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Abstract
Existing planning approaches for onshore wind farm siting and network integration

often do not meet minimum cost solutions or social and environmental considerations. In
this paper, we develop an approach for the multi-objective optimization of turbine loca-
tions and their network connection using a Quota Steiner tree problem. Applying a novel
transformation on a known directed cut formulation, reduction techniques, and heuristics,
we design an exact solver that makes large problem instances solvable and outperforms
generic MIP solvers. Although our case studies in selected regions of Germany show large
trade-offs between the objective criteria of cost and landscape impact, small burdens on
one criterion can significantly improve the other criteria. In addition, we demonstrate
that contrary to many approaches for exclusive turbine siting, network integration must
be simultaneously optimized in order to avoid excessive costs or landscape impacts in the
course of a wind farm project. Our novel problem formulation and the developed solver
can assist planners in decision making and help optimize wind farms in large regions in
the future.

Keywords
OR in energy, combinatorial optimization, multiple objective programming, quota Steiner tree
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1 Introduction
The deployment of low-carbon technologies is vital in order to mitigate climate change. As
part of the transformation of the global energy system, low-cost wind energy has become an
established source of electricity [1]. Between 2000 and 2019, global wind turbine capacity
increased by more than 20% annually [2], reaching 730 GW in 2020 [3], with a further increase
of 50% anticipated by the end of 2023 [2]. Experts also predict a sharp decline in the already
low cost of wind energy by 2050 [4–6].

In recent years, however, the expansion of onshore wind has stalled in some countries and
regions [7]. Despite general approval, local interest groups increasingly oppose the construction
of onshore wind turbines [8–10], especially if they are not involved in the planning process [11,
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12]. One of the main reasons for this opposition is the visual impact of these installations on
the landscape [13–17]. This opposition is most pronounced against placement of wind turbines
in landscapes of high aesthetic/scenic quality, whereas wind turbines placed in less attractive
landscapes are more likely to be accepted [16]. The impact of resistance is particularly evident
in Germany, the country with the third-largest onshore wind capacity [18] (around 58 GW
in 2022 [19]) and the fourth largest share of onshore wind in electricity generation worldwide
(around 26%, [20]). After record years in 2014 and 2017, with capacity additions of 4.8 GW and
5.3 GW, respectively, only 1.0 GW, 1.4 GW, 1.6 GW and 2.4 GW of new capacity was added
in 2019, 2020, 2021 and 2022 [19, 21], respectively. The rapid expansion and development of
onshore wind turbines has triggered an increase in local protest movements and lawsuits across
the country [22, 23]. Together with the hurdles erected by legislators for new wind turbines,
this raises doubts as to whether the government’s expansion target of an additional minimum
of 57 GW by 2030 is feasible [19].

In the case of larger onshore wind farms, overhead lines are usually used for grid connection,
which has also led to social opposition due to the accompanying modification of the landscape
[8, 24]. Even the typically used underground cables can have a negative impact on the land-
scape, e.g. via the cutting of paths and protective strips in forests [25]. Furthermore, historical
wind energy projects have made it apparent that grid operators often implement suboptimal
grid connection plans. Although grid operators are obliged under the German Renewable En-
ergy Sources Act to establish the most economically-favorable connection points, this is rarely
the case in reality [26]. A planning approach for turbine location and grid connection planning
that would optimally take into account the central target criteria of cost efficiency and land-
scape impact could accelerate onshore wind expansion again and so support the achievement
of expansion targets.

1.1 Existing literature
Recent research studies have dealt with the optimal siting of onshore wind turbines using multi-
criteria objectives: in Weinand et al. [27], Lehmann et al. [28] and Tafarte & Lehmann [29],
optimal onshore wind sites were determined for the entirety of Germany on the basis of the
turbine levelized cost of electricity in €/MWh, aestetic qualities of landscapes or disamenities
for the inhabitants living close to them. In Weinand et al. [30], these analyses were extended
to turbine siting across Europe, with a simulation rather than an optimization approach being
taken due to the large number of turbines and scenarios. In these large-scale studies, grid
integration is typically neglected due to the high complexity of the resulting combinatorial
problem [31]. According to the results of the grid integration heuristic for onshore wind turbines
discussed in McKenna et al. [32], however, the total costs are doubled on average when grid
integration is taken into account. It is therefore imperative to include grid integration. Due to
the complexity of the problem, grid connection planning is mostly formulated as a minimum
spanning tree (MST) problem (e.g. [33]), is mostly solved heuristically [34–37], and turbine
locations are specified as fixed (e.g. [38, 39]).

There are some promising examples for the design and cable routing of offshore wind farms
[40, 41], but typically a fixed number of turbines are determined prior to cable routing. These
studies also include some Steiner nodes to provide for more flexibility for the routing problem,
which is sufficient in an offshore environment and a single wind farm. This has, however,
limitations when considering onshore and multiple wind farms at the same time. In Fischetti
& Fischetti [42], a combined layout and cable routing problem is discussed again in the context
of offshore wind farms. The problem is modeled as a mixed-integer linear program, which is
then improved by using cutting techniques. Even though the model can handle a variable set
of wind turbines, it was decided to fix the number, as is done in practice of single wind farm
design. In the latter articles [40–42], a single offshore wind farm is designed, and so a model
formulated, that captures the technical details on graphs with 50 - 100 nodes.

An efficient way to solve the problem for larger instances is to reduce the level of technical
detail, e.g., ignoring cable losses or capacity constraints on substations, etc. In this study, the
problem of choosing a subset of possible wind turbines, including cable routing, is modeled
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as a variant of the Steiner tree problem (STP), a generalization of the MST problem. The
STP is a classic NP-hard problem [43], and one of the most studied problems in combinatorial
optimization [44]. Given an undirected graph with non-negative edge costs, the STP aims to
find a tree that interconnects a given set of special points (referred to as terminals) at minimum
total cost. The STP and its variations arise in many real-world applications like network design
problems in telecommunication, electricity, or in district heating, as well as other fields such as
biology; see, e.g., Leitner et al. [45], Bolukbasi & Kocaman [46], Ljubic et al. [47], and Klimm
et al. [48], respectively. A vast amount of literature concerning STP and related problems
exists and for a comprehensive overview of the topic, the reader is referred to the recent survey
[44]. In the context of wind farm design, the STP appears for example in the PhD thesis by
Ridremont [49], in which a robust cable network is designed; again, the method is only applied
on networks with up to 100 nodes and 300 edges.

In general, network design problems consist of two parts: first, a subset of profitable cus-
tomers must be selected, and second, a network must be designed to connect all chosen cus-
tomers with the least cost. The trade-off between maximizing profits and minimizing costs
can be modeled as a generalized version of the STP: the Prize-Collecting Steiner Tree Problem
(PCSTP). However, in the transition towards a carbon-neutral energy system only focusing on
this trade-off is insufficient. For example, network operators must assure security of demand,
there are expansion targets to be met, or a region strives to cover its demand by locally oper-
ated renewable energy sources. These additional constraints can be modeled in a generalized
version of the PCSTP, namely the quota PCSTP (QSTP), with the objective of minimizing
costs while a minimum amount of "profits" is collected.

Although a wide range of literature discusses the PCSTP from both the theoretical as well
as the practical point of view (see the surveys in [50] and [44]), few studies have addressed the
QSTP. The QSTP was initially formulated by Johnson et al. [51], who observed that it is a
generalized version of the k minimum spanning tree (k-MST) problem, in which, given an edge-
weighted graph G, a minimum costs subtree of G containing at least k vertices is constructed.
The authors also propose a heuristic approach to solving the QSTP by introducing an increasing
profit-multiplier α, and solving a series of PCSTP instances. In each iteration, a new instance
is constructed by multiplying the original profits by the increased α until the quota is fulfilled.
This approach results in a trade-off curve that shows which quota can be collected at which
prize. Drawbacks of this approach include the fact that multiple problems must be solved and
it might not be clear how to choose α, especially if costs and profits are not comparable, e.g.,
costs vs. energy potential; finally, the desired quota might not be captured in the trade-off
curve. Haouari & Siala [52] propose a hybrid Lagrangian genetic algorithm to the compute
lower and upper bounds for QSTP instances with up to 5000 edges. A robust version of the
QSTP was introduced in Alvarez-Miranda et al. [53]. However, the authors only discuss a
branch-and-cut approach for the robust PCSTP and its budget-constrained variant and not
for the QSTP. Although a number of studies on exact solution approaches for the PCSTP
have been conducted so far (e.g., [47, 54, 55]), to the best of our knowledge no exact solution
approach for the QSTP has been suggested in the literature.

1.2 Contribution and structure
In this study, we develop a planning instrument based on the Steiner tree approach, which is
applicable to any region in Germany. This research is interdisciplinary and combines math-
ematical, landscape planning and energy management methods. In contrast to studies on
offshore wind farm planning [40–42], our multi-objective approach aims to solve onshore wind
turbine placements and cable routing on a regional level, resulting in much larger instances
as a larger number of turbines are considered and more Steiner nodes are needed to assure
flexibility in the cable routing. In Section 2, we first present the QSTP as a directed cut
formulation. Then, we introduce a new transformation for the problem and prove the equiva-
lence with the original formulation. We integrate both formulations into the exact Steiner tree
solver scip-Jack [56]. We further implement a shortest-path-based reduction technique and
a primal heuristic for the QSTP. Subsequently, we apply our new methodological approaches
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in Section 3 to demonstrate the significant performance improvements compared to standard
solvers and to demonstrate the trade-offs between cost and landscape impacts in onshore wind
farm planning for several German regions. Thereby, we highlight what previous (national)
planning approaches must improve, before discussing and concluding our methods and results
in Section 4.

2 Quota Steiner tree problem
The Quota Steiner tree problem (QSTP) is defined, similarly to Johnson et al. [51] with the
addition of vertex costs, as follows: given an undirected graph G = (V, E), a set of fixed
terminals Tf ⊂ V and a set of potential terminals Tp ⊂ V with Tf ∩ Tp = ∅, where each edge
(i, j) ∈ E is associated with costs c : E → R≥0, and each potential terminal v ∈ Tp with costs
w : Tp → R>0 and quota profits q : Tp → R>0. The goal is to find a tree S = (E′, V ′) ⊆ G
that contains all terminals Tf such that the total cost:

C(S) =
∑

(i,j)∈E′

cij+
∑

i∈Tp∩V ′

wi (1)

is minimized and a given quota Q ∈ R>0 is fulfilled, i.e.:

Q(S) =
∑

i∈Tp∩V ′

qi ≥ Q (2)

2.1 Directed cut formulation
The QSTP is modeled as an Steiner arborescence problem (SAP) in an integer linear program
(IP). For the general SAP see e.g. Wong [57]. The original undirected graph G is transformed
into a directed graph D = (V, A) where A := {(i, j), (j, i)|∀(i, j) ∈ E}. By applying the idea of
shifting the costs of a vertex v onto the costs of its incoming arcs (see Ljubic et al. [47]), the
arc costs c : A → R≥0 are defined as:

c(i, j) =
{

ce + wj if j ∈ Tp,

ce otherwise
∀a = (i, j) ∈ A (3)

where ce represents the cost of the corresponding edge e = (i, j) in the original undirected
graph G. For a subset of nodes W ⊂ V , we denote δ+(W ) = {(i, j) ∈ A : i ∈ W, j ∈ V \W}
as the set of outgoing arcs and δ−(W ) = {(i, j) ∈ A : i ∈ V \W, j ∈ W} as the set of incoming
arcs. For a single vertex vi, we write δ+({vi}) = δ+(vi) and δ−({vi}) = δ−(vi). For any set
M , we define x(M) =

∑
i∈M xi.

