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Abstract

Consolidation of commodities and coordination of vehicle routes are fundamental fea-

tures of supply chain management problems. While locations for consolidation and coor-

dination are typically known a priori, in adaptive transportation networks this is not the

case. The identification of such consolidation locations forms part of the decision making

process. Supply chain management problems integrating the designation of consolidation

locations with the coordination of long haul and local vehicle routing is not only challenging

to solve, but also very difficult to formulate mathematically. In this paper, the first math-

ematical model integrating location clustering with long haul and local vehicle routing is

proposed. This mathematical formulation is used to develop algorithms to find high quality

solutions. A novel parallel framework is developed that combines exact and heuristic meth-

ods to improve the search for high quality solutions and provide valid bounds. The results

demonstrate that using exact methods to guide heuristic search is an effective approach to

find high quality solutions for difficult supply chain management problems.
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1 Introduction

Consolidation and aggregation of commodities is central to the effectiveness of supply chain net-

works. Whether it is the transportation for last-mile delivery or the movement of goods between

warehouses, the consolidation of commodities can significantly reduce vehicle costs. However,

this reduction in costs comes at the expense of increased complexity in the supply chain network

by requiring commodities to be transported along multiple legs. The consolidation of commodi-

ties then relies on the effective coordination of long haul and local transportation vehicles at

consolidation locations. It is the coordination of vehicles that makes the transportation of com-

modities in such a supply chain setting a challenging task—typically requiring the solution of

numerous decision problems.

Commodities are regularly transported between warehouses to facilitate the distribution

of goods to different parts of the supply chain network. The industry partner of this project

typically performs this transportation using a point-to-point network—relying solely on long

haul vehicles. However, the geographical distribution and potential clustering of warehouse

locations provides opportunities to deploy a mixture of local (intra-cluster) and long haul (inter-

cluster) transportation. The clustering of warehouse locations and consolidation of commodities

is expected to lead to a reduction in vehicle routing costs through the effective coordination of

intra- and inter-cluster transportation.

This paper aims to develop mathematical programming techniques to find high quality

solutions to an integrated location clustering and vehicle routing supply chain management

problem. In achieving this aim, the contributions of this paper are as follows: We i) present

the first mathematical formulation combining warehouse clustering with intra- and inter-cluster

transportation routing problems. Given the complexity of the considered supply chain manage-

ment problem, the mathematical formulation relaxes the intra-cluster routing to only consider

vehicle usage. Building on the work of Hosoda et al. (2022), we ii) combine a variant of the

previously developed iterative algorithm with a branch-and-bound algorithm used to solve the

proposed relaxation. The Ubiquity Generator (UG) framework (UG version 1.0) is deployed to

iii) develop a parallel heuristic that finds high quality solutions for the integrated supply chain
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management problem. The developed solution approach will iv) demonstrate how exact and

heuristic methods can be combined within effective parallel solution algorithms. Finally, v) the

proposed algorithm will be shown to provide high quality solutions with provable bounds on

optimality. We present a parallel algorithmic framework that is flexible and capable of being

deployed to find high quality solutions to challenging large-scale mathematical programming

problems.

This paper is structured as follows: Related work will be discussed in Section 2. Section 3

presents and defines the considered supply chain management problem integrating warehouse

clustering with intra- and inter-cluster vehicle routing, named the supply chain service network

design problem (SCSNDP). A detailed description of the SCSNDP and modelling approach is

presented in Section 3.1. A major contribution of this paper is the mathematical formulation

of the integrated supply chain management problem. This mathematical formulation—which is

a relaxation of the SCSNDP—is presented in Section 3.2. The algorithmic contribution of this

paper is the development of a parallel heuristic algorithm to find solutions for the SCSNDP.

The proposed algorithm, termed the SCSNDP Relaxation Induced Search (SRIS), is presented

in Section 4. Section 5 presents the computational experiments evaluating the performance of

the parallel branch-and-bound algorithm. Finally, our conclusions are provided in Section 6.

2 Literature review

A major challenge in the formulation of integrated supply chain management problems is the

coordination of numerous location and transportation decisions. In the context of the SCSNDP,

such integration incorporates decisions that arise in location-routing (Drexl and Schneider, 2015;

Nagy and Salhi, 2007), vehicle routing with synchronisation (Drexl, 2012), service network de-

sign (SNDP) (Crainic, 2000; Wieberneit, 2008), multi-echelon vehicle routing (Perboli et al.,

2011) and vehicle routing with pickup and delivery (PDP) (Desaulniers et al., 2002; Savelsbergh

and Sol, 1995). A particularly challenging feature of integrated supply chain management prob-

lems is that the individual location and routing problems can be difficult to model and solve

in isolation. Thus, any integration involving the combination of location and routing deci-

sions typically leads to large mathematical programming formulations, which can render exact

solution techniques intractable (Drexl and Schneider, 2015; Nagy and Salhi, 2007). Further,

the introduction of synchronisation between different vehicle types significantly increases the
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complexity of the resulting mathematical programming formulations (Drexl, 2012).

2.1 Integrating clustering, transshipment and routing

Clustering, location and routing decisions at the core of the SCSNDP are fundamental to the

location-routing problem (Drexl and Schneider, 2015; Nagy and Salhi, 2007). As highlighted in

Nagy and Salhi (2007) and Drexl and Schneider (2015), many different modelling approaches

have been proposed for location-routing problems—including mathematical programming for-

mulations. Given the complexity of the resulting integrated problem, it is common to abandon

mathematical programming formulations and develop logic-based heuristics. Such a heuristic

based on a clustering approach for a multi-depot location-routing problem is discussed by Lam

and Mittenthal (2013). Similarly, Barreto et al. (2007) discusses different clustering techniques

in the formulation of an integrated facility location and vehicle routing problem. The mod-

elling concepts presented by Barreto et al. (2007) and Lam and Mittenthal (2013) motivate the

integration of clustering with the intra- and inter-cluster transportation problems.

An important feature of the SCSNDP, commonly omitted from location routing problems,

is the transportation of commodities between clusters. Addressing this issue, Contardo et al.

(2012) present a mathematical programming formulation integrating the multi-echelon vehicle

routing and location-routing problem. In a more complex setting, Wang et al. (2018) inves-

tigates the clustering of customers for last-mile delivery in a multi-echelon location-routing

problem. While Drexl and Schneider (2015) discuss the multi-echelon problem with general

routing decisions between levels, typical problem descriptions involve only the point-to-point

movement of vehicles between levels. As such, there is little investigation into problems that

involve the transfer of commodities between warehouses located on the same level, such as that

which occurs in the SCSNDP.

The adaptiveness of transportation networks induced by clustering is embraced in the novel

vehicle routing problem investigated by Salama and Srinivas (2020). Specifically, integrating

truck and drone routing the truck stopping locations represent the consolidation locations and

the drone then completes the last-mile delivery to the customer locations assigned to that

cluster. This application has elements of intra- and inter-cluster routing; however, the latter,

which is completed by a drone, only involves point-to-point transportation to and from the

supporting truck.

An topic of research that is particularly relevant for the SCSNDP is the integration of
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facility location and network design. An early example of a mathematical formulation for the

integrated facility location and network design problem is presented by Melkote and Daskin

(2001). An extensive investigation by Contreras and Fernández (2012) highlights the many

variants and corresponding mathematical formulations for problems combining facility location

and network design. Many of the concepts discussed by Contreras and Fernández (2012) are

relevant for the SCSNDP. However, by incorporating routing decisions in the SCSNDP, the

problem complexity is much greater than the problems discussed by Contreras and Fernández

(2012).

Given a set of consolidation locations, the transportation schedule to effectively move com-

modities between these locations is found by solving an SNDP. Such a problem is a subproblem

in the integration of location and routing proposed in the SCSNDP. Extensive reviews of the

SNDP have been presented by Crainic (2000) and Wieberneit (2008). Given that the SNDP

purely focuses on the transportation of commodities between consolidation locations, there has

been increasing interest in the integration with first- and last-mile transportation. The most

prominent examples integrating long-haul with first- and last-mile transportation are presented

by Medina et al. (2019), Wolfinger et al. (2019) and Heggen et al. (2019). The most com-

mon feature of previous work is the synchronisation of vehicles when transferring commodities

between long-haul and local transportation. Typically, the local transportation regions are

fixed; however, an exception to this is Heggen et al. (2019) where the warehouse clusters are

determined based on demand.

