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Contemporary Mathematics

Graph Coloring Manifolds

Péter Csorba and Frank H. Lutz

Asstract. We introduce a new and rich class gfaph coloring manifolds/ia the Hom
complex construction of Lovasz. The class comprises elesmf Stiefel manifolds, series
of spheres and products of spheres, cubical surfaces, hasvetamples of Seifert man-
ifolds. Asymptotically, graph coloring manifolds proviggamples of highly connected,
highly symmetric manifolds.

1. Introduction

In the topological approach to graph coloring, initiatedlmyasz’ proof [L9] of the
Kneser Conjecturel[7], lower bounds on thehromatic numbeg(H) of a graphH are
obtained by exploiting topological invariants of a simgicr cell complexK(H) that is
associated witli.

There are several standard constructions that associtelagical spac&(H) with a
graphH, e.g., the (simplicial) neighborhood compls%H) of Lovasz [L9], the (simplicial)
box complexB(H) of MatouSek and Zieglefg], and, with respect to a reference graph
the (cellular) Hom complex Hor®, H) of Lovasz (cf. p], [18]).

From an algorithmic point of view, the topological approag®ems, up to now, not
suitable to produce “good” lower bounds p(H) for general input graphd: For example,
the historically first topological lower bound by Lovaszjuires the computation of the
connectivity of the neighborhood compla(H).

Tueorem 1. (Lovasz [19]) Let H be a graph. IV(H) is k-connected, thep(H) > k+3.

However, neighborhood complexes of graphs can be of “ayithomotopy type 9],
and for general complexes it it decidablevhether they are 1-connected or not! More-
over, there are cases for which the connectivity could berdehed, but for which the
corresponding lower bounds are far from tigBé]|

Itis therefore most surprising that for highly structurkighly symmetric graphs such
as Kneser graphs and generalizatidhthe topological approach provides sharp lower
bounds while other approaches fail bad®g] discusses this issue and gives further refer-
ences.
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2 PETER CSORBA AND FRANK H. LUTZ

In order to get away from connectivity, lower bounds havenbieemulated in terms
of topological invariants thaare computable 3, Remark 2.7], or the topological tools
have been replaced by purely combinatorial ones; see MekoR5]. Still, the size of the
associated complexes causes problems, since for the efasatestructions the number of
cells of the complexek (H) grows exponentially.

In a recent series of papers, Babson and KozRy[B] and Kozlov [L8] intensively
studied properties of Hom complexes H@nH) and proved new topological lower
bounds (see as weluki¢ and Kozlov 1], [10], Schultz B2], and Zivaljevi¢ [35]). For
example, it turned out that Homd§, K,)) is a PL sphere of dimensiom- 2, forn > 2,
and by spectral sequence calculations that the Hom conpldrenCs, K,) have the
(co)homology of Stiefel manifolds. This was the startingnpdor the first author to
formulate Conjecture 12 (see Section 5) that the Hom corneglélom(Cs, K,,) are (PL)
homeomorphito Stiefel manifolds.

In this paper, we will show that the Hom complexes HG8)K,) indeed are PL man-
ifolds. More generally, we will characterize in Theorem @¢8on 3) those graphs for
which the Hom complexes HoB( K,) are PL manifolds for alh > y(G). Such manifolds
we callgraph coloring manifolds

In Section 2, we give a short account on Hom complexes. Se8tiatroduces graph
coloring manifolds. Various examples and series of exasplgraph coloring manifolds
are discussed in Sections 4-6.

2. Basic Definitions, Notations, and Examples

LetG = (V(G), E(G)) andH = (V(H), E(H)) be two graphs with node se¥§G) and
V(H) and edge set&(G) ¢ (V$) andE(H) < (V4"), respectively. We assume that the
graphs arsimple graphsi.e., graphs without loops and parallel edges.

A graph homomorphisns a mapg : V(G) — V(H), such that if{i, j} € E(G), then
{o(i), #(j)} € E(H), that is, the image of every edge of the grahs an edge of the
graphH. Let the set of all graph homomorphisms fr@mo H be denoted by{om(G, H).
For two disjoint sets of vertice&, B C V(G) we defineG[A, B] as the subgraph @ with
V(G[A, B]) = AuBandE(G[A,B]) = {{a.b} e E(G): ac A,be B}.

Let AV™) pe the (abstract) simplex whose set of vertice¥(Bl). Furthermore, let
C(G, H) denote the direct produ¢f .y AV, i.e., the copies oAV are indexed by
vertices ofG. A cell of C(G, H) is a direct product of simplicel] yey(c) ox-

Dermnition 2. For any pair of graphs G and H let thdom complex HomG, H) be a
subcomplex of (&5, H) defined by the following condition: € [],cyg) ox € Hom(G, H)
if and only if for any uv € V(G) if {u, v} € E(G), then Ho, 0] is complete bipartite.

The topology of HomG, H) is inherited from the product topology &(G, H). Thus,
Hom(G, H) is a polyhedral complex whose (non-empty) cells are prtsdat simplices
and are indexed by functions (multi-hnomomorphisms)V(G) — 2Vt\(0}, such that if
{1, 7} € E(G), then for every € n(:) and ;e n()) it follows that{z, j} € E(H).

