
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin
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Contemporary Mathematics

Graph Coloring Manifolds

Péter Csorba and Frank H. Lutz

A. We introduce a new and rich class ofgraph coloring manifoldsvia the Hom
complex construction of Lovász. The class comprises examples of Stiefel manifolds, series
of spheres and products of spheres, cubical surfaces, as well as examples of Seifert man-
ifolds. Asymptotically, graph coloring manifolds provideexamples of highly connected,
highly symmetric manifolds.

1. Introduction

In the topological approach to graph coloring, initiated byLovász’ proof [19] of the
Kneser Conjecture [17], lower bounds on thechromatic numberχ(H) of a graphH are
obtained by exploiting topological invariants of a simplicial or cell complexK(H) that is
associated withH.

There are several standard constructions that associate a topological spaceK(H) with a
graphH, e.g., the (simplicial) neighborhoodcomplexN(H) of Lovász [19], the (simplicial)
box complexB(H) of Matoušek and Ziegler [26], and, with respect to a reference graphG,
the (cellular) Hom complex Hom(G,H) of Lovász (cf. [2], [18]).

From an algorithmic point of view, the topological approachseems, up to now, not
suitable to produce “good” lower bounds onχ(H) for general input graphsH: For example,
the historically first topological lower bound by Lovász requires the computation of the
connectivity of the neighborhood complexN(H).

T 1. (Lovász [19]) Let H be a graph. IfN(H) is k-connected, thenχ(H) ≥ k+3.

However, neighborhood complexes of graphs can be of “arbitrary” homotopy type [9],
and for general complexes it isnot decidablewhether they are 1-connected or not! More-
over, there are cases for which the connectivity could be determined, but for which the
corresponding lower bounds are far from tight [36].

It is therefore most surprising that for highly structured,highly symmetric graphs such
as Kneser graphs and generalization [1] the topological approach provides sharp lower
bounds while other approaches fail badly; [26] discusses this issue and gives further refer-
ences.
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2 PÉTER CSORBA AND FRANK H. LUTZ

In order to get away from connectivity, lower bounds have been formulated in terms
of topological invariants thatare computable [3, Remark 2.7], or the topological tools
have been replaced by purely combinatorial ones; see Matouˇsek [25]. Still, the size of the
associated complexes causes problems, since for the standard constructions the number of
cells of the complexesK(H) grows exponentially.

In a recent series of papers, Babson and Kozlov [2], [3] and Kozlov [18] intensively
studied properties of Hom complexes Hom(G,H) and proved new topological lower
bounds (see as welľCukić and Kozlov [11], [10], Schultz [32], andŽivaljević [35]). For
example, it turned out that Hom(K2,Kn) is a PL sphere of dimensionn − 2, for n ≥ 2,
and by spectral sequence calculations that the Hom complexes Hom(C5,Kn) have the
(co)homology of Stiefel manifolds. This was the starting point for the first author to
formulate Conjecture 12 (see Section 5) that the Hom complexes Hom(C5,Kn) are (PL)
homeomorphicto Stiefel manifolds.

In this paper, we will show that the Hom complexes Hom(C5,Kn) indeed are PL man-
ifolds. More generally, we will characterize in Theorem 6 (Section 3) those graphsG for
which the Hom complexes Hom(G,Kn) are PL manifolds for alln ≥ χ(G). Such manifolds
we callgraph coloring manifolds.

In Section 2, we give a short account on Hom complexes. Section 3 introduces graph
coloring manifolds. Various examples and series of examples of graph coloring manifolds
are discussed in Sections 4–6.

2. Basic Definitions, Notations, and Examples

Let G = (V(G),E(G)) andH = (V(H),E(H)) be two graphs with node setsV(G) and
V(H) and edge setsE(G) ⊆

(

V(G)
2

)

andE(H) ⊆
(

V(H)
2

)

, respectively. We assume that the
graphs aresimple graphs, i.e., graphs without loops and parallel edges.

A graph homomorphismis a mapφ : V(G) → V(H), such that if{i, j} ∈ E(G), then
{φ(i), φ( j)} ∈ E(H), that is, the image of every edge of the graphG is an edge of the
graphH. Let the set of all graph homomorphisms fromG to H be denoted byHom(G,H).
For two disjoint sets of verticesA, B ⊆ V(G) we defineG[A, B] as the subgraph ofG with
V(G[A, B]) = A∪ B andE(G[A, B]) = {{a, b} ∈ E(G) : a ∈ A, b ∈ B}.

Let ∆V(H) be the (abstract) simplex whose set of vertices isV(H). Furthermore, let
C(G,H) denote the direct product

∏

x∈V(G) ∆
V(H), i.e., the copies of∆V(H) are indexed by

vertices ofG. A cell of C(G,H) is a direct product of simplices
∏

x∈V(G) σx.

D 2. For any pair of graphs G and H let theHom complex Hom(G,H) be a
subcomplex of C(G,H) defined by the following condition: c=

∏

x∈V(G) σx ∈ Hom(G,H)
if and only if for any u, v ∈ V(G) if {u, v} ∈ E(G), then H[σu, σv] is complete bipartite.

The topology of Hom(G,H) is inherited from the product topology ofC(G,H). Thus,
Hom(G,H) is a polyhedral complex whose (non-empty) cells are products of simplices
and are indexed by functions (multi-homomorphisms)η : V(G) → 2V(H)\{∅}, such that if
{ı, } ∈ E(G), then for every ˜ı ∈ η(ı) and ˜ ∈ η( ) it follows that{ı̃, ̃} ∈ E(H).

Let V(G) = {1, . . . ,m}. We encode the functionsη by vectors (η(1), . . . , η(m)) of non-
empty setsη(i) ⊆ V(H) with the above properties. A cell (A1, . . . ,Am) of Hom(G,H) is
a faceof a cell (B1, . . . , Bm) of Hom(G,H) if Ai ⊆ Bi for all 1 ≤ i ≤ m. In particular,
Hom(G,H) hasHom(G,H) as its set of vertices. Moreover, every cell (A1, . . . ,Am) of
Hom(G,H) is a product ofmsimplices of dimension|Ai | −1 for 1≤ i ≤ m. For brevity, we
write setsA = {a1, . . . , ak} ⊆ V(H) in compressed form as strings, i.e.,A = a1 . . .ak.
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(1,2)

(1,3) (2,3)

(2,1)

(3,1)(3,2)

(12,3)

(1,23)

(13,2)

(3,12)

(23,1)

(2,13)

F 1. The Hom complex Hom(K2,K3).

