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Abstract. We study the solution of the rolling stock rotation problem
with predictive maintenance (RSRP-PM) by an iterative refinement ap-
proach that is based on a state-expanded event-graph. In this graph, the
states are parameters of a failure distribution, and paths correspond to
vehicle rotations with associated health state approximations. An opti-
mal set of paths including maintenance can be computed by solving an
integer linear program. Afterwards, the graph is refined and the proce-
dure repeated. An associated linear program gives rise to a lower bound
that can be used to determine the solution quality. Computational re-
sults for two instances derived from real world timetables of a German
railway company are presented. The results show the effectiveness of the
approach and the quality of the solutions.

1 Introduction

Scheduling the maintenance of rolling stock is one of the key tasks of every
railway operator. The main objectives are to ensure the safety and the comfort
of passengers, to save costs, and to satisfy all legal regulations. The progress in
computing technology, the increasing availability of sensor data, and the recent
theoretical advances in the field of machine learning allow, for the first time in
history, to not only monitor and predict the health state of rolling stock, but
also to use this information to develop methods for predictive maintenance in
the railway sector. Tailor-made maintenance will ideally lead to a better health
state at a lower cost.

Traditionally, preventive maintenance regimes, like time- or distance-dependent
strategies, are applied in rolling stock rotation planning (RSRP), see, for exam-
ple, Grimm et al. [6], Andrés et al. [I], and Giacco [5]. A first approach to
predictive maintenance for rolling stock was presented by Herr et al. [9]. They
propose a method for threshold-based maintenance considering the remaining
useful lifetime (RUL) of the vehicles. They assume that the vehicles can be
maintained at every station, and model the RUL by point estimates subject to
a linear degradation behavior. Their goal is to jointly assign the vehicles to trips
and to schedule their maintenance. Here, no costs are considered in the model
and the objective is to maximize the minimal degradation value of the vehi-
cles before maintenance. This is done by solving a mixed-integer linear program
(MILP) based on a linearization of a quadratic program. A more general setting
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involving sets of trips instead of individual trips is considered by Herr et al. [10].
The individual trips do not have to start and end at maintenance facilities, but
only the first and the last trip of a set. Again, point estimates are used to model
the RUL subject to a linear degradation behavior.

Bougacha [3] argues that the RUL should not be assumed to be a determin-
istic value, but rather be represented in terms of a probability distribution to
reflect its uncertainty. In this vein, Bougacha et al. [4] improve the approach of
Herr et al. [10] by assuming the health states to be uncertain and by modeling
the degradation as a gamma process. Their main goal is to study and optimize
the duration of the decision horizon for rolling stock planning. They propose a
genetic algorithm as well as two other heuristics to solve the resulting non-linear
formulation. The tasks that need to be operated are also sequences of trips start-
ing and ending at a depot, and the maintenance gets scheduled whenever the
predicted health values exceed some predefined threshold.

According to Wu and Lai [13], two-parameter Weibull distributions are suit-
able for modeling the RUL of rolling stock. They give a MILP formulation using
bigM constraints for minimizing the costs of maintenance, and the expected cost
of failures and of operation. The Weibull distribution is discretized by dividing
the days since the last maintenance into intervals and assigning a number of ex-
pected failures to each. As the earlier mentioned authors, they aim at assigning
sets of trips to vehicles, but their main focus lies on combining different types of
maintenance. They show that combining time-based preventive and predictive
maintenance reduces the total costs of operation, in their example by about 14%.

Finally, Rokhforoz and Fink [12] also state that point estimates are insuffi-
cient for modeling real world applications. They assume the RUL to be a ran-
dom variable and use normal distributions to represent the uncertainty. They
consider maintenance scheduling for railway wagons in a slightly different set-
ting in which passenger demands have to be met and the goal is to maximize
the revenue. Furthermore, the health states of the wagons are considered their
private information leading to a non-cooperative game among them. In their
approach, they use an exponential penalty function to enforce maintenance and
a MILP formulation with bigM constraints to linearize a quadratic formulation.
They solve the problem by applying a hierarchical learning approach.

We propose a novel approach to the RSRP with predictive maintenance
(RSRP-PM) in this article. Its main feature is to treat the RUL by means of a
propagation of distribution parameters. This makes it possible to to deal with re-
alistic large-scale scenarios, and it provides lower bounds that allow to assess the
solution quality. As in the classical RSRP, we assign vehicles to trips and schedule
their maintenance, but we additionally assume that the maintenance is sched-
uled depending on the health states of the vehicles; for a detailed introduction to
RSRP, we refer to Reuther [I1]. Furthermore, we assume that the health states
are uncertain and represented by a probability distribution function (PDF), and
that the degradation affecting the vehicles is randomly distributed. Different
from the literature, the maintenance is planned w.r.t. the failure probability of
the vehicles instead of applying thresholds. Additionally, we assume that each
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trip can be operated individually and is not restricted to begin or end at a depot
or maintenance facility, in order to avoid restricting the solution space. Finally,
non-linear degradation behavior should not be excluded. Indeed, predictions on
the degradation of mechanical components are always uncertain, and usually
possess a non-linear degradation pattern, see Heng et al. [§]. A major problem is
to propagate the random variables representing the health states of the vehicles.
This becomes complicated when considering non-linear degradation functions or
non-stable distributions. To overcome these problems, we propose the use of a
state-expanded event-graph (SEG) approximating the original problem and give
an integer linear programming (ILP) formulation for solving the resulting ap-
proximation. Then, by iteratively refining model, we are able to obtain closer
and closer approximations of the original RSRP-PM instance.

2 Problem Formulation

In this section, we give a mathematical definition of RSRP-PM. First, let Ilg
denote a parametric family of PDFs with parameter space O, i.e., for each § € ©
we obtain a PDF of IIg. An example would be the the parametric family of
normal distributions with fixed variance, e.g., N'(11,0?) with parameter space
{(p,0%)|p € R,0% = 0.1}. Note that we assume Ilg to be a one-parameter
family in the following, i.e., ©® C R.

