
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

M ICHAEL OEVERMANN1, RUPERTKLEIN2

A cartesian grid finite volume method for
the solution of the Poisson equation with

variable coefficients and embedded
interfaces

1TU Berlin, Inst. für Energietechnik, Fasanenstr. 89, 10623 Berlin, michael.oevermann@tu-berlin.de
2Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustr. 7, 14195 Berlin, rupert.klein@zib.de

Submitted to: Journal of Computational Physics

ZIB-Report 06-05 (February 2006)



A cartesian grid finite volume method for the

solution of the Poisson equation with variable

coefficients and embedded interfaces

Michael Oevermann, Rupert Klein

20th February 2006

Abstract

We present a finite volume method for the solution of the two-dimensional Pois-
son equation ∇· (β(x)∇u(x)) = f(x) with variable, discontinuous coefficients and
solution discontinuities on irregular domains. The method uses bilinear ansatz
functions on Cartesian grids for the solution u(x) resulting in a compact nine-
point stencil. The resulting linear problem has been solved with a standard multi-
grid solver. Singularities associated with vanishing partial volumes of intersected
grid cells or the dual bilinear ansatz itself are removed by a two-step asymptotic
approach. The method achieves second order of accuracy in the L∞ and L2 norm.

1 Introduction

We seek solutions of the two-dimensional variable coefficient Poisson equation

∇ · (β(x)∇u(x)) = f(x), x ∈ Ω \ Γ (1)

defined in a domain Ω\Γ with an embedded interface Γ. For simplicity we assume
Ω to be a simple rectangle. The embedded interface Γ separates two disjoint sub-
domains Ω+ and Ω− with Ω = (Ω+ ∪Ω−) \Γ, see Fig. 1 for an illustration. Along
the interface we prescribe jump conditions for the solution

[u]Γ = u+(x)− u−(x) = g(xΓ) (2)

and for its gradient in the normal direction

[βun]Γ = β+u+
n − β−u−n = h(xΓ), (3)

with the notation un = (∇u · n). The unit normal vector n on Γ is defined to
point from Ω+ to Ω−.
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Figure 1: Domain Ω with sub-domains Ω+, Ω−, and embedded interface Γ.

Elliptic equations of type (1) with variable and discontinuous coefficients and
solution discontinuities often arise as a component in modelling physical problems
with embedded boundaries. Examples include incompressible two-phase flow with
surface tension featuring jumps in pressure and pressure gradient across the inter-
face, projection methods for zero Mach-number premixed combustion with jumps
in the dynamic pressure and pressure gradient across the flame front, heat conduc-
tion between materials of different heat capacity and conductivity and interface
diffusion processes. In the literature one can find a number of different approaches
for the numerical solution of this type of problem. We limit our discussion here
to methods on fixed Cartesian grids.

In Peskin’s immersed boundary method [16], singular forces arising from dis-
continuous coefficients and jump conditions are treated as delta functions. Using
discretised discrete delta functions, the discontinuity is spread over several grid
cells making the method first order accurate. The method has been used for many
problems in mathematical biology and fluid mechanics. Recent work by Tornberg
and Engquist [18, 19, 2] generalizes this approach and allows for high order ap-
proximations with minimal distribution of discontinuities or singular source terms
over the computational grid.

Mayo [13, 14] presented a second order accurate method for Poisson’s equa-
tion and the biharmonic equation on irregular domains using an integral equation
formulation. The resulting Fredholm integral equations of the second kind are
solved with a fast Poisson solver on a rectangular region. Although the method
captures solution discontinuities at the embedded interface, continuous derivatives
have been assumed to evaluate the discrete Laplacian. The method can easily be
extended to fourth order accuracy.

The immersed interface method [6, 7, 8] is a second order finite difference
method on Cartesian grids for second order elliptic and parabolic equations with
variable coefficients. Discontinuities in the solution and the normal gradient at
the interface are explicitly incorporated into the finite difference stencil. Second
order has been achieved by including additional points near the interface into the
standard 5-point stencil leading to a non-standard six-point stencil in 2D. The
resulting linear equation system is sparse but not symmetric or positive definite.
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Based on the immersed interface method Li and Ito [9] present a second order
finite difference method which satisfies the sign property on the matrix coefficients
which guarantees the discrete maximum principle. The resulting linear system of
equations is non-symmetric but diagonally dominant and its symmetric part is
negative definite.

A first order finite difference method on Cartesian grids was presented by
Liu et al. [11]. Interface jump conditions are explicitly incorporated into the
finite difference stencil as in the immersed interface method. Applying a one-
dimensional approach in each spatial direction by implicitly smearing out the
gradient jump condition, standard stencils (5-point in 2D, 9-point in 3D) for the
discrete Laplacian are achieved leading to a symmetric positive definite matrix for
the Poisson equation. The method shows first order accuracy for the solution u
in the L∞-norm for constant coefficients β±. A convergence proof of the method
has been provided in [12] based on the weak formulation of the problem.

A finite element method on triangular meshes for solving second order elliptic
and parabolic equations for interface problems with [u] = 0 and [βun] 6= 0 has
been proposed by Chen and Zou [1]. In their method the triangles are aligned with
the interface. In the L2-norm nearly second order accuracy (h2| log h|) has been
proved. The resulting linear system of equations is symmetric and positive definite.
Another finite element method based on uniform triangulations of Cartesian grids
was presented by Li et al. [10]. In contrast to [1], the triangles need not to be
aligned with the interface. Numerical results with non-conforming finite elements
demonstrate slightly less than second order of accuracy in L∞ and second order of
accuracy with conforming finite elements for a problem with homogeneous jump
conditions [u] = 0, [βun] = 0. The general case with variable coefficients and non-
homogeneous interface conditions [u] 6= 0, [βun] 6= 0 has been tackled recently by
Hou and Liu [4] with a finite element method. Similar to [10] they use uniform
triangulations of Cartesian grids. Their method is second order accurate in L∞ if
the solution u is C2 and the interface is C2 or C1.

