $O(|\gamma|)$ time.
Proof. We first write down the cut-generating LP (15) for the PESP situation (9):
Minimize $\quad s_{3}^{\top} u-t_{3}^{\top} u-s_{4}^{\top} \ell+t_{4}^{\top} \ell+\frac{1}{\beta^{\top} z-\beta_{0}} \cdot\left(t_{3}^{\top}(u-x)+t_{4}^{\top}(x-\ell)\right)$
s.t.

$$
\begin{aligned}
\left(s_{1}-t_{1}-s_{2}+t_{2}\right)^{\top} \Gamma+s_{3}^{\top}-t_{3}^{\top}-s_{4}^{\top}+t_{4}^{\top} & =0, \\
-s_{1}+t_{1}+s_{2}-t_{2} & =\frac{\beta}{T}, \\
s_{1}, s_{2}, s_{3}, s_{4}, t_{1}, t_{2}, t_{3}, t_{4} & \geq 0 .
\end{aligned}
$$

Recall from Theorem 3.1 that a flip inequality w.r.t. γ corresponds to a split inequality derived from $P^{\left(\beta, \beta_{0}\right)}$ with $\beta^{\top} \Gamma=-\gamma$. Since $(x, z) \in \mathcal{P}$, we have $\beta_{0}=\left\lfloor\beta^{\top} z\right\rfloor=\left\lfloor-\gamma^{\top} x / T\right\rfloor$. Eliminating the variables $s_{1}, s_{2}, t_{1}, t_{2}$, and setting

$$
g:=\frac{1}{\beta^{\top} z-\beta_{0}}=\frac{1}{\left[\beta^{\top} z\right]_{1}}=\frac{1}{\left[\beta^{\top} \Gamma x / T\right]_{1}}=\frac{1}{\left[-\gamma^{\top} x / T\right]_{1}}=\frac{T}{\left[-\gamma^{\top} x\right]_{T}},
$$

this becomes
Minimize
s.t.

$$
\begin{aligned}
s_{3}^{\top} u-t_{3}^{\top} u-s_{4}^{\top} \ell+t_{4}^{\top} \ell+g \cdot\left(t_{3}^{\top}(u-x)+t_{4}^{\top}(x-\ell)\right) & \\
s_{3}-t_{3}-s_{4}+t_{4} & =-\frac{\gamma}{T} \\
s_{3}, s_{4}, t_{3}, t_{4} & \geq 0 .
\end{aligned}
$$

This linear program is trivial to solve: In each basic solution, for each arc $a \in A$ at most one of $s_{3, a}, s_{4, a}, t_{3, a}, t_{4, a}$ will be non-zero, and $s_{3, a}=s_{4, a}=t_{3, a}=t_{4, a}=0$ for all $a \in A$ with $\gamma_{a}=0$. We examine the contribution to the objective for each arc a in γ in such a basic solution:

If $\gamma_{a}>0$, then either $t_{3, a}>0$ or $s_{4, a}>0$. In the first case, the contribution to the objective is $\gamma_{a}\left(g\left(u_{a}-x_{a}\right)-u_{a}\right) / T$, otherwise $-\gamma_{a} \ell_{a} / T$. Otherwise, if $\gamma_{a}<0$, then either $s_{3, a}>0$ or $t_{4, a}>$ 0 , the contribution being $-\gamma_{a} u_{a} / T$ resp. $-\gamma_{a}\left(\ell_{a}+g\left(x_{a}-\ell_{a}\right)\right) / T$. In particular, an optimal solution is given by

$$
\begin{array}{lr}
t_{3, a}:=\frac{\gamma_{a}}{T} & \text { for all } a \text { s.t. } \gamma_{a}>0 \text { and }-\ell_{a} \geq g\left(u_{a}-x_{a}\right)-u_{a} \\
s_{4, a}:=\frac{\gamma_{a}}{T} & \text { for all } a \text { s.t. } \gamma_{a}>0 \text { and }-\ell_{a}<g\left(u_{a}-x_{a}\right)-u_{a} \\
s_{3, a}:=-\frac{\gamma_{a}}{T} & \text { for all } a \text { s.t. } \gamma_{a}<0 \text { and } u_{a} \leq g\left(x_{a}-\ell_{a}\right)+\ell_{a} \\
t_{4, a}:=-\frac{\gamma_{a}}{T} & \text { for all } a \text { s.t. } \gamma_{a}<0 \text { and } u_{a}>g\left(x_{a}-\ell_{a}\right)+\ell_{a}
\end{array}
$$

and $s_{3, a}:=s_{4, a}:=t_{3, a}:=t_{4, a}:=0$ otherwise. The cut derived from this solution is the split inequality for $\lambda=s-t$, which by Theorem 3.1 corresponds to the flip inequality for γ and

$$
\begin{aligned}
F & =\left\{a \in A \mid \lambda_{3, a} \neq 0\right\} \\
& =\left\{a \in A \mid \gamma_{a}>0 \text { and } u_{a}-\ell_{a} \geq g\left(u_{a}-x_{a}\right)\right\} \cup\left\{a \in A \mid \gamma_{a}<0 \text { and } u_{a}-\ell_{a} \leq g\left(x_{a}-\ell_{a}\right)\right\} .
\end{aligned}
$$

Observe that by (11), $T\left[\lambda^{\top} b\right]_{1}=\alpha_{\gamma, F}$. Using (12) and multiplying (16) with T^{2} therefore yields the violation of the flip inequality w.r.t. (γ, F). By Lemma 4.6, we conclude that the violation is indeed maximal.

5 Comparing Split Closures

Recall that the Periodic Event Scheduling Problem can be formulated in two ways as a MIP, where the incidence-based formulation (2) is essentially a special case of the cycle-based formulation (3) by virtue of Remark (2.6. The methods of Section 3 therefore apply to both formulations, and the question arises whether one of the two split closures is stronger. We will show that both closures are in fact of the same strength in Section 5.3 .

Typically, the integer variables in both formulations are general. However, under certain circumstances, the periodic offset variables p_{a} in (2) can be assumed to be binary (Liebchen, 2006). We will discuss Section 5.4 how to achieve binary variables by a subdivision procedure. We will show that this binarization approach does not lead to a stronger split closure.

We show in Section 5.2 that split closures commute with Cartesian products, which means in the PESP situation that the split closures can be considered on blocks of G individually.

However, to be able to compare split closures of different polyhedra, we need to develop a few technicalities first in Section5.1.

5.1 Mixed-Integer-Compatible Maps

We begin with two mixed-integer sets

$$
S_{i}:=\left\{(x, z) \in \mathbb{R}^{n_{i}} \times \mathbb{Z}^{p_{i}} \mid A_{C}^{i} x+A_{I}^{i} z \leq b^{i}\right\}, \quad i \in\{1,2\},
$$

and the associated polyhedra

$$
P_{i}:=\left\{(x, z) \in \mathbb{R}^{n_{i}} \times \mathbb{R}^{p_{i}} \mid A_{C}^{i} x+A_{I}^{i} z \leq b^{i}\right\}, \quad\left(P_{i}\right)_{\mathrm{I}}:=\operatorname{conv}\left(S_{i}\right), \quad i \in\{1,2\} .
$$

Definition 5.1. A map $\varphi: \mathbb{R}^{n_{1}} \times \mathbb{R}^{p_{1}} \rightarrow \mathbb{R}^{n_{2}} \times \mathbb{R}^{p_{2}}$ is mixed-integer-compatible if φ is affine and $\varphi\left(\mathbb{R}^{n_{1}} \times \mathbb{Z}^{p_{1}}\right) \subseteq \mathbb{R}^{n_{2}} \times \mathbb{Z}^{p_{2}}$.

In particular, if $\varphi\left(P_{1}\right) \subseteq P_{2}$ for a mixed-integer-compatible map φ, then $\varphi\left(S_{1}\right) \subseteq S_{2}$ and $\varphi\left(\left(P_{1}\right)_{\mathrm{I}}\right) \subseteq\left(P_{2}\right)_{\mathrm{I}}$.

Lemma 5.2. Let $\psi: \mathbb{R}^{n_{1}} \times \mathbb{R}^{p_{1}} \rightarrow \mathbb{R}^{n_{2}} \times \mathbb{R}^{p_{2}}$ be a linear map and let $\psi^{*}: \mathbb{R}^{n_{2}} \times \mathbb{R}^{p_{2}} \rightarrow \mathbb{R}^{n_{1}} \times \mathbb{R}^{p_{1}}$ be the corresponding dual linear map, identifying dual vector spaces choosing standard bases. Then the following are equivalent:
(1) ψ is mixed-integer-compatible.
(2) $\psi\left(\mathbb{R}^{n_{1}} \times\{0\}\right) \subseteq \mathbb{R}^{n_{2}} \times\{0\}$ and $\psi^{*}\left(\{0\} \times \mathbb{Z}^{p_{2}}\right) \subseteq\{0\} \times \mathbb{Z}^{p_{1}}$.

Proof. (1) \Rightarrow (2): For the first statement consider for $i \in\left[n_{1}\right]$ the i-th standard basis vector $e_{i} \in \mathbb{R}^{n_{1}}$. Then $\psi\left(e_{i}, 0\right)=(x, z)$ for some $x \in \mathbb{R}^{n_{2}}$ and $z \in \mathbb{R}^{p_{2}}$. But as ψ is linear and mixed-integer-compatible, $\psi\left(\lambda e_{i}, 0\right)=(\lambda x, \lambda z)$ with $\lambda z \in \mathbb{Z}^{p_{2}}$ for all $\lambda \in \mathbb{R}$, so that $z=0$.