Next, let V be a set of vehicles. Each vehicle v € V has an initial health
status that is a random variable distributed by a PDF from Ilg, which can
be characterized by its parameter 80 € ©. We assume that the health states
take values in [0, 1], where zero indicates a status that is as good as new, and
one indicates a completely deteriorated component. Furthermore, we are given
a timetable or set of trips 7, where each trip ¢ € T has its individual start and
end location, departure and arrival time, and a monotonic increasing degradation
function A; determining how the health value parameter of the vehicle operating
this trip gets altered. Next, £ is the set of all occurring locations with its subset
of maintenance locations L£); C L. We further associate costs with different
operations: operation costs for each vehicle that is used in the solution, trip costs
associated with the operation of the given trips, deadhead costs that occur when
a vehicle is moved from one location to another, maintenance costs, and failure
costs occurring when a vehicle breaks down. Finally, we demand the balancedness
of the vehicle rotations meaning that the numbers of vehicles located at each
location | € L, at the start and the end of the considered time horizon, need to
coincide.

Given these definitions, the task of RSRP-PM is as follows: We need to assign
sequences of trips, deadhead trips, and maintenance operations to the vehicles s.t.
all given trips are operated. Furthermore, we want the assignment to be balanced,
and to have minimal total costs. Here, the total costs consist of operation costs,
trip costs, deadhead costs, maintenance costs, and expected failure costs, i.e.,
the product of the failure costs with the probability of breakdowns occurring.
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3 The State-Expanded Event-Graph

After defining RSRP-PM, we present a state-expanded version of an event-graph
(SEG) that provides an approximation to the problem. This approximation will
then serve as a basis for formulating an ILP that is used throughout the solution
process.

3.1 Nodes and Layers

First, we generate the nodes of the SEG. To this purpose, we construct lay-
ers, where each layer represents another parameter value for the same set of
events. Note that this corresponds to considering a discretization of the pa-
rameter values. For example, if we consider a real-valued parameter 6 € [0, 1],
D ={0,0.1,...,0.9,1} could be such a discretization, giving rise to a graph with
eleven layers.

Considering an individual layer, a node v := (I,¢, ) is defined by a location
l € L, a time point ¢ within the time horizon, and the parameter value 6 of its
layer. In order to obtain the set of all nodes of a layer, we iterate over all trips
and create a node for its start location and departure time, as well as for its
end location and arrival time. Additionally, we add start and end nodes for each
location, i.e., (1,0,0) and (I, 00,6) for all I € £. This construction is repeated for
each parameter value of the discretization. Furthermore, the set of all nodes is
denoted by V', while V' (6) denotes the set of all nodes of the layer associated with
parameter value 0. Additionally, we define the set of nodes corresponding to a
location [, and a time ¢, to be V (I, t.) := {(I,t,0) e V|l = .t =t.,0 € D}.

Next, we describe how to construct the arcs of the graph. They can be sub-
divided into layer internal arcs and arcs between layers. Here, layer internal arcs
connect nodes with equal parameter value, while the nodes connected by arcs
between layers have differing parameters. Note that all arcs are directed.

3.2 Layer Internal Arcs

We start with the layer internal arcs. As already mentioned, the incident nodes
of these arcs have the same parameter value, i.e., traversing them does not alter
the parameter value and hence no degradation occurs.

First, we add arcs representing vehicles just waiting at their current locations.
To this purpose, we sort all nodes of each location by time and add an arc between
each pair of consecutive nodes. This yields a timeline for each location I € L,
starting with (I, 0,6) and ending with (I, oo, 6).

Next, we add arcs corresponding to possible deadhead trips between differing
locations. These can be obtained by iterating over all nodes v € V() of the
current layer and determining the nodes on the other locations’ timelines with a
time point that is less than or equal to the time point of v minus the necessary
travel time. Afterwards, we add an arc from the latest of these nodes to v.
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3.3 Arcs Between Layers

After adding the arcs that do not change the parameter values and thus stay
within the same layer, we add the operations that can alter these values, i.e.,
trips and maintenance services.

First, we generate the trip arcs. Let l[; and t4 be the departure location and
time, and [, and ¢, be the arrival location and time of trip s € 7. Then, we
iterate over all corresponding departure nodes, i.e., nodes in {(l4,tq,0) |0 € D},
and apply the degradation function of trip s to their parameter values. Let
Ve = (lg,ta,0.) be one of these departure nodes, then the parameter value after
operating s is O,e, = As(6:). But 0, does not need to be contained in D.
Therefore, we need to map it to one of its values or decide that there should not
be a trip arc outgoing of the considered departure node v.. This can be done by
rounding 6,,.,, to the nearest value in D by applying either [-]p or |-]p defined
as follows:

@ if{zeD|z>0}=0
[0]p =4 .

min{z € D|z >0} else

%) if{reD|z<6}=0
10]p =

max{z € D|z <60} else

If we decide to build the graph by using [-]p, we apply this function to the
updated parameter 0,,.,,. If this value is an element of D, e.g., 0o = [Onew |D €
D, we add a trip arc between the respective departure and arrival nodes, i.e.,
ve = (lg,tq,0.) and vy = (la,ta, 0t0), otherwise we omit adding an arc. This
procedure is repeated for all trips s € 7 and all considered parameter values
0 € D. Note that our graph is constructed by consistently applying either [-]p
or |]p.

Next, we add the maintenance arcs. These arcs reset the parameters to some
predefined value and can be seen as replenishment. Let therefore 63, be the
parameter value after maintenance, and define 6,, := [0/]p. Then, we iterate
over all tuples (I,t) for that a node exists and over all maintenance locations
m € L. For each combination, we add a new node vy = (m, ¢+t m +tar,0m)
corresponding to the maintenance service. Here, ¢, is the travel time from [
to m and t); is the duration of the service. Afterwards, we add an arc from all
nodes corresponding to location ! and time ¢, and any choice of § € D, i.e., all
nodes of V(I,t), to the just generated maintenance node vy;. As a final step, we
add the layer internal arcs, i.e., deadhead and waiting arcs, outgoing of v,; as
described above.

