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Abstract

Basking sharks are thought to be one of the most efficient filter-feeding fish
in terms of the throughput of water filtered through their gills. Details about
the underlying morphology of their branchial region have not been studied due
to various challenges in acquiring real-world data. The present thesis aims to
facilitate this, by developing a mathematical shape model which constructs the
3D structure of the head skeleton of a basking shark using annotated landmarks
on a single 2D image. This is an ill-posed problem as estimating the depth of
a 3D object from a single 2D view is, in general, not possible. To reduce this
ambiguity, we create a set of pre-defined training shapes in 3D from CT scans
of basking sharks. First, the damaged structures of the sharks in the scans
are corrected via solving a set of optimization problems, before using them as
accurate 3D representations of the object. Then, two approaches are employed
for the 2D-to-3D shape fitting problem–an Active Shape Model approach and
a Kendall’s Shape Space approach. The former represents a shape as a point
on a high-dimensional Euclidean space, whereas the latter represents a shape as
an equivalence class of points in this Euclidean space. Kendall’s shape space
approach is a novel technique that has not yet been applied in this context,
and a comprehensive comparison of the two approaches suggests this approach
to be superior for the problem at hand. This can be credited to an improved
interpolation of the training shapes.
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Kurzzusammenfassung

Riesenhaie zählen zu den effizientesten Filtrierern hinsichtlich des durch die
Kiemen gefilterten Wasservolumens. Die Kiemenregion dieser Tiere besitzt eine
markante Morphologie, die jedoch bisher nicht umfassend erforscht werden kon-
nte, da es schwierig ist, reale Daten dieser Tiere zu erheben. Die vorliegende
Arbeit zielt darauf ab, dies durch die Entwicklung eines mathematischen For-
mmodels zu ermöglichen, das es erlaubt, die 3D-Struktur des Schädelskeletts
anhand von Landmarken, die auf einem 2D-Bild platziert werden, zu rekon-
struieren. Die hierzu benötigte Tiefenbestimmung der Landmarken aus einer
2D-Projektion ist ein unterbestimmtes Problem. Wir lösen dies durch die Hinzu-
nahme von Trainingsformen, welche wir aus CT-Scans von Riesenhaien gewinnen.
Der Zustand der tomografierten Exemplare erfordert jedoch einen vorhergehen-
den Korrekturschritt, den wir mit Hilfe eines Optimierungsansatzes lösen, bevor
die extrahierten Strukturen als 3D-Trainingsformen dienen können. Um die
3D-Struktur des Schädelskelettes aus 2D-Landmarken zu rekonstruieren, vergle-
ichen wir zwei Ansätze – den sogenannten Active-Shape-Model (ASM)-Ansatz
und einen Ansatz basierend auf Kendalls Formenraum. Während eine Form
des ASM-Ansatzes durch einen Punkt in einem hochdimensionalen Euklidis-
chen Raum repräsentiert ist, repräsentiert eine Form im Kendall-Formenraum
eine Äquivalenzklasse von Punkten des Euklidischen Raumes. Die Anwendung
des Kendall-Formenraumes für das beschriebene Problem ist neu und ein um-
fassender Vergleich der Methoden hat ergeben, dass dieser Ansatz für die spezielle
Anwendung zu besseren Ergebnissen führt. Wir führen dies auf die überlegene
Interpolation der Trainingsformen in diesem Raum zurück.
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1 Introduction and Related Work

In recent years, the problem of estimating the 3D shape of an object from a 2D
view has gained great attention from the computer vision community. In this
thesis, we aim to retrieve the 3D shape of a non-rigid object from a single monoc-
ular 2D image. This is a promising but challenging problem, with widespread
applications. A few examples include autonomous driving, robot assisted surgery
and navigation, and in computer aided design (CAD). Estimating the depth of
a 3D object from a single 2D view is an ill-posed problem. Common approaches
to deal with this include:

1. Using a series of 2D images [How04, CWLZ13] or multiple cameras [LMPF07,
JLT+12, MKGH15]: This is a widely used approach, e.g. in photogramme-
try, as it greatly reduces the depth ambiguity by providing different view-
points of a 3D object, via a stream of 2D images or multiple calibrated cam-
eras. A common practise is to extract silhouettes from multiple 2D images,
and construct a 3D shape using volume intersection [BL01] or a voxel-based
approach [CBK03]. Other approaches include identifying corresponding
points in 2D images for calculating depth [CWLZ13, PF01, AACM14].
The reader may refer to the book by Theo Moons et al. [MVGV09] for
details about this approach.

2. Physical modelling of the object [SNP16, AB15]: The object is described
as a kinematic tree consisting of segments connected by joints. Each joint
contains some degrees of freedom (DOF), indicating the directions it is
allowed to move. The object is modelled by the DOF of all joints. Lengths
constraints can also be added, such as limb lengths constraints in a human
pose. This helps reduce the depth ambiguity by constraining the relative
position of the joints.

3. Shape spaces [ZLHD15, RKS12, MM06]: This approach estimates the 3D
shape of an object by interpolating through a set of pre-defined 3D shapes
including the possible deformations of the object. Given a 2D projection
of the object, the aim is then to find the ideal camera parameters and the
shape coefficients describing the interpolation.

In this thesis, we use the third approach. This is inspired by the visual
memory of humans, which, paired with our binocular vision, helps in depth per-
ception of 3D objects. The set of pre-defined 3D shapes of an object is used as a
replacement of its visual memory to estimate its 3D shape from a single 2D view.