Johansen and Colella [5] developed a second-order finite volume method on
Cartesian grids for the variable coefficient Poisson equation on irregular domains
with Dirichlet and Neumann boundary conditions and combined the method with
an adaptive mesh refinement. Using central differencing for the gradients, their
method reproduces the standard five-point stencil on regular cells. Using linear
interpolation of gradients for internal edges and quadratic polynomials in normal
direction to the boundary for irregular cells leads to a non-standard stencil. The
final linear system is non-symmetric. Although remotely related to our work in
the sense of using a finite volume method, the authors did not consider embedded
boundaries with jump conditions of the solution and the normal derivative.

In this paper we present a second order finite volume method on Cartesian grids
for solving the variable coefficient Poisson equation (1) with embedded interfaces
and interface discontinuities. The motivation for a finite volume approach steams
from our interest in conservative finite volume projection methods for Zero- and
Low-Mach-number flow. The divergence constraint of the velocity field in a natural
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way leads to a Poisson equation for the pressure in a finite volume form. The
use of piecewise bilinear ansatz function for the solution u makes our method
quite similar to finite element methods and allows us to construct improved exact
projection methods [20]. In two space dimensions the resulting system of linear
equations is assembled from compact 9-point stencils. Compared to the cited
literature our method differs in the following points: (i) we use a finite volume
method instead of finite difference [6, 11] or finite elements [4, 10], (ii) compared to
the second order immersed interface method [6] we achieve always automatically a
compact 9-point stencil without explicit incorporation of additional points near the
interface or solution of an optimization problem as in [9], (iii) instead of piecewise
linear ansatz-functions on triangles as in the cited finite element methods we
use piecewise bilinear ansatz-functions on the Cartesian grid. Compared to the
finite element method presented in [4], we are able to construct a bilinear finite
element which does not develop singularities when the element degenerates, e.g.
for vanishing partial volumes of intersected cells. In contrast to the cited finite
element methods our methods results in a non-symmetric matrix. In case of
constant and equal coefficients we have a symmetric an positive definite matrix.
In addition to representing a novel finite volume scheme for an important class of
elliptic problems with embedded interfaces, our ideas and results may also be of
value in the context of finite element methods on quadrilateral grids.

2 Finite volume formulation

Integrating equation (1) over an arbitrary control volume Ω ∈ Ω leads to∫
Ω
∇ · (β∇u) dV =

∫
Ω

f dV.

For a control volume Ω = Ω+ ∪ Ω− intersected by the interface we obtain after
applying the divergence theorem∫

∂Ω
β∇u · n dS =

∫
Ω

f dV −
∫

ΓΩ

[βun] dS (4)

where ΓΩ denotes the part of the embedded interface Γ lying inside Ω and ∂Ω =
(∂Ω+ ∪ ∂Ω−) \ ΓΩ. For ΓΩ 6= 0 we have∫

Ω
f dV =

∫
Ω+

f+ dV +
∫

Ω−
f− dV. (5)

For a regular control volume without an embedded interface we have either Ω =
Ω+ ∈ Ω+ ∧ Ω− ≡ 0 or Ω = Ω− ∈ Ω− ∧ Ω+ ≡ 0 and the last integral on the right
side of (4) vanishes.
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Figure 2: Control volume Ωi,j . Discrete solution values are located at the
grid nodes marked with circles. Regular cells II, IV, irregular cells I, III.

3 Numerical method

We discretise (4) on a uniform Cartesian grid in two-dimensional space. Let
∆x, ∆y be the grid spacing in x and y-direction, see Fig. 2. The values ui,j

of our discretised solution are located at the grid nodes with the coordinates
xi,j = x0 + i∆y, yi,j = y0 + j ∆y. The control volumes Ωi,j are centered around
the corresponding grid nodes i, j having edges of length ∆x and ∆y. Let Ni,j be
the set of rectangles – called cells in this work – adjacent to node i, j (I – IV in
Fig. 2). The discrete form of (4) for the control volume Ωi,j now reads as

∑
N∈Ni,j

2∑
i=1

∫
lNi

β∇u · n dS =
∫

Ωi,j

f dV −
∫

ΓΩi,j

[βun] dS, (6)

where lNi , i = 1, 2 are the two boundary edges with normals n1 and n2 of ∂Ωi,j

lying inside N .
To evaluate the left hand side of (6) we use a finite element approach with

piecewise bilinear ansatz functions for u on each rectangular cell N ∈ Ni,j .

3.1 Bilinear finite elements for regular cells

For any regular cell N ∈ Ni,j without embedded interface we apply a standard
bilinear local ansatz

u(ξ, η) = c0 + c1 ξ + c2 η + c3 ξη, ξ =
x− xN

0

∆x
, η =

y − yN
0

∆y
,
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with ξ, η ∈ [0, 1]. Here, (xN
0 , yN

0 ) denotes the origin of the local ξ, η-coordinate
system in global (x,y)-space. The four unknown coefficients are uniquely deter-
mined by the four corner values of u. Given the piecewise bilinear distribution of
u(ξ, η) we evaluate the boundary integrals on the left side of (6) analytically. As
an example, we have for upper integral of cell IV in Fig. 2∫

lNi

β∇u · n dS =
∫ 1

0.5
β

∂u

∂ξ
dη

= β
∆y

∆x

(
3
8
(ui+1,j − ui,j) +

1
8
(ui+1,j−1 − ui,j−1)

)
(7)

Integrating over the whole boundary of Ωi,j we find in the special case β = 1,
∆x = ∆y the stencil elements for the discrete Laplacian of a regular control
volume as displayed in Fig. 3. This dicretization has been analyzed by Süli [17],
who proved stability and second order convergence of the scheme on grids with
arbitrary aspect ratio ∆x/∆y.
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Figure 3: Stencil weights of the discrete Laplacian for a regular cell with
β = 1, ∆x = ∆y using piecewise bilinear ansatz functions.