LetV(G) = {1,..., m}. We encode the functiongby vectors §(1), ..., n(m)) of non-
empty setsy(i) € V(H) with the above properties. A celh, ..., Ayn) of Hom(G, H) is
afaceof a cell By,...,By) of Hom@G,H) if Aj € Bjforall1 < i < m. In particular,
Hom(G, H) hasHom(G, H) as its set of vertices. Moreover, every ced{..., Am) of
Hom(G, H) is a product oim simplices of dimensiofA| — 1 for 1 < i < m. For brevity, we
write setsA = {ay, ..., a} € V(H) in compressed form as strings, i.A.= a3 ... a&.
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(12,3)
1.3) (2,3)

(1,23) (2,13)
1,2) 2,1
(13,2) (23,1)
(3,2) (3.1)

(3.12)

Ficure 1. The Hom complex Hon(,, K3).

A cell of Hom(G, H) is amaximal faceor facetif it is not contained in any higher-
dimensional cell of Hont, H).

Example 1: The cells of the Hom complex Hodg, K3) are given by the vectors (2),
(1,3),(23),(21),(31),(32),(123),(132), (23 1), (312), (2 13), and (123). There-
fore, HomK>, K3) is a cycle with six edges; see Figure 1.

Example 2: The Hom complex Honi{, K,) is a PL sphere of dimensian-2 forn > 2. In
fact, HomKj, K,) is the boundary complex of a polytop® Bect. 4.2]: it can be described
as the boundary of the Minkowski sum of am-{1)-dimensional simplex-,_; and its
negative-o,_;, as stated ing4, p. 107, Ex. 3 (c)].

3. Vertex-Links and Flag Simplicial Spheres

Babson and Kozlov asked ig][for what graphs the Hom complex construction pro-
vides a connection to polytopes. In this section, we willreloterize those graplts for
which Hom@G, K,) is a piecewise linear (PL) manifold for all> x(G).

A (finite) simplicial complex is &L d-manifoldif and only if every vertex-link is a PL
(d - 1)-sphere, i.e., every vertex-link is PL homeomorphic slbundary of the standard
d-simplexoy.

There are several ways to define thk of a vertexv for polyhedral complexes. For
Hom complexes Hon®, H) we will use the following. Let the face poset of HoB)H)
be denoted by (Hom(G, H)) and let the link ofv in Hom(G, H) be the cell complex
whose face poset is given y,(Hom(G, H)). This link then is a simplicial complex since
Hom(G, H) is a prodsimplicial complex (cf18, 2.4.3]).

For a graplG we say thaX C V(G) is anindependent sét there is no edge between
any two vertices oK. Theindependent set compléxd(G) of a graphG is the simplicial
complex with vertex seV(G) and X C V(G) forming a simplex if and only if X is an
independent set i@, i.e., IndG) = {X € V(G) | X is independent is}.

where the mag assignsf (v) distinct colors to every vertexe V(G), such that the set of
vertices colored by any colée {1, ..., n} forms an independent set@ We denote these
sets byAi(f) = {ve V(G)|i € f(v)} and consider them as simplices of 1GJ(
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Lemma 3. Let ¢ be a vertex oHom(G, K;), i.e., a proper coloring of G which we

liNK Hom(,k,) (¢)
is isomorphic to the join product

linK ina(e) (A1(e)) * - - - * lINK na(e) (An(8)).

Proof. A simplex of the first complex linkomgk,)(¢) corresponds to a multi-coloring

For colori € {1,...,n} we have that\i(¢) C Ai(f) € Ind(G) and therefore\;(f)\Ai(¢) €
link inge) (Ai(¢)). Thus we can identifyf with (A1(f)\A1(¢), ..., An(f)\An(¢)) and there-
fore can regard as an element of linkgg)(A1(¢)) * - - - * link ina@) (An(¢)). Conversely,
every simplex of linkngg) (A1(¢)) * - - - = link ina) (An(¢)) gives rise to a unique extension
f of ¢. O

Lemma 4.
(2) If Ind(G) is a PL sphere, theHom(G, Kp) is a PL manifold for any iz x(G).
(2) If Hom(G, K;) is a PL manifold and n- x(G), thenInd(G) is a PL sphere.

Proof. 1. Let Ind@G) be a PL sphere. Since the link of any simplex of a PL spherePis a
sphere (of lower dimension) and since the join product of ptheses is again a PL sphere,
it follows by the previous lemma that the link of any vertetdm(G, K,)) is a PL sphere.
Thus, HomG, Kp) is a PL manifold.

2. Let Hom@, K,) be a PL manifold. Sinc&n > x(G), there is a vertex of
Hom(G, K;) that does not use the color Hence, linkgg)(An(¢)) = Ind(G). Since
Hom(G, Kp) is a PL manifold, linkiome k,)(¢) = liNK ina@)(A1(#)) * - - - * link ingz) (An(¢))
is a PL sphere. Now, the join product of simplicial complei®s PL sphere if and
only if every factor is a PL sphere (se8([ 2.24(5)]). It follows that the last factor,
linkind)(An(¢)) = INd(G), is a PL sphere. O

We can formulate this result in terms@fusing the following definition.