A cell of Hom(G,H) is a maximal faceor facet if it is not contained in any higher-
dimensional cell of Hom(G,H).

Example 1: The cells of the Hom complex Hom(K2,K3) are given by the vectors (1, 2),
(1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (12, 3), (13, 2), (23, 1), (3, 12), (2, 13), and (1, 23). There-
fore, Hom(K2,K3) is a cycle with six edges; see Figure 1.

Example 2:The Hom complex Hom(K2,Kn) is a PL sphere of dimensionn−2 for n ≥ 2. In
fact, Hom(K2,Kn) is the boundary complex of a polytope [2, Sect. 4.2]: it can be described
as the boundary of the Minkowski sum of an (n− 1)-dimensional simplexσn−1 and its
negative−σn−1, as stated in [24, p. 107, Ex. 3 (c)].

3. Vertex-Links and Flag Simplicial Spheres

Babson and Kozlov asked in [2] for what graphs the Hom complex construction pro-
vides a connection to polytopes. In this section, we will characterize those graphsG for
which Hom(G,Kn) is a piecewise linear (PL) manifold for alln ≥ χ(G).

A (finite) simplicial complex is aPL d-manifoldif and only if every vertex-link is a PL
(d− 1)-sphere, i.e., every vertex-link is PL homeomorphic to the boundary of the standard
d-simplexσd.

There are several ways to define thelink of a vertexv for polyhedral complexes. For
Hom complexes Hom(G,H) we will use the following. Let the face poset of Hom(G,H)
be denoted byF (Hom(G,H)) and let the link ofv in Hom(G,H) be the cell complex
whose face poset is given byF>v(Hom(G,H)). This link then is a simplicial complex since
Hom(G,H) is a prodsimplicial complex (cf. [18, 2.4.3]).

For a graphG we say thatX ⊆ V(G) is anindependent setif there is no edge between
any two vertices ofX. The independent set complexInd(G) of a graphG is the simplicial
complex with vertex setV(G) and X ⊆ V(G) forming a simplex if and only if X is an
independent set inG, i.e., Ind(G) = {X ⊆ V(G) |X is independent inG}.

Every cell of Hom(G,Kn) corresponds to a multi-coloringf : V(G) → 2{1,...,n}\{∅},
where the mapf assignsf (v) distinct colors to every vertexv ∈ V(G), such that the set of
vertices colored by any colori ∈ {1, . . . , n} forms an independent set inG. We denote these
sets by∆i( f ) = {v ∈ V(G) | i ∈ f (v)} and consider them as simplices of Ind(G).
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L 3. Let φ be a vertex ofHom(G,Kn), i.e., a proper coloring of G which we
regard as a multi-coloringφ : V(G)→ 2{1,...,n}\{∅} with |φ(v)| = 1 for all v ∈ V(G). Then

link Hom(G,Kn)(φ)

is isomorphic to the join product

link Ind(G)(∆1(φ)) ∗ · · · ∗ link Ind(G)(∆n(φ)).

Proof. A simplex of the first complex linkHom(G,Kn)(φ) corresponds to a multi-coloring
f : V(G) → 2{1,...,n}\{∅} which extendsφ. We can consider such an extension color-wise.
For colori ∈ {1, . . . , n} we have that∆i(φ) ⊆ ∆i( f ) ∈ Ind(G) and therefore∆i( f )\∆i(φ) ∈
link Ind(G)(∆i(φ)). Thus we can identifyf with (∆1( f )\∆1(φ), . . . ,∆n( f )\∆n(φ)) and there-
fore can regardf as an element of linkInd(G)(∆1(φ)) ∗ · · · ∗ link Ind(G)(∆n(φ)). Conversely,
every simplex of linkInd(G)(∆1(φ)) ∗ · · · ∗ link Ind(G)(∆n(φ)) gives rise to a unique extension
f of φ. �

L 4.
(1) If Ind(G) is a PL sphere, thenHom(G,Kn) is a PL manifold for any n≥ χ(G).
(2) If Hom(G,Kn) is a PL manifold and n> χ(G), thenInd(G) is a PL sphere.

Proof. 1. Let Ind(G) be a PL sphere. Since the link of any simplex of a PL sphere is aPL
sphere (of lower dimension) and since the join product of PL spheres is again a PL sphere,
it follows by the previous lemma that the link of any vertex ofHom(G,Kn) is a PL sphere.
Thus, Hom(G,Kn) is a PL manifold.

2. Let Hom(G,Kn) be a PL manifold. Sincen > χ(G), there is a vertexφ of
Hom(G,Kn) that does not use the colorn. Hence, linkInd(G)(∆n(φ)) = Ind(G). Since
Hom(G,Kn) is a PL manifold, linkHom(G,Kn)(φ) � link Ind(G)(∆1(φ)) ∗ · · · ∗ link Ind(G)(∆n(φ))
is a PL sphere. Now, the join product of simplicial complexesis a PL sphere if and
only if every factor is a PL sphere (see [30, 2.24(5)]). It follows that the last factor,
linkInd(G)(∆n(φ)) = Ind(G), is a PL sphere. �

We can formulate this result in terms ofG using the following definition.

D 5. Let K be a (finite) simplicial complex. If K has no “empty simplices”,
i.e., if every set of vertices of K which form a clique in the1-skeletonSkel1(K) actually
spans a simplex, then K is aflag simplicial complex(cf. [8]). A flag simplicial sphereis a
flag simplicial complex which triangulates a sphere.

Theclique complexCliq(G) = {X ⊆ V(G) |X is a clique inG} of any graphG is a flag
simplicial complex in a natural way withG = Skel1(Cliq(G)).