3.2 Evaluation of source terms

For a second order approximation of (5) we use∫
Ω

f dV = |Ω+| f+(x+
s ) + |Ω−| f−(x−s ), (8)

where x±s denotes the barycenter of Ω±.
To avoid additional computations of interface jump conditions, the boundary

integral on the right hand side of (6) is evaluated assuming linear distributions of
the interface jump conditions within cells. For a second order approximation we
have ∫

ΓΩi,j

[βun] dS =
∑

N∈Ni,j

[βun] lΓ
ΩN

i,j

, (9)

where lΓ
ΩN

i,j

is the part of the interface ΓΩi,j in cell N which belongs to the control

volume Ωi,j .
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3.3 Evaluation of the discrete Laplacian on irregular control vol-
umes

In two spatial dimensions on a Cartesian grid, irregular cells can always be mapped
onto one of the two unit-square cells shown in Fig. 4 and 6 . We call a cell with an
interface cutting the two adjacent edges of the upper right corner type I and type
II otherwise. The position of the interface is assumed to be a piecewise straight
line within the cell and is given by the zero level set of a signed normal distance
function φ(x). On each side of the interface we make a bilinear ansatz:

u(A)(ξ, η) = a0 + a1 ξ + a2 η + a3 ξ η, ξ, η ∈ ΩA,

u(B)(ξ̃, η̃) = b0 + b1 ξ̃ + b2 η̃ + b3 ξ̃ η̃, ξ̃, η̃ ∈ ΩB.
(10)

The gradients follow immediately

∂u(A)

∂ξ
= a1 + a3 η, ∂u(A)

∂η
= a2 + a3 ξ,

∂u(B)

∂ξ̃
= b1 + b3 η̃, ∂u(B)

∂η̃
= b2 + b3 ξ̃.

(11)

The procedure of obtaining the eight unknown coefficients

x = [a0, a1, a2, a3, b0, b1, b2, b3]t (12)

is given in detail below. However, we will always be able to write x as a linear
combination of the four unknown corner values ui, i = 1 . . . 4 and four known
jump conditions [u]A, [u]B, [βun]A, and [βun]B:

x = A b, (13)

with b =
[
ut, [·]t

]t, u = [u1, u2, u3, u4]t, and [·]t =
[
[u]A, [u]b, [βun]A, [βun]B

]t.
Furthermore, using (11) we can evaluate any integral on the left hand side of (6)
analytically on each irregular (and regular) cell. With (13) we can further express
each of these integrals as a linear combination of the four unknown corner values
and known jump conditions of the irregular cell. As an example, we consider cell
I of the control volume Ωi,j in Fig. 2, which is an irregular cell of type II, see Fig.
6. For boundary edge lI1 with unit normal n = [nx, ny]t = [0, 1]t we can write∫

lI1

β
∂u

∂y
dx =

∆x

∆y

(∫ ξ?

1/2
βA ∂uA

∂η
dξ +

∫ 0

ξ̃?

βB ∂uB

∂η̃
dξ̃

)
(11)
=

βA∆x

∆y

(
a2

(
ξ?−1

2

)
+a3

(
ξ?2

2
−1

8

))
−βB∆x

∆y

(
b2 ξ̃?+b3

ξ̃?2

2

)
= D

1
u + D

2
[·],

with u = [ui−1,j , ui,j , ui,j+1, ui−1,j+1]t. Going from the first to the second line we
have introduced the gradients given in equation (11) and evaluated the integrals
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analytically. The matrices D
1

and D
2

are analytically deduced from A and ξ? and
they contain only geometric information about the interface within the irregular
cell I. Now, D

1
determines the stencil coefficients for the discrete Laplacian,

whereas D
2
[·] will modify the right hand side of the discretised equation (6).

Furthermore, as u only contains the four unknown solution values, we will always
obtain a compact nine-point stencil (except for corner or boundary points of Ω,
where we have four or six-point stencils, respectively) during the calculation of the
complete boundary integral on the left hand side of (6). We treat the coefficients
βA and βB piecewise constant on each cell with values evaluated at the barycenters
of the corresponding sub-areas. This procedure is in accordance with [4] and does
not seem to effect the second order of the method. However, it is also possible to
evaluate the coefficients either in the midpoint of each integral or to prescribe a
distribution and doing the integration again analytically.

3.4 Piecewise bilinear finite elements for irregular cells

Using piecewise bilinear ansatz functions (10) on irregular cells, we remark two
important properties to get the eight unknown coefficients in x:
Remark 3.1 Along a line parallel to any of the two coordinate axis, i.e. ξ = const.
or η = const., we have a linear distribution of u. This allows us to prescribe at
most two independent jumps in the solution across the interface, e.g. [u]A, [u]B
in Fig. 4 and 6. If the interface is not parallel to a coordinate axis we can and
do prescribe one additional jump [u]C , whereas otherwise we can and do prescribe
two of these jumps.
Remark 3.2 Along a line with nξ = ±nη (i. e. the interface cuts the cell in a
±45◦-angle), the gradient of u in normal direction un = a1 nξ + a2 nη + a3 (ηnξ +
ξnη) is constant! In that case we can prescribe only one independent jump in the
normal derivative, e.g. [βun]C , Fig. 4 and 6.

A straightforward solution to determine the eight unknown coefficients would
be to use the four corner values u = [u1, u2, u3, u4]t complemented with jump
conditions [u]A, [u]B, [βun]A and [βun]B. However, it is obvious from Remark 3.2
that the resulting set of eight linear equations for x has a singularity whenever
a = b, nξ = nη = 1√

2
for cell type I as [βun]A and [βun]B are having the same

set of coefficients in x. The same singularity arises for cell type II if the interface
crosses the cell diagonally.

Instead of using two jump conditions in [βun], one could apply only one gra-
dient jump condition with an additional jump in u, e.g. [βun]C and [u]C , in the
midpoint C of the interface, see Fig. 4 and 6. However, due to Remark 3.1, [u]C
becomes a linear combination of [u]A and [u]B whenever a = b for type II and
b = 1, 0 ≤ a < 1 or a = 1, 0 ≤ b < 1 for type I.