A rich variant of the vehicle routing problem (VRP), which has also inspired many sub-

variants, is the PDP. For a general overview of the PDP, the reader is referred to Savelsbergh

and Sol (1995) and Desaulniers et al. (2002). The PDP is encountered as a subproblem of the

SCSNDP, which is solved to identify intra-cluster routes. Variants of the PDP that share the

most similarities with the SCSNDP are those that incorporate cross-docking opportunities, as

presented by Wen et al. (2009), Santos et al. (2013) and Petersen and Røpke (2011). How-

ever, the modelling of the PDP in these previous works only considers a single cross-docking

opportunity. A more general formulation of the PDP with cross-docking opportunities is pre-

sented by Buijs et al. (2014). Many challenges associated with the synchronisation of vehicles

are highlighted by Buijs et al. (2014). Such issues are addressed in the development of the

mathematical formulation and solution approaches proposed for the SCSNDP.

Another characteristic of the SCSNDP that is discussed in previous work is the transship-
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ment of commodities. In the context of the PDP, transshipment is considered in the mathe-

matical models developed by Mitrović-Minić and Laporte (2006) and Rais et al. (2014). More

recently, Wolfinger (2021) presents a comprehensive mathematical model for the PDP with

transshipment that incorporates time windows and split loads.

An in-depth survey on the use of synchronisation constraints in vehicle routing problems

is presented by Drexl (2012). While many different types of synchronisation are discussed,

the most relevant for the SCSNDP is operational synchronisation. The handling of opera-

tional synchronisation between intra- and inter-cluster transportation routes is a focus of the

mathematical model developed for the SCSNDP.

2.2 Solution algorithms

Various solutions methods are proposed to solve the supply chain management problems dis-

cussed above. While exact solutions methods are considered in many cases, typically the com-

plexity of the mathematical models means that such methods can only be deployed for small

instances. General purpose solvers are deployed successfully by Melkote and Daskin (2001),

Perboli et al. (2011), Medina et al. (2019), Rais et al. (2014) and Salama and Srinivas (2020).

A branch-and-price approach is developed by Santos et al. (2013) to solve the PDP with cross-

docking. In an attempt to address the size of the SNDP, Medina et al. (2019) propose an exact

solution method based on Dynamic Discretisation Discovery, first proposed by Boland et al.

(2017).

Heuristic methods are a popular approach for solving supply chain management problems.

In addition to using a general purpose solver, Salama and Srinivas (2020) develop a heuris-

tic method to solve the integrated vehicle and drone delivery problem. The location-routing

problems considered by Barreto et al. (2007) and Lam and Mittenthal (2013) are solved using

purpose built heuristics. A meta-heuristic based on a genetic algorithm is developed by Wang

et al. (2018) the multi-echelon routing problem. Wen et al. (2009) propose a tabu search algo-

rithm to solve a variant of the PDP. A computationally effective large-neighbourhood search

heuristic for the PDP was developed by Petersen and Røpke (2011). The challenge of solving

an integrating long-haul and local transportation problem is addressed by Heggen et al. (2019)

and Wolfinger et al. (2019) with the development large neighbourhood search and iterated local

search algorithms, respectively.

Variants of the branch-and-bound framework have been developed to solve challenging sup-
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ply chain management problems. A novel algorithm combining branch-and-cut and large neigh-

bourhood search is proposed by Contardo et al. (2012) to solve an integrated multi-echelon ve-

hicle routing and location-routing problem. A heuristic branch-and-bound algorithm for solving

the travelling salesman problem with a drone is developed by Poikonen et al. (2019). In the

context of capacitated network design, Holmberg and Yuan (2000) present a heuristic branch-

and-bound approach that employs a Lagrangian heuristic to find upper and lower bounding

solutions. This combination of exact and heuristic methods is a motivation for the methods

developed in this paper to solve the SCSNDP.

3 The supply chain service network design problem

The SCSNDP considers the problem of determining low cost transportation routes that satisfy

all pickup and delivery requests between a set of warehouses. Key characteristics of the prob-

lem setting is that there is no centralised consolidation location and the warehouses are located

throughout a large geographical area. However, all warehouses are configurable as consolida-

tion locations. As such, commodities may be transported on one of more vehicle routes with

transshipment occurring at warehouses that are selected as consolidation locations.

There are a number of different decisions that must be made to solve the SCSNDP. First,

the set of consolidation locations is not known a priori and are selected to best satisfy the pickup

and delivery requests. Each warehouse is either designated as a consolidation location or within

a cluster surrounding a consolidation location. Second, vehicle routes must be determined to

transfer each commodity either i) between their pickup and delivery locations within a cluster

or ii) from the pickup origin to a consolidation location, between consolidation locations and

then from a consolidation location to the delivery destination. These routes are designated as

either intra- or inter-cluster routes, where the former correspond to pickup and delivery routes

and the latter are likened to trunk routes. The problem considered in this paper aims to cluster

warehouses and select consolidation locations while determining intra- and inter-cluster routes

to satisfy all pickup and delivery requests.

3.1 Modelling of the SCSNDP

The näıve approach, and previous approach of the industry partner, for satisfying all pickup

and delivery requests between warehouses was to use point-to-point transportation. This is the
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equivalent of modelling the transportation network as a complete graph, G = (N ,A), between

all warehouse locations, such as that presented in Figure 1. The direct delivery of commodities

in a point-to-point network is very resource intensive—resulting in high transportation costs.

Further, such a network ignores the possibility of consolidating pickup and/or delivery requests

associated with warehouse locations that are close (by some measure of distance) to each other.

Warehouse location

Figure 1: Point-to-point transportation network

An alternative approach for satisfying pickup and delivery requests, investigated by Hosoda

et al. (2022), exploits the closeness of warehouses and the flexibility in designating consolidation

locations. Central to this alternative approach is the clustering of warehouses, the design of an

inter-cluster transportation network and determining intra-cluster pickup and delivery routes.

Incorporating these three aspect results in a mathematical model for the SCSNDP that is

formulated using a clustered transportation network, as shown in Figure 2.

Given the complexity of the SCSNDP, Hosoda et al. (2022) developed a heuristic approach

that involved three mathematical models: the warehouse clustering problem, service network

design problem and the pickup and delivery problem. In the following, the underlying ideas of

these three mathematical models will be explained. For conciseness, we refrain from presenting

the mathematical formulations and direct the reader to Hosoda et al. (2022) for a more in-depth

Warehouse location

Consolidation location

Inter-cluster route
Intra-cluster network

Figure 2: Clustered transportation network
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discussion.

3.1.1 Warehouse clustering

The warehouse clustering problem (WCP) of Hosoda et al. (2022) is solved to form the intra- and

inter-cluster transportation networks. Given a set of warehouse locations the WCP identifies γ̄

consolidation locations from all warehouse locations and assigns all other warehouses to exactly

one consolidation location. The consolidation location selection and warehouse assignment

minimises some distance function—finding warehouse locations that are close to a consolidation

location. In Hosoda et al. (2022) and this paper, the Haversine distance is used as the measure

of closeness. An example solution to the WCP is presented in Figure 3.

Warehouse location

Consolidation location

Figure 3: Warehouse clustering

3.1.2 Inter-cluster transportation

The WCP identifies a set of consolidation locations, between which inter-cluster routes are

established. An example of the inter-cluster transportation network is presented in Figure 4.

The inter-cluster transportation network is used to transport commodities that have pickup and

delivery locations in different clusters. Such commodities are termed out of cluster commodities

(OCC).

A service network design problem (SNDP) is solved to determine a transportation sched-

ule for the inter-cluster routes. Consider a transportation network Ḡ = (N̄ , Ā) and a set of

commodities K̄ that must be transported between consolidation locations N̄ using the inter-

cluster routes Ā. The solution to the SNDP identifies a vehicle schedule and the capacity of the

arcs that is required to transport all commodities from their origin cluster to their destination

cluster. The capacity of the arcs is relative to the number of vehicles traversing the arc at

the same time. The vehicle schedule designates the departure and arrival times of all OCCs
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Warehouse location

Consolidation location

Inter-cluster route

Figure 4: Inter-cluster network

at consolidation locations. These times must synchronise with intra-cluster routes to feasibly

satisfy the OCC pickup and delivery requests. The SNDP is solved to minimise the number

of vehicles, using a fixed cost for each vehicle used, and the cost of transporting commodities

between consolidation locations.