For the second statement, consider for $j \in\left[p_{2}\right]$ the j-th standard basis vector e_{j}. Then for $i \in\left[n_{1}\right]$, the i-th coordinate of $\psi^{*}\left(0, e_{j}\right)$ is given by $\left(0, e_{j}\right)^{\top} \psi\left(e_{i}, 0\right)=0$ by the first statement. For $i \in\left[p_{1}\right]$, the $\left(n_{1}+i\right)$-th coordinate of $\psi^{*}\left(0, e_{j}\right)$ is given by $\left(0, e_{j}\right)^{\top} \psi\left(0, e_{i}\right)$, which is integral as ψ is mixed-integer-compatible.
(2) $\Rightarrow(1)$: Let $(x, z) \in \mathbb{R}^{n_{1}} \times \mathbb{Z}^{p_{1}}$. Then $\psi(x, z)=\psi(x, 0)+\psi(0, z)$, so using linearity and the first statement in (2), it suffices to consider $\psi\left(0, e_{i}\right)$ for $i \in\left[p_{1}\right]$. But now for $j \in\left[p_{2}\right]$, the ($n_{1}+i$)-th coordinate of $\psi^{*}\left(0, e_{j}\right)$ is integral by the second statement in (2), and since it is given by $\left(0, e_{j}\right)^{\top} \psi\left(0, e_{i}\right)$, we conclude that the $\left(n_{2}+j\right)$-th coordinate of $\psi\left(0, e_{i}\right)$ is integer. Consequently, ψ must be mixed-integer-compatible.

The following is a generalization of Theorem 1 in (Dash et al., 2018).
Theorem 5.3. Let φ be a mixed-integer-compatible map with $\varphi\left(P_{1}\right) \subseteq P_{2}$. Then $\varphi\left(\left(P_{1}\right)_{\text {split }}\right) \subseteq$ $\left(P_{2}\right)_{\text {split }}$.

Proof. Consider $\left(x_{1}, z_{1}\right) \in\left(P_{1}\right)_{\text {split }}$ and $\beta_{2} \in \mathbb{Z}^{p_{2}}$. We need to show that $\varphi\left(x_{1}, z_{1}\right)$ is a convex combination of points $\left(x_{2}^{i}, z_{2}^{i}\right) \in P_{2}$ with $\beta_{2}^{\top} z_{2}^{i}$ integral. Since φ is mixed-integer-compatible, the last p_{2} entries of $\varphi(0,0)$ are integral, and so the linear map $\psi:=\varphi-\varphi(0,0)$ is mixed-integer-compatible as well. By Lemma 5.2, $\psi^{*}\left(0, \beta_{2}\right)=\left(0, \beta_{1}\right)$ for some $\beta_{1} \in \mathbb{Z}^{p_{1}}$. Since $\left(x_{1}, z_{1}\right) \in\left(P_{1}\right)_{\text {split, }}$, it is a convex combination of $\left(x_{1}^{i}, z_{1}^{i}\right) \in P_{1}$ with $\beta_{1}^{T} z_{1}^{i} \in \mathbb{Z}$. Write

$$
\left(x_{2}^{i}, z_{2}^{i}\right):=\varphi\left(x_{1}^{i}, z_{1}^{i}\right)=\psi\left(x_{1}^{i}, z_{1}^{i}\right)+\varphi(0,0) \in P_{2} .
$$

Then

$$
\begin{aligned}
\beta_{2}^{\top} z_{2}^{i}=\left(0, \beta_{2}\right)^{\top}\left(x_{2}^{i}, z_{2}^{i}\right) & =\left(0, \beta_{2}\right)^{\top} \psi\left(x_{1}^{i}, z_{1}^{i}\right)+\left(0, \beta_{2}\right)^{\top} \varphi(0,0) \\
& =\psi^{*}\left(0, \beta_{2}\right)^{\top}\left(x_{1}^{i}, z_{1}^{i}\right)+\left(0, \beta_{2}\right)^{\top} \varphi(0,0) \\
& =\left(0, \beta_{1}\right)^{\top}\left(x_{1}^{i}, z_{1}^{i}\right)+\left(0, \beta_{2}\right)^{\top} \varphi(0,0) \\
& =\beta_{1}^{\top} z_{1}^{i}+\left(0, \beta_{2}\right)^{\top} \varphi(0,0) \\
& \in \mathbb{Z} .
\end{aligned}
$$

As φ is affine and hence preserve convex combinations, $\varphi\left(x_{1}, z_{1}\right)$ is a convex combination of the $\left(x_{2}^{i}, z_{2}^{i}\right) \in P_{2}$.

Example 5.4. An example for a mixed-integer-compatible map is provided by the change of the cycle basis in the context of periodic timetabling. Let $I=(G, T, \ell, u, w)$ be a PESP instance and let Γ, Γ^{\prime} be two cycle matrices of integral cycle bases of G. As in Remark 2.9, there is an unimodular matrix U such that $\Gamma^{\prime}=U \Gamma$. The map $\varphi:(x, z) \mapsto(x, U z)$ maps the fractional periodic timetabling polytope \mathcal{P}_{1} defined by Γ to the fractional periodic timetabling polytope \mathcal{P}_{2} defined by Γ^{\prime}. The map φ is clearly linear and maps mixed-integer points to mixed-integer points, so that φ is mixed-integer-compatible by definition. We conclude that $\varphi\left(\left(\mathcal{P}_{1}\right)_{\text {split }}\right) \subseteq$ $\left(P_{2}\right)_{\text {split. }}$. Since U is unimodular, φ has a mixed-integer compatible inverse, so that φ provides a "mixed-integer" isomorphism of $\left(P_{1}\right)_{\text {split }}$ with $\left(P_{2}\right)_{\text {split }}$.

5.2 Split Closure of Cartesian Products

As first application of mixed-integer-compatible maps, we prove that split closures are compatible with Cartesian products.

Theorem 5.5. Consider two mixed-integer sets

$$
S_{i}=\left\{(x, z) \in \mathbb{R}^{n_{i}} \times \mathbb{Z}^{p_{i}} \mid A_{C}^{i} x+A_{I}^{i} z \leq b^{i}\right\}, \quad i \in\{1,2\},
$$

and the associated polyhedra

$$
P_{i}:=\left\{(x, z) \in \mathbb{R}^{n_{i}} \times \mathbb{R}^{p_{i}} \mid A_{C}^{i} x+A_{I}^{i} z \leq b^{i}\right\}, \quad i \in\{1,2\} .
$$

Then $\left(P_{1} \times P_{2}\right)_{\text {split }}=\left(P_{1}\right)_{\text {split }} \times\left(P_{2}\right)_{\text {split }}$.

Proof. We first prove $\left(P_{1}\right)_{\text {split }} \times\left(P_{2}\right)_{\text {split }} \subseteq\left(P_{1} \times P_{2}\right)_{\text {split }}$ using the characterization (7):

$$
\begin{aligned}
& \left(P_{1}\right)_{\text {split }} \times\left(P_{2}\right)_{\text {split }} \\
& =\left(\bigcap_{\beta_{1} \in \mathbb{Z}^{p_{1}}} \operatorname{conv}\left(\left\{\left(x_{1}, z_{1}\right) \in P_{1} \mid \beta_{1}^{\top} z_{1} \in \mathbb{Z}\right\}\right)\right) \times\left(\bigcap_{\beta_{2} \in \mathbb{Z}^{p_{2}}} \operatorname{conv}\left(\left\{\left(x_{2}, z_{2}\right) \in P_{2} \mid \beta_{2}^{\top} z_{2} \in \mathbb{Z}\right\}\right)\right) \\
& =\bigcap_{\beta_{1} \in \mathbb{Z}^{p_{1}}} \bigcap_{\beta_{2} \in \mathbb{Z}^{p_{2}}}\left(\operatorname{conv}\left(\left\{\left(x_{1}, z_{1}\right) \in P_{1} \mid \beta_{1}^{\top} z_{1} \in \mathbb{Z}\right\}\right) \times \operatorname{conv}\left(\left\{\left(x_{2}, z_{2}\right) \in P_{2} \mid \beta_{2}^{\top} z_{2} \in \mathbb{Z}\right\}\right)\right) \\
& =\bigcap_{\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{p_{1} \times \mathbb{Z}^{p_{2}}}} \operatorname{conv}\left(\left\{\left(x_{1}, z_{1}\right) \in P_{1} \mid \beta_{1}^{\top} z_{1} \in \mathbb{Z}\right\} \times\left\{\left(x_{2}, z_{2}\right) \in P_{2} \mid \beta_{2}^{\top} z_{2} \in \mathbb{Z}\right\}\right) \\
& =\bigcap_{\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{p_{1} \times \mathbb{Z}^{p_{2}}}} \operatorname{conv}\left(\left\{\left(x_{1}, z_{1}, x_{2}, z_{2}\right) \in P_{1} \times P_{2} \mid \beta_{1}^{\top} z_{1} \in \mathbb{Z}, \beta_{2}^{\top} z_{2} \in \mathbb{Z}\right\}\right) \\
& \subseteq \bigcap_{\left(\beta_{1}, \beta_{2}\right) \in \mathbb{Z}^{p_{1} \times \mathbb{Z}^{p_{2}}}} \operatorname{conv}\left(\left\{\left(x_{1}, z_{1}, x_{2}, z_{2}\right) \in P_{1} \times P_{2} \mid\left(\beta_{1}, \beta_{2}\right)^{\top}\left(z_{1}, z_{2}\right) \in \mathbb{Z}\right\}\right) \\
& =\left(P_{1} \times P_{2}\right)_{\text {split }} .
\end{aligned}
$$

To show the reverse inclusion, we consider the natural projections $\varphi_{i}: P_{1} \times P_{2} \rightarrow P_{i}$ for $i \in\{1,2\}$. Both φ_{i} are mixed-integer-compatible, so that by Theorem 5.3, $\varphi_{i}\left(\left(P_{1} \times P_{2}\right)_{\text {split }}\right) \subseteq$ $\left(P_{i}\right)_{\text {split }}$. In particular, the map $\left(\varphi_{1}, \varphi_{2}\right)$, which is the identity map, maps $\left(P_{1} \times P_{2}\right)_{\text {split }}$ into $\left(P_{1}\right)_{\text {split }} \times\left(P_{2}\right)_{\text {split }}$.