Another singularity arises for irregular cells of type I. For a = b = 1 the
interface touches the cell through the upper right point of the cell. In that case
the interface points A, B, C merge into one single point leading to identical
equations in [u] and [βun].
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The resulting set of linear equations for x is not only unsolvable in any of
the singular cases but the system becomes ill-conditioned in situations near the
singularities. To remove all the discussed singularities, we propose a two-step
asymptotic approach instead of trying to find the solution in a single step. Instead
of (10) we set

u(A)(ξ, η) = u(A,0)(ξ, η) + ε u(A,1)(ξ, η)

u(B)(ξ̃, η̃) = u(B,0)(ξ̃, η̃) + ε u(B,1)(ξ̃, η̃)
(14)

with a properly defined small parameter ε. The functions u(A,0), u(A,1), u(B,0), and
u(B,1) will be constructed in such a way that the resulting solution is identical to
the single step solution (10) in all non-singular situations. Our base solution will
be a solution satisfying the interface conditions [u]A, [u]B, [u]C , and [βun]C .

3.4.1 A bilinear finite element for irregular cell type I

4

2

3

1

η

ξ

ξ̃

η̃

B

A

C

n

a

ã = 1−a

b̃=1−bb

ΩA

ΩB

0
0.25

0.5
0.75

1

0
0.25

0.5
0.75

1
0

5

10

15

ξη

u

Figure 4: Irregular cell type I in the local ξ − η system with ξ, η ∈ [0, 1]
(left). Typical solution for a = 0.2, b = 0.4, βA = 1, βB = 1000, u1 = 0,
u2 = 2, u3 = 10, u4 = 3, [u]A = −2,[u]B = −5, [βun]A = 10, [βun]B = 10
(right).

In order to avoid the singularity discussed in remark 3.2 we introduce an
additional point C in the middle of the interface, see Fig. 4. We prescribe jump
conditions [u]A, [u]B, [u]C = ([u]A + [u]B)/2, and [βun]C = ([βun]A + [βun]B)/2.
The small parameter ε in (14) is defined as

ε = min
(
ã, b̃
)
.

To capture all singular cases ε = 0 with the same leading order solution we need
to define

[u]A = [u]B, if ε = 0 and b̃ = 0,

[u]B = [u]A, if ε = 0 and ã = 0.
(15)
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With this definition, we achieve that u(A,0)(1, 1) = u3 − [u]C for ε = 0. We define
the leading order solution to be constant in region B and bilinear in A:

u(A,0)(ξ, η) = a
(0)
0 + a

(0)
1 ξ + a

(0)
2 η + a

(0)
3 ξ η,

u(B,0)(ξ̃, η̃) = b
(0)
0 .

(16)

For the coefficients we get a
(0)
0 = u1, a

(0)
1 = u2 − u1, a

(0)
2 = u4 − u1, a

(0)
3 =

u1 − u2 + u3 − u4 + [u]C , and b
(0)
0 = u3. Including the zero valued coefficients on

B we can write this as
x(0) =

(
A(0)

)−1
b (17)

with

x(0) =



a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

b
(0)
0

b
(0)
1

b
(0)
2

b
(0)
3


,
(
A(0)

)−1
=



1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
−1 0 0 1 0 0 0 0

1 −1 1 −1 1
2

1
2 0 0

0 0 1 0 0 0 0 0
0 . . . . . . 0
...

...
0 . . . . . . 0


, b =



u1

u2

u3

u4

[u]A
[u]B

[βun]A
[βun]B


(18)

Remark 3.3 Using (15), the leading order solution is the correct solution uA =
u(A,0) in the limit ε = 0. We note that the constant solution u(B,0) does not cover
any gradient u(B,0) for ε = 0, ã 6= 0 or ε = 0, b̃ 6= 0. However, in those cases the
interface is aligned with the boundary of the cell and the solution in region B does
not have any influence on the evaluation of (6).

With the leading order solutions u(A,0) and u(B,0) we proceed to the first cor-
rection which is in our linear problem already the exact final solution. We make
a full bilinear ansatz on both sides of the interface:

u(A,1)(ξ, η) = a
(1)
0 + a

(1)
1 ξ + a

(1)
2 η + a

(1)
3 ξ η,

u(B,1)(ξ̃, η̃) = b
(1)
0 + b

(1)
1

ˆ̃
ξ + b

(1)
2

ˆ̃η + b
(1)
3

ˆ̃
ξ ˆ̃η,

(19)

where we have introduced a re-scaling

ˆ̃
ξ =

ξ̃

b̃
, ˆ̃η =

η̃

b̃
.

in region B. As the leading order solution covers already the four corner values of
u, we get immediately a

(1)
0 = a

(1)
1 = a

(1)
2 = b

(1)
0 = 0. The missing four conditions

for the remaining unknowns are the four jump conditions [u](1)A , [u](1)B , [u](1)
C , and

[βun](1) at the interface, leading to the following set of equations:

x(1) =
(
A(1)

)−1
b(1), (20)
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with
x(1) =

[
a

(1)
0 , a

(1)
1 , a

(1)
2 , a

(1)
3 , b

(1)
0 , b

(1)
1 , b

(1)
2 , b

(1)
3

]t
b(1) =

[
0, 0, 0, 0, [u](1)A , [u](1)B , [u](1)C , ε [βun](1)C

]t
and

A(1) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 a 0 0 −1 0
0 0 0 b 0 −1 0 0
0 0 0 (1+a)(1+b)

4 0 −1
2 −1

2 −1
4

0 0 0 εβAnξ(1+a)
2∆x + εβAnη(1+b)

2∆y 0 εβBnξ

b̃∆x

εβBnη

ã∆y
εβBnξ

b̃2∆x
+ εβBnη

ã2∆y


The last row of (20) – namely the jump condition [βun](1) – has been multiplied
by ε to keep A(1) non-singular in the limit ε → 0. The non-zero elements of b(1)

are given by

[u](1)
A =

[u]A − [u](0)
A

ε

= 1
ε
(
[u]A − (a(0)

0 + a
(0)
1 + a

(0)
2 a + a

(0)
3 a− b

(0)
0 )
)
,

[u](1)
B =

[u]B − [u](0)
B

ε

= 1
ε
(
[u]B − (a(0)

0 + a
(0)
1 b + a

(0)
2 + a

(0)
3 b− b

(0)
0 )
)
,

[u](1)
C =

[u]C − [u](0)
C

ε

= 1
ε
(
[u]C − (a(0)

0 + a
(0)
1

1+b
2 + a

(0)
2

1+a
2 + a

(0)
3

(1+a)(1+b)
4 − b

(0)
0 )
)
,

ε[βun](1)
C = [βun]C − [βun](0)C

= [βun]C − βA
(
a

(0)
1

nξ

∆x + a
(0)
2

nη

∆y + a
(0)
3

(
nξ(1+a)

2∆x + nη(1+b)
2∆y

) )
.