3.1.3 Intra-cluster transportation

The intra-cluster networks are constructed such that the set of warehouses within each cluster

are completely connected, but warehouses from different clusters are disconnected (excluding

the inter-cluster routes). The intra-cluster networks for three clusters are presented in Figure

5. These networks are used to transport commodities either i) between locations within the

cluster, ii) from a pickup origin to the consolidation location or iii) from the consolidation

location to the delivery destination. Most importantly, the transportation of commodities to

and from a consolidation location on intra-cluster routes must synchronise with the inter-cluster

transportation schedule.

Warehouse location

Consolidation location

Intra-cluster network

Figure 5: Intra-cluster network

The intra-cluster transportation routes are found by solving a vehicle routing problem with

pickup and delivery. Let Gr = (N r,Ar) denote the intra-cluster network for cluster r and the
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set of vehicles available in cluster r are contained in the set Vr. The consolidation location is

both an origin and destination location, and is denoted as ôr and d̂r respectively. All vehicles

originate and terminate at the consolidation location. Let Kr denote the set of commodities

that have a pickup or delivery location, ôrk or d̂rk, within cluster r. If the pickup location is

within a cluster other than r, then ôrk set to ôr. Similarly, if the delivery location is within

a cluster other than r, then d̂rk is set to d̂r. The PDP is then solved to find a set of vehicle

routes that originate from ôr and terminate at d̂r that collectively satisfy all pickup and delivery

request within cluster r. The identified vehicle routes must also respect time windows, vehicle

capacities and warehouse business hours.

3.2 Formulation of integrated problem

There are two features of the SCSNDP that introduce complications to the formulation of the

fully integrated problem. The first is the formulation of the SNDP without prior knowledge of

the consolidation locations. As a result, the underlying graph for the time-space network used

in the SNDP is constructed as a complete graph between all warehouse location for every time

step. The second complication is the ability to solve the PDP for each individual cluster. Since

the PDP is a difficult problem to solve in isolation, its inclusion in the integrated problem sig-

nificantly increases the complexity of the SCSNDP. In response to these challenges, a complete

formulation of the SCSNDP is not proposed in this paper, but a relaxation is presented that

will provide valid lower bounds.

The relaxation of the SCSNDP is formulated using a complete graph connecting all ware-

house locations. The decisions of the WCP, SNDP, and PDP select the edges that will be used

for intra- and inter-cluster transportation. The underlying graph G = (N ,A) is defined with

the set N containing all warehouse locations i and A containing all edges (i, j) between those

locations. Central to the SCSNDP is the transportation of commodities k between warehouses.

The set of commodities is denoted by K. Each commodity k has one pickup and one delivery

location, denoted by ok and dk respectively.

3.2.1 Warehouse clustering problem

The WCP has two major decisions: identify the consolidation locations and determine the

warehouses that are connected to each consolidation location. The variables zj equal 1 to

indicate that warehouse j is selected as a consolidation location, and 0 otherwise. While in
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the algorithm proposed by Hosoda et al. (2022) the total number of clusters is fixed, in the

formulation of the SCSNDP relaxation this is defined by the variable γ. The assignment of each

warehouse i to consolidation location j is indicated by the variables wij . Finally, the binary

variables λki equal 1, if and only if, the pickup and delivery location of commodity k, given by

ok and dk, are assigned to the same consolidation location i. Such commodities only require

intra-cluster transportation.

The constraints defining the WCP within the integrated formulation of the SCSNDP are

given by

∑
j∈N

zj = γ, (1a)

∑
j∈N

wij = 1 ∀i ∈ N , (1b)

∑
i∈N

wij ≤ |N |zj ∀j ∈ N , (1c)

λki ≤ woki ∀k ∈ K,∀i ∈ N , (1d)

λki ≤ wdki ∀k ∈ K,∀i ∈ N , (1e)

λki ≥ woki + wdki − 1 ∀k ∈ K,∀i ∈ N , (1f)

γ ∈ [2, γ̄], (1g)

zj ∈ {0, 1} ∀j ∈ N , (1h)

wij ∈ {0, 1} ∀(i, j) ∈ A, (1i)

λki ∈ {0, 1} ∀k ∈ K,∀i ∈ N . (1j)

Constraint (1a) sets γ to the number of selected consolidation locations. The restriction

that each warehouse must be assigned to exactly one consolidation location is imposed by

constraints (1b). Constraints (1c) ensures that warehouse i is assigned to warehouse j only if

j is a consolidation location. The constraint set (1d)–(1f) are included to indicate whether the

pickup and delivery locations of commodity k are assigned to the same consolidation location.

3.2.2 Service network design problem

The SNDP is solved to determine the inter-cluster transportation schedule between consoli-

dation locations. Different to the description of the inter-cluster transportation described in

Section 3.1.2, the underlying transportation network is unknown a priori. Thus, the trans-
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portation network used to model the SNDP is a time expanded network based on the complete

graph G.

The time expanded network for the SNDP, denoted by GT , is defined within the planning

horizon bounded by E, which is the earliest departure of any commodity, and L, which is

the latest arrival of any commodity. The discrete time points used in the time expanded

network are given by the set T = {E + m∆|m ∈ Z≥0, E + m∆ < L}, where ∆ > 0 is

the discretisation interval. The node set is given by the Cartesian product of N and T , i.e.

NT = N × T . Given two locations i, j ∈ N , the minimum travel time between these locations

is given by ttij . To provide flexibility in the travel times between i and j, the time set Tijt =

{⌈t+ ttij+m∆⌉∆ |m ∈ Z≥0,m∆ ≤ B} is defined, where ⌈·⌉∆ rounds the time up to the nearest

discretisation interval and B is the maximum additional travel time. Thus, the arc set is given

by AT = {((i, t), (j, t̄)) | (i, j) ∈ A, t ∈ T , t̄ ∈ Tijt}. Finally, the inter-cluster transportation

vehicles are permitted to wait at any location within the network, which is modelled using the

arc set HT = {((i, t), (i, t + ∆)) | (i, t) ∈ NT , t + ∆ ≤ L}. Thus, the time expanded network

underlying the formulation of the SNDP is given by GT = (NT ,AT ∪HT ).

Since the clustering and consolidation locations are not known a priori, the departure and

arrival consolidation locations and respective times must be determined for each commodity. As

such, the variables hekti and hlkti are defined to indicate whether commodity k must depart from,

respectively arrive at, consolidation location i after, respectively before, time t. The variables

hekti are set to 1 only if the origin of commodity k is assigned to the consolidation location i, and

similarly for hlkti with respect to the destination of k. Note that if the origin and destination

of commodity k are within the same cluster, then k does not need to be transported on any

inter-cluster routes.

The decision variables of the SNDP will identify the capacity of the inter-cluster routes in

order to transport commodities between consolidation locations. The variables xktt̄ij equal 1 if

commodity k is transported between consolidation locations i and j, departing at t and arriving

at t̄. The movement of an inter-cluster vehicle between i and j departing at t and arriving at

t̄ is indicated by the variables ytt̄ij being set to 1. Finally, the variables θk are introduced to

indicate that commodity k is transported directly from origin to destination using third-party

vehicles, which is termed direct delivery.