T 6. Let G be a graph. Then the Hom complexHom(G,Kn) is a PL manifold
for all n ≥ χ(G) if and only if G is the complement of the1-skeleton of a flag simplicial PL
sphere.

Proof. Let Hom(G,Kn) be a PL manifold for alln ≥ χ(G). Then, in particular,
Hom(G,Kχ(G)+1) is a PL manifold, and thus, by Lemma 4, Ind(G) = Cliq(G) is a PL sphere.
Hence,G is the complement of the 1-skeleton of the flag simplicial PL sphere Cliq(G).

Conversely, ifG is the complement of the 1-skeleton of a flag simplicial PL sphereK,
i.e.,G = Skel1(K), then Ind(G) = Cliq(Skel1(K)) = K is a flag simplicial PL sphere and
therefore Hom(G,Kn) a PL manifold by Lemma 4. �

Remark 1: If n < χ(G), then Hom(G,Kn) = ∅. If n = χ(G), then every vertexφ of
Hom(G,Kχ(G)) uses all colors 1, . . . , χ(G). If Hom(G,Kχ(G)) is a PL manifold, then Ind(G)
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need not be a PL sphere. It is only required, that the links of vertices (or of higher-
dimensional faces if every color is used more than once in every vertex of Hom(G,Kχ(G)))
of Ind(G) are flag simplicial PL spheres. In particular, ifG is the complement of the
1-skeleton of a flag combinatorial manifold, then Hom(G,Kχ(G)) is a PL manifold. As
another example, ifG is a connected bipartite graph, then Hom(G,K2) = S0.

Remark 2: It is possible for Hom(G,Kn) to be a (non-PL) manifold, even without Ind(G)
being a sphere. (See [5] for a discussion of non-PL spheres and non-PL manifolds.) For
example, if Ind(G) is a flag combinatorial homology sphere (i.e., a combinatorial mani-
fold with the homology of a sphere, but not homeomorphic to the standard sphere) and
n > χ(G), then for every vertexφ of Hom(G,Kn) the join product linkHom(G,Kn)(φ) �
link Ind(G)(∆1(φ)) ∗ · · · ∗ link Ind(G)(∆n(φ)) is a simplicial sphere by the double suspension
theorem of Edwards [13] and Cannon [7]. Also, if G is the complement of the 1-skeleton
of a flag simplicial non-PL sphere, then Hom(G,Kn) is a non-PL manifold forn > χ(G).

D 7. A Hom complexHom(G,Kn) is a graph coloring manifoldif G is the
complement of the1-skeleton of a flag simplicial PL sphere.

Remark 3:By Definition 7 and Theorem 6 graph coloring manifold are PL manifolds.

Remark 4: Graph coloring manifolds are highly symmetric: relabelingthe colors ofKn

defines an action of the symmetric groupSn on Hom(G,Kn).

Babson and Kozlov [2, 2.4] stated as a basic property of Hom complexes that

(1) Hom(G1 ∪̇ G2,H) = Hom(G1,H) × Hom(G2,H),

from which it follows that if G =
˙⋃

i=1,...,k

K2 is the complement of the 1-skeleton of the

boundary of thek-dimensional crosspolytope∂C∆k , then

(2) Hom (
˙⋃

i=1,...,k

K2,Kn) =
�

i=1,...,k

Sn−2.

D 8. A flag simplicial PL sphere isprime if the complement of its1-skeleton
is connected. A Hom complexHom(G,Kn) is a graph coloring manifold of sphere dimen-
sion d if G is the complement of the1-skeleton of a prime flag simplicial PL sphere of
dimension d.

Since every coloring of a graphG can be regarded as a covering ofG by independent
sets, the following lower bound holds for the chromatic numberχ(G) of G:

(3) χ(G) ≥
⌈ |V|
α(G)

⌉

=
⌈ |V|

ω(G)

⌉

,

whereα(G) is theindependence numberor stable set numberof G (i.e., the maximum size
of an independent set inG) andω(G) is theclique numberof G (i.e., the maximum size
of a clique inG). If G is the complement of the 1-skeleton of a prime flag simplicialPL
d-sphere onm vertices, thenα(G) = ω(G) = d+ 1. Thus

(4) χ(G) ≥
⌈ m
d+ 1

⌉

and

(5) dim(Hom(G,Kχ(G)+k)) = (χ(G) + k)(d+ 1)−m

for all k ≥ 0.
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The lower bound (4) can be arbitrarily bad: IfG is the complement of the 1-skeleton
of the suspensionS0 ∗C2r+1 of an odd cycleC2r+1, r ≥ 2, thenχ(G) = 2r + 1 > ⌈ 2r+3

3 ⌉.
From the following theorem it follows that graph coloring manifolds provide examples

of highly connected manifolds.

T 9. (Čukić and Kozlov [10]) Let G be a graph of maximal valency s, then the
Hom complexHom(G,Kn) is at least(n− s− 2)-connected.

Let G be the complement of the 1-skeleton of a flag simplicial PL sphere. If G has
maximal valencys, then Hom(G,Kn) is simply connected and thus orientable forn ≥ s+3.
We expect that Hom(G,Kn) is orientable also forχ(G) ≤ n < s+ 3.

C 10. Graph coloring manifolds are orientable.

4. Graph Coloring Manifolds of Sphere Dimension Zero

Trivially, S0, consisting of two isolated vertices, is the only zero-dimensional flag
simplicial sphere. The complement of its (empty) 1-skeleton is the complete graphK2.
Hence, the graph coloring manifolds of sphere dimension zero are the Hom complexes
Hom(K2,Kn) � Sn−2, for n ≥ 2.

5. Graph Coloring Manifolds of Sphere Dimension One

The one-dimensional flag simplicial spheres are the cyclesCm of lengthm ≥ 4. For
m= 4 we have that (the 1-skeleton) SK1(C4) = C4 = K2 ∪̇K2 with

Hom(K2 ∪̇K2,Kn) = Hom(K2,Kn) × Hom(K2,Kn) � Sn−2× Sn−2.

If m≥ 5, then SK1(Cm) = Cm is connected. In the following, we treat odd and even cycles
separately.