(21)

Using the leading order solution (17) we can write b(1) with (21) as

b(1) = B
1
x(0) + B

2
b =

(
B

1

(
A(0)

)−1
+ B

2

)
b,

and further

x(1) =
(
A(1)

)−1
b(1) =

(
A(1)

)−1
(

B
1

(
A(0)

)−1
+ B

2

)
b. (22)

The matrices B
1

and B
2

are introduced to write b(1) in terms of x(0) and b. They
follow directly from (21) and are listed in the Appendix A.
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The complete solution for an irregular cell type I can now be assembled using
(14), (16), (17), (19) and (22):

x = A b =
((

A(0)
)−1

+ ε
(
A(1)

)−1
(

B
1

(
A(0)

)−1
+ B

2

))
b, (23)

Eq. (23) requires to invert A(1). Instead of using a two-step asymptotic approach
one could calculate x in a single step. However, the system becomes singular as
ε → 0 due to the exposed reasons. Fig. 5 compares the condition number of matrix
A(1) from the asymptotic two-step scheme with the resulting matrix of a single step
as a function of the small parameter ε and a ratio βA/βB = 1000. The condition
number of the single-step solution quickly becomes extremely large. Our two-step
asymptotic approach has an almost constant condition number for ε → 0 and has
a well defined solution for ε = 0. The singularity is shifted from the set of linear
equations to the small parameter ε. In the numerical implementation we need
to evaluate the term 1/ε, see (21). We get clean solutions for ε as small as rmin,
where rmin is the smallest positive floating point number (rmin = 2.2251×10−308 for
double precision floating point arithmetic on our machine). However, if ε < eps2,
where eps is the relative floating point accuracy, we set x = x(0) and b = b(0)

and do not compute the next order solution. The asymptotic two-step solution
is identical to the single-step solution with the exception that the asymptotic
solution stays well behaved in the limit ε → 0.
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Figure 5: Condition number of matrix A(1) in comparison with the resulting
matrix from a one-step solution and a ratio βA/βB = 1000.

3.4.2 A bilinear finite element for irregular cell type II

The construction of a non-singular bilinear finite element for an irregular cell
of type II, Fig. 6, follows the lines presented in the preceding section for type
I. Again, our base solution will be constructed with three prescribed solution

12
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Figure 6: Irregular cell type II in the local ξ − η system with ξ, η ∈ [0, 1]
(left). Solution for a = 0.6, b = 0.2, βA = 100, βB = 1, u1 = 0, u2 = 7,
u3 = 10, u4 = 3, [u]A = −1,[u]B = −4, [βun]A = 1, [βun]B = 10 (right)

jumps [u] and one gradient jump [βun] across the interface. This ensures identical
solutions for type I and type II cells under conditions a = 0, b ∈ [0, 1] for type I
and a = 1, b ∈ [0, 1] for type II, respectively. However, as pointed out in Remark
3.1, we cannot prescribe three independent jump conditions [u] if a = b, i.e. the
interface cuts the cell perpendicular to the ξ-axis. To resolve this singularity
we apply the two-step asymptotic approach (14) with the small parameter now
defined as

ε = (a− b).

We use a bilinear ansatz function for the leading order solution on both sides of
the interface

u(A,0)(ξ, η) = a
(0)
0 + a

(0)
1 ξ + a

(0)
2 η + a

(0)
3 ξ η,

u(B,0)(ξ̃, η̃) = b
(0)
0 + b

(0)
1 ξ̃ + b

(0)
2 η̃ + b

(0)
3 ξ̃ η̃.

(24)

The leading order solution is determined by the four corner values of u and the
jump conditions [u]A, [u]B, [βun]A, and [βun]B. Points A and B are defined to
have the same ξ-coordinate as point C, i.e. ξA = ξB = ξC = (a + b)/2, so that
A = A and B = B in the limit ε = 0, see Fig. 6. Therefore, the imaginary leading
order interface has a unit normal vector n(0) = [1, 0]t. The coefficients a

(0)
0 = u1,

a
(0)
2 = u4 − u1, b

(0)
0 = u3, and b

(0)
2 = u2 − u3 are defined by the corner values.

With a unit normal vector n(0) = [1, 0]t for the leading order solution we have
quasi one-dimensional distributions of u along η = const lines. The solution for

13



the remaining coefficients is (see also [11, 15])

a
(0)
1 = βB

δ

(
−u1+u2 + [u]A − (1−c)∆x

βB [βun]A
)
,

b
(0)
1 = −βA

δ

(
−u1+u2 + [u]A + c∆x

βA [βun]B
)
,

a
(0)
3 = βB

δ

(
u1−u2+u3−u4 − [u]A + [u]B − (1−c)∆x

βB ( [βun]A − [βun]B)
)
,

b
(0)
3 = −βA

δ

(
−u1+u2−u3+u4 + [u]A − [u]B + (1−c)∆x

βA ( [βun]A − [βun]B)
)
,

with δ = βB(a + b)/2 + βA((1− a) + (1− b))/2. For later purposes, we write the
leading order solution in matrix form

x(0) =
(
A(0)

)−1
b (25)

with

x(0) =



a
(0)
0

a
(0)
1

a
(0)
2

a
(0)
3

b
(0)
0

b
(0)
1

b
(0)
2

b
(0)
3


,
(
A(0)

)−1
=



1 0 0 0 0 0 0 0
−δA δA 0 0 δA 0 δAγA 0
−1 0 0 1 0 0 0 0
δA −δA δA −δA −δA δA −δAγA δAγA

0 0 1 0 0 0 0 0
0 0 δB −δB 0 δB 0 −δBγB

0 1 −1 0 0 0 0 0
−δB δB −δB δB δB −δB −δBγB δBγB


,

b = [u1, u2, u3, u4, [u]A, [u]B, [βun]A, [βun]B]t, (26)

and δA = βB/δ, δB = −βA/δ, δ = (ξCβB + ξ̃CβA), γA = ξ̃C∆x
βB , γB = ξC∆x

βA .
Furthermore, we define [u]C = ([u]A + [u]B)/2.