We introduce a binary variable xij for each (i, j) ∈ A if the arc (i, j) is contained in the
Steiner tree (xij = 1) or not (xij = 0). Furthermore, let yk be a binary variable for each k ∈ Tp

indicating whether or not the potential terminal k is chosen. The rooted directed cut integer
programming formulation (IP) of the QSTP with an arbitrary root r ∈ Tf is given as follows:

min cT x (4)
s.t.

x(δ−(W )) ≥ 1 ∀W ⊂ V, r /∈ W, |W ∩ Tf | ≥ 1 (5)
x(δ−(W )) ≥ yi ∀W ⊂ V, r /∈ W, |W ∩ Tp| ≥ 1, i ∈ Tp (6)∑
i∈Tp

qiyi ≥ Q (7)

xij , yk ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ Tp (8)
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(b) Transformed instance.

Figure 1: Transformation of QSTP. For each potential terminal i ∈ Tp (black squares) a real terminal
(black circle) i′ is added with profit qi′ = qi, which is connected to the root node r and the original
vertex by an arc of zero costs. The original potential terminal i ∈ Tp is removed from the set of
potential terminals and considered a Steiner node (white circle) from here on. The original arc costs
are omitted.

The constraint (5) guarantees that there exists a path from r to each t ∈ Tf and (6) that there
exists a path from r to the potential terminal i ∈ Tp if it is chosen to contribute to the quota
constraint (7). Let IQ = (V, A, Tf , Tp, c, q, Q) denote an instance of the QSTP. Note a simple
observation for the QSTP:

Observation 2.1. Considering an instance IQ = (V, A, Tf , Tp, c, q, Q) of the QSTP, if

Q ≥
∑
i∈Tp

qi − min
i∈Tp

qi

then the QSTP reduces to the STP by defining the set of terminals T = Tf ∪ Tp.

2.1.1 Transformation

One of the essential features of the existing, state-of-the-art scip-Jack framework is the cut
separation algorithm for the SAP. However, the binary variables introduced for all potential
terminals prevent the direct use of this separation algorithm for the QSTP formulation pre-
sented in the previous section. Therefore, we present a transformation allowing us to solve the
problem using the separation algorithm of scip-Jack without further adjustments.

For each potential terminal ti ∈ Tp, a new fixed terminal t′
i with a profit of qt′

i
= qti is

added. Furthermore, for each newly-added terminal t′
i, an arc (r, t′

i) with costs c(r, t′
i) = 0 and

an arc (ti, t′
i) with costs c(ti, t′

i) = 0 are added. Finally, each original potential terminal ti ∈ Tp

now becomes a Steiner node i in the transformed graph. Let T ′
f be the set of the newly-added

terminals and T ′ = Tf ∪ T ′
f the set of all terminals in the transformed graph.

Now, if we tried to keep the structure of the quota constraint (7), the quota profit qt′
i

would be collected if the newly-added fixed terminal t′
i is reached by the arc (ti, t′

i). However,
by adding a constraint of form bT x ≥ d with b ∈ RA

≥0 and b ̸= 0 and d ∈ R to the general
SAP formulation, we can no longer guarantee the connectivity of the solution, which will be
explained in the following. Let us consider only the Steiner cut constraints (5). As Goemans &
Myung [58] point out, the convex hull of all x ∈ ZA

≥0 satisfying these constraints is of blocking
type, i.e., its recession cone consists of all non-negative vectors. This means any solution
feasible for (5) can be extended by increasing xa for any a ∈ A and still be feasible. Only if
we minimize over non-negative arc costs, an optimal solution yields a Steiner tree. However,
by introducing bT x ≥ d , one can add arcs (increasing the values of x) to the solution until the
“≥” condition holds without violating the Steiner cut constraint (5). These arcs, however, do
not necessarily have to be connected to the root component. To avoid this problem, instead
of considering which potential terminals are taken into account, we are interested in which
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potential terminals are not considered, i.e., which newly-added terminal is directly connected
to the root r by the newly-added arc (r, t′

i) and not via the original potential terminal. Thus,
to fulfill the quota, there is an upper limit on how many newly-added terminals are connected
directly to the root r; see (11).

Now, let Ar denote the set of arcs from the root node r to the newly-added fixed terminals
T ′

f and At the set of arcs from the original potential terminals Tp to the newly-added fixed
terminals T ′

f . Let A′ = A ∪ Ar ∪ At. Formulated as an IP, the problem reads as follows:

min cT x (9)
s.t.

x(δ−(W )) ≥ 1 ∀W ⊂ V ′, r /∈ W, |W ∩ T ′| ≥ 1 (10)∑
i′∈T ′

f

qi′xr,i′ ≤
∑

i′∈T ′
f

qi′ − Q (11)

xij ∈ {0, 1} ∀(i, j) ∈ A′ (12)

Let IQT = (V ′, A′, T ′, c′, q′, Q) denote an instance of the transformed QSTP. Figure 1 shows
the original graph and its transformation.

2.1.2 Equivalence of the LP-relaxations

We show the equivalence of the LP-relaxations of the IQ and the IQT, which are denoted
by LPIQ and LPIQT , respectively. Let v(P ) denote the value of the optimal solution of a
mathematical programming formulation P and let PLP(P ) denote the set of feasible points of
its LP relaxation. Before we compare the two LP-relaxations, let us introduce an additional set
of variables in the transformed instance. For each vertex vi from the original set of potential
terminals Tp, let y′

i be defined as:

y′
i := x(δ−(vi)). (13)

Let this extended formulation be denoted as IQT = (V ′, A′, T ′, c′, p′). By construction this
new variable does not change the solution of the transformed instance IQT. However, we can
now formulate the result of this section:

Proposition 2.2. Let IQ be an instance of the QSTP and IQT its transformed problem with
the additional set of variables. It holds that:

projxy(PLP(IQT)) = PLP(IQ). (14)

Proof. 1) projxy(PLP(IQT)) ⊆ PLP(IQ): let (x, xt, xr, y′) ∈ PLP(IQT), where x, xt, and
xr represent the variables for the arcs in A, Ar, and At, respectively. It is easy to see that x
satisfies constraint (5) as this must hold for every original terminal t ∈ Tf in LPIQT , too. Now
we show that xt satisfies constraints (6) and (7).

(I) xt satisfies (6): for each i′ ∈ T ′
f , the Steiner cut of the set W ′ = {vi′} yields:

x(δ−(vi′)) = xri′ + xii′ ≥ 1 ⇔ xri′ ≥ 1 − xii′ (15)

Then, for each i′ ∈ T ′
f and for every W ′ with {vi, vi′} ⊆ W ′, the Steiner cut yields:

x(δ−(W ′)) = xri′ + x(δ−(W ′\vi′)) ≥ 1 (16)
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Note that by construction there solely exists an arc (i, i′) and no arc (i′, i). Using (15), (16),
this gives:

xri′ + x(δ−(W ′\vi′))
(15)
≥ 1 − xii′ + x(δ−(W ′\vi′)) ≥ 1

⇔ x(δ−(W ′\vi′)) ≥ xii′ .

However, W ′\vi′ = W with W ⊂ V and |W ∩ Tp| ≥ 1. Thus, xii′ satisfies (6) for all i ∈ Tp.
By definition, yi also satisfies (6) for all vi ∈ Tp. Moreover, let W ′ = {vi, vi′} and then:

xii′ ≤ x(δ−(W ′\vi′)) = x(δ−(vi)) = y′
i (17)

(II) xt and y satisfy (7): given constraint (11)

∑
i′∈T ′

f

qi′ − Q ≥
∑

i′∈T ′
f

qi′xri′

(15)
≥

∑
i′∈T ′

f

qi′(1 − xii′)

⇔ −Q ≥ −
∑

i′∈T ′
f

qi′xii′

⇔ Q ≤
∑

i′∈T ′
f

qi′xii′

(17)
≤

∑
i∈Tp

qiy
′
i.

Hence, xt and y satisfy (7). Finally, by ignoring xr, we have projxy(PLP(IQT)) ⊆ PLP(IQ).
2) projxy(PLP(IQT)) ⊇ PLP(IQ):

Let (x̂, ŷ) ∈ PLP(IQ). Construct (x, xt, xr, y). For all (i, j) ∈ A, set xij = x̂ij . For all i ∈ Tp,
set xt

ii′ = yi = ŷi. Using (15), choose xri′ ≥ 1 − ŷi for all (r, i′) ∈ Ar. Reversing the steps
of the first part of the proof, we see that (x, xt, xr) satisfies (10)–(11) and, so, (x, xt, xr, y) ∈
PLP(IQT). Hence, projxy(PLP(IQT)) ⊇ PLP(IQ), which concludes the proof.

2.2 Bi-objective QSTP
As mentioned in the introduction, not only costs but also other social or environmental impacts
must be taken into account when planning new wind farms. In this study, we focus on min-
imizing both costs and the impact on the landscape of network cables and wind turbines. In
addition to the cable (edge) costs c and wind turbine (potential terminal) costs w introduced in
Section 2, let s(e) and sv(v) denote the scenic impact of an edge e ∈ E and of a vertex v ∈ Tp,
respectively. Given an undirected graph G = (V, E), a set of fixed terminals Tf ⊂ V , and a
set of potential terminals Tp ⊂ V with Tf ∩ Tp = ∅, the goal is to find a tree S = (E′, V ′) ⊆ G
that contains all terminals Tf such that the total cost

C(S) =
∑
e∈E′

c(e) +
∑

v∈Tp∩V ′

w(v) (18)

and total impact on the landscape

L(S) =
∑
e∈E′

s(e) +
∑

v∈Tp∩V ′

sv(v) (19)

is minimized and a given quota Q ∈ R>0,is fulfilled, i.e.:

Q(S) =
∑

i∈Tp∩V ′

qi ≥ Q (20)
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We are interested in finding the Pareto optimal solutions to this problem. A solution is Pareto
optimal, if there exists no other feasible solution with a lower objective value for both goals
[59]. Multiple ways to approach such a multi-objective optimization problem exist; see Ehrgott
et al. [59] for a general overview. In the context of STP, Leitner et al. [60] proposes an ε-
constraint algorithm to solve a bi-objective PCSTP. In this study, we compose a new objective
function C by using a convex combination of the real costs c and w and the scenic impact s
and sv as follows:

C(S) = αC(S) + (1 − α)L(S), (21)

where α ∈ [0, 1]. Depending on the choice of α, a different solution is found, with α = 1.0 only
taking costs into account and α = 0.0 only considering the scenic impact. The advantage of
this weighted sum approach is that, in contrast to other methods like the ε-constraint one, we
can retain the general structure of the single-objective QSTP formulation [59].