Dermnition 5. Let K be a (finite) simplicial complex. If K has no “empty simp$”,
i.e., if every set of vertices of K which form a clique in thiekeletonSkeh (K) actually
spans a simplex, then K isflag simplicial complexcf. [8]). Aflag simplicial spherés a
flag simplicial complex which triangulates a sphere.

Thecliqgue complexXliq(G) = {X € V(G) | X is a clique inG} of any graptG is a flag
simplicial complex in a natural way wit@ = Skel (Clig(G)).

Tueorem 6. Let G be a graph. Then the Hom compldem(G, K,) is a PL manifold
for all n > y(G) if and only if G is the complement of theskeleton of a flag simplicial PL
sphere.

Proof. Let Hom@G, K;) be a PL manifold for alln > x(G). Then, in particular,
Hom(G, K (c)+1) is a PL manifold, and thus, by Lemma 4, 1@)(= Cliq(G) is a PL sphere.
Hence G is the complement of the 1-skeleton of the flag simplicial Phese CligG).
Conversely, ifG is the complement of the 1-skeleton of a flag simplicial PLespK,
i.e.,G = Skeh(K), then IndG) = Cliq(Skek(K)) = K is a flag simplicial PL sphere and
therefore HomG, K,,) a PL manifold by Lemma 4. O

Remark 1: If n < x(G), then HomG,K,) = 0. If n = x(G), then every vertey of
Hom(G, K,g)) uses all colors 1. ., x(G). If Hom(G, K,g)) is a PL manifold, then Indg)
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need not be a PL sphere. It is only required, that the linksesfices (or of higher-
dimensional faces if every color is used more than once inyexartex of HomG, K, g)))
of Ind(G) are flag simplicial PL spheres. In particular,Gf is the complement of the
1-skeleton of a flag combinatorial manifold, then H@MK,(q)) is a PL manifold. As
another example, i is a connected bipartite graph, then H@nkK,) = S°.

Remark 2:1t is possible for HomG, K;)) to be a (non-PL) manifold, even without Irgal(
being a sphere. (Seé&][for a discussion of non-PL spheres and non-PL manifolder) F
example, if IndG) is a flag combinatorial homology sphere (i.e., a combinaktonani-
fold with the homology of a sphere, but not homeomorphic ® standard sphere) and
n > x(G), then for every vertexp of Hom(G, K;)) the join product linkjomg k,)(¢) =

link inge) (A1(9)) * - - - * link 1ng@) (An(9)) is a simplicial sphere by the double suspension
theorem of Edwardslf3] and CannonT]. Also, if G is the complement of the 1-skeleton
of a flag simplicial non-PL sphere, then HO®(K,) is a hon-PL manifold fon > x(G).

Dermnirion 7. A Hom compleiom(G, K.) is a graph coloring manifoldf G is the
complement of thé-skeleton of a flag simplicial PL sphere.

Remark 3:By Definition 7 and Theorem 6 graph coloring manifold are Plnifads.

Remark 4: Graph coloring manifolds are highly symmetric: relabelthg colors ofK,
defines an action of the symmetric graBpon Hom@G, K).

Babson and KozlovZ, 2.4] stated as a basic property of Hom complexes that
(1) Hom(@G; U Gy, H) = Hom(Gy, H) x Hom(G,, H),

from which it follows that if G = U K, is the complement of the 1-skeleton of the

) Hom(U Ko, Kp) = >< s"2,

Dermnition 8. A flag simplicial PL sphere iprimeif the complement of it§-skeleton
is connected. A Hom complelom(G, K,) is agraph coloring manifold of sphere dimen-
siond if G is the complement of thieskeleton of a prime flag simplicial PL sphere of
dimension d.

Since every coloring of a gragh can be regarded as a covering®by independent
sets, the following lower bound holds for the chromatic nemi{G) of G:

\4 \4
3) x(G) > b(eﬂ [w (@)W’
wherea(G) is theindependence number stable set numbesf G (i.e., the maximum size
of an independent set @) andw(G) is theclique numbeiof G (i.e., the maximum size
of a clique inG). If G is the complement of the 1-skeleton of a prime flag simpliEial

d-sphere om vertices, thenx(G) = w(G) = d + 1. Thus

@) XG) 2 []
and
5) dim(Hom@G, Kyc)+k)) = (x(G) + k)(d + 1) —m

forall k> 0.
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The lower bound (4) can be arbitrarily bad:Gfis the complement of the 1-skeleton
of the suspensioB8? x Cy 1 of an odd cycleCo .1, r > 2, theny(G) = 2r + 1 > rzr_;sl

From the following theorem it follows that graph coloring mifalds provide examples
of highly connected manifolds.

Tueorem 9. (Cuki¢ and Kozlov L.0]) Let G be a graph of maximal valency s, then the
Hom compleHom(G, K,) is at least(n — s— 2)-connected.

Let G be the complement of the 1-skeleton of a flag simplicial PLesph If G has
maximal valencys, then HomG, K,) is simply connected and thus orientabletior s+ 3.
We expect that Hon, K,) is orientable also foy(G) < n< s+ 3.