The constraints of the SNDP that are included within the integrated formulation of the
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SCSNDP are given by

woki − λki ≤
∑
t∈T

hekti + θk ∀i ∈ N ,∀k ∈ K, (2a)

woki − λki ≥
∑
t∈T

hekti ∀i ∈ N ,∀k ∈ K, (2b)

wdki − λki ≤
∑
t∈T

hlkti + θk ∀i ∈ N ,∀k ∈ K, (2c)

wdki − λki ≥
∑
t∈T

hlkti ∀i ∈ N ,∀k ∈ K, (2d)

∑
((i,t),(j,t̄))∈AT ∪HT

xktt̄ij −
∑

((j,t̄),(i,t))∈AT ∪HT

xkt̄tji = hekti − hlkti ∀k ∈ K, (i, t) ∈ NT , (2e)

∑
k∈K

qkx
ktt̄
ij ≤ Uytt̄ij ∀((i, t), (j, t̄)) ∈ AT , (2f)

∑
k∈K

 ∑
((i,t),(j,t̄))∈AT ∪HT

xktt̄ij +
∑

((j,t̄),(i,t))∈AT ∪HT

xkt̄tji


≤ |K||AT |zj ∀j ∈ N , (2g)

xktt̄ij ∈ {0, 1} ∀((i, t), (j, t̄)) ∈ AT , k ∈ K, (2h)

ytt̄ij ∈ Z≥0 ∀((i, t), (j, t̄)) ∈ AT , (2i)

hekti , h
lk
ti ∈ {0, 1} ∀k ∈ K,∀(i, t) ∈ NT , (2j)

θk ∈ {0, 1} ∀k ∈ K. (2k)

Constraints (2a) and (2b) ensure that if the origin and departure of commodity k are in

different clusters, then it must either depart from consolidation location i or be transported

using a third-party vehicle. Similarly, the arrival of commodity k at consolidation location i or

its transportation using a third party vehicle is enforced by constraints (2c) and (2d). The flow

balance of commodities through the network induced by the consolidation locations is given by

constraints (2e). Constraints (2f) ensure that sufficient vehicle capacity is available to transport

commodities between i and j. Finally, constraints (2g) ensure that only consolidation locations

are used by inter-cluster transportation vehicles.

3.2.3 Pickup and delivery problem

The relaxation of the SCSNDP considered in this paper omits the routing component of the

PDP. As such, the PDP of the SCSNDP is modelled as a packing problem with side constraints.

The variables uvki are defined to equal 1 if the pickup or delivery of commodity k is assigned
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to vehicle v that departs from consolidation location i. The use of vehicle v departing from

consolidation location i is indicated by the variables αv
i . Each commodity k has an order

quantity qk and the capacity of the intra-transportation vehicle v is given by Qv.

The linking between the SNDP and PDP is given through the departure and arrival of the

intra-cluster vehicles at the consolidation locations. The departure and arrival times of intra-

cluster vehicle v from consolidation location i are given by T̄ v
i and T̂ v

i respectively. Note that

in the relaxation of the PDP proposed in this paper, the vehicle departure and arrival times

at intermediate stops are not considered. However, the pickup and delivery time windows for

commodity k, given by [epk, l
p
k] and [edk, l

d
k] respectively, must be respected when considering the

vehicle departure and arrival times from the consolidation locations. While the intra-cluster

vehicle routes are not explicitly identified, the total travel time of each vehicle is estimated by

summing the shortest edge entering each assigned pickup or delivery location, which is denoted

by the parameter t̂tk.

Considering the time windows and travel times between locations, it is possible that there

exists pairs of commodities that can not be assigned to the same vehicle. This is due to

a conflict between the pickup/delivery times and the travel time between the commodities

origins/destinations. The set of commodities with time window/travel time conflicts is denoted

by K̄.

The constraints that define the relaxation of the PDP are given by

woki ≤
∑
v∈V

uvki + θk ∀k ∈ K,∀i ∈ N\{ok}, (3a)

wdki ≤
∑
v∈V

uvki + θk ∀k ∈ K,∀i ∈ N\{dk}, (3b)

T̄ v
i ≥

∑
t∈T

thlkti −M(1− uvki)−M
∑
j∈N

λkj −M(1− wdki) ∀k ∈ K,∀i ∈ N ,∀v ∈ V, (3c)

T̄ v
i ≤ lpkwoki + ldkwdki +M(1− uvki) ∀k ∈ K,∀i ∈ N ,∀v ∈ V, (3d)

T̂ v
i ≤

∑
t∈T

thekti +M(1− uvki) +M
∑
j∈N

λkj +M(1− woki) ∀k ∈ K,∀i ∈ N ,∀v ∈ V, (3e)

T̂ v
i ≥ epkwoki + edkwdki −M(1− uvki) ∀k ∈ K,∀i ∈ N ,∀v ∈ V, (3f)

T̂ v
i ≥ T̄ v

i +
∑
k∈K

t̂tku
v
ki ∀i ∈ N ,∀v ∈ V, (3g)

∑
k∈K

qku
v
ki ≤ Qvαv

i ∀i ∈ N ,∀v ∈ V, (3h)



3 THE SUPPLY CHAIN SERVICE NETWORK DESIGN PROBLEM 17

∑
k∈K

t̂tku
v
ki ≤ T vαv

i ∀i ∈ N ,∀v ∈ V, (3i)

∑
i∈N

αv
i ≤ 1 ∀v ∈ V, (3j)

uvki + uvk′i ≤ 1 ∀(k, k′) ∈ K̄,∀i ∈ N ,∀v ∈ V, (3k)

uvki ∈ {0, 1} ∀k ∈ K,∀i ∈ N ,∀v ∈ V, (3l)

αv
i ∈ {0, 1}, ∀i ∈ N ,∀v ∈ V, (3m)

T̄ v
i , T̂

v
i ≥ 0 ∀i ∈ N ,∀v ∈ V. (3n)

Constraints (3a) and (3b) assign the pickup and delivery of commodity k to a vehicle v, except

if commodity k is delivered using a third-party vehicle. If the pickup and delivery locations are

in two different clusters, then the commodity will be transported on two intra-cluster vehicles,

unless transported by direct delivery. The time window and travel time constraints are given

by (3c)–(3g). Constraints (3c) ensures that vehicle v departs from consolidation location i

after the arrival of commodity k on an inter-cluster vehicle. The departure of intra-cluster

vehicle v must respect the latest pickup or delivery time of commodity k—depending on the

cluster assignment of the commodity’s origin and destination. These conditions are enforced

by constraints (3d). Similar to the departure times, constraints (3e) and (3f) ensure vehicle v

arrives at the consolidation location before the departure of commodity k on an inter-cluster

vehicle and after the commodity’s earliest pickup or delivery time—again, depending on the

cluster assignment of the commodity’s origin and destination. Constraints (3c)–(3f) are only

active if commodity k is assigned to vehicle v departing from consolidation location i, i.e.

uvki = 1. Further, constraints (3d) and (3f) are only enforced if the origin and destination

of commodity k are in different clusters, i.e.
∑

j∈N w′
kj = 0. Finally, constraints (3d) are

only relevant when the destination of commodity k is assigned to consolidation location i, and

similarly for constraints (3f) with respect to the commodity’s origin. The use of vehicle v is

indicated by constraints (3h) and (3i), which also impose the vehicle capacity Qv and maximum

travel time T v. Finally, the conflict of assigning commodities k and k′ to vehicle v, if (k, k′) ∈ K̄

is enforced by constraints (3k).

3.2.4 Objective function

The objective function is given by a linear combination of the objectives from the WCP, SNDP

and PDP defined by Hosoda et al. (2022). The three components of the objective function for
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the integrated SCSNDP formulation comprise:

• The cost of the WCP given by the distance between locations i and j, denoted by βij .

• The cost of the SNDP made up of a fixed cost f for each inter-cluster vehicle used

and the sum of costs of transporting commodity k along arc (i, j), denoted by cij . The

transportation cost is proportional to the order quantity qk of commodity k.

• The cost of the PDP given by the sum of vehicle usage costs and travel time. The use

of intra-cluster vehicle v incurs a fixed cost of f . The travel time costs for the PDP are

relaxed to the weighted sum of the travel time of the shortest edge incident with the origin

or destination of commodity k. The sum of the travel time is weighted by κ.

In addition to the above costs, the objective of the SCSNDP incorporates the costs associated

with the direct delivery of commodities. This is a fixed cost denoted by ξ.

The objective function of the SCSNDP is given by

∑
(i,j)∈A

βijwij +
∑

((i,t),(j,t̄))∈AT

fytt̄ij+
∑
k∈K

∑
((i,t),(j,t̄))∈AT

cijqkx
ktt̄
ij

+
∑
i∈N

∑
v∈V

fαv
i +

∑
k∈K

∑
i∈N

κt̂tku
v
ki +

∑
k∈K

ξθk.

(4)

4 Parallel algorithm combining exact and heuristic methods

The SCSNDP Relaxation Induced Search (SRIS) combines the relaxation, presented in Section

3.1, and the iterative heuristic developed by Hosoda et al. (2022) within a parallel framework.