2.3 Shortest path reduction
In general, reduction techniques reduce the size of the original problem by removing arcs
and vertices without cutting the optimal solution. Reduction techniques are often used in a
preprocessing step to create "easier to solve" instances.

A common and intuitive reduction test is the shortest path reduction: If there exists a
directed path P (v, w) = {v, (v, v1), v1, (v1, v2), . . . , vn, (vn, w), w} of costs c(P (v, w)) with

c(P (v, w)) < c(v, w)

then arc (v, w) can be removed.

Proposition 2.3. Consider an instance IQT = (V ′, A′, T ′, c′, q′, Q) of the previously-described
QSTP. If there exists a directed path P (v, w) with costs c(P (v, w)) < c(v, w), then there also
exists a directed path P (w, v) with costs c(P (w, v)) < c(w, v), and both (v, w) and (w, v) can
be removed from IQT .

Proof. Given the path P (v, w) with

c(P (v, w)) < c(v, w)

each node vi ∈ {v, v1, . . . , vn, w} on the path P (v, w) is either in Tp, i.e, wvi > 0, or not, i.e.
wvi = 0. Now, subtracting the costs of node w, ww, and adding the costs of node v, wv, yields:

c(P (v, w)) − ww + wv < c(v, w) − ww + wv

c(v, v1) + c(v1, v2) + . . . + c(vn, w) − ww + wv < c(v, w) − ww + wv (22)

The cost of an arc (i, j) is given by c(i, j) = ce + wj where ce is the costs of the undirected
edge e = (i, j). With this, (22) reads as follows:

c(v,v1)︷ ︸︸ ︷
cv,v1 + wv1 +

c(v1,v2)︷ ︸︸ ︷
cv1,v2 + wv2 + . . . +

c(vn,w)︷ ︸︸ ︷
cvn,w + ww −ww + wv < cv,w + ww − ww + wv

wv + cv,v1︸ ︷︷ ︸
c(v,v1)

+ wv1 + cv1,v2︸ ︷︷ ︸
c(v2,v1)

+ . . . + wvn + cvn,w︸ ︷︷ ︸
c(w,vn)

< cv,w + wv

c(P (w, v)) < c(w, v)

Hence, a path P (w, v) with costs less than the those of arc (w, v) also exists.
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2.4 Shortest path heuristic
Heuristics are used to find good and feasible solutions in short time, and thus providing upper
bounds on the exact solution of a problem. In the context of STP, one of the best-known
heuristics is the shortest path heuristic, which was introduced by Takahashi & Matsuyama [61].
For this study, we adapt the implementation of the shortest path heuristic given by Rehfeldt
[62]. Starting at the root node, we add the closest fixed terminal or potential terminal to
the root component. Then we update the distance of all non-connected vertices to the root
component. We repeat until all fixed terminals are connected and the connected potential
terminals fulfill the desired quota.

3 Computational results
In this section, we describe the input data, the computational setup, and the computational
results. The QSTP ((4) – (8)) and its transformation ((9) – (12)) are integrated in the general
STP solver scip-Jack. scip-Jack uses a branch-and-cut procedure to account for the expo-
nential number of constraints induced by the Steiner cut-like constraints, i.e., (5), (6), and (10).
We use the native, flow-based separation algorithm of scip-Jack for the Steiner-cut generation
and add the additional quota constraint. Most other features of scip-Jack, such as heuristics,
reduction methods, and domain propagation, do not work with the quota constraints and must
be turned off. Therefore, we implemented the shortest-path-based reduction method, which is
used in the presolving step. As to primal heuristics, we implement the shortest-path heuristic
as primal heuristic, to improve the solving process. The heuristic might find an optimal solu-
tion or gives a primal bound, with which nodes of the branch-and-bound tree can be removed.
Depending on the current LP-solution the shortest-path heuristic is called repeatedly on a
graph with modified arc costs ca = (1.0 − x̂)ca for all a ∈ A during the branch-and-bound
procedure.

3.1 Input data, case studies and computations
The considered wind turbines are potential turbines with costs and designs for the year 2050
from Ryberg et al. [63]. To determine their locations, state-of-the-art methods were applied
to exclude unsuitable areas, for example due to high terrain steepness or minimal distances
to settlements or infrastructure. Ryberg et al. [63] obtained the costs for the wind turbines
as well as their annual energy yields. The specific costs for cables and the grid connection
of turbines are based on McKenna et al. [32]. The data for substation locations is based on
OpenStreetMap [64] entries.

The scenic features of landscapes in Germany are derived from Roth et al. [65], who
for the first time conducted an area-wide analysis of the aesthetic value of landscapes across
the country. Using selected photographs, a survey and subsequent regression, each 1 km2 in
Germany was assigned an aesthetic value from one (low scenic quality) to nine (high scenic
quality) (see Figure 2). For the showcase of our methodology, we assume that one km of
electricity network has the same impact on the landscape as one wind turbine.

In the following, we apply the previously described models to two case study regions in
Germany (see Figure 2). The first of these, case study A, includes the siting and grid connection
planning of potential wind turbines in the municipalities of Bad Bellingen and Schliengen. In
these two municipalities, a total of 22 potential turbines can be connected to three different
substations with a total annual energy yield of 158 GWh. A choice can be made between
122 Steiner points and 10,731 possible edges. In case study B, the optimization problem was
applied to a much larger German region with 65 possible turbines with a total energy yield
of 405 GWh, with eight substations, 1566 Steiner points and 1.35 million edges. The Steiner
points were placed in a grid with the dimensions of 1000 meters (case study A) and 500 meters
(case study B) using the geographic information system QGIS. Then, a python script was
developed to determine all possible interconnecting edges. This script can be automatically
applied to any given region and can be provided upon request.
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Figure 2: Substations, potential wind turbines, Steiner points, and scenic value in case studies A
and B in Germany. The map of Germany shows the locations of the two case studies as well as the
landscape’s scenic value distribution in Germany.

For each of the two case study regions, we generate a set of instances on which we evaluate
our proposed techniques. We vary both the given quota Q and weight of the cable costs and
scenic value α, resulting in different edge costs. For region A, we choose the following quotas
Q ∈ [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 158] and for region B we choose
Q ∈ [50, 100, 150, 175, 200, 250, 300, 350, 405]. For both regions, we let α increase from 0.0 to
1.0 in 0.1 steps. This results in 176 instances for region A and 99 for region B. The substations
are modeled as fixed terminals Tf . To allow subtrees, all substations are interconnected by
edges of zero costs. The wind turbines are modeled as potential terminals Tp.

We verify our proposed formulation by solving the problem with the general out-of-the-box
MIP solver gurobi [66]. Due to the exponential number of constraints given by (10), we model
the problem as the following flow-based MIP formulation (FLOW). Let r ∈ Tf be chosen as root.
Note that in our case as all substations (terminals) are interconnected by edges of zero costs,
it does not matter which terminal is chosen as the root. The flow-based MIP formulation is
given by
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min cT x + wT y (23)
s.t. (24)∑

v∈Tp

qvyv ≥ Q (25)

∑
a∈δ−(v)

fa −
∑

a∈δ+(v)

fa =


0 ∀v ∈ V \ (Tf ∪ Tp)
1 ∀v ∈ Tf \ r

yv ∀v ∈ Tp

(26)

xa ≤ yv ∀a ∈ δ−(v), ∀v ∈ Tp (27)
fa ≤ Mxa ∀a ∈ A (28)
yv ∈ {0, 1} ∀v ∈ Tp (29)
xa ∈ {0, 1}, fa ∈ R≥0 ∀a ∈ A (30)

where x and y denote the decision variables if an arc and a vertex is chosen, respectively,
and f describes the flow over the arcs. Constraint (25) describes the quota constraint and (26)
captures the flow balance at each vertex depending on its type. The incoming arcs of a potential
terminal can only be active if the potential terminal is chosen, as in (27). Equation (28) ensures
that a flow over an arc is only possible if the arc is active. We choose M = |Tp| as an upper
limit for the maximum capacity of the arcs. The flow-based formulation was implemented in
python 3.8.10 using the gurobi python-interface, and is solved with gurobi 9.5 [66]. For
the QSTP and its transformation we use scip-Jack in scip 8.0.1 [67] using cplex 12.10 [68]
as the LP solver.

We solve the instance sets described above with the following settings: a) the flow-based
formulation (FLOW with gurobi), b) the initial QSTP formulation QSTP, c) the transformed
QSTP TransQSTP, d) the transformed QSTP plus a shortest-path reduction TransQSTP+, and
e) the transformed QSTP plus the shortest-path reduction and plus a shortest-path based
heuristic TransQSTP++. All computations were executed single-threaded in the case of scip-
Jack and with 32 threads in the case of gurobi on a cluster with Intel XeonGold 6342 CPUs
running at 2.8 GHz and with 30 GB of RAM. We set a time limit of six hours (21,600 s).

3.2 Comparison with state-of-the-art generic solvers
The summary of the computational results is presented in Table 1 and Table 2 (for the detailed
results see Table A.1 and A.2 in the appendix) for the instances of region A and region B,
respectively.

In the case of region A, all 176 instances were solved to optimality within the time limit
of 3600s with all approaches. However, there was a significant difference in the time needed
to solve the instances. As expected, the naive flow formulation solved by the standard out-of-
the-box MIP solver was significantly outperformed by an order of magnitude for the QSTP and
by two orders of magnitude for the TransQSTP++ (see Figure 3a). Almost 80% of the instances
were solved in less than one second for TransQSTP++ and TransQSTP, TransQSTP+ as well as
TransQSTP++, which solved all the instances in less than ten seconds. On the other hand, QSTP
needs ten seconds to solve 60% and 100 seconds to solve all instances. With the out-of-the-box
MIP solver, less than 50% of the instances were solved after 100 seconds. To solve all instances,
the MIP solver needs 3000 seconds on the instance set of region A.