Consecture 10. Graph coloring manifolds are orientable.

4. Graph Coloring Manifolds of Sphere Dimension Zero

Trivially, S°, consisting of two isolated vertices, is the only zero-disienal flag
simplicial sphere. The complement of its (empty) 1-skalatothe complete grapK..
Hence, the graph coloring manifolds of sphere dimension aee the Hom complexes
Hom(Ky, Kp) = S"2, forn > 2.

5. Graph Coloring Manifolds of Sphere Dimension One

The one-dimensional flag simpliciEI sph_eres are the cyClesf lengthm > 4. For
m = 4 we have that (the 1-skeleton) §IC4) = C4 = K» U Ky with

Hom(K> U Ka, K,) = Hom(Kz, Kp) x Hom(Kz, Kp) = S"2x S"2,

If m> 5, then SK(Cy,) = Cinis connected. In the following, we treat odd and even cycles
separately.

5.1. Hom Complexes of Complements of Odd CycleBabson and Kozlovd] used
topological information on the Hom complexes H@g(K,) (with Cs = Cs for m = 5)
and, more generally, on the Hom complexes HOgp(;, Kp), forr > 2 andn > r + 1, to
prove the Lovasz Conjecture:

Tueorem 11. (Babson and Kozlow3]) If for a graph H the complexdom(Cxp 1, H)
is k-connected, for somexr 1 and k> -1, theny(H) > k + 4.

Babson and Kozlov computed various cohomology groups ofttbm complexes
Hom(C, Ky). Form = 5, the respective cohomology groups are those of Stiefeifoids.

Consecture 12. (Csorba)fhe Hom compleidom(Cs, K;.,2) is PL homeomorphic to
the Stiefel manifold M1.».

Itis elementary to verify that Horf)g, K3) consists of two cycles with 15 vertices and
15 edges each.

Example 5:Hom(Cs, K3) = V,, = SO x ST,

Forn = 2, the complex Hon(s, K4) has 240 vertices and 300 maximal cells that are
either cubes or prisms over triangles.

Since every cell of a Hom complex is a product of simplicaangulations of graph
coloring manifolds \{ithout additional verticescan easily be obtained by the product
triangulation construction as described 22]] For small examples, the homology of the
resulting triangulations can then be computed with one®fitograms12] or [15).
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(124324,1,3)  (124,3,4,123) (124,3,14,2,3) (12422,B) (124,3,12,4,3)  (124,3,2,14,3)
(12,3,24,1,34) (12,3,14,2,34) (12,34,1,24,3) (12,34,2,14,3)
(12,3,4,12,39) (12,34,12,4.3)
34,123, 41234,
(12,34,2,1,34)  (12344,13,4) X (12,3,1%23,4) (12,34,1,2,34)  (12)X13,243)X (12,4, 244,3)
(3,124 43,1
(12,34,12,3 4) (12,4,3,12,34)
(12,34,2,134) (12,34,1,234) (12,4,13,2,34) (12,4,23,1,34)
(123,4,2,13,4)  (123,4,12.34) (123,4,1,23,4) (123283  (123,4,312,4) (123,4,23,1,4)

Ficure 2. The solid torus (1.2, *, , *) in Hom(Cs, K4).

The product triangulation of Hor@§, K,) hasf-vector f = (240 168Q 288Q 1440).
As homology we obtaineH..(Hom(Cs, K4)) = (Z, Z, 0, Z), which coincides with the spec-
tral sequence computations of Babson and KozloBjn\{Ve also computed the homology
of Hom(C7, K4) and obtained thatl.(Hom(C-, K4)) = (Z, Z,, 0, Z, 0, 0) which was conjec-
tural in [3].

We next used the bistellar flip heuristic BISTELLARI]] to determine that the com-
plex Hom(Cs, K4) is homeomorphic t®RP3. (See B] for a discussion of the heuristic;
for large complexes thieistellar client (due to N. Witte) of the TOPAZ module of the
polymake system [L5] provides a fast implementation of BISTELLAR.)

Tueorem 13. HOomCs, Kg) = V3, = RP3.

Proof. In addition to the above computer proof, we give an expli@egaard decompo-
sition of Hom(Cs, K4) from which one can see that this Hom complex is homeomorphic
to RP3 (and thus homeomorphic to the Stiefel manifolg).

First we show that the collection of cells of the foriyk( =, =, %, «) forms a solid torus.
By symmetry it is enough to consider the collection of cell&]3 =, *, x,*). Since the
numbers 1, 2, and 3 can not occur at positions 2 and 5, it imatedglifollows that the
cells of this collection are of the form (128 =, =, 4). The middle £, «)-part is the six-gon
corresponding to Honk(z, K3); see Figure 1. Sdjk, =, *, %, ) is the product of a triangle
and a circle.

In Figure 2 we display the collections of cells of the form (4,2, =, ) (with the cell
on the left glued to the cells on the right). Clearly, thisedtion of cells forms a torus, and
therefore, by symmetry, also every collectiop £, =, %, *). Finally, the cells of the form
(i, =, %, %, x) form a solid torus as well. The boundary torus of+«(, %, «) can be seen in
Figure 3. Again, the left side is glued to the right side oflfE 3. The gluing of the top
and bottom is indicated by the arrows.