The relaxation is solved directly as a MIP to provide lower bounds on the optimal solution—

to evaluate the quality of solutions found by the iterative heuristic. During the execution

of the branch-and-bound algorithm, configurations of consolidation locations, extracted from

fractional and integral solution to the relaxation, are used as input to the iterative heuristic.

Extracting consolidation location configurations during the branch-and-bound algorithm is used

as a method for diversifying the heuristic search for primal solutions. It is expected that such

diversification will be superior to the random approach employed in the multi-armed bandit

algorithm developed by Hosoda et al. (2022).

In the following sections, the core components of the proposed parallel algorithm for solving

the SCSNDP will be described. First, the software architecture combining the relaxation and
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iterative heuristic within a parallel algorithm will be described in Section 4.1. While the iterative

heuristic is presented in Hosoda et al. (2022), an overview of the heuristic and details relevant

for the parallel algorithm are discussed in Section 4.2. This will be followed by the descriptions

of the sequential and parallel versions of the SRIS that combine the relaxation and iterative

heuristic in Sections 4.3 and 4.4 respectively. These two different algorithms can be executed

using the software architecture presented in Section 4.1.

4.1 Parallel solver software architecture

The parallel solver, labelled as ParaSCSNDP, has been designed to exploit concurrent solving

of the relaxation and the execution of the iterative heuristic, while providing flexibility to

balance the computational effort. This is achieved through the use of the Ubiquity Generator

(UG) framework (UG version 1.0), which provides a set of base classes for high-level task

parallelisation and a flexible parallelisation of branch-and-bound based solvers. For an overview

of the UG framework Version 1.0 the reader is referred to Tateiwa et al. (2021). An overview

of the parallel solver software architecture is presented in Figure 6.

The software architecture implementing ParaSCSNDP employs task-based parallelism.

There are two types of tasks executed in ParaSCSNDP, which are labelled as the relaxation

solver and the iterative heuristic. There are n solvers, which correspond to the available proces-

sors, to which these tasks can be assigned. The software architecture allows for any number (up

to n) of relaxation solvers or iterative heuristic tasks to be created. However, at any one time

there will be m active solvers, where m ≤ n. For convenience, it is assumed that the relaxation

Load Coordinator (inherited from UG B&B class)

Message 
handler

Comm Point call back
function ()

MIP Solver
(SCIP, Gurobi, etc.)

Branching rule

B&B node pool
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function ()
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contains instance data file name)

... ...
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Relaxation Solution
(Consolidation 
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settings (random 
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Figure 6: ParaSCSNDP architecture
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solver is assigned to k solvers and m− k solvers execute the iterative heuristic. Typically, the

number of relaxation solvers k is fixed. The number of iterative heuristic tasks depends on the

availability of consolidation location configurations identified by the relaxation solvers.

The design of ParaSCSNDP permits the transfer and distribution of both relaxation solver

and iterative heuristic tasks. The distribution of tasks and the balancing of computational

effort is performed in the LoadCoordinator. All tasks that are created are first transferred

to the LoadCoordinator and placed in a queue. These tasks are then assigned to available

solvers on demand. In the current design, the tasks distributed by the LoadCoordinator are

iterative heuristic tasks—defined by consolidation location configurations.

A callback method for a general purpose solver is used to extract consolidation location

configurations from integer and fractional solutions found during the execution of the relaxation

solver. In Figure 6, the dashed line starting from the callback indicates two different modes of

the relaxation solver. In the sequential mode, the consolidation location configuration is used

to execute the iterative heuristic within the branch-and-bound algorithm. In the parallel mode,

the consolidation location configuration is communicated to the LoadCoordinator as a task

for distribution to another solver.

4.2 Iterative heuristic

An iterative heuristic is employed to find primal feasible solutions for the SCSNDP. An overview

of the iterative heuristic is presented in Figure 7. The iterative heuristic builds upon a sequential

heuristic for the SCSNDP. Briefly, the sequential heuristic first solves the WCP to determine

a clustering of warehouses, then solves the SNDP to find inter-cluster transportation schedules

and finally the PDP is solved to identify a set of intra-cluster routes. Since such a sequential

heuristic is inherently suboptimal, and potentially leads to infeasible solutions, an iterative

process between the SNDP and PDP is used to provide feedback between the intra- and inter-

cluster transportation problems.

The iterative heuristic employed in this paper is a subprocess of the multi-armed bandit

algorithm developed by Hosoda et al. (2022). For a more detailed discussion of the algorithm—

including the mathematical formulations for the WCP, SNDP, and PDP and respective solution

methods for the mathematical programs—the reader is referred to Hosoda et al. (2022).
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Figure 7: Iterative heuristic

4.2.1 Feedback between the SNDP and PDP

The most important part of the iterative heuristic is the feedback between the SNDP and PDP.

This feedback is given through the commodity departure and arrival times at the consolidation

locations and the synchronisation of intra- and inter-cluster transportation. Each OCC must

arrive at their origin consolidation location on an intra-cluster route prior to the departure of

that commodity on an inter-cluster vehicle. Similarly, intra-cluster routes that deliver an OCC

must depart after the arrival of that commodity on an inter-cluster vehicle. Any violation of

the departure and arrival times of OCCs, with respect to the intra- and inter-cluster trans-

portation routes, is penalised. By iterating between the SNDP and PDP, the penalties—and

corresponding violations—are reduced to zero. The connection between the SNDP and PDP

in the iterative algorithm and the modifications required to impose the time-window violation

penalties are detailed in Hosoda et al. (2022).

Penalising departure and arrival violations in the SNDP Within the SNDP, each

OCC k is assigned an earliest departure ēk and latest arrival l̄k times at the origin ōk and

destination d̄k consolidation locations, respectively. The times ēk and l̄k are given by the arrival

and departure of intra-cluster routes for the first- and last-mile transportation, respectively, of

commodity k. A penalty is imposed for the departure of k from ōk on an inter-cluster vehicle

prior to ēk. Similarly, the arrival of k on an inter-cluster vehicle at d̄k after l̄k incurs a penalty.

The early departure penalty is defined as ϕk
t = Y (ēk− t)2 and the late arrival penalty is defined

as θkt = Y (t − l̄k)
2, where t is the actual departure/arrival time and Y is a constant penalty

factor.
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Penalising time window violations in the PDP There are two types of time windows

that are considered in the PDP. The first are specified in the instance data for all warehouse

locations, which dictate the pickup and delivery times of commodity k. The second are given

by the solution to the SNDP—corresponding to the arrival and departure of each OCC on

inter-cluster vehicles. In the solution algorithm for the PDP, both types of time windows are

transformed into soft constraints to permit flexibility in the arrival and departure of intra-

cluster vehicles. Any violation in the soft constraints is penalised in the objective of the PDP.

Given that the first type of time windows are defined by the input data, their satisfaction takes

a higher priority in the solution algorithm. As such, each time unit violation of the first type of

time window incurs a penalty of 10Y , while a unit violation of the second type incurs a penalty

of 9Y .

4.2.2 Updating pickup and delivery time windows

The solution to the SNDP identifies an inter-cluster transportation schedule that is used to de-

fine the time windows for the departure and arrival of intra-cluster routes. Consider commodity

k and its transportation on an inter-cluster route between consolidation locations i and j. If

k departs i at time t, then when solving the PDP the arrival time window for k at i is set to

[E, t]. Similarly, if k arrives at j at time t′, then the departure time window for the intra-cluster

route transporting k from j is set to [t′, L].

Since the intra-cluster transportation networks are separated into the clustered regions,

the solution to the PDP is used to modify the time windows for the arrival and departure of

OCCs from each region. Consider commodities k and k′, which have their respective origin and

destination in region r. Let i denote the consolidation location of region r. If k is transported

on an intra-cluster vehicle from its origin to i, arriving at t, then the earliest departure time for

k in the SNDP is set to ⌊t⌋∆. Similarly, if k′ departs i at t′ on an intra-cluster vehicle travelling

to its destination, then the latest arrival time for k′′ in the SNDP is set to ⌈t′⌉∆. The functions

⌈·⌉∆ and ⌊·⌋∆ round the time up and down, respectively, to the nearest discretisation interval

based on ∆. Note that the earliest departure and latest arrival times in the SNDP are updated

in each iteration of the algorithm regardless of whether there is a time window violation.
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4.2.3 Perturbation techniques

The iterative algorithm quickly converges to a local optimal solution for the SCSNDP. As such,

to search a larger neighbourhood and potential find improving feasible solutions, perturbation

techniques are necessary to escape regions of local optima.