Following the results for region A, we excluded the flow and the original QSTP formulation
when solving the instances of region B (see Table 2). TransQSTP only finds an optimal solution
for a single instance in over 11000 seconds and solutions for six additional instances, with an
average optimality gap of > 600%. As is shown in the performance profiles in Figure 3b,
TransQSTP++ reaches 80% of the solved instances within around 16,500 seconds, but does not
manage to solve the remaining 20 instances to optimality within the time limit of six hours.
However, TransQSTP++ provides solutions for the missing instances with an average gap of
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1.2% and a maximum gap of < 15%. TransQSTP+ solves 60 out of 99 instances to optimality
and provides solutions for 13 more instances with an average gap of 16% and maximum gap
of around 300% within the time limit.

Table 1: Summary of computational results for region A.

Name # Instances # Solved # Optimal ∅ Time [s]
TransQSTP + Heuristic + Reduction 176 176 176 0.86
TransQSTP + Reduction 176 176 176 1.58
TransQSTP 176 176 176 3.31
QSTP 176 176 176 10.24
Flow with GUROBI 176 176 176 378.09

Table 2: Summary of computational results for region B. The gap is averaged over all instances with
a non-optimal solution; the time is averaged over all instances, which are solved to optimality.

Name # Instances # Solved # Optimal ∅ Gap [%] ∅ Time [s]
TransQSTP++ 99 99 79 1.2 4039.23
TransQSTP+ 99 83 60 16.0 6977.53
TransQSTP 99 7 1 666.0 11552.30
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Figure 3: Performance profiles for region A (Panel 3a) and B (Panel 3b), showing the cumulative
percentage of instances solved to optimality over time for all approaches. The Computing time in 3a
is shown on a log-scale

.

Figure 4 shows the computing time of TransQSTP++ for each instance. In general, higher
α, i.e., less weight of scenic impact, led to a higher run time. This is due to the fact that the
shortest path reduction is not effective if only costs are considered, as the direct connection
between nodes is also the shortest one. However, decreasing α (see gray scaling in Figure 4)
leads to a higher influence of the scenic vlaue, with more edges deleted, and, so the problem
size becomes smaller. The solution time increases with a higher share of the desired quota
until 300.0 (around 75% of maximal quota) is reached. With an increasing quota share, there
is a higher flexibility in placing turbines and cables with similar costs (scenic value), making it
more difficult to find the optimal solution. The choice of turbines becomes more limited with
very high quota shares as up to all turbines must be built, leaving only the cable routing as
flexibility, resulting in decreasing computing times (compared to the peak at around 75% of
quota share). Even though our approach finds solutions for quota shares of 100%, the QSTP
reduces to the general STP problem by considering all turbines (potential terminals) as fixed
terminals in this case (see Observation 2.1), which can be solved much faster with scip-Jack.
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Figure 4: Solution time for instances of region B solved by TransQSTP++ for each quota. The quota
is shown relative to the maximal possible potential. The gray scale represents the weight α between
the costs and the scenic impact. The cross markers indicate instances that have not been solved to
proven optimality.

3.3 Trade-offs between costs and scenic value
The trade-offs between cost and scenic value depend to a large extent on the conditions of the
region as well as on the quota, i.e. how much of the maximum possible electricity supply by
wind turbines is required (see Figures 5 and 6). For low quotas, the solution space offers little
flexibility: region A has only one solution for any given α for quotas of 10 and 20 GWh (Figure
5d), and region B has only two solutions for the lowest quotas of 50 and 100 GWh (Figure 6e).
Thus, for the latter problems, no trade-off between cost and scenic value is possible. Either
the decision is made to minimize cost while increasing scenic impact by 8% (quota of 50 GWh)
or 5% (100 GWh), or the focus is on scenic value while increasing costs by 4% (50 GWh)
or 8% (100 GWh). Likewise, the planning flexibility is low at very high quotas, as in these
cases the wind turbines are more or less fixed and the costs and landscape impacts can only
be influenced by the connection of the turbines to the substations.

In contrast to the previous insights, planning flexibility is somewhat high for medium
quotas. For example, in region A, for a quota of 40 GWh, scenic value can be reduced by
almost 20% or costs by 14% (Figure 5d). A similar trend can be observed for a quota of
70 GWh; for this, Figure 5a-5c shows how turbine selection and power networks would vary
depending on the weighting of costs and scenic value. The Pareto curves are particularly
interesting, however, for the larger region B, such as at quotas of 250 or 300 GWh: in these
cases, costs can be reduced by about 5% with almost unchanged landscape impact (Figure
6e). The larger the region and so the more turbines or substations can be chosen, the more
our approach can assist in finding Pareto-optimal solutions for local residents or wind farm
operators.

3.4 Large-scale siting must include grid integration
Planning wind turbine expansion on a national level leads to suboptimal solutions in terms of
cost and landscape impact if grid integration is neglected. We demonstrate this by comparing
our approach with the scenarios from Weinand et al. [27], who identified the optimal turbine
locations at the national level for Germany assuming a capacity of 200 GW in the year 2050
(Figure 7). In Weinand et al. [27], only the costs and scenic value of the turbine sites were
taken into account, but not for the networks, as a simultaneous optimization of both factors
was hardly computationally practicable for such a large region. In order to comparatively
assess the turbine locations in Weinand et al. [27] using our approach, we first connected the
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Figure 5: Solution for different α values with a quota of Q = 70.0 of region A (Panels 5a-5c). Panel 5d
shows normalized scenic value versus normalized costs for each quota in region A. The normalization
was performed for each curve by dividing the values by the respective maximum cost or scenic value
value for the corresponding quota. This means that the curves for different quotas are not comparable
to each other, but for each quota the trade-offs between scenic value and cost are shown.

turbines from Weinand et al. [27] to the substations while minimizing costs or scenic value.
This is consistent with the methodology developed in this study, but with turbine sites fixed
in advance. When minimizing costs, selecting turbine sites without simultaneously considering
network costs can result in 21% higher total costs than simultaneously optimizing sites and
network connection costs (Figure 7a and Figure 7b). The same is true for the landscape impact,
which is 39% lower with the simultaneous optimization of turbines and networks (Figure 7c
& Figure 7d). Interestingly, the shorter network cables chosen in our novel approach would
always also lead to lower values for the criterion that was not been chosen as the objective.
For example, if scenic value were to be minimized for a quota of Q = 137 GWh (as for the cost
minimzations in Figure 7a & Figure 7b), the overall costs would still be 10% lower than for
the approach with fixed turbine siting and subsequent cost-optimized network connections.

In the future, it is essential that recent approaches in the articles by Weinand et al. [27],
Lehmann et al. [28], Tafarte & Lehmann [29], and Spielhofer et al. [69] on the optimal siting
of turbines on a national level attempt to simultaneously include the network integration. For
this purpose, approaches should be developed to make the methodology used in this study
applicable to very large regions, such as entire countries.

4 Discussion and conclusions
Current methods for planning onshore wind farms and integrating them into networks do
not always meet minimum cost solutions or account for social and environmental factors. This
paper proposes a new approach for optimizing turbine locations and network connections using
a Quota Steiner tree problem (QSTP). We present a novel transformation of the already known
directed cut formulation of the QSTP. Even though the LP-relaxations of the transformed and
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Figure 6: Solution for a quota of Q = 100.0 with α = 1.0 (Panel 6a) and α = 0.0 (6b) and for a quota
of Q = 150.0 with α = 1.0 (6c) and α = 0.0 (6d) of region B. Panel 6e shows normalized scenic value
versus normalized costs for each quota in region B. The normalization was performed for each curve
by dividing the values by the respective maximum cost or scenic value for the corresponding quota.
This means that the curves for different quotas are not comparable to each other, but for each quota
the trade-offs between scenic value and cost are shown. Transparent points are not Pareto optimal, as
these are solutions with an optimal gap > 0%.
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Figure 7: Solution for minimizing the costs (α = 1.0) with a quota of around Q = 137.0 in region B (a
and b), and for minimizing the scenic value (α = 0.0) with a quota of around Q = 124.0 in region B (c
and d). TPanels a and c show the optimal turbine locations at the state level for Germany assuming a
capacity of 200 GW in 2050 from [27], which did not involve simultaneous network planning. Based on
the fixed turbine locations, we used our optimization model to connect these turbines to substations.
Panels b and d represent the optimal solutions based on our approach with simultaneous turbine and
network optimization.
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original formulation are proven to be equivalent, the transformed formulation proves to be
more effective in practice. By using shortest path reduction and the shortest path heuristic,
we have advanced the state-of-the-art STP-solver scip-Jack in the context of QSTP, which
outperforms standard solvers and is capable of solving large-scale problems with up to at least
1.3 million edges. Our case studies, conducted in selected regions of Germany, demonstrate
significant trade-offs between cost and landscape impacts when planning onshore wind farms.
However, we also show that small reductions in one objective criterion can yield significant
improvements in the other. Additionally, we illustrate that simultaneously optimizing network
integration with turbine siting is essential for avoiding excessive costs or landscape impacts in
the course of wind farm projects.

In this study, our focus was on presenting the applicability and utility of the methodol-
ogy. For real case studies, further important criteria beyond costs and landscape impacts
should be considered in the future. For example, disamenities for the local population should
be incorporated [28–30], as well as the environmental impacts of turbines, e.g., through bird
strikes [70] and land use competition with other renewable energy sources [71]. Furthermore,
we used different weightings in our multi-objective planning without knowing the exact pre-
ferred weightings between the two objectives costs and scenic value. In addition, equating the
landscape impact of a wind turbine with that of a 1 km electricity network is a strong simpli-
fication. However, previous research has demonstrated that finding universally valid weights
between target criteria in wind farm planning is nearly impossible, even for experts [72]. In
regional planning, such as that discussed in this paper, local stakeholders could be consulted
in multi-criteria decision approaches to determine appropriate weightings in the future [73].