5.1. Hom Complexes of Complements of Odd Cycles.Babson and Kozlov [3] used
topological information on the Hom complexes Hom(C5,Kn) (with C5 � C5 for m = 5)
and, more generally, on the Hom complexes Hom(C2r+1,Kn), for r ≥ 2 andn ≥ r + 1, to
prove the Lovász Conjecture:

T 11. (Babson and Kozlov [3]) If for a graph H the complexHom(C2r+1,H)
is k-connected, for some r≥ 1 and k≥ −1, thenχ(H) ≥ k+ 4.

Babson and Kozlov computed various cohomology groups of theHom complexes
Hom(Cm,Kn). Form= 5, the respective cohomology groups are those of Stiefel manifolds.

C 12. (Csorba)The Hom complexHom(C5,Kn+2) is PL homeomorphic to
the Stiefel manifold Vn+1,2.

It is elementary to verify that Hom(C5,K3) consists of two cycles with 15 vertices and
15 edges each.

Example 5:Hom(C5,K3) � V2,2 � S0 × S1.

For n = 2, the complex Hom(C5,K4) has 240 vertices and 300 maximal cells that are
either cubes or prisms over triangles.

Since every cell of a Hom complex is a product of simplices, triangulations of graph
coloring manifolds (without additional vertices) can easily be obtained by the product
triangulation construction as described in [22]. For small examples, the homology of the
resulting triangulations can then be computed with one of the programs [12] or [15].
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(124,3,24,1,3) (124,3,4,12,3) (124,3,14,2,3) (124,3,1,24,3) (124,3,12,4,3) (124,3,2,14,3)

(123,4,2,13,4) (123,4,12,3,4) (123,4,1,23,4) (123,4,13,2,4) (123,4,3,12,4) (123,4,23,1,4)

(12,34,2,1,34) (12,34,1,2,34)

(12,3,24,1,34) (12,3,14,2,34) (12,34,1,24,3) (12,34,2,14,3)

(12,34,2,13,4) (12,34,1,23,4) (12,4,13,2,34) (12,4,23,1,34)

(12,3,4,12,34)

(12,3,4,123,4)

(12,3,24,13,4) (12,3,14,23,4)

(12,3,124,3,4)

(12,34,12,3,4)

(12,34,12,4,3)

(12,4,123,4,3)

(12,4,13,24,3) (12,4,23,14,3)

(12,4,3,124,3)

(12,4,3,12,34)

F 2. The solid torus (12, ∗, ∗, ∗, ∗) in Hom(C5,K4).

The product triangulation of Hom(C5,K4) has f -vector f = (240, 1680, 2880, 1440).
As homology we obtainedH∗(Hom(C5,K4)) = (Z,Z2, 0,Z), which coincides with the spec-
tral sequence computations of Babson and Kozlov in [3]. We also computed the homology
of Hom(C7,K4) and obtained thatH∗(Hom(C7,K4)) = (Z,Z2, 0,Z, 0, 0) which was conjec-
tural in [3].

We next used the bistellar flip heuristic BISTELLAR [21] to determine that the com-
plex Hom(C5,K4) is homeomorphic toRP3. (See [5] for a discussion of the heuristic;
for large complexes thebistellar client (due to N. Witte) of the TOPAZ module of the
polymake system [15] provides a fast implementation of BISTELLAR.)

T 13. Hom(C5,K4) � V3,2 � RP3.

Proof. In addition to the above computer proof, we give an explicit Heegaard decompo-
sition of Hom(C5,K4) from which one can see that this Hom complex is homeomorphic
toRP3 (and thus homeomorphic to the Stiefel manifoldV3,2).

First we show that the collection of cells of the form (i jk, ∗, ∗, ∗, ∗) forms a solid torus.
By symmetry it is enough to consider the collection of cells (123, ∗, ∗, ∗, ∗). Since the
numbers 1, 2, and 3 can not occur at positions 2 and 5, it immediately follows that the
cells of this collection are of the form (123, 4, ∗, ∗, 4). The middle (∗, ∗)-part is the six-gon
corresponding to Hom(K2,K3); see Figure 1. So (i jk, ∗, ∗, ∗, ∗) is the product of a triangle
and a circle.

In Figure 2 we display the collections of cells of the form (12, ∗, ∗, ∗, ∗) (with the cell
on the left glued to the cells on the right). Clearly, this collection of cells forms a torus, and
therefore, by symmetry, also every collection (i j, ∗, ∗, ∗, ∗). Finally, the cells of the form
(i, ∗, ∗, ∗, ∗) form a solid torus as well. The boundary torus of (1, ∗, ∗, ∗, ∗) can be seen in
Figure 3. Again, the left side is glued to the right side of Figure 3. The gluing of the top
and bottom is indicated by the arrows.

In order to understand how these solid tori are glued together we have to identify
meridian disks. For the collections (i jk, ∗, ∗, ∗, ∗) and (i j, ∗, ∗, ∗, ∗) this is clear. A meridian
disk of the collection (1, ∗, ∗, ∗, ∗) is given in Figure 4; its boundary corresponds to the thick
line in Figure 3. The complement of (1, ∗, ∗, ∗, ∗) in Hom(C5,K4) is a solid torus composed
of the collections (12, ∗, ∗, ∗, ∗), (13, ∗, ∗, ∗, ∗), . . . , (2, ∗, ∗, ∗, ∗), . . . , (234, ∗, ∗, ∗, ∗), which
we abbreviate by 12, 13, . . . , 2, . . . , 234 in Figure 5. In fact, Figure 5 gives the base
sphere of theS1-fibered space Hom(C5,K4) and makes clear how the different tori are
glued together.