Finally, we add artificial nodes and arcs for ensuring the balancedness of
the vehicle rotations and to incorporate the initial health states of the vehicles.
Therefore, we add a node v; for any location where a vehicle is located. After-
wards, for each of these vehicles we add an arc from v; to (1,0, [69]p), where 60
is the parameter value of the initial health state of v. Similarly, we add a node
for each location I € £ symbolizing the end of the time horizon, and add an arc
from every node (I, 00, 6), for all 8 € D, to this node.
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Generating and collecting all the nodes in V' and arcs in A as described above,
yields the SEG G = (V, A). Note that G is generated either completely w.r.t.
[-]p or completely w.r.t. |-|p, and is always dependent on an initial discretiza-
tion D. Finally, we want to highlight that also non-linear degradation functions
can be used during the construction of the presented graph. This gives us the
possibility to address and incorporate a greater variety of degradation behaviors,
which is advantageous over direct MIP formulations of the problem. Addition-
ally, it should be mentioned that the presented graph can be easily adapted
for distance- or time-based preventive maintenance scenarios using thresholds.
In such applications, one chooses the parameter value to represent distance or
time, ensures that the greatest value of the discretization is less than or equal
to the desired threshold, and defines the update function of the trips to sum the
already traveled distance or time with the value associated to the trip.

3.4 Example

An illustrative example for a graph resulting from this construction procedure,
based on the trips given in Table [I} can be found in Figure [I| Here, we assume
that maintenance takes three hours, that the considered time horizon is from
00:00 to 23:59, and that a deadhead trip between A and B takes one hour.
Furthermore, the trips are assumed to increase the parameter values by one,
while the maintenance operations completely reset them to zero. Additionally,
maintenance operations are possible at both locations. Finally, we assume both
vehicles to have an initial parameter value of zero, one vehicle to be located at
A, and the other one to be located at B.

Start End From To

00:00 09:00 A B

11:00 20:00 B A
Table 1. Two exemplary trips.

3.5 Arc Costs

Finally, we need to determine the costs of each arc a € A. The first type of arc
that we want to consider are the waiting arcs, which we assign arc costs of zero.
Next, the deadhead arcs are associated with costs depending on the traveled
distance between their start and end location. The costs of the artificial arcs
heading to and from the artificial start and end nodes are determined like the
costs of deadhead trips, but we additionally add the operation costs of a vehicle
to the starting arcs. The two types of maintenance arcs, i.e., the arcs heading to
a maintenance node and the arcs pointing away from them get assigned different
costs. The first one gets assigned the sum of the maintenance costs plus the
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Fig. 1. lllustration of a SEG w.r.t. the exemplary trips given in Table [I] The different
layers are shaded in gray, and their height corresponds to the value of their parameters.
Here, the black arcs represent waiting or deadheads, the blue arcs represent the trips,
and the orange arcs represent the maintenance arcs that reset the parameter value
to zero. Furthermore, the dashed arcs are the artificial ones necessary for enforcing
the balancedness and setting the initial parameter values of the vehicles. Note that
we combined each pair of consecutive maintenance arcs, i.e., the arc heading to the
maintenance node and the arc leaving it, into one arc for reasons of presentability.

deadhead costs between the start and the end location of the arc, while the
second one gets assigned only the deadhead costs from the maintenance facility
to the arrival location.

The trip costs also consist of two different sub-costs. First, we assume costs
that are inherent to each trip and which might be time- or distance-dependent
as well. Furthermore, we are going to consider the expected failure costs, i.e.,
costs that are associated with a possible breakdown of the vehicle. These costs
depend on the health states of the vehicles, and thus on the parameters associated
with them since these characterize the PDF of the potential failure. Thus, in
order to determine the failure probability, we need to determine the cumulative
distribution function (CDF) of the random variable depicting the vehicles health
status. Therefore, we have to determine an integral of the PDF depending on
the parameters as follows:

P[v has a failure] = P[H, > 1] =1-P[H, <1]=1— / Iy(x) dx =:P(0) (1)

— 00

where H,, is the random variable representing the vehicle’s health status. Here,
a health value of zero is assumed to indicate a status that is as good as new,
while one depicts the maximal degradation of vehicle. Recall that the random
variable H, is distributed by the vehicle’s PDF Iy € Ilg, and that this PDF is
characterized by the parameter 6.
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Regarding our graph, this means that a trip arc a = (vy,v3) connecting
vy = (I1,t1,01) and ve = (lo,to,62) takes a vehicle, which health status is a
random variable distributed by PDF Iy, and alters the health state s.t. it is a
random variable distributed by Iy, when the trip is finished. Thus, the param-
eter value of the arrival node of a trip characterizes the failure probability of
a vehicle during the trip. Hence, the expected failure costs can be determined
by multiplying the costs associated with a failure with P;(6;). We assume the
failure probability depending on the parameter 8, i.e., P;(6), to be a monotonic
increasing function in the following. Note that the presented approach has the
advantage of determining the failure probability of the trips a priori when con-
structing the SEG, and does not have to evaluate P in the objective function
like non-parameter-expanded MIP formulations.

4 Algorithm

In the following, we propose an algorithm for solving RSRP-PM. Our approach
is based on solving the problem induced by the graph-theoretic approximation
presented in the previous section. Here, a solution of RSRP-PM corresponds
to a set of paths in the approximating SEG covering each trip exactly once.
Furthermore, each path has to start and end at an artificial node, and the goal
is to find a set with minimal costs.