Furthermore, we select the Steiner points independently of the geographical conditions. Our
problem could be improved by using a digital elevation model to determine true distances and
by taking obstacles into account for which the cables cannot be deployed (see also Fischetti &
Pisinger [40]). In addition, for larger regions, we were not able to find solutions for all instances.
Especially when transferring our methodology to federal states or countries, further method-
ological advancements will be necessary to make this computable. For example, reduction
techniques are one of the most essential and effective features in solving STP-related problems
[44] and scip-Jack provides many strong reduction techniques, see e.g., [62, 74, 75]. There-
fore, identifying efficient reduction techniques could significantly improve the solution process,
however, these have yet to be studied in the context of QSTPs. When investigating larger
regions and wind farms, future studies should also incorporate the meshing of power grids for
increased security of supply as well as the (remaining) capacities of substations. The existing
substations we have considered may not always have sufficient remaining capacity to ensure
the grid connection of further wind farms and new substations would have to be installed.
Additionally, we used a shortest path heuristic to find primal solutions in the branch-and-cut
algorithm. In the future, developing new primal and dual heuristics in the context of QSTP
could be a promising way to further improve our approach. For instance, exploration of the
idea of Leitner et al. [54] who introduced a dual-ascent algorithm in the context of PCSTPs
could be worthwhile. Although our approach is also applicable for planning other renewable
energy plants like solar photovoltaic installations, applications of the algorithm beyond en-
ergy system analysis are also conceivable: for example, cable routing optimization approaches
for offshore wind farms [40, 41] were recently applied to determine safe distancing during the
COVID-19 pandemic [76].
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A Detailed Computational Results
A.1 Region A

Table A.1: Detailed Results Region A

Quota α DB PB Gap [%] Time [s]
GRB QSTP TQSTP TQSTP+ TQSTP++

10.0 0.0 12.345 0.0 2.2 0.5 0.4 0.1 0.1
10.0 0.1 12.404 0.0 2.1 0.3 0.2 0.1 0.1
10.0 0.2 12.462 0.0 2.2 0.4 0.3 0.1 0.1
10.0 0.3 12.520 0.0 2.5 0.3 0.3 0.1 0.1
10.0 0.4 12.578 0.0 2.5 0.3 0.3 0.1 0.1
10.0 0.5 12.636 0.0 3.6 0.3 0.3 0.1 0.1
10.0 0.6 12.694 0.0 7.9 0.5 0.5 0.1 0.2
10.0 0.7 12.752 0.0 8.6 0.7 0.6 0.4 0.2
10.0 0.8 12.810 0.0 13.8 1.1 0.6 0.3 0.2
10.0 0.9 12.868 0.0 24.8 2.4 1.4 1.0 0.4
10.0 1.0 12.926 0.0 80.6 3.6 2.0 7.6 0.9
20.0 0.0 20.124 0.0 4.4 0.5 0.3 0.1 0.1
20.0 0.1 19.916 0.0 5.6 0.8 0.3 0.1 0.1
20.0 0.2 19.707 0.0 7.9 0.7 0.3 0.1 0.1
20.0 0.3 19.499 0.0 7.2 0.6 0.3 0.1 0.1
20.0 0.4 19.291 0.0 7.7 0.6 0.5 0.2 0.1
20.0 0.5 19.082 0.0 9.7 1.1 0.3 0.2 0.1
20.0 0.6 18.874 0.0 6.4 0.4 0.5 0.2 0.1
20.0 0.7 18.665 0.0 7.2 0.9 0.5 0.2 0.2
20.0 0.8 18.457 0.0 18.4 1.4 1.0 0.3 0.2
20.0 0.9 18.249 0.0 28.0 4.3 1.4 0.7 0.2
20.0 1.0 18.040 0.0 166.7 24.1 3.1 6.1 0.8
30.0 0.0 40.580 0.0 13.5 5.5 1.8 0.7 0.3
30.0 0.1 39.236 0.0 28.1 5.9 1.8 0.8 0.3
30.0 0.2 37.891 0.0 17.1 5.8 1.6 0.5 0.3
30.0 0.3 36.547 0.0 17.1 5.2 2.0 0.8 0.4
30.0 0.4 35.203 0.0 24.6 6.2 2.2 0.7 0.3
30.0 0.5 33.603 0.0 24.2 5.1 2.3 1.0 0.4
30.0 0.6 31.870 0.0 25.9 5.1 2.2 0.9 0.4
30.0 0.7 30.134 0.0 34.2 4.4 2.7 1.1 0.5
30.0 0.8 28.397 0.0 58.6 5.1 2.6 1.0 0.6
30.0 0.9 26.660 0.0 87.9 6.9 3.6 1.7 0.6
30.0 1.0 24.923 0.0 1103.5 14.0 4.1 8.7 2.3
40.0 0.0 55.945 0.0 26.6 5.7 1.9 0.6 0.4
40.0 0.1 54.086 0.0 23.9 6.7 2.6 0.8 0.3
40.0 0.2 52.226 0.0 23.8 7.3 2.0 1.4 0.4
40.0 0.3 50.367 0.0 26.2 3.5 3.4 1.0 0.4
40.0 0.4 48.507 0.0 40.2 13.6 4.0 1.3 0.4
40.0 0.5 46.393 0.0 54.1 12.8 5.0 2.2 0.5
40.0 0.6 44.145 0.0 60.0 14.4 3.9 1.5 0.4
40.0 0.7 41.893 0.0 91.5 16.8 2.9 1.4 0.6
40.0 0.8 39.206 0.0 180.0 27.1 4.1 1.9 0.9
40.0 0.9 35.635 0.0 256.6 30.1 5.6 1.9 1.8
40.0 1.0 31.938 0.0 786.5 48.8 9.1 7.0 3.5
50.0 0.0 68.268 0.0 23.8 1.5 1.1 0.4 0.1
50.0 0.1 65.688 0.0 26.3 1.9 1.1 0.4 0.2
50.0 0.2 63.109 0.0 28.4 2.1 1.4 0.5 0.1
50.0 0.3 60.530 0.0 26.8 2.2 1.3 0.5 0.1
50.0 0.4 57.950 0.0 38.7 2.7 1.4 0.6 0.2
50.0 0.5 55.116 0.0 45.3 2.8 3.2 0.8 0.2
Cont’d on next page
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Table A.1 : Detailed Results Region A – Cont’d
Quota α DB PB Gap [%] Time [s]

GRB QSTP TQSTP TQSTP+ TQSTP++
50.0 0.6 52.148 0.0 34.1 6.3 4.2 0.7 0.2
50.0 0.7 49.176 0.0 42.3 3.2 4.8 2.3 0.2
50.0 0.8 46.205 0.0 63.1 4.7 4.6 1.2 0.3
50.0 0.9 43.233 0.0 142.8 11.8 2.3 1.4 0.4
50.0 1.0 40.261 0.0 821.4 26.8 3.6 6.5 1.7
60.0 0.0 84.856 0.0 31.9 2.4 0.9 0.4 0.1
60.0 0.1 81.192 0.0 27.2 2.6 5.3 0.4 0.1
60.0 0.2 77.528 0.0 35.2 1.9 4.8 0.2 0.1
60.0 0.3 73.865 0.0 32.3 1.8 0.9 0.4 0.1
60.0 0.4 70.201 0.0 34.8 2.2 6.2 0.4 0.2
60.0 0.5 66.282 0.0 47.2 2.3 0.9 0.5 0.2
60.0 0.6 62.230 0.0 39.2 2.3 1.2 0.4 0.2
60.0 0.7 58.173 0.0 56.7 2.5 1.1 0.4 0.2
60.0 0.8 54.117 0.0 67.3 2.1 1.7 0.4 0.2
60.0 0.9 50.061 0.0 178.6 2.3 8.0 2.6 0.2
60.0 1.0 46.005 0.0 491.7 4.7 5.9 3.7 1.0
70.0 0.0 112.214 0.0 124.0 8.8 8.8 1.7 1.1
70.0 0.1 106.989 0.0 201.7 11.5 2.9 1.5 0.8
70.0 0.2 101.763 0.0 174.6 12.1 4.5 1.7 1.7
70.0 0.3 96.537 0.0 195.8 11.4 3.7 1.6 3.2
70.0 0.4 91.311 0.0 214.4 18.2 4.8 3.4 1.3
70.0 0.5 85.831 0.0 289.3 15.4 6.4 2.4 1.4
70.0 0.6 80.119 0.0 387.1 20.5 8.4 3.8 1.6
70.0 0.7 74.374 0.0 368.6 19.2 7.5 3.9 3.4
70.0 0.8 68.629 0.0 401.3 31.8 7.5 3.8 3.5
70.0 0.9 62.513 0.0 1357.3 99.4 13.8 7.6 6.9
70.0 1.0 54.949 0.0 2678.4 39.7 13.1 11.2 7.1
80.0 0.0 128.021 0.0 113.1 3.8 6.2 1.6 0.7
80.0 0.1 121.705 0.0 93.5 9.4 3.6 1.0 0.6
80.0 0.2 115.389 0.0 101.6 4.0 3.5 1.2 0.8
80.0 0.3 109.072 0.0 112.9 4.5 4.5 1.5 1.5
80.0 0.4 102.756 0.0 103.8 7.6 3.6 2.5 0.6
80.0 0.5 96.185 0.0 123.4 5.1 6.9 1.4 0.9
80.0 0.6 89.480 0.0 163.7 7.8 6.6 1.3 0.5
80.0 0.7 82.772 0.0 162.7 5.4 3.4 1.2 1.6
80.0 0.8 76.063 0.0 213.7 6.7 3.0 1.4 0.7
80.0 0.9 69.355 0.0 324.1 15.0 2.9 1.6 1.5
80.0 1.0 62.646 0.0 834.4 75.4 5.3 7.7 2.9
90.0 0.0 149.359 0.0 148.9 26.1 7.3 3.5 3.6
90.0 0.1 141.856 0.0 267.5 23.7 7.3 3.7 2.8
90.0 0.2 134.013 0.0 166.2 20.4 7.0 2.4 3.0
90.0 0.3 126.170 0.0 229.4 20.3 6.2 2.2 2.3
90.0 0.4 118.328 0.0 165.8 15.9 6.4 2.3 2.8
90.0 0.5 110.231 0.0 233.2 13.9 5.8 2.5 2.8
90.0 0.6 101.999 0.0 247.7 13.0 5.2 2.3 2.8
90.0 0.7 93.764 0.0 246.2 11.2 6.4 2.1 1.8
90.0 0.8 85.530 0.0 300.8 5.2 5.2 3.5 1.9
90.0 0.9 77.295 0.0 360.0 7.8 9.6 4.8 2.4
90.0 1.0 68.893 0.0 1495.4 5.7 5.3 5.2 2.9
100.0 0.0 164.134 0.0 68.7 6.2 6.2 1.7 0.9
100.0 0.1 155.758 0.0 89.3 4.6 3.5 1.5 0.7
100.0 0.2 147.381 0.0 76.8 6.5 5.0 1.8 0.7
100.0 0.3 139.005 0.0 85.6 6.3 2.4 0.9 0.7
100.0 0.4 130.628 0.0 111.3 17.6 2.2 0.9 0.8
100.0 0.5 121.997 0.0 80.0 7.5 2.4 0.9 0.9
100.0 0.6 113.232 0.0 105.2 12.1 3.0 1.1 0.7
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Table A.1 : Detailed Results Region A – Cont’d
Quota α DB PB Gap [%] Time [s]