We apply now Theorem 5.5 to periodic timetabling. Consider for an arbitrary digraph G its decomposition into blocks. Since each cycle is part of a unique block, the cycle space of G decomposes into the direct sum of the cycle spaces of its blocks. This has the consequence that any cycle matrix Γ of G has a block structure as well, so that the fractional periodic timetabling polytope \mathcal{P} is the Cartesian product of the fractional periodic timetabling polytopes associated to the subinstances of each block.

Theorem 5.6 (cf. N. Lindner \& Liebchen, 2020). If G_{1}, \ldots, G_{k} are the blocks of G and $\mathcal{P}_{1}, \ldots, \mathcal{P}_{k}$ are the fractional periodic timetabling polytopes of the subinstances of G_{1}, \ldots, G_{k}, respectively, then

$$
\mathcal{P}_{\text {split }}=\left(\mathcal{P}_{1}\right)_{\text {split }} \times \cdots \times\left(\mathcal{P}_{k}\right)_{\text {split }}
$$

In particular, if G is a cactus graph, then $\mathcal{P}_{\text {split }}=\mathcal{P}_{\mathrm{I}}$.
Proof. By the above discussion, this is a direct consequence of Theorem 5.5. If G is a cactus graph, then each block satisfies $\mu \leq 1$. It remains to apply Corollary 3.2.

5.3 Incidence-Based vs. Cycle-Based Formulation

Recall from Remark 2.6 that the incidence-based formulation (2) of a PESP instance is identical to a particular cycle-based formulation (3) of an augmented instance, where the augmentation consists in successively adding arcs a with $\ell_{a}=0$ and $u_{a}=T-1$. Such arcs with $u_{a}-\ell_{a}=$ $T-1$ are sometimes called free (e.g., Goerigk and Liebchen 2017), as they do not impact the feasibility of a PESP instance. The augmentation procedure in Remark 2.6 hence decomposes as a sequence of $|V|$ simple free augmentations, which we formally define as follows:

Definition 5.7. Let $I=(G, T, \ell, u, w)$ be a PESP instance. Let $I^{\prime}=\left(G^{\prime}, T, \ell^{\prime}, u^{\prime}, w^{\prime}\right)$ be a PESP instance such that I arises from I^{\prime} by deleting a free arc \bar{a}, i.e., $u_{\bar{a}}^{\prime}-\ell_{\bar{a}}^{\prime}=T-1$. We say that I^{\prime} is a simple free augmentation of I by \bar{a}.

We will first investigate a trivial case of a simple augmentation I^{\prime} of I by \bar{a} : If \bar{a} is a bridge, then \bar{a} constitutes a block of G^{\prime}, so that we conclude by Theorem 5.6 that

$$
\begin{equation*}
\mathcal{P}_{\text {split }}^{\prime}=\mathcal{P}_{\text {split }} \times\left[\ell_{\bar{a}}^{\prime}, u_{\bar{a}}^{\prime}\right]_{\text {split }}=\mathcal{P}_{\text {split }} \times\left[\ell_{\bar{a}}^{\prime}, u_{\bar{a}}^{\prime}\right], \tag{17}
\end{equation*}
$$

where \mathcal{P} and \mathcal{P}^{\prime} are the fractional periodic tension polytopes of I and I^{\prime}, respectively. Since \bar{a} is a bridge, any cycle basis for G is a cycle basis for G^{\prime}, so that the choice of any integral cycle basis yields a natural projection $\mathcal{P}_{\text {split }}^{\prime} \rightarrow \mathcal{P}_{\text {split }}\left(x, x_{\bar{a}}, z\right) \mapsto(x, z)$, which is well-defined and surjective by (17). Thus any split inequality for I^{\prime} is trivially a split inequality for I and vice versa.

We will hence turn our interest to the more interesting case that \bar{a} is not a bridge. We start with an observation about cycle bases:

Lemma 5.8. Let I^{\prime} be a simple free augmentation of I by \bar{a} such that \bar{a} is not a bridge of G^{\prime}. Then there is an integral cycle basis B of G and an oriented cycle $\bar{\gamma}$ such that $B^{\prime}:=B \cup\{\bar{\gamma}\}$ is an integral cycle basis of G^{\prime} and $\bar{a} \in \bar{\gamma}$.

Proof. Since \bar{a} is not a bridge, G and G^{\prime} have the same set of nodes, so that any spanning tree of G is a spanning tree of G^{\prime}. Hence, if B is any fundamental cycle basis of G, we can augment B by the fundamental cycle $\bar{\gamma}$ induced by \bar{a} in G^{\prime}.

Choose cycle bases B, B^{\prime} and an oriented cycle $\bar{\gamma}$ as in Lemma 5.8. We assume that \mathcal{P} is defined using the cycle matrix Γ of B, and that \mathcal{P}^{\prime} is defined using the cycle matrix Γ^{\prime} of B^{\prime}, so that Γ^{\prime} arises from Γ by appending the row $\bar{\gamma}^{\top}$.

Lemma 5.9. Let I^{\prime} be a simple free augmentation of I by \bar{a} such that \bar{a} is not a bridge of G^{\prime}. The natural projection $\varphi: \mathcal{P}^{\prime} \rightarrow \mathcal{P},\left(x, x_{\bar{a}}, z, z_{\bar{\gamma}}\right) \mapsto(x, z)$ is mixed-integer-compatible. In particular, $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right) \subseteq \mathcal{P}_{\text {split }}$.

Proof. The map φ is linear and maps mixed-integer points to mixed-integer points. That φ descends to split closures follows from Theorem 5.3.

In view of Lemma 5.9, the split closure of the simple free augmentation is hence never worse, but could provide a potentially tighter relaxation by additional "projected split inequalities". We show now that this is not the case.

Lemma 5.10. Let $\varphi: \mathcal{P}^{\prime} \rightarrow \mathcal{P}$ denote the natural projection as in Lemma 5.9 Then $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right)=\mathcal{P}_{\text {split }}$.
Proof. Since I^{\prime} is an augmentation of I by \bar{a}, we note at first, using the interpretation of split inequalities as flip inequalities from Theorem 3.1. that the set of defining inequalities of $\mathcal{P}_{\text {split }}^{\prime}$ can be partitioned into the set of defining inequalities of $\mathcal{P}_{\text {split }}$, which cannot contain the variable $x_{\bar{a}}$, and a remaining set of inequalities, which do all contain $x_{\bar{a}}$. The image of $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right)$ can be described by Fourier-Motzkin elimination of the variable $x_{\bar{a}}$. It is therefore sufficient to show that all inequalities generated by the Fourier-Motzkin procedure are redundant for $\mathcal{P}_{\text {split }}$. Since the redundancy is clear for those inequalities that do not contain $x_{\bar{a}}$, we will hence consider only the remaining inequalities where $x_{\bar{a}}$ has a non-zero coefficient.

Among the defining inequalities of $\mathcal{P}_{\text {split }}^{\prime}, x_{\bar{a}}$ occurs precisely in the bound inequalities $x_{\bar{a}} \geq$ $\ell_{\bar{a}}^{\prime}$ and $x_{\bar{a}} \leq u_{\bar{a}}^{\prime}$, and in the flip inequalities of simple cycles containing \bar{a}. Fourier-Motzkin considers pairs of these inequalities, one of them giving a lower bound, and the other an upper bound on $x_{\bar{a}}$. That is, the following types of pairs have to be considered:
(1) $x_{\bar{a}} \geq \ell_{\bar{a}}^{\prime}$ and $x_{\bar{a}} \leq u_{\bar{a}}^{\prime}$,
(2) $x_{\bar{a}} \geq \ell_{\bar{a}}^{\prime}$ and a flip inequality for (γ, F) with $\bar{a} \in \gamma$ and $\bar{a} \in F$,
(3) $x_{\bar{a}} \leq u_{\bar{a}}^{\prime}$ and a flip inequality for (γ, F) with $\bar{a} \in \gamma$ and $\bar{a} \notin F$,
(4) two flip inequalities for $\left(\gamma, F_{\gamma}\right)$ and $\left(\delta, F_{\delta}\right)$ with $\bar{a} \in \gamma, \bar{a} \notin F_{\gamma}, \bar{a} \in \delta, \bar{a} \in F_{\delta}$.