4.1 An Exact ILP Formulation for the Approximate Problem

Suppose we are given an instance of RSRP-PM, and have constructed an ap-
proximating SEG G = (V, A) w.r.t. a discretization D and one of the presented
rounding functions, i.e., [-]p or |-|p. Then, a solution to the approximate prob-
lem can be determined by solving the following ILP formulation . The
formulation uses the variables, parameters, and sets given in Table [2|

(AP)
min Z Calq (2)
a€A
s.t. Z Tq =1 vseT (3>
a€A(s)
Z Lo = Z Tq Vo € V\ Vit (4)
agsin(v) a€dout(v)
S oza= Y w VieL (5)
a€sout (v (1)) a€di” (vos (1))

To € Lo Va e A\ AY (6)

art

z, €{0,1} Va € A? (7)

art®
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Object Description
Za € Z>o Integer variable determining how many vehicles are using arc a € A
ca € R>¢ Cost parameter of arc a € A
§"(v) Incoming arcs of node v € V
§°“*(v) Outgoing arcs of node v € V
vo(l)  Artificial start node corresponding to location [ € £
Voo (l)  Artificial end node corresponding to location [ € £
A Set of all arcs of the graph
A% . Set of artificial start arcs
A(s)  Set of all arcs that correspond to trip s € T
T Set of all trips of instance
\% Set of all nodes of the graph
Vart  Set of all artificial nodes, i.e., start and end nodes
L Set of all locations of the instance
Table 2. Variables, parameters, and sets used in ILP formulation (AP).

The objective function aims at minimizing the total costs, i.e., the sum of
deadhead, operation, maintenance, trip operation, and expected failure costs.
Constraints ensure that each trip is operated exactly once, while guar-
antee the flow conservation, i.e., that any vehicle entering a node also leaves
it. Finally, the balancedness, i.e., the fact that the same amount of vehicles is
located at each location at the beginning and the end of the considered time
horizon, is ensured by constraints , while @ and define the domains of
the arc variables.

Lemma 1. LetZ be a RSRP-PM instance and G be a SEG for T based on [-]p
and any discretization D. Furthermore, let (AP) be the ILP formulation for the
approximate problem given by G. Then any incumbent or solution of (AP) is
feasible w.r.t. to T.

Lemmal(I]relies on the observation that all parameter values get overestimated by
applying [-]p. Hence, some solutions of the original problem might be eliminated
because the degradation of the vehicles is overestimated. Thus, the vehicles would
get maintained before it is necessary, but no new feasible solutions are added,
unlike when considering the SEG w.r.t. |-|p, where the parameters of the health
states get underestimated.

4.2 An ILP-Based Refinement Heuristic

The construction of the SEG involves roundings of parameter values to the con-
sidered discretization, which produces approximation errors. Thus, the solutions
to (AP), for the induced approximate problem represented by the SEG, are
not necessarily “good” solutions for the original RSRP-PM instance. However,
the errors can be reduced by iteratively refining the discretization and thus in-
creasing the approximation quality of the solution. In this vein, we propose the
following solution method for RSRP-PM relying on Lemma
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It is plausible that the initial discretization determines the complexity of the
instance since the size of the resulting ILP formulation depends on the number
of vertices and arcs contained in GG. Hence, we start with a coarse discretization
D leading to a probably inaccurate approximation of the problem. Afterwards,
we refine D and repeat this procedure until no further improvement is made or
a given time limit is met, see Algorithm [I] Within this algorithm, § € R and
f € R are a lower and an upper bound on the parameter values of the initial
discretization, with § < 0, and s € Ry is its step-size. Additionally, A € (0,1)
is a decay parameter for the step-size, and iy, € Zso determines how many
iterations without improvement are allowed.

Note that the value of a heuristically generated solution x w.r.t. the original
RSRP-PM instance, i.e., v(x), can be obtained by simply tracking the paths in
G given by x. These paths correspond to the schedules of the vehicles, and if
we apply and propagate the original parameter values along them, we determine
their values w.r.t. the original instance.

Algorithm 1: Heuristic for RSRP-PM

Data: RSRP-PM instance, 6, 0, s, \, imax
Result: Solution to the given RSRP-PM

1 24 00
21+ 0
3 while time limit not reached and i < i;ax do
4 D+ {0,0+5,0+2s,..,0}
5 G <+ SEG based on D w.r.t. [-]p
6 ¢ < solution of (AP) for G and D
7 if v(c) < v(z) then
8 T+ cC
9 i< 0

10 else

11 | ii+1

12 end

13 § 4 As

14 end

15 return

4.3 Bounds

Consider an instance of RSRP-PM and any approximating SEG G. Then, the
costs associated with any operation, i.e., with any arc, are equal except the
expected failure costs since these depend on the parameter values associated with
the trips. During the construction of G w.r.t. to either [-]p or |- |p, the parameter
values get rounded and thus, the approximation always over- or underestimates
them compared to their values in the original RSRP-PM instance. But the false
estimations are all done consistently.
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Since we consider a monotonic increasing failure probability P¢, the solution
of (AP) always over- or underestimates this probability, and hence the failure
costs. Therefore, the value of an optimal solution to (AP) gives either an upper
or a lower bound on the objective value of the original instance. Note that a
similar approach is also possible when other PDFs are considered. Then, [-]p
and |-]p have to be modified s.t. they round the parameter values in the direction
of VIP; and —VPy, respectively.

Thus, independent of the choice of D, we are able to obtain an upper bound
on the optimal objective value of a RSRP-PM instance by determining any
solution to (AP), for a graph constructed w.r.t. [-]p. Analogously, a lower bound
can be determined by an optimal solution to (AP), for a graph constructed w.r.t.
|:]p. Furthermore, since we are solving a minimization problem, the value of an
optimal solution to the linear program (LP) relaxation of (AP), i.e., (AP)Lp,
gives a lower bound on the value of an optimal solution of (AP). Hence, we
are able to obtain a second lower bound by an optimal solution to (AP)rp, for
a graph constructed w.r.t. |-|p. These bounds will be abbreviated by UBap),
LB(ap), and LB(ap).Lp, and the following proposition applies.