In order to understand how these solid tori are glued togetleehave to identify
meridian disks. For the collectiongK, =, =, x, x) and {j, =, =, =, =) this is clear. A meridian
disk of the collection (1«, *, , %) is given in Figure 4; its boundary corresponds to the thick
line in Figure 3. The complement of (4, =, , x) in Hom(Cs, K4) is a solid torus composed
of the collections (12, =, *, %), (13 %, x, %, %), ..., (2, %,,%), ..., (234, , *, %), which
we abbreviate by 12, 13, ..., 2, ..., 234 in Figure 5. In fagguFe 5 gives the base
sphere of theS!-fibered space Horfl, K4) and makes clear how theffiirent tori are
glued together.

A meridian curve of the complement of,(, =, %, %) is drawn as a dashed curve in
Figure 3. Since this curve is a,([®-curve, it follows that Hon@s, K4) is homeomorphic
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Ficure 3. The boundary of the solid torus, (4 =, =, =) in Hom(Cs, K4).

(1,3,2,1,3)

(1,3,2,1,2) (1.32,1,234) (1,3,2,1,4)

(1,3,2,13,24)

(1,3,2,3,2) . (1,3,2,3,4)

(1,34,2,3,24)
(1,3,1,3,2) (1,4,2,3,4)
(1,34,12,3,2)

(1,4,2,3,2)

(1,2132) (1,4132)

Ficure 4. A meridian disk of the solid torus (4, *, «, «) in Hom(Cs, K4).

to the 3-dimensional real projective space. The latterespalcomeomorphic to the Stiefel
manifold V3. O

The 5-dimensional Hom complex Ho@Y, Ks) consists of 2070 maximal cells and has
1020 vertices. The corresponding product triangulatiafhaector (10202577Q 14390Q
30795028320094400). With thebistellar client it took less than a week to reduce this
triangulation to a triangulation withi = (12 66,220 390,336 112). The latter triangu-
lation is 3-neighborly, i.e., it has a complete 2-skeletand thus is simply connected.
Its homology is Z,0,Z,Z,0,Z). Moreover, its second Stiefel-Whitney class is trivia, a
we computed wittpolymake. By the classification of simply connected 5-manifolds of
Barden {], the unique simply connected 5-manifold with homology(, Z, Z, 0, Z) and
trivial second Stiefel-Whitney class & x S2.

TueoreM 14. Hom(Cs, Ks) = V4, = S® x S2,

In the following, we discuss a particular representationdd cycles that gives some
insight intoall Hom complexes Hon,r 1, K) of complements of odd cycl€, 4, r > 2.
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124
4
12
14 24
1 2
12
13 23
3
134 234

34

Ficure 5. Cell decomposition of the base sph&fein Hom(Cs, K).

Ficure 6. The (dashed) cyclgss andC; and their complements.

(With a similar approach we will analyze the Hom complexesrii®,,, K,) of comple-
ments of even cycleSy, r > 2, in the next section.)

We display the cycle€y .1, r > 2, in form of a crown that is turned upside down;
see Figure 6 for therown representationsf the (dashed) cycleSs andCy. Clearly, the
bottom vertices of a crown representation form a clique, aeomplete grapK;, in the
complemenCy 1.

Let us have a look at the crown representatiorCef Every cell @, b, A, B,C) of
Hom(Cs, K,,) contains every numbere {1, ..., n} at exactly two positions. Since the sets
aandb are associated with the bottom vertices that form a cligue Cs, the numbex
can appear in at most one of the se@ndb. If it is contained in, saya, then the second
copy of x can only be placed in the sefsand B that are connected with by a dashed
edge ofCs. The top vertices o€s form a clique minus the (dashed) edge between the
leftmost vertex and the rightmost vertex. Hence i§ contained in neithea norb, then it
is contained in the leftmost top satand in the rightmost top sé€.
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o, (L2)
(L3) s n 2D S

. (132)

(2’ 3) 5\\\::\

g,

. v,
Sl “,

1) @1 ™ (31

Ficure 7. Hom(K», K3) and HomCs, K3).

If we restrict us further ton = 3 colors, then Honi{,, K3) is a six-gon as dis-
played in solid in Figure 7. The celb(b) = (1,23) of HomKy, K3) can be extended
to a cell @, b; A, B, C) of Hom(Cs, K3) in precisely two ways, either to (23; 1, 2, 3) or to
(1,23;1,3,2). We depict these edges of Haba( K3) as dashed edges in Figure 7, parallel
to the edge (123) of HomKy, K3). Let (1, 23; 1, 2, 3) be the upper dashed edge. If we move
the number 3 from the second to the third position, then wainlthe cell (12; 13 2, 3)
from which we move on to (2; 3,12, 3), and from there to (2;3,1,23). These three
cells of Hom(Cs, K3) correspond to the vertex (2) of Hom(K», K3) and are displayed
together by a dashed half-cycle at the verte)2jlin Figure 7. If we move on further,
then we get to the dashed edge,@;3, 1, 2), from there to the dashed edge13; 3 1, 2),
before we again start a half-cycle (323 1, 2), (3 1;2 13, 2), (3 1; 2 3,12), this time at
the vertex (31) of Hom(Kj, K3). We can then continue on the outer dashed cycle until we
reach our starting edge,@3; 1, 2, 3) of Hom(Cs, K3). Similarly, we can move around the
inner dashed cycle when we start with 28; 1, 3, 2).