A meridian curve of the complement of (1, ∗, ∗, ∗, ∗) is drawn as a dashed curve in
Figure 3. Since this curve is a (2, 1)-curve, it follows that Hom(C5,K4) is homeomorphic
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(1,34,2,13,4)

(1,3,24,1,34)
(1,3,4,12,34)

(1,34,12,3,4)

(1,3,4,123,4)

(1,3,124,3,4)
(1,3,24,13,4)

(1,3,14,2,34)

(1,3,14,23,4)

(1,34,1,23,4)

(1,34,2,14,3)

(1,4,23,1,34)

(1,34,12,4,3)

(1,4,3,12,34)

(1,4,23,14,3)
(1,4,123,4,3)

(1,4,3,124,3)
(1,4,13,24,3)

(1,34,1,24,3)

(1,4,13,2,34)

(1,34,1,2,34)(1,34,2,1,34)

(1,24,13,2,4)
(1,24,1,23,4)(1,4,12,3,24)

(1,4,2,13,24)
(1,4,23,1,24)

(1,2,134,2,4)

(1,2,4,123,4)

(1,2,34,1,24)

(1,2,34,12,4)(1,2,14,23,4)

(1,2,4,13,24)
(1,2,14,3,24)

(1,24,1,3,24)

(1,24,1,34,2)

(1,24,13,4,2)
(1,24,3,14,2)

(1,4,2,134,2)
(1,4,12,34,2)(1,4,23,14,2)

(1,4,123,4,2)
(1,24,3,1,24)

(1,24,3,12,4)

(1,3,24,1,23)

(1,3,24,13,2)
(1,3,2,134,2)

(1,3,124,3,2)
(1,3,12,34,2)

(1,23,1,34,2)

(1,23,1,4,23)

(1,2,13,4,23)

(1,23,1,24,3)

(1,2,34,12,3) (1,2,13,24,3)
(1,2,3,124,3)

(1,2,134,2,3)

(1,23,14,2,3)

(1,2,3,14,23)
(1,23,4,13,2)

(1,3,12,4,23)

(1,3,2,14,23)

(1,23,14,3,2)

(1,23,4,1,23)

(1,23,4,12,3)

(1,2,34,1,23)

F 3. The boundary of the solid torus (1, ∗, ∗, ∗, ∗) in Hom(C5,K4).

(1,3,2,1,3)

(1,2,1,3,2)

(1,3,2,3,2)

(1,3,2,1,2) (1,3,2,1,4)

(1,3,2,3,4)

(1,3,2,1,234)

(1,4,2,3,4)

(1,4,2,3,2)

(1,4,1,3,2)
(1,234,1,3,2)

(1,34,12,3,2)

(1,34,2,3,24)

(1,3,2,13,24)

(1,3,1,3,2)

F 4. A meridian disk of the solid torus (1, ∗, ∗, ∗, ∗) in Hom(C5,K4).

to the 3-dimensional real projective space. The latter space is homeomorphic to the Stiefel
manifoldV3,2. �

The 5-dimensional Hom complex Hom(C5,K5) consists of 2070 maximal cells and has
1020 vertices. The corresponding product triangulation has f -vector (1020, 25770, 143900,
307950, 283200, 94400). With thebistellar client it took less than a week to reduce this
triangulation to a triangulation withf = (12, 66, 220, 390, 336, 112). The latter triangu-
lation is 3-neighborly, i.e., it has a complete 2-skeleton,and thus is simply connected.
Its homology is (Z, 0,Z,Z, 0,Z). Moreover, its second Stiefel-Whitney class is trivial, as
we computed withpolymake. By the classification of simply connected 5-manifolds of
Barden [4], the unique simply connected 5-manifold with homology (Z, 0,Z,Z, 0,Z) and
trivial second Stiefel-Whitney class isS3 × S2.

T 14. Hom(C5,K5) � V4,2 � S3 × S2.

In the following, we discuss a particular representation ofodd cycles that gives some
insight intoall Hom complexes Hom(C2r+1,Kn) of complements of odd cyclesC2r+1, r ≥ 2.
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123

124

134 234

12

13

14

23

24

34

1 2

3

4

F 5. Cell decomposition of the base sphereS2 in Hom(C5,K4).

a ab b c

AA
B BC C D

F 6. The (dashed) cyclesC5 andC7 and their complements.

(With a similar approach we will analyze the Hom complexes Hom(C2r ,Kn) of comple-
ments of even cyclesC2r , r ≥ 2, in the next section.)

We display the cyclesC2r+1, r ≥ 2, in form of a crown that is turned upside down;
see Figure 6 for thecrown representationsof the (dashed) cyclesC5 andC7. Clearly, the
bottom vertices of a crown representation form a clique, i.e., a complete graphKr , in the
complementC2r+1.

Let us have a look at the crown representation ofC5. Every cell (a, b,A, B,C) of
Hom(C5,Kn) contains every numberx ∈ {1, . . . , n} at exactly two positions. Since the sets
a andb are associated with the bottom vertices that form a cliqueK2 in C5, the numberx
can appear in at most one of the setsa andb. If it is contained in, say,a, then the second
copy of x can only be placed in the setsA andB that are connected witha by a dashed
edge ofC5. The top vertices ofC5 form a clique minus the (dashed) edge between the
leftmost vertex and the rightmost vertex. Hence, ifx is contained in neithera norb, then it
is contained in the leftmost top setA and in the rightmost top setC.
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(12, 3) (13, 2)

(23, 1)

(3, 12)(2, 13)

(1, 23) (1, 2)
(1, 3)

(2, 3)

(2, 1) (3, 1)

(3, 2)

F 7. Hom(K2,K3) and Hom(C5,K3).

If we restrict us further ton = 3 colors, then Hom(K2,K3) is a six-gon as dis-
played in solid in Figure 7. The cell (a, b) = (1, 23) of Hom(K2,K3) can be extended
to a cell (a, b; A, B,C) of Hom(C5,K3) in precisely two ways, either to (1, 23; 1, 2, 3) or to
(1, 23; 1, 3, 2). We depict these edges of Hom(C5,K3) as dashed edges in Figure 7, parallel
to the edge (1, 23) of Hom(K2,K3). Let (1, 23; 1, 2, 3) be the upper dashed edge. If we move
the number 3 from the second to the third position, then we obtain the cell (1, 2; 13, 2, 3)
from which we move on to (1, 2; 3, 12, 3), and from there to (1, 2; 3, 1, 23). These three
cells of Hom(C5,K3) correspond to the vertex (1, 2) of Hom(K2,K3) and are displayed
together by a dashed half-cycle at the vertex (1, 2) in Figure 7. If we move on further,
then we get to the dashed edge (13, 2; 3, 1, 2), from there to the dashed edge (3, 12; 3, 1, 2),
before we again start a half-cycle (3, 1; 23, 1, 2), (3, 1; 2, 13, 2), (3, 1; 2, 3, 12), this time at
the vertex (3, 1) of Hom(K2,K3). We can then continue on the outer dashed cycle until we
reach our starting edge (1, 23; 1, 2, 3) of Hom(C5,K3). Similarly, we can move around the
inner dashed cycle when we start with (1, 23; 1, 3, 2).