Proposition 1. Let z* be an optimal solution to a given RSRP-PM instance,
then it holds

UBiap) > 2" > LBiap) > LBap).LP

Note that the tightness of the bounds does not have to increase with the
granularity of the applied discretization D. Finally, an approach for determining
lower bounds on an RSRP-PM instance can be derived by modifying the just
given heuristic. The resulting approach is given by Algorithm [2| and uses the
same parameters as Algorithm

5 Computational Results

In this section, we describe the setup and the test instances that we used to
evaluate our iterative refinement heuristic and our lower bounds. Afterwards,
we report on the results we obtained by applying both algorithms.

5.1 Computational Setup

We ran all our computations on a machine with Intel(R) Xeon(R) Gold 5122 @
3.60GHz CPUs, eight cores, and 32GB of RAM. All algorithms were implemented
with Julia v1.8.2 using Gurobi v9.5.1 as internal MIP solver, see [2] and [7]. Note
that we set the focus of Gurobi on finding feasible solutions, chose the barrier
method for solving the continuous models, and set the amount of time spend in
MIP heuristics to 10%.
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Algorithm 2: Lower Bound Heuristic for RSRP-PM

Data: RSRP-PM instance, 6, 0, s, \, imax
Result: Lower bound for the given RSRP-PM

1«0
2140
3 while time limit not reached and i < iyax do
4 D+ {0,0+5,0+2s,..,0}
5 G < SEG based on D w.r.t. |-|p
6 ¢ + optimal objective value of (AP)rp for G and D
7 if ¢ > [b then
8 b+ c
9 1+ 0
10 else
11 | ii+1
12 end
13 $ 4 As
14 end

15 return [b

5.2 Test Instances

The test instances that we used to conduct our computations are based on real
timetables of a private German railroad company, and thus give realistic scenar-
ios for testing our approaches. In the following, we describe the assumptions we
made concerning the instances, in order to determine meaningful examples for
predictive maintenance of non-safety relevant technology. Thus, we will consider
components that are not subject to official maintenance regulations. A failure
of such a component would cause additional costs related to the damage that
needs to be repaired and to the caused inconvenience but would not lead to an
abortion of a trip. As an example, we have therefore chosen the doors of the
train.

Hence, we assume the degradation parameter of each trip t € 7 to depend on
the number of opening-closing-cycles of the train doors. We suppose that, at each
stop of ¢, the number of these cycles is an integer uniformly taken from {1, ..., 4},
i.e., U{1,4}. Furthermore, we assume that each door can complete about 500 of
these cycles on average before a first failure occurs. Thus, the parameter value
associated with a trip containing n stops is 75 - >, Xi, where X; N Uu{1,4}.
Next, we assume the degradation function to be A;(6,) = 0, + « - 6;, where 6,
is the parameter value of the vehicle before the operation of the trip and 6; is
the parameter value corresponding to the degradation of t. Additionally, o =
1.02 is an aging coefficient depicting the fact that used components deteriorate
faster than new ones. Maintenance is assumed to reset the parameter value to
f# = 0.05 and we further assume that also the initial parameters of the health
states are equal to 8 = 0.05 for all vehicles. Furthermore, the family of normal
distributions with variance o2 = 0.1, i.e., A'(#,0.1), will be considered as the

n
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parametric family of PDFs in the following. Note that using this PDF leads to a
failure probability function Py that is monotonic increasing. Finally, we use the
discretization D = {0, s,2s,...,1}U{0.05} depending on step-size s, where 0.05
is added to ensure that the parameter values after maintenance as well as the
initial values are already contained within D.

The two timetables considered in the following are taken from publicly avail-
able sources of a private German railroad company. The RSRP-PM instances
derived from these timetables, are abbreviated by T and R and consist of 180
and 585 trips, respectively. All of their trips take place within one week and are
operated between 18 locations, of that three are maintenance facilities. Addi-
tionally, they possess 9 and 17 vehicles, respectively.

Furthermore, the deadhead costs are assumed to be 6 units per kilometer, the
trip costs are 3 units per kilometer, and the maintenance costs are 2,000 units
at two of the workshops and 1,000 units at the third one. Finally, the failure
costs are 50,000 units per breakdown and the operation costs are 3,300,000 units
per year and vehicle, i.e., 63,288 units for using a vehicle in the considered time
horizon of one week.

5.3 Results

Throughout this section, we present, describe, and evaluate the computational
experiments we conducted on the just introduced test instances for RSRP-PM.
Therefore, we applied the heuristic and the lower bound approach, see Algo-
rithm [I] and [2], with different instantiations of s and A. The detailed results can
be found in Tables [3]- [0] given in the Appendix.

Lower Bounds First, we describe the results obtained by the lower bound
approach presented in Section [4.3] Therefore, we ran Algorithm [2 using different
instantiations of the step-size s € R and the decay parameter A € (0,1).
All computations had a time limit of one hour and the results can be found
in Tables [3] and [l Throughout these tables, the first two columns contain the
values of the step-size s and the decay parameter \ used for instantiating the
approach. The third column contains the best obtained lower bound by the
considered instantiation. In the fourth one, the gap of the current lower bound
to LBnax is given in percent, where LB,.x is the best obtained lower bound
among all choices of s and A. Finally, the last two columns contain the time
required for obtaining the lower bound, and the time to obtain an e-good bound,
i.e., a bound that has a value of at least (1 — ¢) LByyax. Note that the values of
the lower bounds as well as the computation times are rounded to the nearest
integer. Furthermore, the best bound is marked in bold, and the runs marked
with an asterisk are stopped due to an excess of the provided memory. Whenever
we occur a 3,600 in the column of computation time, the current LP was stopped
and its best lower bound was taken as a solution.