In all those flip inequalities, we can assume that the cycles are simple and that the parameter α is at least 1 . Moreover, using the symmetry in Remark 2.13, we can without loss of generality fix the direction of \bar{a} as forward or backward, replacing γ by $-\gamma$ if necessary. Let us proceed with Fourier-Motzkin:
(1) Elimination yields $\ell_{\bar{a}}^{\prime} \leq u_{\bar{a}}^{\prime}$, which is trivially true.
(2) Assume that \bar{a} is forward in γ. Then we can write the flip inequality (6) for (γ, F) with $\alpha:=\alpha_{\gamma, F} \geq 1$ as

$$
\alpha\left(u_{\bar{a}}^{\prime}-x_{\bar{a}}\right)+f(x) \geq \alpha(T-\alpha),
$$

where $f(x) \geq 0$ for all $(x, z) \in \mathcal{P}$. Fourier-Motzkin elimination with $x_{\bar{a}} \geq \ell_{\bar{a}}^{\prime}$ yields

$$
\alpha u_{\bar{a}}^{\prime}+f(x) \geq \alpha(T-\alpha)+\alpha \ell_{\bar{a}}^{\prime},
$$

or equivalently, recalling that $u_{\bar{a}}^{\prime}-\ell_{\bar{a}}^{\prime}=T-1$,

$$
f(x) \geq \alpha\left(T-\alpha-u_{\bar{a}}^{\prime}+\ell_{\bar{a}}^{\prime}\right)=\alpha(1-\alpha),
$$

but this is redundant for $\mathcal{P}_{\text {split, }}$, since $(x, z) \in \mathcal{P}$ and $\alpha \geq 1$ imply $f(x) \geq 0 \geq \alpha(1-\alpha)$.
(3) is analogous to (2).
(4) This is the most tedious part. We assume without loss of generality that \bar{a} is backward in γ and forward in δ. We will show that the Fourier-Motzkin inequality is valid for all points $(x, z) \in \mathcal{P}$ with $(\gamma+\delta)^{\top} x \in T \mathbb{Z}$. Since $\gamma+\delta$ is an element of the cycle space \mathcal{C} of G, the Fourier-Motzkin inequality is hence valid for the convex hull of those points and in particular for $\mathcal{P}_{\text {split }}$ by virtue of (7).
We first write down the flip inequalities, omitting F_{γ} and F_{δ} in the subscripts of α :

$$
\begin{aligned}
& \alpha_{\gamma}\left(x_{\bar{a}}-\ell_{\bar{a}}^{\prime}\right)+f(x) \geq \alpha_{\gamma}\left(T-\alpha_{\gamma}\right), \\
& \alpha_{\delta}\left(u_{\bar{a}}^{\prime}-x_{\bar{a}}\right)+g(x) \geq \alpha_{\delta}\left(T-\alpha_{\delta}\right),
\end{aligned}
$$

where $f(x), g(x) \geq 0$ for all $(x, z) \in \mathcal{P}$. Elimination produces

$$
\begin{equation*}
\alpha_{\delta} f(x)+\alpha_{\gamma} g(x) \geq \alpha_{\gamma} \alpha_{\delta}\left(2 T-\alpha_{\gamma}-\alpha_{\delta}-u_{\bar{a}}^{\prime}+\ell_{\bar{a}}^{\prime}\right)=\alpha_{\gamma} \alpha_{\delta}\left(T+1-\alpha_{\gamma}-\alpha_{\delta}\right) . \tag{18}
\end{equation*}
$$

The inequality (18) is trivially redundant if $\alpha_{\gamma}+\alpha_{\delta} \geq T+1$. We hence assume from now on $\alpha_{\gamma}+\alpha_{\delta} \leq T$. Let $(x, z) \in \mathcal{P}$ with $(\gamma+\delta)^{\top} x \in T \mathbb{Z}$. Then

$$
\sum_{a \in A \backslash F_{\gamma}} \gamma_{a} x_{a}+\sum_{a \in F_{\gamma}} \gamma_{a} x_{a}+\sum_{a \in A \backslash F_{\delta}} \delta_{a} x_{a}+\sum_{a \in F_{\delta}} \delta_{a} x_{a} \equiv 0 \quad \bmod T .
$$

Since $\gamma_{\bar{a}}+\delta_{\bar{a}}=0, \bar{a} \notin F_{\gamma}, \bar{a} \in F_{\delta}$, this implies

$$
\sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right)} \gamma_{a} x_{a}+\sum_{a \in F_{\gamma}} \gamma_{a} x_{a}+\sum_{a \in A \backslash F_{\delta}} \delta_{a} x_{a}+\sum_{a \in F_{\delta} \backslash\{\bar{a}\}} \delta_{a} x_{a} \equiv 0 \bmod T,
$$

so that, using the definition of $\alpha_{\gamma}, \alpha_{\delta}$ (cf. Theorem 2.12),

$$
\begin{aligned}
& \sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right)} \gamma_{a}\left(x_{a}-\ell_{a}\right)-\sum_{a \in F_{\gamma}} \gamma_{a}\left(u_{a}-x_{a}\right)+\sum_{a \in A \backslash F_{\delta}} \delta_{a}\left(x_{a}-\ell_{a}\right)-\sum_{a \in F_{\delta} \backslash\{\bar{a}\}} \delta_{a}\left(u_{a}-x_{a}\right) \\
& \equiv-\sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right)} \gamma_{a} \ell_{a}-\sum_{a \in F_{\gamma}} \gamma_{a} u_{a}-\sum_{a \in A \backslash F_{\delta}} \delta_{a} \ell_{a}-\sum_{a \in F_{\delta} \backslash\{\bar{a}\}} \delta_{a} u_{a} \bmod T \\
& \equiv \alpha_{\gamma}+\alpha_{\delta}+u_{\bar{a}}^{\prime}-\ell_{\bar{a}}^{\prime} \bmod T \\
& \equiv \alpha_{\gamma}+\alpha_{\delta}-1 \bmod T
\end{aligned}
$$

As we can assume $\alpha_{\gamma}, \alpha_{\delta} \geq 1$, we have that $\alpha:=\alpha_{\gamma}+\alpha_{\delta}-1 \geq 0$. This implies that

$$
D:=\sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right)} \gamma_{a}\left(x_{a}-\ell_{a}\right)-\sum_{a \in F_{\gamma}} \gamma_{a}\left(u_{a}-x_{a}\right)+\sum_{a \in A \backslash F_{\delta}} \delta_{a}\left(x_{a}-\ell_{a}\right)-\sum_{a \in F_{\delta} \backslash\{\bar{a}\}} \delta_{a}\left(u_{a}-x_{a}\right)
$$

is either $\leq \alpha-T$ (a) or $\geq \alpha(b)$. Before showing that 18) is redundant in both cases, we write down the left-hand side of (18) explicitly:

$$
\begin{align*}
& \alpha_{\delta} f(x)+\alpha_{\gamma} g(x) \\
& =\alpha_{\delta}\left(T-\alpha_{\gamma}\right) \sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right), \gamma_{a}=1}\left(x_{a}-\ell_{a}\right)+\alpha_{\delta} \alpha_{\gamma} \sum_{a \in A \backslash\left(F_{\gamma} \cup\{\bar{a}\}\right), \gamma_{a}=-1}\left(x_{a}-\ell_{a}\right) \\
& +\alpha_{\delta} \alpha_{\gamma} \sum_{a \in F_{\gamma}, \gamma_{a}=1}\left(u_{a}-x_{a}\right)+\alpha_{\delta}\left(T-\alpha_{\gamma}\right) \sum_{a \in F_{\gamma}, \gamma_{a}=-1}\left(u_{a}-x_{a}\right) \tag{19}\\
& +\alpha_{\gamma}\left(T-\alpha_{\delta}\right) \sum_{a \in A \backslash F_{\delta}, \delta_{a}=1}\left(x_{a}-\ell_{a}\right)+\alpha_{\gamma} \alpha_{\delta} \sum_{a \in A \backslash F_{\delta}, \delta_{a}=-1}\left(x_{a}-\ell_{a}\right) \\
& +\alpha_{\gamma} \alpha_{\delta} \sum_{a \in F_{\delta} \backslash\{\bar{a}\}, \delta_{a}=1}\left(u_{a}-x_{a}\right)+\alpha_{\gamma}\left(T-\alpha_{\delta}\right) \sum_{a \in F_{\delta} \backslash\{\bar{a}\}, \delta_{a}=-1}\left(u_{a}-x_{a}\right) .
\end{align*}
$$

(a) Expanding $\alpha_{\delta}\left(T-\alpha_{\gamma}\right)$ and $\alpha_{\gamma}\left(T-\alpha_{\delta}\right)$ in 19$)$, and then bounding all summands with T as a factor by 0 from below, we obtain

$$
\alpha_{\delta} f(x)+\alpha_{\gamma} g(x) \geq-\alpha_{\gamma} \alpha_{\delta} D \geq-\alpha_{\gamma} \alpha_{\delta}(\alpha-T)=\alpha \gamma \alpha_{\delta}\left(T+1-\alpha_{\gamma}-\alpha_{\delta}\right)
$$

Hence (18) holds in the case that $D \leq \alpha-T$.
(b) Let $v:=\min \left(\alpha_{\gamma}, \alpha_{\delta}\right)$. Expanding $\alpha_{\delta}\left(T-\alpha_{\gamma}\right)$ and $\alpha_{\gamma}\left(T-\alpha_{\delta}\right)$ in (19), bounding $T \alpha_{\gamma}, T \alpha_{\delta}$ from below by $T v$, we find

$$
\alpha_{\delta} f(x)+\alpha_{\gamma} g(x) \geq\left(T v-\alpha_{\gamma} \alpha_{\delta}\right) D
$$

Since v is one of $\alpha_{\gamma}, \alpha_{\delta}$ and $\alpha_{\gamma}, \alpha_{\delta} \leq T-1$, we have $T v-\alpha_{\gamma} \alpha_{\delta} \geq 0$. This implies with $D \geq \alpha$ that

$$
\begin{aligned}
& \alpha_{\delta} f(x)+\alpha_{\gamma} g(x) \\
& \geq\left(T v-\alpha_{\gamma} \alpha_{\delta}\right) \alpha \\
& =\left(T v-\alpha_{\gamma} \alpha_{\delta}\right)\left(\alpha_{\gamma}+\alpha_{\delta}-1\right) \\
& =T v\left(\alpha_{\gamma}+\alpha_{\delta}-1\right)+\alpha_{\gamma} \alpha_{\delta}\left(1-\alpha_{\gamma}-\alpha_{\gamma}\right) \\
& =T v\left(\alpha_{\gamma}+\alpha_{\delta}-1\right)-T \alpha_{\gamma} \alpha_{\delta}+\alpha_{\gamma} \alpha_{\delta}\left(T+1-\alpha_{\gamma}-\alpha_{\gamma}\right)
\end{aligned}
$$

It remains to show that $T v\left(\alpha_{\gamma}+\alpha_{\delta}-1\right)-T \alpha_{\gamma} \alpha_{\delta} \geq 0$. This is true since v is one of $\alpha_{\gamma}, \alpha_{\delta} \geq 1$.