We use a similar bilinear ansatz for the correction as in (19):

u(A,1)(ξ, η) = a
(1)
0 + a

(1)
1 ξ + a

(1)
2 η + a

(1)
3 ξ η,

u(B,1)(ξ̃, η̃) = b
(1)
0 + b

(1)
1 ξ̃ + b

(1)
2 η̃ + b

(1)
3 ξ̃ η̃,

(27)

where the leading order solution with (14) immediately yields a
(1)
0 = a

(1)
2 = b

(1)
0 =

b
(1)
2 = 0. The remaining coefficients are calculated using the four jump conditions
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at the interface, with the first three of them

[u](1)
A =

[u]A − [u](0)
A

ε

= 1
ε
(
[u]A − (a(0)

0 + a
(0)
1 a− b

(0)
0 − b

(0)
1 ã− b

(0)
2 − b

(0)
3 ã)

)
,

[u](1)
B =

[u]B − [u](0)
B

ε

= 1
ε
(
[u]B − (a(0)

0 + a
(0)
1 b + a

(0)
2 + a

(0)
3 b− b

(0)
0 − b

(0)
1 b̃)

)
,

[βun](1)
C =

[βun]C − [βun](0)
C

ε

= 1
ε

(
[βun]C − βA

(
a

(0)
1

nξ

∆x + a
(0)
2

nη

∆y + a
(0)
3

( nξ

2∆x + nη(a+b)
2∆y

))
−βB

(
b
(0)
1

nξ

∆x + b
(0)
2

nη

∆y + b
(0)
3

( nξ

2∆x + nη(ã+b̃)
2∆y

))
.
)

(28)

We do not want to use jump condition [u]C directly as we have [u](1)C → ([u](1)
A +

[u](1)
B )/2 in the limit ε → 0 making the resulting equation a linear combination of

the two other jump conditions. Instead, we use [u]C in the following form

∆[u] = [u]C −
1
2
(
[u]A + [u]B

)
= −ε

(
a3 − b3

4

)
.

This leads us to the fourth condition for the unknown coefficients:

∆[u](1) = [u](1)
C − 1

2
(
[u](1)

A + [u](1)B )
)

=
∆[u]−∆[u](0)

ε
= −a

(0)
3 − b

(0)
3

ε
. (29)

Taking into account the known zero values of some of the coefficients, the complete
set of linear equations can now be written as

x(1) =
(
A(1)

)−1
b(1)

with

A(1) =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 a 0 0 0 −ã 0 −ã

0 b 0 b 0 −b̃ 0 0
0 0 0 1/4 0 0 0 −1/4
0 βAnξ

∆x 0 βAnξ

2∆x + βAnη(a+b)
2∆y 0 βBnξ

∆x
βBnξ

2∆x + βBnη(ã+̃b)
2∆y 0


,

x(1) =
[
a

(1)
0 , a

(1)
1 , a

(1)
2 , b

(1)
3 , b

(1)
0 , b

(1)
1 , b

(1)
2 , b

(1)
3

]t
,
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and
b(1) =

[
0, 0, 0, 0, [u](1)A , [u](1)B , ∆[u](1), [βun](1)

C

]t
.

The non-zero elements of b(1) are given by the right hand sides of (28) and (29).
Instead of solving for x(1) we solve directly for εx(1). Doing so, factors of 1/ε
in (28) and (29) cancel and we do not need to divide by ε at any point for this
type of element. With the leading order solution x(1) and the correction εx(1) we
assemble the complete solution following the lines presented in Section 3.4.1 and
end with

x = A b =
((

A(0)
)−1

+
(
A(1)

)−1
(

B
1

(
A(0)

)−1
+ B

2

))
b. (30)

The matrices B
1

and B
2

are again introduced to write the correction solution b(1)

in terms of x(0) and b and are provided in the Appendix B.
Fig. 7 shows the condition number for matrix A(1) as a function of the param-

eter ε and compares it with the condition number of the matrix resulting from
a one-step solution. The condition number in the two-step asymptotic scheme is
almost independent of ε, whereas the condition number for the one-step solution
scales inverse proportional to ε. We note that with increasing condition num-
ber the difference between the two-step asymptotic solution and the single-step
increases making the one-step solution useless in the limit ε → 0.
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Figure 7: Condition number of matrix A(1) in comparison with the resulting
matrix from a one-step solution and a ratio βA/βB = 1000.

4 Numerical results

In following examples we compare numerical results with given analytic solutions
u+(x) and u−(x) and corresponding coefficients β+(x) and β−(x). We use the
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analytic solution to provide the right hand side f(x) in (1) and to prescribe jump
conditions [u] and [βun] at positions where the interface Γ crosses grid lines. Fur-
thermore, the analytic solution provides us with the proper Dirichlet boundary
conditions. The interface is defined by the zero level of the signed normal dis-
tance function φ(x). We set Ω+ and Ω− to be the region with φ(x) > 0 and
φ(x) < 0, respectively. The position of the interface has been evaluated assuming
linear distributions of φ between grid points. The unit normal vector pointing
from Ω+ to Ω− is given by n = − ∇φ

|∇φ| . The arising linear systems of equations
have been solved with the hypre library [3] using an algebraic multigrid solver
(AMG) or an AMG preconditioned BICGSTAB solver. In our examples we made
the experience that the AMG solver works very reliable and fast up to a ratio of
the coefficients β+ and β− of 1/100 and 100/1. For ratios of the coefficients of
1000 and above we where not able to get solutions with the AMG alone and used
the AMG preconditioned BICGSTAB algorithm (see also our remarks on large
coefficient ratios in the conclusions, Section 5).