The detailed results for instance 7' can be found in Table[3] For this instance,
we obtained a best lower bound with value LB,,.x = 1,100,971, while the worst
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lower bound determined by any instantiation has a value of 1,099,944. Therefore,
the gap among all runs is only 0.1%. Here, more aggressive decay, i.e., smaller
choices of A, seem to have a good influence on the performance of the approach
since the instantiations using A € {0.8,0.9} were never able to obtain a result
with value LBy,.x. Furthermore, four of the five best results are obtained by
choosing an initial step-size of s € {0.5,0.6,0.7}. However, seven of the eight
memory exceeds are caused by these small choices of s since the resulting graph
approximations get too fine too fast resulting in computationally intractable LPs.
Nevertheless, all instantiations were able to obtain high quality lower bounds
within short time since all determined a lower bound with value greater than
99.5% of LBpax in under 250 seconds. The development of the lower bound
over time, for instantiations with step-size s = 0.07, are visualized by the graphs
coming from below in Figure [2|

Next, we describe the results w.r.t. instance R, which can be found in Table[d]
For this instance, we obtained a best lower bound with value LB,2x = 2,889,913.
Here, the lower bound determined by the worst performing instantiation has a
value of 2,860,158 having a gap of 1%. Choosing A € {0.6,0.7,0.8} leads to the
fastest determination of a solution with a value of 98% of LBy, or higher,
and also the best bounds are obtained by using a medium aggressive decay, i.e.,
A = 0.7. Applying this choice of A, the time to e-good solutions is lower than 950
seconds, i.e., 16 minutes. Next, choosing A = 0.9 resulted, except for a step-size
of s = 0.07, in the slowest approaches, and applying A € {0.5,0.6} almost always
led to an exceed of the memory limit causing ten out of 13 excesses. Furthermore,
the step-size does not seem to have such a big influence on the quality of the
lower bound than previously. Nevertheless, the best results are obtained when
a bigger step-size like 0.1 or a medium step-size like 0.07 is applied. Since these
choices lead to coarser discretizations, we obtain smaller graph approximations
resulting in smaller LP formulations. However, the results generated by s = 0.06
are the best on average.

Summarizing, the influence of the instantiations behaves as expected since
the parameters s and A should be chosen as fine as possible to speed up the
computation of high quality lower bounds. Nevertheless, the parameters should
also be increased with an increasing size of the considered instances in order
to avoid exceeding the memory limit, due to the size of the LP formulations
resulting from small choices of the parameters.

Heuristic Solutions After presenting the obtained lower bounds, we discuss
the results determined by the heuristic described in Section Therefore, we
applied Algorithm[I]to both test instances using different choices of the step-size
s € Ry and the decay parameter A € (0,1). Again, a time limit of one hour was
used and the results can be found in Tables[f| and [6] As previously, the first two
columns of these tables contain the choices of s and A, while the third and fourth
ones contain the best obtained solution as well as the gap of the current best
solution to Tpes¢, which is the best solution obtained among all instantiations.
Next, the fifth column contains the time required to determine the best solution,
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Fig. 2. Results obtained by the heuristic and the lower bound approach for instance 7'
during the first 250 seconds, for a step-size of s = 0.07. The dashed gray lines represent
the best obtained lower bound and the best obtained heuristic result, respectively.

and the sixth one contains the number of generated solutions. Furthermore, the
table containing the results of instance T has an additional seventh column
containing the time required to obtain an e-good solution, i.e., a solution with
value at most (1 + €) Zpese- This column was not added for instance R since
many instantiations obtained only one solution. Additionally, a computation
time of 3,600 seconds indicates that the currently active ILP solution process
was stopped and the best incumbent was taken as solution. Finally, note that we
used the best obtained solution so far as an initial solution for future iterations.

First, we comment on the results for instance 7, which can be found in
Table bl Here, all instantiations obtained the same result with value Zpest =
1,103,819. Thus, we decided to additionally evaluate the time until an e-good
solution, for ¢ = 0.1%, is found. Obviously, the instantiations finding good so-
lutions early on, are the ones with the smallest solution pools. The fastest in-
stantiations obtaining e-good results are the ones using A € {0.5,0.6,0.7}, while
the ones that determine xpes; first rely on A € {0.6,0.7,0.8}. Here, the biggest
choice of A = 0.9 leads to slow convergence towards xp.s: because the solution
space is explored more precisely. This is an expectable behavior since the dis-
cretization is refined to a lesser extent and thus more often compared with the
more aggressive choices of A\. On the other hand, choosing A = 0.5 leads to a
memory excess in four out of six cases, and especially the combination of a small
step-size s = 0.05 with aggressive decay can result in exceeding the memory
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after already 55 seconds. Here, the discretizations get too fine too fast result-
ing in big ILP formulations. Apart from this, the choice of s does not have a
great influence on the performance. A quite surprising observation is that the
biggest solution pool is obtained by the choice of (s, A) = (0.07,0.9) although the
choice of (0.1,0.9) should have converged more slowly to a discretization with
a step-size approaching zero, and thus should have led to more solutions. This
could be the case since a solution obtained at an early stage by the latter one
tends to be optimal w.r.t. the following generated discretizations. Therefore, the
solution processes of the individual ILPs are faster and a smaller solution pool
is generated. An illustration for the trajectories of the heuristic’s results can be
found in the graph coming from above in Figure [2] where different instantiations
using a step-size of s = 0.07 are depicted.

Next, we evaluate the solutions obtained for instance R, see Table[6] Here, we
want to highlight the relationship between the number of determined solutions
and the time until the best solution is obtained. Whenever only one solution is
found, it is always found before the time limit is met. Therefore, we conclude
that the ILP formulation generated during the second iteration, after refining
the initial discretization, is not able to obtain an incumbent with better solution
value before reaching the time limit. Hence, the second ILP seems to be compu-
tationally intractable in these cases. But in the cases where two or three solutions
are found, the best solution is always the incumbent of the last ILP run. This
can be seen as these solutions are all obtained after 3,600 seconds, i.e., when
the last run was aborted. This indicates that the considered ILPs can be solved
efficiently, which is especially the case for instantiations with s € {0.06,0.07},
i.e., small choices of s. Furthermore, the decay parameter A does not have a big
effect when solving instance R since the discretization gets refined at most twice.
Hence, the instantiations starting with a small step-size are advantageous since
their approximation errors tend to be smaller. Since we observe at most three
solutions, and do not find any memory excesses, it seems to be meaningful to
combine a small initial step-size with an aggressive choice of A when solving the
bigger instance R. However, the best solution overall is obtained by applying
A=0.38.