Proposrion 15. The Hom compledom(Car.1, K;.1) is the disjoint union ofrcycles
with (2r? + 3r + 1) vertices each.

Proof. We first count the number of vertices of HoB{, 1, K1), i.e., the number of dis-
tinct colorings withr +1 colors ofCy 1. To color the bottoni; in the crown representation
of Cx,1 We choose of ther + 1 colors and then hawe choices to place thegecolors.
For one such coloring, say,(@,...,r), there are (2+ 1) ways to extend it to a coloring of
Cor.1: If we use the color + 1 just once, then we have+ 1 choices to place it in the top
row of the crown; the remaining positions for the colors ia thp row are then completely
determined by the position of the colar{1) and by our choice of the colors in the bottom
row. If we use the color + 1 twice, then we have to put it at the positions 1 and 1
of the top row. We further choose one of the coloss. 1, r not to be used in the top row;
this again determines all the positions for the colors inttigerow. Thus we have (+ 1)
choices if color + 1 appears once in the top row andhoices if color + 1 appears twice
in the top row. Altogether we have

(r : 1)r!(r +1+1)=(2r%+3r+ !

different colorings o€y, With r + 1 colors.
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Ficure 8. The Hom complex Hont(z, Ky).

Since every number,1..,r + 1 appears exactly twice in a cell of HOBY_1, K 1),
the dimension of Hon® 41, Ki41) is 2 + 1) — (2r + 1) = 1. If we move for the edge
(L,2,...,r=1r(r+1);12,...,r,r+1) of HomCy 1, K;1) the number + 1 from the last
position of the bottom row to the first position of the top romdahen continue until we
reachtheedge ¢1,1,2,...,(r—1r;r+1,1,2,...,r=1,r), thistakes +1+r = 2r+1 steps.
Afterr+1 rounds we returnto the startingedgel..,r-1,r(r+1);1,2,...,r=1,r,r+1).
Thus, by symmetry, every cycle of Ho®y 1, Kr.1) has length (B+1)(r+1) = 2r2+3r+1.
Since HomCur.1, Kr41) has (22 + 3r + 1)r! vertices, it follows that HonGo 11, Kr41)
consists of ! cycles with (22 + 3r + 1) vertices each. O

As before in the case of Hoﬁg, K3z), every edge of Honi{;, K;,1) can be extended
in exactly two ways to an edge of Ho@®y 1, K;.1). This can be interpreted geometrically
by thickening every edge of the 1-dimensional manifold HEmK; ;) to a 2-dimensional
strip and then gluing these strips together at the vertitelom(K;, K;,1). In this way, we
get a two-dimensional manifold with boundary, with the badary being homeomorphic to
Hom(Cu .1, K+1). InFigure 8 we display the Hom complex Holy( K4), consisting of 24
vertices and 36 edges, together with two of the-3 (dotted) cycles of Hon@z, K4). Ev-
ery vertex of HomK;, K;,1) can be extended in+ 1 ways to an edge of Hoi@6, 1, K;1).
Theser + 1 edges form a path that we display as dotted half-cyclesfripures 7 and 8.
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ag Q
Ficure 9. The cycleCg (dashed) and its complemeDs.

Consecture 16. The 3-dimensional graph coloring manifoldHom(Cor.1, Kr+2),
r > 2, is homeomorphic to the orientable Seifert manifoldo, r! — 2|r! } with homology
(Z, ZZ(r!—Z) ® Zr! , ZZ(T!—Z)’ Z)

The conjecture holds far = 2 andr = 3. (For an introduction to Seifert manifolds see
Seifert B4] as well as 2] and [29].)

Forr = 2, Theorem 13 yield$00,0,|2} = RP® = Hom(Cs, K4). Forr = 3, the
product triangulation of Hon@7, Ks) has f-vector f = (2520 2016Q3528Q17640) and
homology €,78 ® Zs,Z8,Z). It took ten minutes on a Pentium R82GHz processor to
reduce the triangulation with tHeistellar client system of15] to a triangulation with
f = (27,289 524, 262). In a second step, the topological type of the resuttinggulation
was recognized within seconds with the progr@hree-manifold Recognizer [28]
(see also27]). Many thanks to S. V. Matveev, E. Pervova, and V. Tarkae\tlieir help
with the recognition!

Tueorem 17. HomC7, Ks) = {00, 4,|6}.

We will describe further graph coloring manifolds of simisize in Section 6, for
which their topological type was recognized in the same raann

Recognition heuristic for Seifert and graph manifolds:

1. Reduce the size of a given triangulation withitigtellar client of the TOPAZ
module of thepolymake system [L5].
2. Use the prograrfhree-manifold Recognizer [28] for the recognition.