P 15. The Hom complexHom(C2r+1,Kr+1) is the disjoint union of r! cycles
with (2r2 + 3r + 1) vertices each.

Proof. We first count the number of vertices of Hom(C2r+1,Kr+1), i.e., the number of dis-
tinct colorings withr+1 colors ofC2r+1. To color the bottomKr in the crown representation
of C2r+1 we chooser of the r + 1 colors and then haver! choices to place theser colors.
For one such coloring, say (1, 2, . . . , r), there are (2r + 1) ways to extend it to a coloring of
C2r+1: If we use the colorr + 1 just once, then we haver + 1 choices to place it in the top
row of the crown; the remaining positions for the colors in the top row are then completely
determined by the position of the color (r +1) and by our choice of the colors in the bottom
row. If we use the colorr + 1 twice, then we have to put it at the positions 1 andr + 1
of the top row. We further choose one of the colors 1, . . . , r not to be used in the top row;
this again determines all the positions for the colors in thetop row. Thus we have (r + 1)
choices if colorr + 1 appears once in the top row andr choices if colorr + 1 appears twice
in the top row. Altogether we have

(

r + 1
r

)

r!(r + 1+ r) = (2r2 + 3r + 1)r!

different colorings ofC2r+1 with r + 1 colors.
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(1,2,3) (1,2,4)

(1,3,4)

(1,3,2)

(1,4,2)

(1,4,3)

(2,1,3)

(2,1,4)

(3,1,4)

(3,1,2)

(4,1,2)

(4,1,3)

(2,3,1)

(2,4,1)

(3,4,1)

(3,2,1)

(4,2,1)

(4,3,1)

(2,3,4)

(2,4,3)

(3,2,4)

(4,2,3)

(3,4,2)

(4,3,2)

(12,3,4)
(12,4,3)

(13,2,4)

(13,4,2)

(14,2,3)

(14,3,2)
(23,1,4)

(23,4,1)

(24,1,3)

(24,3,1)

(34,1,2) (34,2,1)

(4,12,3)

(3,12,4)

(4,13,2)

(2,13,4)

(3,14,2)

(2,14,3)

(4,23,1)

(1,23,4)

(3,24,1)

(1,24,3)

(2,34,1)

(1,34,2)

(3,4,12)

(4,3,12)

(2,4,13)

(4,2,13)

(2,3,14)

(3,2,14)

(1,4,23)

(4,1,23)

(1,3,24)

(3,1,24)

(1,2,34)

(2,1,34)

F 8. The Hom complex Hom(K3,K4).

Since every number 1, . . . , r + 1 appears exactly twice in a cell of Hom(C2r+1,Kr+1),
the dimension of Hom(C2r+1,Kr+1) is 2(r + 1) − (2r + 1) = 1. If we move for the edge
(1, 2, . . . , r−1, r(r+1); 1, 2, . . . , r, r+1) of Hom(C2r+1,Kr+1) the numberr+1 from the last
position of the bottom row to the first position of the top row and then continue until we
reach the edge (r+1, 1, 2, . . . , (r−1)r; r+1, 1, 2, . . . , r−1, r), this takesr+1+r = 2r+1 steps.
After r+1 rounds we return to the starting edge (1, 2, . . . , r−1, r(r+1); 1, 2, . . . , r−1, r, r+1).
Thus, by symmetry, every cycle of Hom(C2r+1,Kr+1) has length (2r+1)(r+1) = 2r2+3r+1.
Since Hom(C2r+1,Kr+1) has (2r2 + 3r + 1)r! vertices, it follows that Hom(C2r+1,Kr+1)
consists ofr! cycles with (2r2 + 3r + 1) vertices each. �

As before in the case of Hom(C5,K3), every edge of Hom(Kr ,Kr+1) can be extended
in exactly two ways to an edge of Hom(C2r+1,Kr+1). This can be interpreted geometrically
by thickening every edge of the 1-dimensional manifold Hom(Kr ,Kr+1) to a 2-dimensional
strip and then gluing these strips together at the vertices of Hom(Kr ,Kr+1). In this way, we
get a two-dimensional manifold with boundary, with the boundary being homeomorphic to
Hom(C2r+1,Kr+1). In Figure 8 we display the Hom complex Hom(K3,K4), consisting of 24
vertices and 36 edges, together with two of the 3!= 6 (dotted) cycles of Hom(C7,K4). Ev-
ery vertex of Hom(Kr ,Kr+1) can be extended inr +1 ways to an edge of Hom(C2r+1,Kr+1).
Theser + 1 edges form a path that we display as dotted half-cycles in the Figures 7 and 8.
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a1 a2

a3

A1 A2

A3

F 9. The cycleC6 (dashed) and its complementC6.

C 16. The 3-dimensional graph coloring manifoldHom(C2r+1,Kr+2),
r ≥ 2, is homeomorphic to the orientable Seifert manifold{Oo, r! − 2 | r! } with homology
(Z,Z2(r!−2) ⊕ Zr! ,Z

2(r!−2),Z).

The conjecture holds forr = 2 andr = 3. (For an introduction to Seifert manifolds see
Seifert [34] as well as [22] and [29].)

For r = 2, Theorem 13 yields{Oo, 0, | 2 } � RP3
� Hom(C5,K4). For r = 3, the

product triangulation of Hom(C7,K5) has f -vector f = (2520, 20160, 35280, 17640) and
homology (Z,Z8 ⊕ Z6,Z

8,Z). It took ten minutes on a Pentium R 2.8 GHz processor to
reduce the triangulation with thebistellar client system of [15] to a triangulation with
f = (27, 289, 524, 262). In a second step, the topological type of the resultingtriangulation
was recognized within seconds with the programThree-manifold Recognizer [28]
(see also [27]). Many thanks to S. V. Matveev, E. Pervova, and V. Tarkaev for their help
with the recognition!