Shifting the earliest departure and latest arrival times The time windows for the

SNDP are perturbed when it is identified that the iterative heuristic has reached a local optimal

solution. This is indicated by the stalling of the algorithm, which is defined as:

Definition 1. For iteration q, let Zq denote the objective value of the SCSNDP. Given a

memory of Q iterations, let Q := {Zq−1, Zq−2, . . . , Zq−Q} be the set of objective values for the

SCSNDP stored in memory. The algorithm is identified as having stalled in iteration q if

Zq ∈ Q or Zq > maxQ.

When the iterative heuristic has stalled, the departure and arrival times of the OCCs at

the consolidation locations—given by the solution to the PDP—are perturbed prior to the next

execution of the SNDP (see Figure 7). Consider the set of departure and arrival times for the

OCCs in each region r, denoted by T r
D and T r

A . From each of T r
D and T r

A , ρ% of the times are

selected as candidates for perturbation. Each selected time is then shifted by t′, where t′ is

sampled from a normal distribution with mean 0 and standard deviation ∆.

Changing the consolidation locations A larger change to the problem setting for the

iterative algorithm is induced by changing consolidation locations within the given clusters.

This larger change is triggered if there has been no improvement in the objective value for 2

iterations. Changing the consolidation locations is the performed as follows: First, a cluster r is

randomly selected with the probability |N r|/|N |, r ∈ R, where N r are the locations assigned to

cluster r. Then a consolidation location is selected uniformly at random from the set N r. The

iterative solving of the SNDP and PDP continues with the updated consolidation locations.

Following the perturbation of the consolidation locations, if an improvement in the objective

value is not achieved after 2 iterations then the consolidation locations corresponding to the

best solution are restored. One subsequent iteration is performed with the best consolidation

locations, and then the perturbation procedure is executed again.
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4.2.4 Termination conditions

The iterative heuristic terminates if either: i) a specified time limit is reached; ii) the best

consolidation locations are restored after the consolidation location perturbation procedure has

been performed twice; or iii) if the best objective value has been encountered 20 times. When

the algorithm terminates, the objective value of the best solution is returned to the branch-

and-bound algorithm.

4.3 Sequential SRIS

The balancing of computational effort between solving the relaxation and executing the iterative

heuristic is critical for the performance of the sequential SRIS. As such, two different formu-

lations of the relaxation, with increasing complexity, are solved. Additionally, the iterative

heuristic is only deployed at select points during the relaxation solving process.

4.3.1 Relaxation formulations

One particular challenge that comes from solving the SCSNDP is the large number of con-

straints that are a result of unknown warehouse clustering and consolidation locations. This

is particularly evident in the formulation of the SNDP, given by constraints (2). A two-stage

approach for solving the relaxation is designed to address this issue. Initially, the relaxation

is formed with constraints (1) and (3)—termed the WCP-PDP relaxation. In the WCP-PDP

relaxation, constraints (3c)–(3g) are also relaxed, since they depend on values from the SNDP.

If the WCP-PDP relaxation is solved to optimality, then constraints (3c)–(3g) and the

SNDP constraints are reintroduced. The full SCSNDP relaxation is solved to find a tighter

bound on the objective for the SCSNDP.

4.3.2 Executing the iterative heuristic

The iterative heuristic is potentially executed when either i) the LP relaxation is solved at a

node, or ii) a new feasible solution is found for the SCSNDP relaxation. These two points are

identified using callback functions available within general purpose MIP solvers. When either of

these executing points are reached, a configuration for the consolidation locations is extracted

from the LP or integral solution respectively. In the case of fractional LP solutions, the values

of the zj , ∀j ∈ N and γ are rounded to the nearest integer. The set of consolidation locations
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is then given by N̄ = {j | ⌈zj⌋ = 1}. If |N̄ | > ⌈γ⌋, then elements of N̄ are randomly removed

such that |N̄ | = ⌈γ⌋. In the case of an integer feasible solution, then N̄ = {j | zj = 1}.

Since the input to the iterative heuristic depends on a subset of the decision variables for

the SCSNDP relaxation, it is possible that the same configuration of consolidation locations

is encountered more than once. In such cases, the consolidation locations are perturbed to

form a different configuration. Specifically, j′ ∈ N̄ is randomly selected and is replaced by j′′

that is randomly selected from N\N̄ . This new configuration is then checked against previous

configurations. If the new configuration is not unique then the perturbation is performed again.

This perturbation process is executed at most 2|N | times for each configuration. If a unique

configuration is not found, then the iterative heuristic is not executed for the given solution.

The frequency at which the iterative heuristic is executed, as defined by the number of

LP and integer solutions found, is dynamically adjusted during the branch-and-bound search.

Specifically, the iterative heuristic is executed only after η LP and integer solutions are encoun-

tered. Initially η = 1, meaning that the next solution found is used as input to the iterative

heuristic. If the heuristic fails to improve the objective value for the SCSNDP, then η is in-

creased by a factor of 2, i.e. η = 2η. If the heuristic improves the objective value for the

SCSNDP, then η is reset to 1. This dynamic frequency helps balance the computational effort

devoted to solving the relaxation and the execution of the iterative heuristic.

4.4 Parallel SRIS

The parallel SRIS aims to use multi-processor computational resources to accelerate the search

for both upper and lower bounds for the SCSNDP. Designed to achieve this goal, the core

feature of the algorithm is the concurrent solving the relaxation and iterative algorithm. To

balance the computational effort between the relaxation and iterative algorithm, the parallel

SRIS executes two different phases. The first is a racing phase (see Shinano et al. (2018) for

details) that identifies the best settings for the relaxation solver. The second devotes more

effort to the iterative heuristic to accelerate the search for primal feasible solutions.

The racing phase deploys relaxation solvers to all available processors—demonstrated in

Figure 8. In this phase, all relaxation solvers are executed in sequential mode (described in

Section 4.3). Thus, the callback method executes the iterative heuristic within the branch-and-

bound search of the SCSNDP relaxation.

There is very little communication between the solvers and LoadCoordinator during
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Figure 8: ParaSCSNDP– racing phase

the racing phase. Specifically, the initial setup for the relaxation solvers requires parameter

settings that are communicated from the LoadCoordinator. In addition, throughout the

solving of the relaxation, any improvement in the upper bound is communicated back to the

LoadCoordinator. Other than these two points of communication, the relaxation solvers

are executed in isolation.

A unique set of parameters is provided to each of the relaxation solvers. This aims to

diversify the search in the branch-and-bound algorithm, leading to a broad collection of config-

uration locations to be supplied to the iterative heuristics. While any parameter settings can

be provided, in the current implementation only the random seed provided to the MIP solver

differs between the relaxation solvers. Different random seeds have been observed to provide

sufficient variation in the solving process for the SCSNDP relaxation.

The racing phase terminates when the iterative heuristic has been executed a prespecified

number of times by all solvers. In the current implementation this limit is set to 5. At the end

of the racing phase, the 3 solvers with the best found primal bounds are selected as winners.

The winning solvers continue solving the relaxation, while the remaining solvers are terminated.

This triggers the start of the search phase, where the available processors are then used for the

concurrent execution of the iterative heuristic.

The search phase solves the relaxation and the iterative heuristic concurrently. The three

relaxation solvers switch to the parallel execution mode. This involves a change in the callback

method where the consolidation location configurations are now passed to the LoadCoor-

dinator for input to the iterative heuristic on another solver. During the search phase, the
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dynamic frequency mechanism described in Section 4.3.2 is not used. Instead, for each consol-

idation location configurations found, the difference from all previously found configurations is

computed. If a consolidation location configuration has a hamming distance of at least 2 from

all previously found configurations, then it is passed to the LoadCoordinator for input to

the iterative heuristic.

In the search phase, the consolidation locations configuration communicated to the Load-

Coordinator are stored in a queue. Along with the consolidation locations configuration, the

lower bound for the relaxation is also communicated to the LoadCoordinator. This bound

is used to prioritise (lower bound preferred) the selection of configurations for input to one of

the iterative heuristic solvers.