If the (Matveev) complexity of a given triangulation is nottlarge, there is a good chance
to recognize the topological type, even when the triangaridas huge.

5.2. Hom Complexes of Complements of Even CyclesSimilar to the crown rep-
resentation of (complements of) odd cycles, we split théices of even cycle€, into a
lower and an upper part, corresponding to the bipartitio@f The lower and also the
upper part form a complete graph in Cy, i.e., every maximal cell of Horilr, K;) con-
tains each color 1..,r exactly twice, once in the lower part and once in the uppet. par
(Figure 9 display€s and its complemer@s together with a celldy, ay, as; Aq, Az, Ag) of
Hom(Ce, K;).)

We will employ the following two propositions to describeetB-dimensional Hom
complexes HonGy, K;.1).
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ProposiTion 18. (Babson and Kozlow]) The Hom complelddom(K;, K¢) is homotopy
equivalent to a wedge offf, s) spheres of dimension-g, where the numbers(f, s) satisfy
the recurrence relation

(6) f(r,9) =rf(r—21,s-21)+(r - 1)f(r,s-1),

for s > r > 2; with the boundary values(f,r) = r! - 1, f(1,5) = 0 for s > 1, and
f(r,9)=0forr > s.

-4 . 2_yp_
Proposiion 19. (Cukic and Kozlov L0]) f(r,r + 1) =r! =22 + 1.

Tueorem 20. The Hom complekom(Car, K;.1), r > 2, is an orientable cubical sur-
face of genus

7) g(r) = frr+1)=r 212 4 1
with n(r) = (2+r?)-(r + 1)! vertices 2(n(r) + 2g(r) — 2) edges, and (n) + 2g(r) — 2 squares.

Proof. Let (a1,...,a;As,...,A) be a maximal cell of Hon®y, K;,1). Since every
color 1,...,r + 1 appears exactly once imy(...,a) and once in 4y,...,A;) the cell
(ai,...,a; Aq, ..., A) is the product of the edgey, ..., a) with the edge Ay, ..., A).

Hence, HomC,, K;.1) is a cubical surface.

We count the vertices of HoB, K;1). For every vertex\y, . .., Vi, Wi, ..., W) we
have to chooseof ther + 1 colors for the lower part and then havehoices to place these
r colors. Let{1,...,v) = (L,...,r) be such a placement. If the left out cotar1 does not
appear in the upper part, then (1.,r) can be extended in exactly two ways to a coloring
of Cy, yielding the vertices (1..,r;1,...,r)and (1...,r;2,...,r,1) of HomCu, K 11).

If the left out colorr + 1 is used in the top part, then there arehoices to place it, and
for each such placement every choice to not use one of thesclo ., r determines a
vertex. Therefore, we have altogethes 22 choices to extend (1..,r) to a vertex of

HomCx, Ki11); i.e., HomCar, K11) hasn(r) := (2 +r?) - (r + 1)! vertices.

Let M be an orientable cubical surface of germwith n vertices,e edges, ands
squares. Since every square is bounded by four edges and edlge appears in two
squares, double counting yields 2 4s. By this equation and by Euler’s relatiog; e+n =
x(M) = 2-2g, we getthas = n+ 2g - 2 ande = 2(n + 2g — 2).

It remains to show that Hor@%y, K;.1) is orientable and has geng&) = f(r,r +1) =
r! rz’Tr’z + 1. For this, let us fix an edge, sagu(...,a&) = (1,2,...,r — Lr(r + 1)),
of Hom(K;, K;,1). Then the sequence of 2quares

1,2,...,r=2Lr(r+1);L,2,....,r=2r=21r(r + 1)),
12,...,r=1r(r+1);42,...,r =2,(r—Dr,r+1),
(L,2,...,r=1r(r+1);42,...,(r—=2)r - 1),r,r +1),

1,2,...,r=2r(r+1);,23...,r=21r,r+1),
1,2,...,r=21r(r+1);123,...,r=1r,r+1),
1,2,...,r=2r(r+1);23,...,r=1,r,1(r + 1)),
1,2,...,r=Lr(r+1);23,...,r=Lr(r+1),1),
(L2,...,r=1r(r+1);23,....,r=1,r+11r),
1,2,...,r=21r(r+1);123,...,r=1Lr+1r),
1,2,...,r=2r(r+1);,23...,r=1r+1r),

.(.1;2,...,r—1,r(r+1);L2,...,(r—2)(r—1),r+1,r),
1,2,...,r=Lr(r+1);12,...,r =2,(r = 1)(r + 1), 1)
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Ficure 10. Three cylinders forming a trinoid in Hol®§, Ka).

forms a cylindelCy x |. By symmetry, we get such a cylinder for every edgg (. ., &)
of Hom(K;, K:,1). Since every vertex of the graph Hoka( K1) has degree, we have
r cylinders in HomCy, K;,1) meeting “at a vertex” of Honi{;, K;,1). (In the case of
Hom(K3, Ky) three cylinders meet at a vertex, which yields a trinoid egicted in Fig-
ure 10.) By inspecting the gluing at the vertices, it is easgleéduce that Honly, K1)
is orientable. It moreover follows that Ho@y, K,.1) has genud (r,r + 1), which is the
number of wedged 1-spheres in the graph HE&mMK;,1). O

As in the case of Hon@,.1, K;41), we can interpret Hon®o,, K;,1) geometrically in
the following way. If we thicken the edges of the 1-dimensionanifold HomK;, K1) to
solid tubes, then for the resulting 3-manifold with boundae boundary is homeomorphic
to HomCxr, Kr41).