We conclude that the image $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right)$ is fully described by the flip inequalities of cycles not containing \bar{a} and the variable bounds for all arcs except \bar{a}. Hence $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right)=\mathcal{P}_{\text {split }}$.

As a corollary to Lemma5.10, we obtain the following result.
Theorem 5.11. Let I and I^{\prime} be PESP instances with fractional periodic timetabling polyhedra \mathcal{P} and \mathcal{P}^{\prime}, respectively. Suppose that I^{\prime} arises from I by a sequence of simple free augmentations. If $\varphi: \mathcal{P}^{\prime} \rightarrow$ \mathcal{P} denotes the natural projection, then $\varphi\left(\mathcal{P}_{\text {split }}^{\prime}\right)=\mathcal{P}_{\text {split }}$.

In particular, recalling Remark 2.6, the incidence-based formulation (2) is not stronger than the cycle-based formulation (3) in terms of split closures. Consequently, it is of no use to develop methods which augment an instance by a free arc, obtain a flip/split inequality and project down again, as this will not lead to information which cannot already be obtained from the split closure of the original instance.

5.4 Binarization by Subdivision

A reformulation of a MIP general variables into one with binary variables can exhibit stronger split closures (Dash et al., 2018) or lift-and-project closures (Aprile et al., 2021). For the application of periodic timetabling, there is a combinatorial binarization method: Let $I=(G, T, \ell, u, w)$ be a PESP instance, $G=(V, A)$. We assume that $0 \leq \ell<T$ and $\ell \leq u<\ell+T$ by preprocessing (see Remark 2.3), so that the integer periodic offset variables p_{a} in the incidence-based formulation (2) of PESP can only take values in $\{0,1,2\}$. Moreover, if $u_{a} \leq T$ for some $a \in A$, then $p_{a} \in\{0,1\}$ for any integer feasible solution (x, π, p) (Liebchen, 2006).

Definition 5.12. Let $I^{\prime}=\left(G^{\prime}, T, \ell^{\prime}, u^{\prime}, w^{\prime}\right)$ be a PESP instance that arises from I by subdividing an $\operatorname{arc} \bar{a} \in A$ with $\ell_{\bar{a}}<u_{\bar{a}}$ into two new $\operatorname{arcs} a_{1}, a_{2}$ such that:

$$
\begin{aligned}
& 0 \leq \ell_{a_{1}}^{\prime} \leq u_{a_{1}}^{\prime}, \\
& 0 \leq \ell_{a_{2}}^{\prime} \leq u_{a_{2}}^{\prime}, \\
& \ell_{a_{1}}^{\prime}+\ell_{a_{2}}^{\prime}=\ell_{\bar{a}}, \\
& u_{a_{1}}^{\prime}+u_{a_{2}}^{\prime}=u_{\bar{a}}, \\
& w_{a_{1}}^{\prime}=w_{a_{2}}^{\prime}=w_{\bar{a}} .
\end{aligned}
$$

We call I^{\prime} a simple subdivision of I at \bar{a}.
Observe that if the bounds on the arc \bar{a} are such that $u_{\bar{a}}>T$, one can always construct a simple subdivision I^{\prime} of I at \bar{a} such that $u_{a_{i}}^{\prime}-\ell_{a_{i}}^{\prime}>0$ and $u_{a_{i}}^{\prime} \leq T$ for $i \in\{1,2\}$, due to the assumption that $\ell<T$ and $u<\ell+T$. As a result, for the instance I^{\prime} arising from subdividing each arc \bar{a} with $u_{\bar{a}}>T$ as above, the incidence-based MIP formulation (2) will then have exclusively binary variables.

Example 5.13. Figure 4 shows the instance obtained from the instance I from Figure 1 by subdividing every arc with $u_{a}>T$.

Let I^{\prime} be a simple subdivision of a PESP instance I at \bar{a}, introducing new arcs a_{1} and a_{2}. The cycle spaces of G and G^{\prime} are isomorphic: If γ is an element of the cycle space of G, then γ^{\prime} with

$$
\gamma_{a}^{\prime}:= \begin{cases}\gamma_{\bar{a}} & \text { if } a \in\left\{a_{1}, a_{2}\right\} \\ \gamma_{a} & \text { if } a \notin\left\{a_{1}, a_{2}\right\}\end{cases}
$$

Figure 4: Subdivision of the instance in Figure 1 obtained from two simple subdivisions such that $u_{a} \leq T$ for all arcs a.
defines an element of the cycle space of G^{\prime}, and the whole cycle space of G^{\prime} arises this way. We can therefore associate to an integral cycle basis $B=\left\{\gamma_{1}, \ldots, \gamma_{\mu}\right\}$ of G the integral cycle basis $B^{\prime}=\left\{\gamma_{1}^{\prime}, \ldots, \gamma_{\mu}^{\prime}\right\}$. Then any cycle offset z in (3) w.r.t. B defines a cycle offset z^{\prime} w.r.t. B^{\prime} by $z_{\gamma^{\prime}}^{\prime}:=z_{\gamma}$, so that cycle offsets are essentially the same. We will use Γ and Γ^{\prime} to define \mathcal{P} and \mathcal{P}^{\prime}, the fractional periodic tension polytopes of I^{\prime} and I, respectively.

Lemma 5.14. Consider a simple subdivision I^{\prime} of I at an arc \bar{a} with notation as above.
(1) The map $\rho: \mathcal{P}^{\prime} \rightarrow \mathcal{P},\left(x, x_{a_{1}}, x_{a_{2}}, z\right) \mapsto\left(x, x_{a_{1}}+x_{a_{2}}, z\right)$ is well-defined and mixed-integercompatible.
(2) The map $s: \mathcal{P} \rightarrow \mathcal{P}^{\prime},\left(x, x_{\bar{a}}, z\right) \mapsto\left(x, \ell_{a_{1}}^{\prime}+\frac{u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right), \ell_{a_{2}}^{\prime}+\frac{u_{a_{2}}^{\prime}-\ell_{a_{2}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right), z\right)$ is welldefined and mixed-integer-compatible.
(3) $\rho \circ s: \mathcal{P} \rightarrow \mathcal{P}$ is the identity map.
(4) $\rho\left(\mathcal{P}_{\text {split }}^{\prime}\right)=\mathcal{P}_{\text {split }}$.

Proof. (1) The map is well-defined: The hypothesis $\ell_{a_{1}}^{\prime}+\ell_{a_{2}}^{\prime}=\ell_{\bar{a}}$ and $u_{a_{1}}^{\prime}+u_{a_{2}}^{\prime}=u_{\bar{a}}$ implies that $\ell_{\bar{a}} \leq x_{a_{1}}+x_{a_{2}} \leq u_{\bar{a}}$ holds for all $\left(x, x_{a_{1}}, x_{a_{2}}, z\right) \in \mathcal{P}^{\prime}$. As ρ is linear and does not affect the integrality of z, it is mixed-integer-compatible.
(2) The map is well defined: Due to the assumption of subdividing arcs with ${u_{\bar{a}}}>T$ only, we have $u_{\bar{a}}-\ell_{\bar{a}}>0$ and $u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime} \geq 0$. Since $x_{\bar{a}}-\ell_{\bar{a}} \geq 0$ for all $\left(x, x_{\bar{a}}, z\right) \in \mathcal{P}$, we conclude

$$
\ell_{a_{1}}^{\prime}=\ell_{a_{1}}^{\prime}+\frac{u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(\ell_{\bar{a}}-\ell_{\bar{a}}\right) \leq \ell_{a_{1}}^{\prime}+\frac{u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right) \leq \ell_{a_{1}}^{\prime}+\frac{u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(u_{\bar{a}}-\ell_{\bar{a}}\right)=u_{a_{1}}^{\prime} .
$$

The argument for the $x_{a_{2}}$ entry is analogous. We note that s is affine and maps point with integral z to points with integral z, so that s is mixed-integer-compatible.
(3) This follows since

$$
\ell_{a_{1}}^{\prime}+\frac{u_{a_{1}}^{\prime}-\ell_{a_{1}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right)+\ell_{a_{2}}^{\prime}+\frac{u_{a_{2}}^{\prime}-\ell_{a_{2}}^{\prime}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right)=\ell_{\bar{a}}+\frac{u_{\bar{a}}-\ell_{\bar{a}}}{u_{\bar{a}}-\ell_{\bar{a}}}\left(x_{\bar{a}}-\ell_{\bar{a}}\right)=x_{\bar{a}} .
$$

(4) Since ρ and s are mixed-integer compatible, $\rho\left(\mathcal{P}_{\text {split }}^{\prime}\right) \subseteq \mathcal{P}_{\text {split }}$ and $s\left(\mathcal{P}_{\text {split }}\right) \subseteq \mathcal{P}_{\text {split }}^{\prime}$. The composition $\left.\left.\rho\right|_{\mathcal{P}_{\text {split }}^{\prime}} ^{\prime} \circ s\right|_{\mathcal{P}_{\text {split }}}$ of the restrictions to split closures is hence well-defined, and by (3), it is the identity map on $\mathcal{P}_{\text {split. }}$. We conclude that $\left.\rho\right|_{\mathcal{P}_{\text {split }}^{\prime}}$ is surjective.