During the iterative heuristic is executed, the solution and objective values are not commu-

nicated back to any relaxation solver. Only the objective values of the best found solutions are

communicated to the LoadCoordinator from the iterative heuristic solvers. The communi-

cated objective values are used to report the progress of the computation.

5 Computational experiments

The computational experiments evaluate the effectiveness of the SRIS at finding high quality

solutions for the SCSNDP. Initially, the sequential SRIS is compared against the multi-armed

bandit algorithm (MAB) developed by Hosoda et al. (2022). This will highlight the benefit of

guiding the search for primal feasible solutions using the branching decisions from the relaxation.

The second set of experiments evaluate the performance of the parallel SRIS. The run time of

the algorithm and the optimality gaps of the found solutions are evaluated. Finally, the parallel

performance—with respect to the processor idle time—is assessed.

The solution algorithm proposed in the paper has been implemented in C++. The parallel

framework is implemented using UG version 1.0. The relaxation from the sequential and

parallel SRIS and all MIPs in the iterative algorithm are solved using Gurobi 9.0.1 (Gurobi).

The computational experiments have been performed on a computational cluster comprised of

Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz CPUs and 125GB RAM per node.
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5.1 Problem instances

A set of problem instances have been generated to be representative of the business practices

of the industry partner. These are smaller than the instances sizes encountered in practice,

but have been used as a proof of concept for the proposed solution algorithm. The smallest

instances are generated to aid the evaluation of the parallel SRIS and assess the quality of

solutions found.

The instance data is generated with a time horizon of 2 days. This matches the requirements

of the industry partner were all pickup and delivery requests are completed within a 2 day

period. All of the warehouses and vehicles must respect the business hours, which are from

6:00 until 20:00.

The warehouse locations are randomly distributed within a square or subregions within

a square. The latter distribution mimics the natural clustering of locations within highly

populated areas. Instances are created with N ∈ {5, 10, 25} locations with the number of

subregions C given so that they are realistic relative to the number of location. As such, for

N = 5 and 10, C ∈ {1, 2}; and for N = 25, C ∈ {1, 5} subregions.

The travel time between locations i and j, denoted by ttij , is selected uniformly at random

in the range [sβ − 0.3sβ, sβ + 0.3sβ], where β is the travel distance and s is the travel speed,

which is set to 60km/h. Finally, the travel distance is computed as the Haversine distance,

which is used as the distance measure in the WCP and to compute the variable travel costs in

the PDP and SNDP.

The number of commodities to be transported between warehouse locations is given by

K ∈ {N, 2N, 4N}; however for N = 25, only instances where K ∈ {25, 50} are used. Each

commodity k has an integer load qk, which is selected uniformly at random from the set [5, 20].

As explained in Section 3, the time windows are indirectly assigned to the warehouse locations

through the commodities. For the pickup time window W p
k , e

p
k is selected uniformly at random

from the business hours on day 1, and lpk = epk+η where η is an integer number of hours selected

from the range [2, 18]. The delivery could occur on the second day, so for the delivery time

window W d
k , e

d
k is selected uniformly at random from the business hours across both days, i.e.

[6:00, 22:00]∪[6:00 + 1, 22:00 + 1]. The end of the delivery time window is set to ldk = edk + η,

where η is defined above. However, it is imposed that ldk ≥ (lpk+ travel time between pick-up

and delivery (ttôrkd̂
r
k
) + load time (gôrk) + unloading time (gd̂rk

)).



5 COMPUTATIONAL EXPERIMENTS 29

The instances are generated with a homogeneous set of vehicles. Each vehicle has a capacity

of U = Qv = 100 units and a total operation time of T v = 10 hours. The use of each vehicle

incurs a fixed cost of f = 6000, and the cost of directly delivering commodities is ξ = 3f .

The PDP solved in the iterative algorithm accounts for the loading and unloading times of the

commodities, which is set to 30 and 10 minutes, respectively, for all locations and commodities.

An instance for the SCSNDP is identified by the tuple (N,K,C), which indicates the number

of warehouses, commodities and subregions. For each unique tuple using the data above, 5

different instances are randomly generated to diversify the test set. As such, a total of 80

instances are used in the computational experiments.

A maximum run time for all algorithms is set to 7200 seconds. The results are aggregated

using an arithmetic mean over the 5 instances generated for the tuple (N,K,C). In all cases,

times are reported in seconds.

5.2 Parallel SRIS settings

Two different settings are used for the parallel SRIS. The default setting, labelled Default , is

described in Section 4.4. Briefly, Default executes a racing phase until sufficient executions of

the iterative heuristic have been performed, then the parallel phase is executed, concurrently

solving the relaxation and executing the iterative heuristic. An alternative setting, labelled

Racing Only , executes the racing phase until the time limit is reached or the relaxation is

solved by all solvers. Racing Only evaluates the performance of using the parallel architecture

to execute a portfolio solver for the SCSNDP.

5.3 Comparing the sequential SRIS and MAB algorithm

The objective values for the best solutions found by the sequential SRIS and MAB algorithms

are presented in Figure 9(a). It can be observed that across all collections of test instances,

the sequential SRIS achieves an objective value that is better than the MAB algorithm in most

cases. Specifically, the sequential SRIS achieves a better objective value in 10 of the 16 test

instance collections. The magnitude of the improvement is captured in Figure 9(b). In the

best case, the sequential SRIS achieves an objective value that is more than 25% better than

the MAB algorithm (the (10, 10, 1) instance collection). In comparison, the best improvement

achieved by the MAB algorithm over the sequential SRIS is 7.69% (the (10, 40, 2) instance

collection). These results demonstrate that using the branch-and-bound search to guide the
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Figure 9: Objective values and relative gap of the best solutions found by the sequential SRIS

and MAB algorithms. The relative gap is (Sequential −MAB)/max{Sequential,MAB}.

iterative heuristic helps to find higher quality feasible solutions to the SCSNDP compared to

using an MAB approach.

In Figure 9, it can be seen that for the larger instances from the test set, the MAB algo-

rithm reports a better performance than the sequential SRIS. This is due to the fact that for

these instances, finding a feasible solution, and improving that solution, is difficult for both

algorithms. In many of these instances, the MAB algorithm is unable to improve upon the first

feasible solution. It appears that the first feasible solution found by the MAB algorithm is quite

good. Thus, in practice it would be valuable to find the first feasible solution by executing just

one iteration of the MAB algorithm and then continuing with the sequential SRIS.

While the sequential SRIS achieves better quality feasible solutions compared to the MAB

algorithm, this comes with a higher computational cost. Figure 10 presents the time until

the best solution is found and total run time for the sequential SRIS and MAB algorithms.

Considering the time to best solution, Figure 10(a), the sequential SRIS requires significantly

more time than the MAB algorithm. This difference becomes more pronounced as the problem

size increases. However, this increase in time to best solution can be explained by the fact

that the iterative heuristic is only a subproblem of the sequential SRIS, as opposed to the

core algorithm for the MAB algorithm. The sequential SRIS must balance the computational

effort between executing the iterative heuristic and solving the relaxation. As a result, less

time is available to search for feasible solutions in the sequential SRIS—compared to the MAB

algorithm—leading to a longer time to find the best solution. However, it must be noted that

the longer run times for the sequential SRIS lead to improved solutions to the SCSNDP in most
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Figure 10: Time to best solution and total run time for the sequential SRIS and MAB algo-

rithms.

instance collections evaluated.

Balancing of computational effort in the sequential SRIS also explains the significant differ-

ence in the run time of the sequential SRIS and MAB algorithms, as shown in Figure 10(b).

Since the sequential SRIS solves the SCSNDP relaxation, the algorithm terminates only when

the optimal solution to the relaxation is found. This differs significantly from the MAB al-

gorithm, which has a number of termination criteria to limit the run time (see Hosoda et al.

(2022) for more details). The additional time devoted to the sequential SRIS, compared to the

MAB algorithm, is spent providing quality guarantees on the feasible solutions to the SCSNDP.