Consecture 21. The Hom complexdom(Cy, Ks) is, for s> r > 2, homeomorphic to
the connected sum of(rf s) copies of S'x S5,

The 4-dimensional Hom complex Ho@¥, Ks) consists of 3180 cells and has 1920
vertices. The corresponding product triangulation has(192Q 3078Q 104520126000
50400). With thebistellar client it took half a day to reduce this triangulation to a
triangulation withf-vector (33379 17862300 920). The latter triangulation is simply
connected, as we computed with the group algebra packerjel 6]. The homology of the
triangulation is Z, 0, Z%8, 0, Z). Moreover, we usegdolymake to compute the intersection
form of the example, which turned out to be indefinite, evard af rank 29. By the
classification of Freedman{], this shows:

Tueorem 22. Hom(Cg, Ks) = (S?x S?)#2°,

Conjecture 21 thus holds in the caseg[ = (3,5), and, by Theorem 20, also for the
seriess=r+1> 3.
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Tasie 1. Triangulated surfaces with few vertices.

# Vertices 6 7 8 9 10

# Manifolds 3 9 43 655 42426
# Spheres 2 5 14 50 233
# Flag Spheres 1 1 2 4 10

6. Graph Coloring Manifolds of Sphere Dimension Two

Flag simplicial 2-spheres with small number®f vertices can be obtained by first
enumeratingll triangulated 2-spheres withvertices and then testing which of these are
flag. Triangulations of two-dimensional spheres with up3o/8rtices have been enumer-
ated with the programlantri by Brinkmann and McKayd] (see the manual gflantri
or the web-page of Royle[] for the numbers of triangulations an< 23 vertices). With
another approach, triangulations of all two-dimensionahifolds with up to 10 vertices
have been enumerated by Lutz (&3]); the respective numbers of triangulations are given
in Table 1.

The flag simplicial spheres with up to 9 vertices togetheln it complements of their
1-skeleta are displayed in Figures 11-18. (The symbgistands for théth 2-manifold
with n vertices in the catalog[)].)

For the flag 2-sphere%6; = 6C§ (the boundary of the 3-dimensional cross-poly-
topeC3), 279 = Cs = S°, 2841 = Cg x S°, and?9s30 = C7 * S, the complements of the
respective 1-skeleta are not connected, and thereforeqbgten 1, are direct products.

Z N

Ficure 11. The flag spher&6; = 9C5 and the complement of its 1-skeleton.

# |

Ficure 12. The flag spher&7q = Cs *+ S° and the complement of its 1-skeleton.
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< |

Ficure 13. The flag spheré8,; = Cg + S° and the complement of its 1-skeleton.

Ficure 14. The flag spheré8 3 and the complement of its 1-skeleton.

A % |

Ficure 15. The flag spher&g30 = C; * S° and the complement of its 1-skeleton.

V

i~

A\
N

AN\
45
X

/
5%

A\
&
<

Ficure 16. The flag spher&gs, and the complement of its 1-skeleton.

N

Ficure 17. The flag spheré9gs, and the complement of its 1-skeleton.
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Ficure 18. The flag spher&gs, and the complement of its 1-skeleton.

TasLe 2. Hom complexes associated with the flag sphé8as, 951,
29652, and?9ess.

Hom complex Type Homology f-Vector of Product Triangulation

Hom(SK1(*843). Kg) 4 cycles each cycle has 24 vertices
Hom(SK1(296s1), K3) 24 vertices
Hom(SK:(296s2), Ks) 24 vertices
Hom(SK:(?9es5), Ks) 12 vertices

Hom(SK;(2843), Ka)  ? (Z.7Z®7Z,,7,,7,7) (362455224 18465622176088704)
Hom(SK;(296s1), Ka)  (T2)*3xS!  (2,7%7,7%,7) (2928 21360 36864 18432)
Hom(SK:(296s2), Ka)  (TA)*3x St  (2,7%7,7%,7) (3120 22992 39744 19872)
HOomM(SKy(296ss), Ka)  (S2xSY#13 (7,713,713, 7) (3096 22104 38016 19008)

For those flag 2-spheres with< 9 vertices, for which the complements of their 1-
skeleta are connected, we analyzed the product triangotadf their Hom complexes with
few colors. Table 2 gives the results.

Acknowledgements. The authors are grateful to S. Felsner for helpful discussio
Many thanks also to S. V. Matveev, E. Pervova, and V. Tarkaeuteir help with the
recognition of 3-dimensional graph coloring manifolds. féaver, we thank the anony-
mous referee for helpful remarks that led to a substantipt@avement of the display of
Section 3.

Note added in proof. Conjecture 12 has recently been proved by C. SchaB [
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