A repeated application of Lemma 5.14 together with Theorem 5.11 yields:
Theorem 5.15. Let I and I^{\prime} be PESP instances with fractional periodic timetabling polyhedra \mathcal{P} and \mathcal{P}^{\prime}, respectively. Suppose that I^{\prime} arises from I by a sequence of simple subdivisions and simple free augmentations. If $\psi: \mathcal{P}^{\prime} \rightarrow \mathcal{P}$ denotes the composition of the summation maps ρ in Lemma 5.14(1) for the subdivisions and the projection maps φ in Lemma 5.9 for the free augmentations, then $\psi\left(\mathcal{P}_{\text {split }}^{\prime}\right)=$ $\mathcal{P}_{\text {split }}$.

In particular, when we binarize the MIP (3) by first performing simple subdivisions and then move to the formulation (2), we gain no further insight about split inequalities.

6 Computational Experiments

We want to assess how useful the split closure is for obtaining dual bounds for PESP in practice. To that end we introduce a procedure, which exploits Theorem 4.7 in a heuristic way, and proceeds to find cuts systematically once the heuristic fails, such that we optimize over the entire split closure by means of Theorem 4.5. We will also examine the performance of the heuristic in comparison to the systematic exploration.

6.1 Separation Procedure

Our goal is to optimize over the entire split closure. We do so with our custom separator which proceeds as illustrated by the flowchart in Figure 5. At first, it tries to heuristically generate violated flip inequalities (highlighted in blue in the chart): We compute a minimum spanning tree with respect to the periodic slack $x-\ell$ of the current LP solution $(x, z) \in \mathcal{P}$, and determine a most violated flip inequality for the fundamental cycles of that tree by Theorem 4.7. When no more heuristic cuts are found, the parametric IP (14) as in Theorem 4.5 is solved. During the solution process of the IP, a callback retrieves intermediate incumbent solutions and generates the corresponding cuts. The procedure terminates when no more violated cuts can be found, or the time limit is hit. Since the amount of cuts found by the heuristic is rather larger in the beginning, we apply the filtering mechanisms of SCIP to detect effective cuts. However, cuts found by the parametric IP will always be enforced, so that the whole procedure is correct up to numerical tolerances: If the procedure terminates because no more violated cuts can be detected, then the optimal solution over the split closure has been found.

6.2 Methodology

To conduct our computational experiments, we use the benchmark library PESPlib Goerigk, 2022), whose instances are derived from real-world scenarios. Although significant process has been made in the past, no instance could be solved to proven optimality up to date.

Since the PESPlib instances are computationally very hard, we consider not only the full instances, but also two subinstances per instance whose cyclomatic number μ has been restricted to 25 , and 100, respectively. Note that μ is the number of integer variables in (3). The restriction procedure for an instance (G, T, ℓ, u, w) works by iteratively removing arcs, deleting in each step one arc a with highest span $u_{a}-\ell_{a}$ and breaking ties by preferring lowest weight

Figure 5: Flowchart of the split cut generation procedure. "Decrease α " means to set $\alpha:=\alpha-1$ if $\alpha \geq 2$ and $\alpha:=\lfloor T / 2\rfloor$ otherwise. We start with $\alpha=\lfloor T / 2\rfloor$, as this is likely to produce cuts with large violation.
w_{a} (cf. Goerigk and Liebchen 2017). In contrast to the full PESPlib instances, these restricted variants can be solved to optimality within a reasonable amount of time.

We first preprocess each instance, so that in particular the assumptions as in Remark 2.3 hold. For each instance $I=(G, T, \ell, u, w)$, we consider the cycle-based formulation (3) using an integral cycle basis B that minimizes $\sum_{\gamma \in B} \sum_{a \in \gamma}\left(u_{a}-\ell_{a}\right)$. This choice of cycle basis is motivated by its good performance for computing dual bounds (Borndörfer, Lindner, \& Roth, 2020; Masing, Lindner, \& Ebert, 2023). By Theorem 5.11, the cycle-based formulation is not weaker than the incidence-based formulation, and by Remark 2.6, it is more compact. We then invoke the branch-cut-and-price framework SCIP (Achterberg, 2009). The advantage of using SCIP is that it is highly customizable and we can disable everything that does not come from split cuts: We disable the built-in presolving, branching, heuristics, propagators separators and merely call a custom separation callback during the cutting loop at the root node.

In all experiments, we use SCIP 8.0.3 (Bestuzheva et al., 2021) with Gurobi 9.5.2 (Gurobi Optimization, LLC, 2023) as LP solver. We also use Gurobi to solve the parametric IP from Theorem 4.5. Gurobi is allowed to use 6 threads on an Intel Xeon E3-1270 v6 CPU running at 3.8 GHz with 32 GB RAM. The time limit has been set to 4 hours wall time for each instance.

6.3 Results

6.3.1 Restriction to $\mu=25$

Table 1 shows the results for the restrictions of the PESPlib instances to the cyclomatic number $\mu=25$. For all but one instance, the cut generation procedure of Section 6.2 terminates within 22 minutes, only R1L1v hits the time limit due to a hard parametric IP (14). Optimizing over the split closure is exact for R4L1 and R4L4v, but R4L4v is trivial in the sense that $x=\ell$ is an optimal solution. The average relative optimality gap with respect to the optimal objective value in terms of weighted slack $w^{\top}(x-\ell)$ and the best bound obtained by split cuts, taken over all 22 instances, is 6.61%.

6.3.2 Restriction to $\mu=100$

The results for the restriction to $\mu=100$ are summarized in Table 2 Again, we can determine the optimal solution of (3) for all these restricted instances. The cut generation procedure of Section 6.2 terminates within the time limit for 20 out of 22 instances. R4L4v is again almost trivial to solve, because two cuts suffice to produce an integral solution. The second smallest gap is at R1L1v, although the time limit is hit. The average optimality gap is 13.37%, which is about twice as much as in the case $\mu=25$.

6.3.3 Full instances

Finally, the results for the full PESPlib instances are given in Table 3 in comparison to the best known primal bounds and in Table 4 in comparison to the best known dual bounds. All instances hit the time limit. Compared to the restricted instances, relatively few cuts are generated by the IP (14), which is both due to the large supply of heuristically generated cuts, and the difficulty of the IP. The time limit is not sufficient to unfold the power of the IP, on the other hand, increasing the time limit to 8 or 24 hours empirically produced only marginal improvements. This effect is also illustrated in Figure 6. The plot shows an exemplary progression of the dual bound and the number of applied cuts for the instance R2L1 with a logarithmic time axis. The heuristic separation procedure finds no more cuts for the first time after roughly 45 minutes (about $10^{3.43}$ seconds), and then the parametric IP takes over, causing a sudden and

Instance	μ	Opt. Val. $\left(\mathcal{P}_{\mathrm{I}}\right)$	Dual Bd. $\left(\mathcal{P}_{\text {split }}\right)$	Gap [\%]	Cuts	IP Cuts	Time [s]
BL1	25	479501	455492	5.01	114	33	98
BL2	25	582203	529247	9.10	128	32	116
BL3	25	614544	513344	16.47	122	28	197
BL4	25	581688	507168	12.81	176	65	106
R1L1	25	1469763	1314105	10.59	284	123	747
R1L2	25	1271066	1235774	2.78	226	96	857
R1L3	25	1704349	1693441	0.64	238	114	1281
R1L4	25	1543182	1429795	7.35	294	118	936
R2L1	25	2598725	2171855	16.43	212	83	255
R2L2	25	2726109	2471181	9.35	238	75	335
R2L3	25	1698794	1661074	2.22	116	12	91
R2L4	25	2417447	2325110	3.82	244	64	119
R3L1	25	1110721	1055499	4.97	170	83	513
R3L2	25	1283884	1148551	10.54	152	67	201
R3L3	25	1617501	1478034	8.62	196	58	389
R3L4	25	1063438	987067	7.18	143	56	399
R4L1	25	1053623	1053623	0.00	102	14	205
R4L2	25	1394526	1313700	5.80	136	39	231
R4L3	25	1718591	1648388	4.08	148	47	213
R4L4	25	498913	488043	2.18	171	60	701
R1L1v	25	1741592	1645779	5.50	128	58	14400
R4L4v	25	3660000	3660000	0.00	0	0	0

Table 1: Results for the PESPlib instances restricted to $\mu=25$. The table lists the optimal objective value of the MIP (3) in terms of weighted slack $w^{\top}(x-\ell)$, the best dual bound obtained by split cuts, the primal-dual gap, the total number of applied split cuts, the number of cuts provided by the parametric IP (14), and the running time in seconds.

Instance	μ	Opt. Val. $\left(\mathcal{P}_{\mathrm{I}}\right)$	Dual Bd. $\left(\mathcal{P}_{\text {split }}\right)$	Gap [\%]	Cuts	IP Cuts	Time [s]
BL1	100	1341151	1216355	9.31	1092	357	954
BL2	100	1733429	1451049	16.29	910	307	1287
BL3	100	1747063	1461798	16.33	922	304	1864
BL4	100	1605968	1427228	11.13	975	349	1399
R1L1	100	5481154	4582018	16.40	1300	493	6903
R1L2	100	4873559	3952695	18.90	1138	348	7453
R1L3	100	6256521	5151095	17.67	998	324	4742
R1L4	100	5008640	4202959	16.09	1407	415	6184
R2L1	100	8284107	6881776	16.93	1021	294	2453
R2L2	100	7099578	6244993	12.04	1366	406	4648
R2L3	100	6722776	5982798	11.01	1102	342	6038
R2L4	100	5516243	4996368	9.42	1217	317	3242
R3L1	100	4366123	3770709	13.64	927	355	7180
R3L2	100	4666798	3796483	18.65	764	253	8554
R3L3	100	4719345	3890774	17.56	921	301	7492
R3L4	100	2950612	2730898	7.45	885	348	11242
R4L1	100	4428800	3715032	16.12	717	179	2947
R4L2	100	4101438	3492759	14.84	789	236	14400
R4L3	100	4302565	3740673	13.06	875	226	8785
R4L4	100	1994572	1676547	15.94	607	184	7448
R1L1v	100	10253906	9715723	5.25	191	0	14400
R4L4v	100	14880000	14880000	0.00	2	0	1

Table 2: Results for the PESPlib instances restricted to $\mu=100$. The table lists the optimal objective value of the MIP (3) in terms of weighted slack $w^{\top}(x-\ell)$, the best dual bound obtained by split cuts, the primal-dual gap, the total number of applied split cuts, the number of cuts provided by the parametric IP (14), and the running time in seconds.
persisting drop in performance. We can observe that once the parametric IP came into effect, the heuristic stage provides only few further cuts. This could be due to the initial high quality results provided by the heuristic, such that the improvement through a cut from the parametric IP results in only a marginal change in the new solution. The subsequent spanning tree in the following heuristic stage could then be similar to the previous one, such that from this point on, only little to no improvement is found in the heuristic stage; and the costly parametric IP is the main contributor.