T 17. Hom(C7,K5) � {Oo, 4, | 6 }.

We will describe further graph coloring manifolds of similar size in Section 6, for
which their topological type was recognized in the same manner.

Recognition heuristic for Seifert and graph manifolds:

1. Reduce the size of a given triangulation with thebistellar client of the TOPAZ
module of thepolymake system [15].

2. Use the programThree-manifold Recognizer [28] for the recognition.

If the (Matveev) complexity of a given triangulation is not too large, there is a good chance
to recognize the topological type, even when the triangulation is huge.

5.2. Hom Complexes of Complements of Even Cycles.Similar to the crown rep-
resentation of (complements of) odd cycles, we split the vertices of even cyclesC2r into a
lower and an upper part, corresponding to the bipartition ofC2r . The lower and also the
upper part form a complete graphKr in C2r , i.e., every maximal cell of Hom(C2r ,Kr ) con-
tains each color 1, . . . , r exactly twice, once in the lower part and once in the upper part.
(Figure 9 displaysC6 and its complementC6 together with a cell (a1, a2, a3; A1,A2,A3) of
Hom(C6,Kr ).)

We will employ the following two propositions to describe the 2-dimensional Hom
complexes Hom(C2r ,Kr+1).
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P 18. (Babson and Kozlov [2]) The Hom complexHom(Kr ,Ks) is homotopy
equivalent to a wedge of f(r, s) spheres of dimension s−r, where the numbers f(r, s) satisfy
the recurrence relation

(6) f (r, s) = r f (r − 1, s− 1)+ (r − 1) f (r, s− 1),

for s > r ≥ 2; with the boundary values f(r, r) = r! − 1, f (1, s) = 0 for s ≥ 1, and
f (r, s) = 0 for r > s.

P 19. (Čukić and Kozlov [10]) f (r, r + 1) = r! r2−r−2
2 + 1.

T 20. The Hom complexHom(C2r ,Kr+1), r ≥ 2, is an orientable cubical sur-
face of genus

(7) g(r) = f (r, r + 1) = r! r2−r−2
2 + 1

with n(r) = (2+ r2) · (r +1)! vertices,2(n(r)+2g(r)−2)edges, and n(r)+2g(r)−2squares.

Proof. Let (a1, . . . , ar ; A1, . . . ,Ar ) be a maximal cell of Hom(C2r ,Kr+1). Since every
color 1, . . . , r + 1 appears exactly once in (a1, . . . , ar) and once in (A1, . . . ,Ar) the cell
(a1, . . . , ar ; A1, . . . ,Ar) is the product of the edge (a1, . . . , ar) with the edge (A1, . . . ,Ar).
Hence, Hom(C2r ,Kr+1) is a cubical surface.

We count the vertices of Hom(C2r ,Kr+1). For every vertex (v1, . . . , vr ,w1, . . . ,wr ) we
have to chooser of ther+1 colors for the lower part and then haver! choices to place these
r colors. Let (v1, . . . , vr ) = (1, . . . , r) be such a placement. If the left out colorr+1 does not
appear in the upper part, then (1, . . . , r) can be extended in exactly two ways to a coloring
of C2r , yielding the vertices (1, . . . , r; 1, . . . , r) and (1, . . . , r; 2, . . . , r, 1) of Hom(C2r ,Kr+1).
If the left out colorr + 1 is used in the top part, then there arer choices to place it, and
for each such placement every choice to not use one of the colors 1, . . . , r determines a
vertex. Therefore, we have altogether 2+ r2 choices to extend (1, . . . , r) to a vertex of
Hom(C2r ,Kr+1); i.e., Hom(C2r ,Kr+1) hasn(r) := (2+ r2) · (r + 1)! vertices.

Let M be an orientable cubical surface of genusg with n vertices,e edges, ands
squares. Since every square is bounded by four edges and every edge appears in two
squares, double counting yields 2e= 4s. By this equation and by Euler’s relation,s−e+n =
χ(M) = 2− 2g, we get thats= n+ 2g− 2 ande= 2(n+ 2g− 2).

It remains to show that Hom(C2r ,Kr+1) is orientable and has genusg(r) = f (r, r +1) =
r! r2−r−2

2 + 1. For this, let us fix an edge, say (a1, . . . , ar) = (1, 2, . . . , r − 1, r(r + 1)),
of Hom(Kr ,Kr+1). Then the sequence of 2r squares

(1, 2, . . . , r − 1, r(r + 1); 1, 2, . . . , r − 2, r − 1, r(r + 1)),
(1, 2, . . . , r − 1, r(r + 1); 1, 2, . . . , r − 2, (r − 1)r, r + 1),
(1, 2, . . . , r − 1, r(r + 1); 1, 2, . . . , (r − 2)(r − 1), r, r + 1),
. . .
(1, 2, . . . , r − 1, r(r + 1); 1, 23, . . . , r − 1, r, r + 1),
(1, 2, . . . , r − 1, r(r + 1); 12, 3, . . . , r − 1, r, r + 1),
(1, 2, . . . , r − 1, r(r + 1); 2, 3, . . . , r − 1, r, 1(r + 1)),
(1, 2, . . . , r − 1, r(r + 1); 2, 3, . . . , r − 1, r(r + 1), 1),
(1, 2, . . . , r − 1, r(r + 1); 2, 3, . . . , r − 1, r + 1, 1r),
(1, 2, . . . , r − 1, r(r + 1); 12, 3, . . . , r − 1, r + 1, r),
(1, 2, . . . , r − 1, r(r + 1); 1, 23, . . . , r − 1, r + 1, r),
. . .
(1, 2, . . . , r − 1, r(r + 1); 1, 2, . . . , (r − 2)(r − 1), r + 1, r),
(1, 2, . . . , r − 1, r(r + 1); 1, 2, . . . , r − 2, (r − 1)(r + 1), r)
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F 10. Three cylinders forming a trinoid in Hom(C6,K4).