GRB QSTP TQSTP TQSTP+ TQSTP++
100.0 0.7 104.463 0.0 124.8 9.5 3.6 1.3 0.8
100.0 0.8 95.695 0.0 203.4 27.4 5.6 1.5 1.0
100.0 0.9 86.926 0.0 205.2 23.7 3.9 2.3 1.4
100.0 1.0 78.142 0.0 618.4 59.7 4.3 4.7 3.2
110.0 0.0 181.989 0.0 78.4 3.8 1.9 0.5 0.3
110.0 0.1 172.400 0.0 79.2 2.9 2.8 2.9 0.3
110.0 0.2 162.811 0.0 87.8 3.3 2.5 2.2 0.3
110.0 0.3 153.221 0.0 63.9 2.8 6.7 0.5 0.3
110.0 0.4 143.632 0.0 112.3 3.0 1.5 1.4 0.3
110.0 0.5 133.789 0.0 124.3 3.0 1.2 1.3 0.4
110.0 0.6 123.811 0.0 78.7 3.4 1.5 1.8 0.3
110.0 0.7 113.829 0.0 87.4 3.6 2.8 0.6 1.9
110.0 0.8 103.848 0.0 160.1 3.5 1.4 1.1 0.8
110.0 0.9 93.867 0.0 292.2 3.6 4.0 0.9 0.9
110.0 1.0 83.885 0.0 654.8 5.3 7.7 1.6 1.5
120.0 0.0 203.188 0.0 68.0 6.8 1.8 0.7 0.2
120.0 0.1 192.550 0.0 62.2 6.4 2.0 0.6 0.3
120.0 0.2 181.913 0.0 64.1 6.2 1.9 0.6 0.2
120.0 0.3 171.275 0.0 66.5 6.9 2.6 0.9 0.3
120.0 0.4 160.637 0.0 78.8 7.4 1.9 0.6 0.3
120.0 0.5 149.745 0.0 66.4 7.7 1.8 1.1 0.3
120.0 0.6 138.718 0.0 89.8 8.6 3.2 1.3 0.4
120.0 0.7 127.658 0.0 83.5 9.1 2.9 1.3 0.5
120.0 0.8 116.471 0.0 186.5 9.4 3.6 1.5 0.5
120.0 0.9 105.283 0.0 248.8 21.8 3.0 1.7 0.6
120.0 1.0 94.096 0.0 499.5 27.4 3.7 2.8 1.9
130.0 0.0 228.095 0.0 68.1 5.5 1.1 0.3 0.2
130.0 0.1 216.025 0.0 85.9 4.0 1.2 0.4 0.2
130.0 0.2 203.955 0.0 127.9 11.3 1.3 0.5 0.1
130.0 0.3 191.885 0.0 80.3 4.9 1.3 0.6 0.1
130.0 0.4 179.816 0.0 218.7 15.1 1.5 0.4 0.2
130.0 0.5 167.491 0.0 222.6 12.1 2.5 0.6 0.2
130.0 0.6 155.033 0.0 225.4 11.5 2.1 0.7 0.2
130.0 0.7 142.571 0.0 280.5 10.5 2.0 0.8 0.2
130.0 0.8 130.109 0.0 602.1 8.0 3.3 0.9 0.2
130.0 0.9 117.646 0.0 2890.7 11.5 4.6 2.1 0.8
130.0 1.0 102.034 0.0 2240.0 11.2 4.6 4.3 3.0
140.0 0.0 270.846 0.0 243.4 12.2 2.7 0.9 0.2
140.0 0.1 255.802 0.0 436.1 12.6 3.2 0.7 0.2
140.0 0.2 240.759 0.0 396.8 13.2 2.9 0.7 0.2
140.0 0.3 225.715 0.0 659.4 12.0 2.7 0.8 0.2
140.0 0.4 210.672 0.0 649.1 13.7 3.3 0.9 0.3
140.0 0.5 195.374 0.0 1304.3 14.3 3.0 1.1 0.3
140.0 0.6 179.635 0.0 1798.7 13.9 3.5 1.6 0.5
140.0 0.7 162.938 0.0 939.6 13.8 3.5 1.0 0.5
140.0 0.8 146.115 0.0 1743.4 14.1 3.0 0.8 0.7
140.0 0.9 129.291 0.0 1890.8 14.3 2.5 1.0 0.6
140.0 1.0 112.456 0.0 1583.8 19.0 3.0 2.1 1.8
150.0 0.0 315.185 0.0 1470.0 9.8 2.8 0.9 0.6
150.0 0.1 296.403 0.0 1838.8 10.6 2.5 0.8 0.5
150.0 0.2 277.621 0.0 678.6 10.9 2.8 1.2 0.6
150.0 0.3 258.840 0.0 1196.8 10.1 3.0 0.9 0.5
150.0 0.4 240.058 0.0 927.7 16.2 2.7 1.1 0.6
150.0 0.5 221.021 0.0 1830.7 11.4 3.0 1.1 0.7
150.0 0.6 201.851 0.0 1592.1 13.2 3.1 1.2 0.7
150.0 0.7 182.677 0.0 2684.9 12.4 3.1 1.4 0.6
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Table A.1 : Detailed Results Region A – Cont’d
Quota α DB PB Gap [%] Time [s]

GRB QSTP TQSTP TQSTP+ TQSTP++
150.0 0.8 163.503 0.0 1813.0 13.0 3.1 1.4 0.9
150.0 0.9 144.329 0.0 1738.4 14.8 3.0 1.8 0.9
150.0 1.0 125.143 0.0 2659.4 20.6 3.3 3.0 1.6
158.0 0.0 333.875 0.0 521.5 6.4 2.5 0.8 0.4
158.0 0.1 313.831 0.0 491.4 6.2 2.7 0.7 0.5
158.0 0.2 293.786 0.0 496.2 6.5 3.1 0.7 0.5
158.0 0.3 273.742 0.0 384.2 6.7 3.1 0.8 0.5
158.0 0.4 253.698 0.0 514.1 6.3 3.0 0.9 0.4
158.0 0.5 233.399 0.0 648.4 6.8 2.8 0.9 0.5
158.0 0.6 212.965 0.0 687.9 6.4 3.1 0.8 0.5
158.0 0.7 192.529 0.0 481.6 7.0 2.7 1.1 0.6
158.0 0.8 172.092 0.0 464.1 6.9 3.1 1.2 0.7
158.0 0.9 151.656 0.0 567.9 8.5 2.8 1.3 0.8
158.0 1.0 130.974 0.0 707.3 6.1 2.9 2.9 1.2
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A.2 Region B

Table A.2: Detailed Results Region B

TQSTP TQSTP+ TQSTP++

Quota α DB PB Gap
[%] t [s] DB PB Gap

[%] t [s] DB PB Gap
[%] t [s]

50.0 0.1 83.4 – – 21600 96.8 110.8 14.5 1336 109.5 0.0 477
50.0 0.1 78.0 1572.9 1915.9 21600 103.0 0.0 1042 103.0 0.0 314
50.0 0.2 73.0 1346.3 1744.2 15035 96.4 0.0 480 96.4 0.0 227
50.0 0.3 69.2 – – 21600 89.8 0.0 1307 89.8 0.0 173
50.0 0.4 69.6 199.4 186.4 21600 83.3 0.0 1205 83.3 0.0 348
50.0 0.5 76.7 0.0 11552 76.7 0.0 2523 76.7 0.0 417
50.0 0.6 55.5 – – 21600 70.1 0.0 1231 70.1 0.0 278
50.0 0.7 50.5 – – 21600 63.6 0.0 1122 63.6 0.0 350
50.0 0.8 48.4 161.9 234.2 21600 57.0 0.0 930 57.0 0.0 599
50.0 0.9 41.0 – – 21600 49.6 0.0 6053 49.6 0.0 1033
50.0 1.0 35.9 – – 21600 37.3 – – 21600 41.9 0.0 1051
100.0 0.0 172.5 – – 21600 208.7 0.0 1259 208.7 0.0 423
100.0 0.1 162.9 – – 21600 196.7 0.0 2098 196.7 0.0 311
100.0 0.2 156.4 981.8 527.6 21600 184.6 0.0 2580 184.6 0.0 402
100.0 0.3 143.3 – – 21600 162.2 – – 21600 172.5 0.0 395
100.0 0.4 132.9 – – 21600 160.5 0.0 1057 160.5 0.0 355
100.0 0.5 123.4 – – 21600 148.4 0.0 2646 148.4 0.0 553
100.0 0.6 112.9 – – 21600 136.3 0.0 945 136.3 0.0 1116
100.0 0.7 102.1 – – 21600 122.9 0.0 3773 122.9 0.0 742
100.0 0.8 91.3 – – 21600 100.7 – – 21600 109.0 0.0 1096
100.0 0.9 80.5 – – 21600 89.4 363.6 306.6 21600 95.0 0.0 1111
100.0 1.0 69.1 – – 21600 73.1 – – 21600 81.1 0.0 4833
150.0 0.0 265.3 – – 21600 320.7 0.0 9823 320.7 0.0 789
150.0 0.1 251.0 – – 21600 301.6 0.0 3570 301.6 0.0 833
150.0 0.2 234.5 – – 21600 282.5 0.0 5149 282.5 0.0 1050
150.0 0.3 219.5 – – 21600 263.4 0.0 7616 263.4 0.0 1903
150.0 0.4 203.9 – – 21600 244.3 0.0 6396 244.3 0.0 1872
150.0 0.5 188.7 – – 21600 225.2 0.0 6034 225.2 0.0 1719
150.0 0.6 172.8 – – 21600 206.1 0.0 11309 199.5 208.5 4.5 7530
150.0 0.7 156.9 – – 21600 182.0 186.6 2.5 13160 183.5 186.6 1.7 21600
150.0 0.8 141.4 – – 21600 162.5 165.8 2.0 21600 165.1 0.0 4638
150.0 0.9 125.6 – – 21600 135.9 354.4 160.7 21600 143.1 0.0 2387
150.0 1.0 109.4 – – 21600 113.0 413.4 266.0 21600 121.1 0.0 5498
175.0 0.0 320.2 493.1 54.0 21600 369.7 0.0 4325 369.7 0.0 645
175.0 0.1 295.1 – – 21600 347.4 0.0 4773 347.4 0.0 1239
175.0 0.2 277.2 – – 21600 325.0 0.0 1603 325.0 0.0 641
175.0 0.3 259.4 – – 21600 302.7 0.0 5488 302.7 0.0 1189
175.0 0.4 240.2 – – 21600 280.4 0.0 9486 280.4 0.0 1383
175.0 0.5 222.5 – – 21600 258.0 0.0 6351 258.0 0.0 817
175.0 0.6 203.8 – – 21600 235.7 0.0 1959 235.7 0.0 1186
175.0 0.7 185.5 – – 21600 212.8 0.0 2050 212.8 0.0 1594
175.0 0.8 167.2 – – 21600 180.1 – – 21600 189.8 0.0 2107
175.0 0.9 147.8 – – 21600 166.7 0.0 18947 166.7 0.0 4484
175.0 1.0 127.4 – – 21600 131.8 – – 21600 132.9 147.1 10.8 13431
200.0 0.0 362.9 – – 21600 430.2 0.0 3113 430.2 0.0 2112
200.0 0.1 341.6 – – 21600 404.0 0.0 2156 404.0 0.0 2337
200.0 0.2 320.0 – – 21600 377.7 0.0 6314 377.7 0.0 1819
200.0 0.3 299.7 – – 21600 351.4 0.0 3114 351.4 0.0 1130
200.0 0.4 278.9 – – 21600 325.1 0.0 9165 325.1 0.0 1262
200.0 0.5 257.7 – – 21600 298.9 0.0 4115 298.9 0.0 3430
200.0 0.6 235.9 – – 21600 272.6 0.0 17641 272.6 0.0 4160
200.0 0.7 214.7 – – 21600 245.8 0.0 12690 245.8 0.0 5335
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Table A.2 : Detailed Results Region B – Cont’d
TQSTP TQSTP+ TQSTP++