4.1 Example 1

This example is taken from [4]. We solve (1) in the domain −1 ≤ x, y ≤ 1. The
interface is a simple circle with radius 0.5 and midpoint at (0, 0). The analytic
solutions u±, the coefficients β±, and the level set function are given as follows:

u+ = ln(x2 + y2), u− = sin(x + y),

β+ = sin(x + y) + 2, β− = cos(x + y) + 2,

φ =
√

(x2 + y2)− 0.5.

The solution as well as the the normal derivative are discontinuous across the in-
terface. This example is characterized by a simple geometry of the interface and
a small difference between the coefficients β+ and β−. Fig. 8 shows the numerical
solution of the method using 80 × 80 grid-points. A convergence study with two
different sets of grids – one with ∆x/∆y = 1 and the other with ∆x/∆y = 3 –
is summarized in Table 4.1. The method achieves 2nd order of accuracy in the
L2, and L∞ norm on both sets of grids. Our results are comparable to the ones
presented in [4] with a smaller error constant reported in [4]. However, using
triangulated Cartesian grids in [4], the interface is resolved with almost twice as
many points as in our method on an identical underlying Cartesian grid. This
example shows a smooth second order behavior for the error with decreasing grid
spacing. However, it is known for interface problems that the error does not nec-
essarily behave monotonically under grid refinement. Therefore, the asymptotic
convergence rate is usually defined as the slope of the linear least square fit of the
error over mesh size in a log-log diagram. Fig. 8 plots the maximum error L∞ as
well as the error in the L2 norm over mesh size h = ∆x = ∆y for the solution u
and the norm of the gradient |∇u|. The results have been obtained on 30 different
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Figure 8: Solution for example 1 with 80×80 grid-points (left). Convergence
results for the solution u and the gradient |∇u| in the L∞ and L2-norm
(right).

grids ranging from 80 × 80 to 1040 × 1040 grid points. The slopes of the least
square fit are s = 2.0 and s = 1.9 in the L2 and L∞ norm for the solution values
u, respectively. As expected, with a value of 1.0 we lose one order of accuracy for
the gradient in the L∞ norm whereas we see an order of accuracy of 1.5 in the L2

norm. The gradients have been evaluated in the midpoints of our bilinear cells, i.
e. ξ = η = ξ̃ = η̃ = 0.5.

4.2 Example 2

This case follows an example investigated by Li in [8]. The position of the interface
is given in parametric form

X(θ) = r(θ) cos(θ)) + x0,

Y (θ) = r(θ) sin(θ)) + y0,
0 ≤ θ ≤ 2π, (31)

with
r(θ) = r0 + r1 sin(ωθ), 0 ≤ θ ≤ 2π.

The parameters are set to r0 = 0.5, r1 = 0.2, ω = 5, and x0 = y0 = 0.2/
√

20. The
analytic solution on the computational domain −1 ≤ x, y ≤ 1 is given as

u+ = r4 + C0 log(2 r)
β+ , u− = r2

β−
,

β+ = const., β− = const.,

where r =
√

(x− x0)2 + (y − y0)2 and C0 = −0.1. Fig. 9 shows solutions on
grids with 100 × 100 points and convergence results for three different sets of
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Figure 9: Solutions for example 2 on 100× 100 grids for different values of
β+, β− (left) and corresponding convergence results in the L∞ and L2 norm
for the solution u and its gradient |∇u| (right).
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Grid L2 Order L∞ Order

64× 64 2.9251e-04 1.8234e-03
128× 128 6.9066e-05 2.08 4.3578e-04 2.06
256× 256 1.7387e-05 1.99 1.2602e-04 1.79
512× 512 4.3486e-06 2.00 3.1314e-05 2.01

1024× 1024 1.0923e-06 1.99 8.4610e-06 1.89

40× 120 3.8655e-04 1.41177e-03
80× 240 9.5271e-05 2.02 3.52939e-04 2.00
160× 480 2.3659e-05 2.01 9.24177e-05 1.93
320× 960 5.9741e-06 1.99 2.47270e-05 1.90
640× 1920 1.5876e-06 1.91 6.81066e-06 1.86

Table 1: Convergence results for the solution u in the L2 and L∞-norm for
example 1 on two different sets of grids; ∆x = ∆y first set, ∆x/∆y = 3
second set.

coefficients β+, β−. A characteristic feature of this example is that the solution
becomes constants in regions with large β values, which is clearly seen for the
second and third case in Fig. 9 with β+ = 1000, β− = 1 and β+ = 1, β− = 1000,
respectively.

The convergence results in Fig. 9 have been obtained on 30 different meshes
having 80×80 up to 1040×1040 grid points. In all three cases we see a sharp drop of
the error on the coarsest grids indicating a poorly resolved interface. We left those
results out in the evaluation of the convergence rates. The observed convergence
rates – or rather the slopes s of the linear least square fit – vary between 2.0 – 2.2
in the L2 norm and 1.8 – 1.9 in the L∞ norm for the solution values u indicating
locally second order of accuracy even for large ratios of the coefficients β+ and
β−. Furthermore, we observe a strongly non-monotonic behavior of the maximum
error l∞ under grid refinement. This can be explained by the fact that the control
points of the interface on a Cartesian grid using a level set approach – namely
the points where the interface cuts grid lines – are non-uniformly spaced and that
the distribution of those control points might get locally more unequal under grid
refinement. Similar behavior has been observed in [8]. As in example 1 we have
for the gradient of u an order of accuracy of 1 in the L∞ norm. In this example
we see with values between 1.6 and 1.8 almost second order convergence of the
gradient in the L2 norm. The qualitative similarity between the curves for u and
|∇u| is apparent.

We repeated the calculations with values of β+ = 1, β− = 10−3 and β+ = 10−3,
β− = 1. Up to an exact scaling factor of 1000 the results are identical to the
investigated set of coefficients β+ = 1000, β− = 1 and β+ = 1, β− = 1000,
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respectively.