With respect to all instances, the average optimality gap is 40.83%. As expected, the quality of the results obtained by our method is dependent on the problem size. In particular for the $16 \mathrm{RiL} j$ instances there is a strong correlation between the size of μ and the optimality gap. This is also evidenced by the Pearson correlation coefficient, which is approximately 95%.

On the dual side, the split closure provides at least 91.10% of the currently best known dual bound. This underlines the good performance of our method - most of the incumbent dual bounds have been obtained by longer computation times, and in contrast to our study, neither branching nor other types of cutting planes apart from split cuts have been forbidden. Despite being at a disadvantage in this regard, our method provides better dual bounds for five out of the 22 instances, with improvements up to 25%. Other bounds have been obtained with the help of heuristically separated flip inequalities as well, by, e.g., Borndörfer, Lindner, and Roth (2020); N. Lindner and Liebchen (2020); N. Lindner, Liebchen, and Masing (2021); Masing et al. (2023), such that our procedure can be seen as an advancement of previous methods in the sense that our heuristic unlocks more potential due to exploiting Theorem 4.7

6.4 Insights

From our experiments we have gained two main insights: On one hand, we have seen that our procedure is indeed useful in computing qualitative dual bounds, as we were able to improve five instances of the benchmarking library PESPlib significantly. But also for the other instances, some of which have been treated excessively in the past, a high percentage of the bound could be reached in comparably little time by our procedure.

On the other hand, our tests help us to assess the quality of the split closure for computing the lower bounds independent of the procedure chosen: The instances where the optimal solution could be obtained and our procedure terminates give an indication of how well suited the split closure is for dual bounds in the context of PESP. Here, we were able to observe that the split closure provided fairly low optimality gaps on average, and even certified optimality in three cases, a non-negligible gap remains: E.g., in the worst case, namely for R1L2 with $\mu=100$, there is a gap of 18.9% between the optimal dual bound of the split closure and the optimal solution. We reach the conclusion that the split closure is essential for raising the dual bound. However, in order to close the primal-gap entirely, further methods, e.g., higher rank split cuts, will have to be applied.

Considering that usually $\mathcal{P}_{I} \subsetneq \mathcal{P}_{\text {split }}$, such that any bound obtained from the split closure will not be sufficient to prove optimality, one could ask the question, whether it is worth it to explore it to its full extent, or whether the fast, heuristic section of our procedure would be sufficient. For an indication, we analyzed the instances where our procedure terminated before the time limit was reached: We found that the best bound before the parametric IP came into effect reached at least 89.1%, and on average even 95.6% of the final dual bound. We conclude that indeed the heuristic approach of separating flip inequalities is quite effective, as it is able to cover the majority of the dual bound that can be obtained from the split closure quickly. In our case, the addition of the parametric IP in the procedure was essential for the assessment of the split closure and might be helpful to find new cuts, so that the heuristic can produce

Instance	μ	Primal Bd. $\left(\mathcal{P}_{\mathrm{I}}\right)$	Dual Bd. $\left(\mathcal{P}_{\text {split }}\right)$	Gap [\%]	Cuts	IP Cuts	Time [s]
BL1	5298	6333641	4252778	32.85	42927	15	14400
BL2	4880	6799331	4299517	36.77	37498	84	14400
BL3	6265	6675098	4290946	35.72	58628	20	14400
BL4	9684	6562147	3923974	40.20	88640	265	14400
R1L1	2722	29894745	19041890	36.30	21965	60	14400
R1L2	2876	30507180	19059669	37.52	23767	45	14400
R1L3	2848	29319593	18193974	37.95	23468	61	14400
R1L4	3769	26516727	16441121	38.00	30460	18	14400
R2L1	3206	42422038	24806675	41.52	27739	163	14400
R2L2	3360	40642186	24464467	39.81	28842	159	14400
R2L3	3239	38558371	22645939	41.27	28816	95	14400
R2L4	5514	32483894	19102410	41.19	47958	0	14400
R3L1	4630	43271824	25343534	41.43	38725	17	14400
R3L2	4800	45220083	25963773	42.58	41951	19	14400
R3L3	5446	40483617	22273090	44.98	46099	6	14400
R3L4	7478	33335852	17027192	48.92	46773	0	14400
R4L1	5331	49426919	27938824	43.47	42505	6	14400
R4L2	5688	48764793	27585028	43.43	45946	7	14400
R4L3	6871	45493081	23849465	47.58	46277	0	14400
R4L4	9371	36703391	16488684	55.08	42579	0	14400
R1L1v	2832	42591141	28544123	32.98	20326	22	14400
R4L4v	9637	61968380	38307814	38.18	45916	0	14400

Table 3: Results for the full PESPlib instances. The table lists the best known primal bound for the MIP (3) in terms of weighted slack $w^{\top}(x-\ell)$ according to (Goerigk, 2022), the best dual bound obtained by split cuts, the primal-dual gap, the total number of applied split cuts, the number of cuts provided by the parametric IP (14), and the running time in seconds.

Figure 6: Evolution of the dual bound in terms of weighted slack $w^{\top}(x-\ell)$ (blue, left axis) and the number of applied split cuts (grey, right axis) for the instance R2L1. Green markers correspond to cuts obtained from the heuristic, orange to cuts from the parametric IP. The time axis is logarithmic.

Instance	μ	Dual Bd. $\left(\mathcal{P}_{\mathrm{I}}\right)$	Dual Bd. ($\left.\mathcal{P}_{\text {split }}\right)$	Gap [\%]	Dual Bd. Source
BL1	5298	3668148	4252778	-15.94	Borndörfer, Lindner, and Roth (2020)
BL2	4880	3943811	4299517	-9.02	Borndörfer, Lindner, and Roth (2020)
BL3	6265	3571976	4290946	-20.13	Borndörfer, Lindner, and Roth (2020)
BL4	9684	3131491	3923974	-25.31	Borndörfer, Lindner, and Roth (2020)
R1L1	2722	20901883	19041890	8.90	N. Lindner et al. (2021)
R1L2	2876	19886799	19059669	4.16	Masing et al. (2023)
R1L3	2848	19323821	18193974	5.85	Masing et al. (2023)
R1L4	3769	17283850	16441121	4.88	Masing et al. (2023)
R2L1	3206	25929643	24806675	4.33	Masing et al. (2023)
R2L2	3360	25642692	24464467	4.59	Masing et al. (2023)
R2L3	3239	23941492	22645939	5.41	Masing et al. (2023)
R2L4	5514	19793447	19102410	3.49	Masing et al. (2023)
R3L1	4630	26825864	25343534	5.53	Masing et al. (2023)
R3L2	4800	27178406	25963773	4.47	Masing et al. (2023)
R3L3	5446	23007043	22273090	3.19	Masing et al. (2023)
R3L4	7478	17432725	17027192	2.33	Masing et al. (2023)
R4L1	5331	29174444	27938824	4.24	Masing et al. (2023)
R4L2	5688	28664399	27585028	3.77	Masing et al. (2023)
R4L3	6871	24293621	23849465	1.83	Masing et al. (2023)
R4L4	9371	17961400	16488684	8.20	N. Lindner and Liebchen (2020)
R1L1v	2832	29620775	28544123	3.63	Goerigk (2022)
R4L4v	9637	32296041	38307814	-18.61	Goerigk (2022)

Table 4: Comparison of dual bounds for the full PESPlib instances. The table lists the best known dual bound for the MIP (3) in terms of weighted slack $w^{\top}(x-\ell)$ according to the source in the last column, the best dual bound obtained by split cuts, and the primal-dual gap.
effective cuts again. However for practical purposes, particularly when other methods aimed at improving the dual bounds are used in parallel, the time-consuming parametric IP might be too costly. The heuristic part could be sufficient, particularly in light of the realization that - also in practice - the split closure is not enough to close the dual gap entirely.

7 Conclusion

We have shown that in the context of periodic timetabling, the split closure can be expressed in combinatorial terms, namely via flip inequalities with respect to simple cycles. Consequently, this means that a dual bound obtained from flip inequalities is as good as from split cuts. However, flip inequalities are - in a way - easier to grasp: We show that for a fixed cycle, a separating flip inequality can be found in linear time. This can be used to obtain a heuristic, which turned out to be powerful in practice. In combination with a systematic exploration of violated flip inequalities, we were able to improve the dual bounds of five instances of the benchmark library PESPlib - proving both the effectiveness of our approach, but also of the benefit of the split closure in the context of PESP. One of our main contributions is also in the insight that the split closures of various equivalent PESP formulations are all equivalent as well, meaning that neither the specific MIP formulation, nor any amount of subdivision or augmentation will lead to a stronger split closure.

Our computational experiments also indicate that even with a full exploration of the flip polytope, a certain gap will remain. To close the primal-dual gap entirely, further research into stronger cuts is needed, which will have to be different from first-order split cuts.