Quota α DB PB Gap
[%] t [s] DB PB Gap

[%] t [s] DB PB Gap
[%] t [s]

200.0 0.8 192.0 – – 21600 218.8 0.0 6748 218.8 0.0 10080
200.0 0.9 169.7 – – 21600 189.5 197.7 4.3 21600 182.2 198.2 8.7 20007
200.0 1.0 147.4 – – 21600 151.2 – – 21600 152.2 173.6 14.1 10092
250.0 0.0 466.6 – – 21600 558.5 0.0 7387 553.2 561.5 1.5 6530
250.0 0.1 438.8 – – 21600 525.0 0.0 7512 525.0 0.0 5945
250.0 0.2 412.9 – – 21600 486.3 490.5 0.9 21600 490.5 0.0 3371
250.0 0.3 384.3 – – 21600 455.9 0.0 7190 455.9 0.0 2468
250.0 0.4 356.5 – – 21600 414.9 440.5 6.2 21600 421.3 0.0 5757
250.0 0.5 329.8 – – 21600 386.7 0.0 16469 386.7 0.0 10711
250.0 0.6 301.0 – – 21600 352.1 0.0 11010 352.1 0.0 4298
250.0 0.7 273.1 – – 21600 316.9 0.0 14757 316.9 0.0 12084
250.0 0.8 245.1 – – 21600 281.3 0.0 12567 279.4 281.3 0.7 21600
250.0 0.9 216.9 – – 21600 232.0 247.0 6.5 21600 231.5 250.5 8.2 16919
250.0 1.0 188.9 – – 21600 192.9 – – 21600 192.8 217.0 12.6 12943
300.0 0.0 583.6 – – 21600 684.7 690.9 0.9 21600 689.8 0.0 11340
300.0 0.1 548.0 – – 21600 644.3 648.5 0.7 21600 648.3 0.0 9264
300.0 0.2 513.9 – – 21600 594.8 2075.8 249.0 21600 603.7 606.0 0.4 21600
300.0 0.3 477.8 – – 21600 560.4 563.3 0.5 21600 563.3 0.0 14187
300.0 0.4 443.8 – – 21600 520.7 0.0 20849 520.7 0.0 9732
300.0 0.5 408.9 – – 21600 450.7 486.5 7.9 6578 450.8 487.8 8.2 9643
300.0 0.6 373.8 – – 21600 410.8 – – 21600 431.2 442.6 2.6 18148
300.0 0.7 339.0 – – 21600 387.5 401.3 3.5 21600 391.5 0.0 12673
300.0 0.8 303.6 – – 21600 327.1 – – 21600 347.8 0.0 15987
300.0 0.9 267.8 – – 21600 294.8 525.2 78.2 21600 303.9 0.0 16408
300.0 1.0 232.2 – – 21600 236.6 – – 21600 236.3 269.5 14.0 9232
350.0 0.0 702.3 – – 21600 827.7 0.0 10382 827.7 0.0 7662
350.0 0.1 660.4 – – 21600 777.2 0.0 6855 777.2 0.0 4750
350.0 0.2 619.8 – – 21600 723.3 726.5 0.4 21600 726.5 0.0 6513
350.0 0.3 577.5 – – 21600 642.5 690.4 7.4 11482 675.8 0.0 9842
350.0 0.4 534.9 – – 21600 625.1 0.0 19053 625.1 0.0 12418
350.0 0.5 493.1 – – 21600 567.7 1534.4 170.3 21600 572.3 588.1 2.8 19545
350.0 0.6 450.7 – – 21600 523.7 0.0 20440 521.7 523.7 0.4 21600
350.0 0.7 407.3 – – 21600 446.4 – – 21600 467.4 472.5 1.1 21600
350.0 0.8 365.2 – – 21600 414.9 445.6 7.4 21600 414.6 430.4 3.8 21600
350.0 0.9 322.2 – – 21600 344.7 – – 21600 364.1 381.8 4.9 21600
350.0 1.0 279.2 – – 21600 283.0 – – 21600 283.9 322.6 13.6 18054
405.0 0.0 863.3 – – 21600 1035.3 0.0 5232 1035.3 0.0 2990
405.0 0.1 811.3 – – 21600 970.6 0.0 5617 970.6 0.0 4173
405.0 0.2 759.5 – – 21600 905.7 0.0 9853 905.7 0.0 3168
405.0 0.3 708.6 – – 21600 840.8 0.0 6346 840.8 0.0 3108
405.0 0.4 656.1 – – 21600 775.9 0.0 6496 775.9 0.0 4787
405.0 0.5 604.1 – – 21600 711.0 0.0 9200 711.0 0.0 5637
405.0 0.6 551.9 – – 21600 613.4 – – 21600 646.0 0.0 5631
405.0 0.7 499.4 – – 21600 579.9 0.0 21221 579.9 0.0 6635
405.0 0.8 447.9 – – 21600 485.8 – – 21600 513.1 0.0 9293
405.0 0.9 395.3 – – 21600 426.0 503.1 18.1 21600 445.9 0.0 13983
405.0 1.0 343.7 – – 21600 345.9 – – 21600 347.4 379.0 9.1 19463
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B Best Results by Costs and Scenicness
B.1 Region A

Table B.3: Cost and scenicness in each instance of region A

Quota α
∑

q
∑

c
∑

s Gap [%]
10 0.0 14.4 12.93 12.35 0.0
10 0.1 14.4 12.93 12.35 0.0
10 0.2 14.4 12.93 12.35 0.0
10 0.3 14.4 12.93 12.35 0.0
10 0.4 14.4 12.93 12.35 0.0
10 0.5 14.4 12.93 12.35 0.0
10 0.6 14.4 12.93 12.35 0.0
10 0.7 14.4 12.93 12.35 0.0
10 0.8 14.4 12.93 12.35 0.0
10 0.9 14.4 12.93 12.35 0.0
10 1.0 14.4 12.93 12.35 0.0
20 0.0 21.1 18.04 20.12 0.0
20 0.1 21.1 18.04 20.12 0.0
20 0.2 21.1 18.04 20.12 0.0
20 0.3 21.1 18.04 20.12 0.0
20 0.4 21.1 18.04 20.12 0.0
20 0.5 21.1 18.04 20.12 0.0
20 0.6 21.1 18.04 20.12 0.0
20 0.7 21.1 18.04 20.12 0.0
20 0.8 21.1 18.04 20.12 0.0
20 0.9 21.1 18.04 20.12 0.0
20 1.0 21.1 18.04 20.12 0.0
30 0.0 30.0 27.14 40.58 0.0
30 0.1 30.0 27.14 40.58 0.0
30 0.2 30.0 27.14 40.58 0.0
30 0.3 30.0 27.14 40.58 0.0
30 0.4 30.0 27.14 40.58 0.0
30 0.5 30.0 24.95 42.26 0.0
30 0.6 30.0 24.92 42.29 0.0
30 0.7 30.0 24.92 42.29 0.0
30 0.8 30.0 24.92 42.29 0.0
30 0.9 30.0 24.92 42.29 0.0
30 1.0 30.0 24.92 42.29 0.0
40 0.0 43.1 37.35 55.95 0.0
40 0.1 43.1 37.35 55.95 0.0
40 0.2 43.1 37.35 55.95 0.0
40 0.3 43.1 37.35 55.95 0.0
40 0.4 43.1 37.35 55.95 0.0
40 0.5 43.1 35.16 57.63 0.0
40 0.6 43.1 35.14 57.66 0.0
40 0.7 43.1 35.14 57.66 0.0
40 0.8 40.3 32.19 67.27 0.0
40 0.9 40.3 32.04 68.00 0.0
40 1.0 40.3 31.94 69.32 0.0
50 0.0 51.6 42.47 68.27 0.0
50 0.1 51.6 42.47 68.27 0.0
50 0.2 51.6 42.47 68.27 0.0
50 0.3 51.6 42.47 68.27 0.0
50 0.4 51.6 42.47 68.27 0.0
50 0.5 51.6 40.28 69.95 0.0
50 0.6 51.6 40.26 69.98 0.0
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Table B.3 – Cont’d
Quota α

∑
q

∑
c

∑
s Gap [%]

50 0.7 51.6 40.26 69.98 0.0
50 0.8 51.6 40.26 69.98 0.0
50 0.9 51.6 40.26 69.98 0.0
50 1.0 51.6 40.26 69.98 0.0
60 0.0 60.8 48.22 84.86 0.0
60 0.1 60.8 48.22 84.86 0.0
60 0.2 60.8 48.22 84.86 0.0
60 0.3 60.8 48.22 84.86 0.0
60 0.4 60.8 48.22 84.86 0.0
60 0.5 60.8 46.03 86.54 0.0
60 0.6 60.8 46.00 86.57 0.0
60 0.7 60.8 46.00 86.57 0.0
60 0.8 60.8 46.00 86.57 0.0
60 0.9 60.8 46.00 86.57 0.0
60 1.0 60.8 46.00 86.57 0.0
70 0.0 70.4 59.96 112.21 0.0
70 0.1 70.4 59.96 112.21 0.0
70 0.2 70.4 59.96 112.21 0.0
70 0.3 70.4 59.96 112.21 0.0
70 0.4 70.4 59.96 112.21 0.0
70 0.5 70.4 57.77 113.89 0.0
70 0.6 71.8 57.14 114.59 0.0
70 0.7 71.8 57.14 114.59 0.0
70 0.8 71.8 57.14 114.59 0.0
70 0.9 70.1 55.35 126.99 0.0
70 1.0 70.1 54.95 132.25 0.0
80 0.0 80.4 64.86 128.02 0.0
80 0.1 80.4 64.86 128.02 0.0
80 0.2 80.4 64.86 128.02 0.0
80 0.3 80.4 64.86 128.02 0.0
80 0.4 80.4 64.86 128.02 0.0
80 0.5 80.4 62.67 129.70 0.0
80 0.6 80.4 62.65 129.73 0.0
80 0.7 80.4 62.65 129.73 0.0
80 0.8 80.4 62.65 129.73 0.0
80 0.9 80.4 62.65 129.73 0.0
80 1.0 80.4 62.65 129.73 0.0
90 0.0 91.0 74.92 149.36 0.0
90 0.1 90.7 71.27 149.70 0.0
90 0.2 90.7 71.27 149.70 0.0
90 0.3 90.7 71.27 149.70 0.0
90 0.4 90.7 71.27 149.70 0.0
90 0.5 90.7 69.08 151.38 0.0
90 0.6 90.7 69.06 151.41 0.0
90 0.7 90.7 69.06 151.41 0.0
90 0.8 90.7 69.06 151.41 0.0
90 0.9 90.7 69.06 151.41 0.0
90 1.0 90.1 68.89 157.68 0.0
100 0.0 100.2 80.37 164.13 0.0
100 0.1 100.2 80.37 164.13 0.0
100 0.2 100.2 80.37 164.13 0.0
100 0.3 100.2 80.37 164.13 0.0
100 0.4 100.2 80.37 164.13 0.0
100 0.5 100.2 78.18 165.81 0.0
100 0.6 100.2 78.16 165.84 0.0
100 0.7 100.2 78.16 165.84 0.0
100 0.8 100.2 78.16 165.84 0.0
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Table B.3 – Cont’d
Quota α