5.4 Evaluating the parallel SRIS

The performance of the sequential SRIS has demonstrated that using a branch-and-bound

search to guide the iterative heuristic helps to find high quality feasible solutions. The parallel

SRIS enhances the performance of the sequential SRIS and achieves a further improvement in

the objective values for the SCSNDP. Figure 11 presents the relative difference between the

parallel SRIS and both the sequential SRIS and MAB algorithms. Importantly, the results

presented in Figure 11(b) show that Racing Only is able to achieve better solutions than both

the sequential SRIS and MAB algorithms. This highlights the value of using a portfolio solver

to find high quality solutions to the SCSNDP. By contrast, Figure 11(a) shows that Default

still achieves an improvement in the objective value across most instance collections, but this

is not as good as Racing Only . Overall, these results show that the parallel SRIS is effective in

finding high quality solutions to the SCSNDP.



5 COMPUTATIONAL EXPERIMENTS 32

1 2 1 2 1 2 1 2 1 2 1 2 1 5 1 5
Instance

25

20

15

10

5

0

5
Re

la
tiv

e 
ga

p 
%

(5,5) (5,10) (5,20) (10,10) (10,20) (10,40) (25,25) (25,50)

Parallel-Sequential
Parallel-MAB

(a) Default

1 2 1 2 1 2 1 2 1 2 1 2 1 5 1 5
Instance

25

20

15

10

5

0

5

Re
la

tiv
e 

ga
p 

%

(5,5) (5,10) (5,20) (10,10) (10,20) (10,40) (25,25) (25,50)

Parallel-Sequential
Parallel-MAB

(b) Racing Only

Figure 11: Comparing the objective of the best solutions found by the parallel SRIS against the

sequential SRIS and MAB algorithms. The relative gap is (Parallel − x)/max{Parallel, x}.

Since the parallel SRIS executes the sequential SRIS with different settings, it is expected

that the former will always improve upon the latter. This is exemplified in Figure 11(b), where

the sequential SRIS is run until optimality or the time limit is hit, but with multiple settings.

By contrast, for Default it is not guaranteed that the setting used for the comparative sequential

SRIS will be selected after the racing mode completes. Since only three settings are selected, it

is possible that from those selected settings it will not find a solution better than the sequential

SRIS. The results in Figure 11(a) indicate that a better winning solver selection scheme could

further improve the performance of the parallel SRIS.

The value of the parallel SRIS is further highlighted when comparing the time until the best

solution is found against the sequential SRIS. The results presented in Figure 12 show that the

parallel SRIS is able to find high quality solutions to the SCSNDP faster than the sequential
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Figure 12: Comparing the time until the best solution for the parallel and sequential SRIS.
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SRIS. Most notably, the time to best solution for Default , Figure 12(a), is significantly shorter

than the sequential SRIS in all except 1 instance collection. However, for the exception, Figure

11(a) shows that the solution quality is much lower for the sequential SRIS. Comparing Figures

10(a) and 12(a), the time to best solution using Default is comparable with the MAB algorithm.

While Racing Only requires more time to find the best solution, comparing Figures 11(b) and

12(b), this additional time leads to a significant improvement in the solution quality. Overall,

the parallel SRIS is able to find better solutions for the SCSNDP faster than the sequential

SRIS.

5.5 Evaluating solution quality

The use of the relaxation in solution algorithms for the SCSNDP aims to both guide the search

for primal feasible solutions and provide quality guarantees on those solutions. Figure 13

presents the optimality gaps achieved by the parallel and sequential SRIS. The optimality gaps

across the complete test set range from 25% up to 70%. While these gaps are quite large, it

is the first time that quality guarantees are available for solutions to the SCSNDP. This result

shows that more work is needed to improve the relaxation formulation and the quality of the

lower bounds.
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Figure 13: The relative optimality gaps achieved by the parallel and sequential SRIS. The

optimality gap is (Upper − Lower)/Upper.

5.6 Parallel performance

An important aspect of parallel algorithms is the effective use of computational resources. A

measure of this effectiveness is the idle time of solvers during the algorithm execution. For
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Figure 14: The run time and idle time of the parallel SRIS.

this paper, the idle time is defined as the time that 1 or more solvers are inactive during the

execution of the algorithm. The results comparing the idle time with the total run time are

presented in Figure 14.

One striking observation from Figure 14 is that the total run time for Default is significantly

less than for Racing Only . In particular, Racing Only exceeds the time limit for half of the

instance collections, where Default did not exceed the time limit for any collection. Comparing

Figures 11 and 14, there is a clear trade-off between the quality of solution and the execution

time of the solution algorithm.

In regards to the idle time, the parallel SRIS exhibits very little idle time across the complete

test set. For Default , shown in Figure 14(a), the largest proportion of idle time (22.87%) is

observed for the (5, 5, 1) instance collection. While this is a high proportion of idle time,

this is the result of very short run times for these instances—64.5 seconds on average. When

considering the complete test set, Default achieves an average idle time of 8.23%. In comparison,

Figure 14(b) shows that Racing Only exhibits a large amount of idle time for the instances that

solve within the time limit—instance collections (5, 5, C), (5, 10, C), (5, 20, C) and (10, 10,

C). For these instances, the smallest and largest proportion of idle time is 20.31% and 59.49%

respectively. Similar to Default , this is partly driven by the very small run times to solve these

instances; however, the (5, 20, C) and (10, 10, C) instance collections exhibit high absolute

values of idle times. This is due to the nature of the racing algorithm, where it requires all

solvers to terminate with the optimal solution to the relaxation. Thus, if a solver requires much

longer run time than the others, this can drive high levels of idle time. The benefit of using

the racing-only mode of the parallel SRIS is seen in the instances that did not solve within the
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time limit. For these instances, the proportion of idle time is much less than 1%. Thus, during

the racing phase of the parallel SRIS, all computing resources are being used to their maximum

effectiveness. Considering the improvement in the objective values, seen in Figure 11(b), this

use of computational resources by Racing Only has a clear benefit.

6 Conclusion

The SCSNDP is a large and complex supply chain management problem involving decisions

on many different levels. Integrating location clustering with long haul and local vehicle rout-

ing introduces challenges in both the modelling and solving of this supply chain management

problem. This paper addresses both of these challenges with the mathematical formulation for

a relaxation of the SCSNDP and an effective parallel branch-and-bound based heuristic. The

formulation developed in this paper is the first time an exact mathematical representation of

this complex problem has been proposed. Building upon the work of Hosoda et al. (2022), the

exact approach, solving the relaxation as a MIP, is combined with an iterative heuristic in a

flexible parallelisation framework.

The proposed parallel heuristic is a major contribution of this paper, which is both effective

for finding high quality solutions to the SCSNDP and flexible in its application to mathematical

programming problems. Both a sequential and parallel version of the SRIS have been developed

to exploit the flexibility in the UG framework. The computational results show that the

sequential SRIS outperforms the MAB algorithm developed by Hosoda et al. (2022) in regards

to solution quality. Further, combined with the solution to the relaxation, for the first time we

are able to compute bounds on the best found solutions to the SCSNDP. The parallel SRIS is

shown to enhance the performance of the SRIS by finding higher quality solutions in less time.

As a major result from this work, the time to best solution when using the parallel framework

is comparable to the MAB algorithm, but with the former achieving a higher solution quality.

This paper represents a major step forward in the solving of the SCSNDP. This is the

first time an exact approach has been proposed, and as such, it is the first time that bounds

on integer feasible solutions have been identified. As such, a clear direction of future work

is to strengthen the bounds achieved by the relaxation and reduce the solution run times.

While these are potentially contradicting research directions, achieving them will lead to both

improved primal solutions and valid bounds. Another important direction of future research is



REFERENCES 36

to improve the primal heuristics for the SCSNDP. The iterative algorithm is an adaptation of the

MAB algorithm proposed by Hosoda et al. (2022). Alternative heuristics, or improvements to

the iterative heuristic, can lead to lower cost solutions for the project partner. The combination

of exact and heuristic methods have been shown to be very successful in improving our ability

to solve the SCSNDP. Further improvements to the parallel framework and relaxation will drive

us closer to solving this complex supply chain management problem to optimality.
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Gábor Nagy and Säıd Salhi. Location-routing: Issues, models and methods. European Journal

of Operational Research, 177(2):649–672, 2007.

Guido Perboli, Roberto Tadei, and Daniele Vigo. The two-echelon capacitated vehicle routing

problem: Models and math-based heuristics. Transportation Science, 45(3):364–380, 2011.

Hanne L. Petersen and Stefan Røpke. The pickup and delivery problem with cross-docking
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