References

Achterberg, T. (2009). SCIP: solving constraint integer programs. Mathematical Programming Computation, 1(1), 1-41. doi: 10.1007/s12532-008-0001-1
Aprile, M., Conforti, M., \& Di Summa, M. (2021). Binary extended formulations and sequential convexification. arXiv. (arXiv:2106.00354 [cs, math])
Balas, E., Ceria, S., \& Cornuéjols, G. (1993). A lift-and-project cutting plane algorithm for mixed 0-1 programs. Mathematical Programming, 58(1), 295-324. doi: 10.1007/BF01581273
Balas, E., \& Saxena, A. (2008). Optimizing over the split closure. Mathematical Programming, 113(2), 219-240. doi: 10.1007/s10107-006-0049-5
Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., Doornmalen, J. v., ... Witzig, J. (2021). The SCIP Optimization Suite 8.0 (ZIB-Report No. 21-41). Zuse Institute Berlin. Retrieved from http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
Bonami, P. (2012). On optimizing over lift-and-project closures. Mathematical Programming Computation, 4(2), 151-179. doi: 10.1007/s12532-012-0037-0
Borndörfer, R., Hoppmann, H., Karbstein, M., \& Lindner, N. (2020). Separation of cycle inequalities in periodic timetabling. Discrete Optimization, 35, 100552. doi: 10.1016/ j.disopt.2019.100552

Borndörfer, R., Lindner, N., \& Roth, S. (2020). A concurrent approach to the periodic event scheduling problem. Journal of Rail Transport Planning \mathcal{E} Management, 15, 100175. doi: 10.1016/j.jrtpm.2019.100175

Bortoletto, E., Lindner, N., \& Masing, B. (2022). Tropical Neighbourhood Search: A New Heuristic for Periodic Timetabling. In M. D'Emidio \& N. Lindner (Eds.), 22nd Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2022) (Vol. 106, pp. 3:1-3:19). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. (ISSN: 2190-6807) doi: 10.4230/OASIcs.ATMOS.2022.3
Caprara, A., \& Letchford, A. N. (2003). On the separation of split cuts and related inequalities. Mathematical Programming, 94(2), 279-294. doi: 10.1007/s10107-002-0320-3
Conforti, M., Cornuéjols, G., \& Zambelli, G. (2010). Polyhedral Approaches to Mixed Integer Linear Programming. In M. Jünger et al. (Eds.), 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art (pp. 343-385). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-68279-0_11

Conforti, M., Cornuéjols, G., \& Zambelli, G. (2014). Integer Programming (Vol. 271). Cham: Springer International Publishing. doi: 10.1007/978-3-319-11008-0
Cook, W., Kannan, R., \& Schrijver, A. (1990). Chvátal closures for mixed integer programming problems. Mathematical Programming, 47(1), 155-174. doi: 10.1007/BF01580858
Cornuéjols, G., \& Li, Y. (2001). Elementary closures for integer programs. Operations Research Letters, 28(1), 1-8. doi: 10.1016/S0167-6377(00)00067-5
Dash, S., Günlük, O., \& Hildebrand, R. (2018). Binary extended formulations of polyhedral mixed-integer sets. Mathematical Programming, 170(1), 207-236. doi: 10.1007/s10107-018 -1294-0
Goerigk, M. (2022). PESPlib - A benchmark library for periodic event scheduling. (http://num .math.uni-goettingen.de/~m.goerigk/pesplib/, last update on 11/07/2022)
Goerigk, M., \& Liebchen, C. (2017). An Improved Algorithm for the Periodic Timetabling Problem. In G. D'Angelo \& T. Dollevoet (Eds.), 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017) (Vol. 59, pp. 12:112:14). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. (ISSN: 2190-6807) doi: 10.4230/OASIcs.ATMOS.2017.12
Großmann, P., Hölldobler, S., Manthey, N., Nachtigall, K., Opitz, J., \& Steinke, P. (2012). Solving Periodic Event Scheduling Problems with SAT. In H. Jiang, W. Ding, M. Ali, \& X. Wu (Eds.), Advanced Research in Applied Artificial Intelligence (pp. 166-175). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-31087-4_18
Gurobi Optimization, LLC. (2023). Gurobi Optimizer Reference Manual. Retrieved from https://www.gurobi.com
Kavitha, T., Liebchen, C., Mehlhorn, K., Michail, D., Rizzi, R., Ueckerdt, T., \& Zweig, K. A. (2009). Cycle bases in graphs characterization, algorithms, complexity, and applications. Computer Science Review, 3(4), 199-243. doi: 10.1016/j.cosrev.2009.08.001
Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maróti, G., ... Ybema, R. (2009). The New Dutch Timetable: The OR Revolution. Interfaces, 39(1), 6-17. doi: 10.1287/ inte.1080.0409
Liebchen, C. (2006). Periodic timetable optimization in public transport (Unpublished doctoral dissertation). Technische Universität Berlin.
Liebchen, C. (2008). The First Optimized Railway Timetable in Practice. Transportation Science, 42(4), 420-435. (Publisher: INFORMS) doi: 10.1287/trsc.1080.0240
Liebchen, C., \& Möhring, R. H. (2007). The Modeling Power of the Periodic Event Scheduling Problem: Railway Timetables - and Beyond. In F. Geraets, L. Kroon, A. Schoebel, D. Wagner, \& C. D. Zaroliagis (Eds.), Algorithmic Methods for Railway Optimization (pp. 3-40). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-540-74247-0_1
Liebchen, C., \& Peeters, L. (2009). Integral cycle bases for cyclic timetabling. Discrete Optimization, 6(1), 98-109. doi: 10.1016/j.disopt.2008.09.003
Liebchen, C., \& Swarat, E. (2008). The Second Chvatal Closure Can Yield Better Railway Timetables. In M. Fischetti \& P. Widmayer (Eds.), 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08) (Vol. 9). Dagstuhl,

Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. (ISSN: 2190-6807) doi: 10.4230/OASIcs.ATMOS.2008.1580

Lindner, N., \& Liebchen, C. (2020). Determining All Integer Vertices of the PESP Polytope by Flipping Arcs. In D. Huisman \& C. D. Zaroliagis (Eds.), 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020) (Vol. 85, pp. 5:1-5:18). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum für Informatik. (ISSN: 2190-6807) doi: 10.4230/OASIcs.ATMOS.2020.5
Lindner, N., \& Liebchen, C. (2022). Timetable merging for the Periodic Event Scheduling Problem. EURO Journal on Transportation and Logistics, 11, 100081. doi: 10.1016/j.ejtl. 2022 . 100081
Lindner, N., Liebchen, C., \& Masing, B. (2021). Forward Cycle Bases and Periodic Timetabling. In M. Müller-Hannemann \& F. Perea (Eds.), 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) (Vol. 96, pp. 2:1-2:14). Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum für Informatik. (ISSN: 21906807) doi: 10.4230/OASIcs.ATMOS.2021.2

Lindner, N., \& Reisch, J. (2022). An analysis of the parameterized complexity of periodic timetabling. Journal of Scheduling, 25(2), 157-176. doi: 10.1007/s10951-021-00719-1
Lindner, T. (2000). Train Scheduling in Public Rail Transport (Unpublished doctoral dissertation). Technische Universität Braunschweig.
Masing, B., Lindner, N., \& Ebert, P. (2023). Forward and Line-Based Cycle Bases for Periodic Timetabling (ZIB-Report No. 23-05). Zuse Institute Berlin. Retrieved from https://nbn -resolving.org/urn:nbn:de:0297-zib-89731
Nachtigall, K. (1996). Cutting Planes for a Polyhedron Associated with a Periodic Network. (Tech. Rep. No. IB 112-96/17). Deutsches Zentrum für Luft- und Raumfahrt e. V.
Nachtigall, K. (1998). Periodic Network Optimization and Fixed Interval Timetables (Habilitation Thesis). Universität Hildesheim.
Nachtigall, K., \& Opitz, J. (2008). Solving Periodic Timetable Optimisation Problems by Modulo Simplex Calculations. In M. Fischetti \& P. Widmayer (Eds.), 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems (ATMOS'08) (Vol. 9). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. (ISSN: 21906807) doi: 10.4230/OASIcs.ATMOS.2008.1588

Nemhauser, G. L., \& Wolsey, L. A. (1990). A recursive procedure to generate all cuts for $0-1$ mixed integer programs. Mathematical Programming, 46(1), 379-390. doi: 10.1007/ BF01585752
Odijk, M. A. (1994). Construction of periodic timetables, Part 1: A cutting plane algorithm (Tech. Rep. No. 94-61). TU Delft.
Peeters, L. (2003). Cyclic Railway Timetable Optimization (Unpublished doctoral dissertation). Erasmus Universiteit Rotterdam.
Pätzold, J., \& Schöbel, A. (2016). A Matching Approach for Periodic Timetabling. In M. Goerigk \& R. Werneck (Eds.), 16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016) (Vol. 54, pp. 1:1-1:15). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. (ISSN: 2190-6807) doi: 10.4230/OASIcs.ATMOS.2016.1

Schiewe, P., \& Schöbel, A. (2020). Periodic Timetabling with Integrated Routing: Toward Applicable Approaches. Transportation Science, 54(6), 1714-1731. (Publisher: INFORMS) doi: 10.1287/trsc.2019.0965
Serafini, P., \& Ukovich, W. (1989). A Mathematical Model for Periodic Scheduling Problems. SIAM Journal on Discrete Mathematics, 2(4), 550-581. (Publisher: Society for Industrial and Applied Mathematics) doi: 10.1137/0402049

[^0]: *(D) 0000-0002-8337-4387

 + (iD) 0000-0001-7201-2412