Summarizing, and in comparison to the results of the lower bound, we can
state that the heuristic does not exceed the memory limit since it is much harder
to solve the ILP than the LP. Therefore, more time is spent for solving the
formulations, and only one to three iterations are made for instance R and
four to 14 for instance T. Hence, it seems to be reasonable to use a small or
medium-sized decay parameter A together with a step-size that is decreasing
with the increasing size of the instance. Hereby, we are able to obtain close
approximations without too many refinement steps.

Combined Results After discussing the results obtained by the heuristic and
by the lower bound approach separately, they need to be put in context with each
other. For instance T, the best lower bound is 1,100,971, while the best solution
is 1,103,819 leading to a gap of 0.258%. A similarly tight gap of 1.026% can be
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obtained for instance R, where we determined a lower bound of 2,889,913 and a
solution of 2,919,862. This shows the effectiveness of the presented approaches,
since we are able to obtain feasible solutions and show their high quality within
two hours of combined computation time for both real world instances. Finally,
if we just consider the time necessary to determine e-good solutions, we are able
to determine a feasible solution and a lower bound with a gap of 0.856% for
instance T within 100 seconds.

6 Conclusion

In this article we introduced RSRP-PM, a modified variant of the well known
RSRP, which can be applied for integrated rolling stock planning with predictive
maintenance scheduling. We presented an approximation to the defined problem
by a state-expanded event-graph and gave an ILP formulation for solving the
induced graph problem. From this formulation, we derived a primal heuristic
as well as an approach to determine lower bounds for RSRP-PM relying on
iteratively refining the approximating graph. Afterwards, we reported on the
results obtained by applying these approaches to two test instances derived from
real world timetables of a private German railway company.

These results, and the gaps resulting from combining the obtained solutions
and lower bounds, show the effectiveness of our approaches for real world in-
stances. We are able to find solutions and lower bounds, with a gap of 1%
or less, within two hours of combined computation time for instances with a
time horizon of one week. Although we considered a one-parameter probabil-
ity distribution for modeling the failure probability of the vehicles, it should be
mentioned that our approaches are also capable of handling time- or distance-
based preventive maintenance instances. Therefore, the considered parameter
needs to be exchanged with the traveled distance or the passed time. Finally, we
want to highlight that the presented approaches do not rely on the linearity of
the degradation functions yielding the possibility to incorporate more complex
update functions as well as non-stable PDFs.

Possible next steps for future research, are a comparison of the given ap-
proaches to today’s state-of-the-art approaches although they mainly tackle pre-
ventive maintenance scenarios with linear update functions. This is of particular
interest, since Bougacha [3] states that authors in the field of predictive main-
tenance compare their work only to other maintenance regimes instead of com-
paring it to the approaches of other authors. Additionally, we aim to generalize
our approaches to more than one dimension in order to apply more sophisti-
cated probability distributions for modeling the failure probabilities. Finally, it
would be meaningful to investigate the influence and the interaction of the cost
coefficients, especially of the failure costs and maintenance costs.
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Appendix

Table 3. Results for the lower bounds on instance 7T using the lower bound approach
with different instantiations for the step-size s and the decay parameter A. The best
lower bound is marked in bold and an asterisk * indicates that the heuristic stopped due
to exceeding the memory limits. Additionally, LBpyax is the best lower bound obtained
among all instantiations.

s M LB Gap to LBpmax in % Time in Secs. Time to 99.5% LBmax in Secs.
0.1 0.9 1,099,944 0.093 2,549 187
0.1 0.8 1,100,634 0.031 3,510 104
0.1 0.7 1,100,466 0.046 3,306 169
0.1 0.6 1,100,761 0.019 *3,134 129
0.1 0.51,100,633 0.031 *1,664 90
0.09 0.9 1,099,944 0.093 2,597 186
0.09 0.8 1,100,403 0.052 1,510 122
0.09 0.7 1,100,401 0.052 *1,690 110
0.09 0.6 1,100,296 0.061 1,135 160
0.09 0.5 1,100,568 0.037 2,125 120
0.08 0.9 1,100,308 0.060 3,600 226
0.08 0.8 1,100,413 0.051 2,244 109
0.08 0.7 1,100,351 0.056 2,875 126
0.08 0.6 1,100,640 0.030 1,802 84
0.08 0.5 1,100,285 0.062 1,987 146
0.07 0.9 1,100,090 0.080 3,193 243
0.07 0.8 1,100,450 0.047 3,069 134
0.07 0.7 1,100,466 0.046 3,375 169
0.07 0.6 1,100,699 0.025 2,867 106
0.07 0.5 1,100,971 0.000 3,600 195
0.06 0.9 1,100,035 0.085 2,591 213
0.06 0.8 1,100,708 0.024 2,583 125
0.06 0.7 1,100,441 0.048 *2,292 69
0.06 0.6 1,100,761 0.019 3,154 135
0.06 0.5 1,100,033 0.085 *1,042 217
0.05 0.9 1,100,015 0.087 3,240 138
0.05 0.8 1,100,450 0.047 2,354 164
0.05 0.7 1,100,945 0.002 2,748 149
0.05 0.6 1,100,371 0.054 *1,487 182

0.05 0.5 1,100,633 0.031 1,577 83
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Table 4. Results for the lower bounds on instance R using the lower bound approach
with different instantiations for the step-size s and the decay parameter A. The best
lower bound is marked in bold and an asterisk * indicates that the heuristic stopped due
to exceeding the memory limits. Additionally, LBmax is the best lower bound obtained
among all instantiations.