∑
q

∑
c

∑
s Gap [%]

100 0.9 100.2 78.16 165.84 0.0
100 1.0 101.4 78.14 167.11 0.0
110 0.0 110.5 86.10 181.99 0.0
110 0.1 110.5 86.10 181.99 0.0
110 0.2 110.5 86.10 181.99 0.0
110 0.3 110.5 86.10 181.99 0.0
110 0.4 110.5 86.10 181.99 0.0
110 0.5 110.5 83.91 183.67 0.0
110 0.6 110.5 83.89 183.70 0.0
110 0.7 110.5 83.89 183.70 0.0
110 0.8 110.5 83.89 183.70 0.0
110 0.9 110.5 83.89 183.70 0.0
110 1.0 110.5 83.89 183.70 0.0
120 0.0 120.7 96.81 203.19 0.0
120 0.1 120.7 96.81 203.19 0.0
120 0.2 120.7 96.81 203.19 0.0
120 0.3 120.7 96.81 203.19 0.0
120 0.4 120.7 96.81 203.19 0.0
120 0.5 120.7 94.62 204.87 0.0
120 0.6 120.7 94.60 204.90 0.0
120 0.7 122.4 94.10 205.97 0.0
120 0.8 122.4 94.10 205.97 0.0
120 0.9 122.4 94.10 205.97 0.0
120 1.0 122.4 94.10 205.97 0.0
130 0.0 133.4 107.40 228.09 0.0
130 0.1 133.4 107.40 228.09 0.0
130 0.2 133.4 107.40 228.09 0.0
130 0.3 133.4 107.40 228.09 0.0
130 0.4 133.4 107.40 228.09 0.0
130 0.5 133.4 105.21 229.77 0.0
130 0.6 133.4 105.18 229.80 0.0
130 0.7 133.4 105.18 229.80 0.0
130 0.8 133.4 105.18 229.80 0.0
130 0.9 133.4 105.18 229.80 0.0
130 1.0 131.4 102.03 258.16 0.0
140 0.0 143.5 120.41 270.85 0.0
140 0.1 143.5 120.41 270.85 0.0
140 0.2 143.5 120.41 270.85 0.0
140 0.3 143.5 120.41 270.85 0.0
140 0.4 143.5 120.41 270.85 0.0
140 0.5 143.5 118.22 272.53 0.0
140 0.6 140.7 112.97 279.63 0.0
140 0.7 142.4 112.47 280.70 0.0
140 0.8 142.4 112.47 280.70 0.0
140 0.9 142.4 112.47 280.70 0.0
140 1.0 142.4 112.46 281.41 0.0
150 0.0 152.6 127.37 315.18 0.0
150 0.1 152.6 127.37 315.18 0.0
150 0.2 152.6 127.37 315.18 0.0
150 0.3 152.6 127.37 315.18 0.0
150 0.4 152.6 127.37 315.18 0.0
150 0.5 152.6 125.18 316.87 0.0
150 0.6 152.6 125.15 316.90 0.0
150 0.7 152.6 125.15 316.90 0.0
150 0.8 152.6 125.15 316.90 0.0
150 0.9 152.6 125.15 316.90 0.0
150 1.0 152.6 125.14 317.61 0.0
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Table B.3 – Cont’d
Quota α

∑
q

∑
c

∑
s Gap [%]

158 0.0 158.4 133.43 333.88 0.0
158 0.1 158.4 133.43 333.88 0.0
158 0.2 158.4 133.43 333.88 0.0
158 0.3 158.4 133.43 333.88 0.0
158 0.4 158.4 133.43 333.88 0.0
158 0.5 158.4 131.24 335.56 0.0
158 0.6 158.4 131.22 335.59 0.0
158 0.7 158.4 131.22 335.59 0.0
158 0.8 158.4 131.22 335.59 0.0
158 0.9 158.4 131.22 335.59 0.0
158 1.0 158.4 130.97 338.82 0.0
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B.2 Region B

Table B.4: Cost and scenicness in each instance of region B

Quota α
∑

q
∑

c
∑

s Gap [%]
50 0.0 50.1 43.85 109.52 0.0
50 0.1 50.1 43.85 109.52 0.0
50 0.2 50.1 43.85 109.52 0.0
50 0.3 50.1 43.85 109.52 0.0
50 0.4 50.1 43.85 109.52 0.0
50 0.5 50.1 43.85 109.52 0.0
50 0.6 50.1 43.85 109.52 0.0
50 0.7 50.1 43.85 109.52 0.0
50 0.8 50.1 43.85 109.52 0.0
50 0.9 52.4 41.92 118.92 0.0
50 1.0 52.4 41.92 118.96 0.0
100 0.0 100.1 88.09 208.72 0.0
100 0.1 100.1 88.09 208.72 0.0
100 0.2 100.1 88.09 208.72 0.0
100 0.3 100.1 88.09 208.72 0.0
100 0.4 100.1 88.08 208.72 0.0
100 0.5 100.1 88.08 208.72 0.0
100 0.6 100.1 88.08 208.72 0.0
100 0.7 101.7 81.12 220.29 0.0
100 0.8 101.7 81.12 220.29 0.0
100 0.9 101.7 81.12 220.29 0.0
100 1.0 101.7 81.12 220.29 0.0
150 0.0 151.4 129.79 320.67 0.0
150 0.1 151.4 129.79 320.67 0.0
150 0.2 151.4 129.79 320.67 0.0
150 0.3 151.4 129.79 320.67 0.0
150 0.4 151.4 129.79 320.67 0.0
150 0.5 151.4 129.79 320.67 0.0
150 0.6 150.5 127.24 330.49 4.5
150 0.7 150.2 124.14 332.25 1.7
150 0.8 150.3 121.14 341.03 0.0
150 0.9 150.3 121.14 341.03 0.0
150 1.0 150.3 121.10 342.89 0.0
175 0.0 175.2 146.36 369.71 0.0
175 0.1 175.2 146.36 369.71 0.0
175 0.2 175.2 146.36 369.71 0.0
175 0.3 175.2 146.36 369.71 0.0
175 0.4 175.2 146.35 369.71 0.0
175 0.5 175.2 146.35 369.71 0.0
175 0.6 175.2 146.33 369.74 0.0
175 0.7 175.2 143.71 374.09 0.0
175 0.8 175.2 143.71 374.09 0.0
175 0.9 175.1 143.64 374.45 0.0
175 1.0 175.3 147.13 411.56 10.8
200 0.0 200.2 167.51 430.23 0.0
200 0.1 200.2 167.51 430.23 0.0
200 0.2 200.2 167.51 430.23 0.0
200 0.3 200.2 167.51 430.23 0.0
200 0.4 200.2 167.51 430.23 0.0
200 0.5 200.2 167.51 430.23 0.0
200 0.6 200.2 167.51 430.23 0.0
200 0.7 200.2 164.78 434.74 0.0
200 0.8 200.2 164.78 434.74 0.0
200 0.9 200.8 169.20 458.78 8.7
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Table B.4 – Cont’d
Quota α

∑
q

∑
c

∑
s Gap [%]

200 1.0 200.0 173.65 480.55 14.1
250 0.0 250.3 212.83 561.45 1.5
250 0.1 250.1 223.38 558.47 0.0
250 0.2 250.5 213.62 559.76 0.0
250 0.3 250.5 213.62 559.76 0.0
250 0.4 250.5 213.62 559.76 0.0
250 0.5 250.5 213.55 559.81 0.0
250 0.6 250.5 213.55 559.81 0.0
250 0.7 250.3 210.10 565.96 0.0
250 0.8 250.3 210.10 565.98 0.7
250 0.9 250.6 213.38 585.07 8.2
250 1.0 250.5 216.99 593.21 12.6
300 0.0 300.3 275.83 689.80 0.0
300 0.1 300.3 273.14 689.97 0.0
300 0.2 300.2 265.03 691.19 0.4
300 0.3 300.2 265.03 691.19 0.0
300 0.4 300.2 263.26 692.30 0.0
300 0.5 300.2 263.43 712.24 8.2
300 0.6 300.0 263.48 711.16 2.6
300 0.7 300.2 260.46 697.31 0.0
300 0.8 300.3 260.25 697.88 0.0
300 0.9 301.0 260.01 699.07 0.0
300 1.0 300.0 269.46 758.80 14.0
350 0.0 350.1 323.69 827.66 0.0
350 0.1 350.1 321.00 827.84 0.0
350 0.2 350.1 321.00 827.84 0.0
350 0.3 350.1 321.00 827.84 0.0
350 0.4 350.1 321.00 827.84 0.0
350 0.5 351.4 325.03 851.10 2.8
350 0.6 350.1 317.98 833.40 0.4
350 0.7 350.1 317.83 833.32 1.1
350 0.8 350.3 321.57 865.91 3.8
350 0.9 350.1 323.87 903.39 4.9
350 1.0 353.4 322.56 911.39 13.6
405 0.0 405.7 389.60 1035.28 0.0
405 0.1 405.7 386.91 1035.45 0.0
405 0.2 405.7 386.61 1035.49 0.0
405 0.3 405.7 386.61 1035.49 0.0
405 0.4 405.7 386.61 1035.49 0.0
405 0.5 405.7 386.04 1035.92 0.0
405 0.6 405.7 386.04 1035.92 0.0
405 0.7 405.7 381.08 1043.81 0.0
405 0.8 405.7 378.75 1050.57 0.0
405 0.9 405.7 378.71 1050.81 0.0
405 1.0 405.7 379.02 1053.31 9.1
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