forms a cylinderC2r × I . By symmetry, we get such a cylinder for every edge (a1, . . . , ar)
of Hom(Kr ,Kr+1). Since every vertex of the graph Hom(Kr ,Kr+1) has degreer, we have
r cylinders in Hom(C2r ,Kr+1) meeting “at a vertex” of Hom(Kr ,Kr+1). (In the case of
Hom(K3,K4) three cylinders meet at a vertex, which yields a trinoid as depicted in Fig-
ure 10.) By inspecting the gluing at the vertices, it is easy to deduce that Hom(C2r ,Kr+1)
is orientable. It moreover follows that Hom(C2r ,Kr+1) has genusf (r, r + 1), which is the
number of wedged 1-spheres in the graph Hom(Kr ,Kr+1). �

As in the case of Hom(C2r+1,Kr+1), we can interpret Hom(C2r ,Kr+1) geometrically in
the following way. If we thicken the edges of the 1-dimensional manifold Hom(Kr ,Kr+1) to
solid tubes, then for the resulting 3-manifold with boundary the boundary is homeomorphic
to Hom(C2r ,Kr+1).

C 21. The Hom complexHom(C2r ,Ks) is, for s> r ≥ 2, homeomorphic to
the connected sum of f(r, s) copies of Ss−r× Ss−r .

The 4-dimensional Hom complex Hom(C6,K5) consists of 3180 cells and has 1920
vertices. The corresponding product triangulation hasf = (1920, 30780, 104520, 126000,
50400). With thebistellar client it took half a day to reduce this triangulation to a
triangulation with f -vector (33, 379, 1786, 2300, 920). The latter triangulation is simply
connected, as we computed with the group algebra packageGAP [16]. The homology of the
triangulation is (Z, 0,Z58, 0,Z). Moreover, we usedpolymake to compute the intersection
form of the example, which turned out to be indefinite, even, and of rank 29. By the
classification of Freedman [14], this shows:

T 22. Hom(C6,K5) � (S2× S2)#29.

Conjecture 21 thus holds in the case (r, s) = (3, 5), and, by Theorem 20, also for the
seriess= r + 1 ≥ 3.
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T 1. Triangulated surfaces with few vertices.

# Vertices 6 7 8 9 10

# Manifolds 3 9 43 655 42426

# Spheres 2 5 14 50 233

# Flag Spheres 1 1 2 4 10

6. Graph Coloring Manifolds of Sphere Dimension Two

Flag simplicial 2-spheres with small numbersn of vertices can be obtained by first
enumeratingall triangulated 2-spheres withn vertices and then testing which of these are
flag. Triangulations of two-dimensional spheres with up to 23 vertices have been enumer-
ated with the programplantri by Brinkmann and McKay [6] (see the manual ofplantri
or the web-page of Royle [31] for the numbers of triangulations onn ≤ 23 vertices). With
another approach, triangulations of all two-dimensional manifolds with up to 10 vertices
have been enumerated by Lutz (cf. [23]); the respective numbers of triangulations are given
in Table 1.

The flag simplicial spheres with up to 9 vertices together with the complements of their
1-skeleta are displayed in Figures 11–18. (The symbol2nk stands for thekth 2-manifold
with n vertices in the catalog [20].)

For the flag 2-spheres263 = ∂C∆3 (the boundary of the 3-dimensional cross-poly-
topeC∆3 ), 279 = C5 ∗ S0, 2841 = C6 ∗ S0, and29630 = C7 ∗ S0, the complements of the
respective 1-skeleta are not connected, and therefore, by Equation 1, are direct products.

F 11. The flag sphere263 = ∂C∆3 and the complement of its 1-skeleton.

F 12. The flag sphere279 = C5 ∗ S0 and the complement of its 1-skeleton.
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F 13. The flag sphere2841 = C6 ∗ S0 and the complement of its 1-skeleton.

F 14. The flag sphere2843 and the complement of its 1-skeleton.

F 15. The flag sphere29630 = C7 ∗ S0 and the complement of its 1-skeleton.

F 16. The flag sphere29651 and the complement of its 1-skeleton.

F 17. The flag sphere29652 and the complement of its 1-skeleton.
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F 18. The flag sphere29652 and the complement of its 1-skeleton.

.
T 2. Hom complexes associated with the flag spheres2843, 29651,
29652, and29655.

Hom complex Type Homology f -Vector of Product Triangulation

Hom(SK1(2843), K3) 4 cycles each cycle has 24 vertices

Hom(SK1(29651), K3) 24 vertices

Hom(SK1(29652), K3) 24 vertices

Hom(SK1(29655), K3) 12 vertices

Hom(SK1(2843), K4) ? (Z,Z ⊕ Z2,Z2,Z,Z) (3624, 55224, 184656, 221760, 88704)

Hom(SK1(29651), K4) (T2)#13×S1 (Z,Z27,Z27,Z) (2928, 21360, 36864, 18432)

Hom(SK1(29652), K4) (T2)#13×S1 (Z,Z27,Z27,Z) (3120, 22992, 39744, 19872)

Hom(SK1(29655), K4) (S2×S1)#13 (Z,Z13,Z13,Z) (3096, 22104, 38016, 19008)

For those flag 2-spheres withn ≤ 9 vertices, for which the complements of their 1-
skeleta are connected, we analyzed the product triangulations of their Hom complexes with
few colors. Table 2 gives the results.

Acknowledgements.The authors are grateful to S. Felsner for helpful discussions.
Many thanks also to S. V. Matveev, E. Pervova, and V. Tarkaev for their help with the
recognition of 3-dimensional graph coloring manifolds. Moreover, we thank the anony-
mous referee for helpful remarks that led to a substantial improvement of the display of
Section 3.

Note added in proof. Conjecture 12 has recently been proved by C. Schultz [33].
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[10] S. Lj. Čukić and D. N. Kozlov. Higher connectivity of graph coloring complexes.Int. Math. Res. Not.25,
1543–1562 (2005).
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