s A LB Gap to LBmax in % Time in Secs. Time to 98% LBmax in Secs.
0.1 0.9 2,861,667 0.977 1,521 909
0.1 0.8 2,872,270 0.611 2,133 384
0.1 0.7 2,889,913 0.000 3,392 737
0.1 0.6 2,875,657 0.493 *1,274 469
0.1 0.52,869,314 0.713 *850 850
0.09 0.9 2,861,667 0.977 1,544 918
0.09 0.8 2,871,319 0.643 2,834 339
0.09 0.7 2,875,879 0.486 2,092 512
0.09 0.6 2,863,917 0.900 *1,866 241
0.09 0.5 2,876,335 0.470 *1,104 250
0.08 0.9 2,868,637 0.736 *1,942 938
0.08 0.8 2,872,270 0.611 2,187 395
0.08 0.7 2,874,611 0.529 2,672 557
0.08 0.6 2,868,919 0.726 2,363 280
0.08 0.5 2,880,863 0.313 *1,499 326
0.07 0.9 2,860,158 1.030 2,674 675
0.07 0.8 2,864,283 0.887 *1,181 498
0.07 0.7 2,889,913 0.000 *3,516 741
0.07 0.6 2,877,641 0.425 *2,883 341
0.07 0.5 2,869,972 0.690 *2,166 484
0.06 0.9 2,883,609 0.218 3,537 1,282
0.06 0.8 2,880,167 0.337 2,569 692
0.06 0.7 2,879,384 0.364 2,234 298
0.06 0.6 2,875,657 0.493 *1,306 482
0.06 0.5 2,879,012 0.377 3,139 585
0.05 0.9 2,863,404 0.917 1,661 1,120
0.05 0.8 2,863,906 0.900 2,499 944
0.05 0.7 2,868,584 0.738 1,546 366
0.05 0.6 2,875,376 0.503 *1,895 257

*

0.05 0.5 2,869,314 0.713 827 827
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Table 5. Results for the solutions to test instance T using the heuristic with different
instantiations. The best result is marked in bold and runs stopped due to exceeding
the memory limit are marked with an asterisk " By e-good solution we refer to a
solution having a value less than (1+¢) times the best obtained solution, for ¢ = 0.1%.
Additionally, xpes: is the best solution obtained among all instantiations.

S A Best Sol. Gap to Tyest in % Time in Secs. # Sols Time to e-good Sol. in Secs.

0.1 0.91,103,819 0.0 216 11 71
0.1 0.81,103,819 0.0 100 6 45
0.1 0.71,103,819 0.0 246 7 63
0.1 0.61,103,819 0.0 845 8 75
0.1 0.51,103,819 0.0 685 6 36
0.09 0.9 1,103,819 0.0 214 10 69
0.09 0.8 1,103,819 0.0 2,516 9 68
0.09 0.7 1,103,819 0.0 132 6 67
0.09 0.6 1,103,819 0.0 97 5 60
0.09 0.5 1,103,819 0.0 268 5 42
0.080.9 1,103,819 0.0 236 9 118
0.08 0.8 1,103,819 0.0 89 5 37
0.08 0.7 1,103,819 0.0 410 9 127
0.08 0.6 1,103,819 0.0 210 5 29
0.08 0.5 1,103,819 0.0 153 5 87
0.07 0.9 1,103,819 0.0 398 14 149
0.07 0.8 1,103,819 0.0 304 8 54
0.07 0.7 1,103,819 0.0 427 8 68
0.07 0.6 1,103,819 0.0 576 6 33
0.07 0.5 1,103,819 0.0 444 6 55
0.06 0.9 1,103,819 0.0 1,199 11 100
0.06 0.8 1,103,819 0.0 118 8 81
0.06 0.7 1,103,819 0.0 76 5 39
0.06 0.6 1,103,819 0.0 3,600 8 70
0.06 0.5 1,103,819 0.0 81 4 43
0.050.9 1,103,819 0.0 220 9 124
0.05 0.8 1,103,819 0.0 139 6 46
0.05 0.7 1,103,819 0.0 260 8 60
0.05 0.6 1,103,819 0.0 *55 4 37
0.05 0.5 1,103,819 0.0 238 4 38
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Table 6. Results for the solutions to test instance R using the heuristic with different
instantiations. The best result is marked in bold and runs stopped due to exceeding
the memory limit are marked with an asterisk *. Additionally, yes: is the best solution
obtained among all instantiations.

s A Best Sol. Gap to Tyes: in % Time in Secs. # Sols

0.1 0.9 2,944,973 0.853 3,600 2
0.1 0.8 2,952,887 1.118 3,087 1
0.1 0.7 2,952,887 1.118 2,989 1
0.1 0.6 2,952,887 1.118 3,075 1
0.1 0.52,938,617 0.638 3,600 2
0.09 0.9 2,945,547 0.872 2,428 1
0.09 0.8 2,945,547 0.872 2,461 1
0.09 0.7 2,945,547 0.872 2,454 1
0.09 0.6 2,938,252 0.626 3,600 2
0.09 0.5 2,945,547 0.872 2,471 1
0.08 0.9 3,001,313 2.714 3,600 2
0.08 0.8 3,065,579 4.753 3,224 1
0.08 0.7 2,964,094 1.492 3,600 2
0.08 0.6 2,928,834 0.306 3,600 2
0.08 0.5 2,982,498 2.100 3,600 2
0.07 0.9 3,004,134 2.805 3,600 2
0.07 0.8 2,957,688 1.279 3,257 2
0.07 0.7 2,926,225 0.217 3,600 2
0.07 0.6 2,961,882 1.419 3,600 2
0.07 0.5 2,933,881 0.478 3,600 3
0.06 0.9 2,932,479 0.430 3,600 2
0.06 0.8 2,919,862 0.000 3,600 2
0.06 0.7 2,958,056 1.291 3,600 2
0.06 0.6 2,924,767 0.168 3,600 3
0.06 0.5 2,924,037 0.143 2,837 2
0.05 0.9 2,938,857 0.646 3,004 1
0.05 0.8 2,938,857 0.646 3,003 1
0.05 0.7 2,938,857 0.646 3,006 1
0.05 0.6 2,924,198 0.148 3,600 2
0.05 0.5 2,938,857 0.646 2,989 1
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