4.3 Example 3

In the third example, the interface is again given by equation (31) with the fol-
lowing set of parameters: x0 = 0.1, y0 = 1.2, r0 = 0.5, r1 = 0.15, and ω = 4. The
solution domain is a square defined by −1 ≤ x ≤ 1 and 0 ≤ y ≤ 2. The exact
solution is adapted from [8]:

u+ = ex
(
x2 sin(y) + y2

)
,

u− = − (x2 + y2).

In contrast to [8] we have varying coefficients

β+ = 1000 (x y + 5),

β− = 1 + x2 + y2.

The maximum ratio β+/β− at the interface is about 3600 and the smallest about
1100. Compared to example 2 the solution is independent of the coefficient β.
However, the magnitude of the jump [βun] increases with the jump [β].

Fig. 10 shows the numerical solution on a 100×100 grid and convergence results
in the L∞ and L2 norm. The asymptotic convergence rates for the solution values
are 2.1 in the L2 norm and 1.8 in the L∞ norm showing again locally second order
of accuracy of the method. As in the examples before, we see again an order of
accuracy of 1 for the gradient in the L∞ norm and a slightly better value of 1.5
in the L2 norm.
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Figure 10: Solution for example 3 on a 100 grid (left) and convergence results
for the solution u and its gradient |∇u| in the L∞ and L2 norm (right).
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4.4 Example 4

This example is taken from Hou and Liu [4]. The interface is a cardioid with a
level set function given by

φ(x, y) =
(
3(x2 + y2)− x

)2 − x2 − y2.

The specific feature of this example is the singular point of the interface with a
cusp point at x = y = 0, Fig. 11. The analytic solutions u±, the coefficients β±,
and the level set function are given as follows:

u+ = 1− x2 − y2, u− = x2 + y2 + 2,

β+ = x2 − y2 + 3, β− = xy + 3.

Fig. 11 shows the numerical solution on a grid with 100 × 100 grid points and
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Figure 11: Solution for example 4 on a 100×100 grid (left) and convergence
study for the error in the L∞ and L2 norm (right).

results of a convergence study on 35 grids ranging from 80 × 80 to 1040 × 1040
grid points. Since this is a non-smooth interface at the cusp point, we cannot
expect second order convergence in the L∞ norm for the solution values of u. The
convergence results in Fig. 11 demonstrate second order convergence in the L∞

norm on the coarser grids comparable to those used by Hou and Liu [4], and first
order on finer grids which resolve the cusp. We find second order convergence on all
grids in the L∞ norm if we exclude the area around the cusp point. Corresponding
to the abrupt change in the convergence order for the solution u we see an interim
increase of the error in the gradient. The overall order of convergence for the
gradient in the L∞ has been evaluated to to a value of 0.8 for this problem. The
L2 norm indicates second order convergence on all grids for the solution u and a
convergence order of 1.6 for the gradient |∇u|.
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5 Conclusion

We have developed a second-order accurate method for the solution of the Poisson
equation with variable coefficients and discontinuities across an embedded inter-
face. The interface is represented by a level set approach. In contrast to existing
methods in the literature we use a finite volume approach on Cartesian grids using
ideas from finite element methods in reconstructing the solution within grid cells.
We have presented a piecewise bilinear finite element for irregular cut cells taking
into account known jump conditions of the solution and the normal gradient across
the interface. We resolve singularities arising from the bilinear ansatz itself and
the position of the interface relative to the grid by a two-step asymptotic approach.
Although the subject of this work is the numerical solution of a Poisson equation
type of problem we note that our bilinear finite element might be equally useful for
the reconstruction of any other discontinuous function on Cartesian grids (e. g.:
the velocity field in premixed combustion). Our discretisation leads to a compact
nine-point stencil for the discrete Laplacian, with appropriately adjusted weights
near the interface. The resulting set of linear equations is symmetric and positive
definite in case of constant and equal coefficients. to be slightly non-symmetric.
We have used the black box algebraic multigrid solver of the hypre package [3]
as a direct solver or as a preconditioner for the BICGSTAB method to solve the
systems of linear equations. Problems of the type considered here become notori-
ously difficult to solve numerically for limitingly large ratios of the coefficients, say
β+/β− → ∞. We will address this issue systematically, again using asymptotic
methods, in a forthcoming publication. The method in principle can be extended
to three spatial dimensions where we have four different types of irregular cells
and work with piecewise trilinear ansatz functions.
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A Appendix

In section 3.4.1, equation (22), we introduced the matrices B
1

and B
2

to write
b(1) in terms of x(0) and b. The are given in detail here:

B
1

= (−1)



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
...

. . .
...

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
1
ε

1
ε

a
ε

a
ε −1

ε 0 0 0
1
ε

b
ε

−1
ε

b
ε −1

ε 0 0 0
1
ε

1+b
2ε

1+a
2ε

(1+a)(1+b)
4ε −1

ε 0 0 0
0 βAnξ

∆x
βAnη

∆y
βAnξ(1+a)

2∆x + βAnη(1+b)
2∆y 0 0 0 0


and

B
2

=



0 . . . . . . . . . . . . . 0
...

. . .
...

0 . . . . . . . . . . . . . 0
0 . . . 0 1

ε 0 0 0
...

. . .
... 0 1

ε

...
...

1
2ε

1
2ε

0 0 0 . . . 0 1
2

1
2


.
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B Appendix

In section 3.4.2, equation (30), we introduced the matrices B
1

and B
2

to write
b(1) in terms of x(0) and b. The are given in detail here:

B
1

=



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
...

. . .
...

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0
−1 −a 0 0 1 ã 1 ã

−1 −b −1 −b 1 b̃ 0 0
0 0 0 −1

4 0 0 0 1
4

0 −βAnξ

∆x
−βAnη

∆y
−βAnξ

2∆x − βAnη(a+b)
2∆y 0 −βBnξ

∆x
−βBnη

∆y
−βBnξ

2∆x − βBnη(ã+̃b)
2∆y


and

B
2

=



0 . . . . . . . . . . . 0
...

. . .
...

0 . . . . . . . . . . . 0
0 . . . 0 1 0 0 0
...

. . .
... 0 1

...
...

0 0 0 0
0 . . . 0 0 0 1

2
1
2


.
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