We aim to estimate the 3D shape of the head skeleton of a basking shark, the
significance of which is provided in the next section. For this, we use two differ-
ent approaches–the first inspired by the Active Shape Model (ASM) [CTCG95],
and the second by Kendall’s Shape Space (KSS) [Ken84]. In both approaches,
an object is described by a set of annotated landmarks in 3D, and a set of pre-
defined shapes is used to form a “shape space”, used to estimate an unknown
3D shape of the object. The annotated landmarks usually mark the significant
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parts of the object. The goal is to solve the 2D-to-3D fitting problem, that given
a set of annotated landmarks on a 2D image of the object representing the pro-
jection of the unknown 3D shape on a plane, estimate the latter. In the case of
the head skeleton of a basking shark, the landmarks represent the end points of
its constituting parts. The motivation of our work is similar to the publication
by Rygg et al. [RCA+13], where they use high-resolution micro-Computed To-
mography (CT) and magnetic resonance imaging (MRI) scans of the head and
olfactory chamber of hammerhead sharks, to study the hydrodynamics in their
nasal region.

The ASM has been used for many 2D-to-3D shape fitting problems [ZLHD15,
RKS12, BHB00, HR12] and is a reliable approach. The details of this are pro-
vided in Section 3. The KSS approach, however, is a promising novel one, and
has not yet been used in this context. In the ASM approach, each shape is repre-
sented by a vector in the Euclidean space, and the unknown shape is estimated
as a linear combination of the pre-defined shapes.

In the KSS approach, each shape is represented as a point on a Rieman-
nian manifold, and the unknown 3D shape is estimated as a weighted intrinsic
mean of the points on the manifold representing the pre-defined shapes. This
offers a better interpolation compared to the ASM approach, and is not view-
dependent. Section 4 explains the details. Kendall’s shape space has previously
been applied mainly in the field of geometric morphometrics. Nava-Yazdani et
al. [NYHSvT20, NYHvT19] perform statistical analysis of epidemiological data
and study femoral longitudinal data using geodesics on Kendall’s shape space.
Amor et al. [ASS15] represent human bodies by a dynamic skeleton, and study
their movement through trajectories on Kendall’s shape space. In a similar con-
text, Friji et al. [FDC+21] and Hosini et al. [HBA20] propose a geometric deep
learning framework for analyzing the movement of 3D skeletons over time using
trajectories on Kendall’s shape space.

We compare the two approaches with regard to exactness of recovery, ro-
bustness and performance on real data. Our focus is multi-disciplinary, with
applications in bio-mechanics, architecture and robotics.

1.1 The Basking Shark–significance and morphology

Cetorhinus maximus, commonly known as basking shark, is the second largest
shark in existence. Being a suspension or filter feeder, it feeds on microscopic ani-
mals called zooplankton, by filtering two million liters of water per hour through
its gills. Unlike other filter feeding sharks, the basking shark is a ram feeder,
which means that it move forward with its mouths wide open, engulfing the
prey along with the water surrounding it. David W. Sims provides a review of
its biology [Sim08]. What sets basking sharks apart is their filtering efficiency,
which is predictably higher than that of other filter feeders. From its feeding
pictures and videos, one can observe the unique “flaring” of the gills, which
completely changes the shark’s head shape, expanding it greatly (see Figure 1).
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(a)

(b)

Figure 1: (a) Front view of a basking shark (Cetorhinus maximus) in feeding
position. (b) Side view of a basking shark in closed mouth (left) and open
mouth (right) position (courtesy of Nicholas Payne, Trinity College Dublin)
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Figure 2: Labeled head skeleton of a shark.

Little is known about the performance of the filtering mechanism of basking
sharks. They have historically been hunted for their meat and liver oil which
has numerous industrial uses, and for their large fins which have a high demand
for collectors and in shark-fin markets. This has caused their numbers to decline
and the species is now listed as endangered. In many countries including the
United States of America and the United Kingdom, basking sharks are heavily
protected which makes injuring, harassing and killing them a punishable offence.
Hence, the morphology of the basking shark has not been studied in great detail,
to the best of our knowledge.

We were provided with real-world data of basking sharks in form of five CT
scans, as well as videos and images in various poses and from different viewpoints.
The goal was to use these data to build a 3D model of their branchial region,
and use it to gain insights about the relative movement of the hyoid arch, the
epibranchials, ceratobranchials and the pharyngobranchials (see Figure 2). This
would help test the hypothesis about its filtering efficiency, and the findings could
be used as bio-inspiration for large scale, potentially non-clogging dynamic filters.
We do not include the mandibular arch for model simplicity, as its movement is
largely similar to that of the hyoid arch. We also exclude the hypobranchials,
due to their small size.

We have modelled the skeletal parts of interest as a piece-wise linear skeleton
(Figure 3), composed of vertices (a set of nodes in 3D space) and edges (segments
connecting the nodes). Each skeletal part is represented by an edge joining its
end point points, and connected parts of the skeleton share a common vertex.
The shape of each instance of our 3D object, the head skeleton of a basking
shark, can therefore be represented by a set of vertex points in 3D. Section 2
explains the creation of some shapes of our 3D object, using CT scans of basking
sharks. These shapes are later used in the 2D-to-3D fitting problem.
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Figure 3: The piece-wise linear skeleton (blue) of a basking shark, overlaid on
its CT scan.

We have used this piece-wise linear representation to move the different parts
of the head skeleton via an optimization problem that tries to preserve the length
of the parts. The details are explained in Section 2.

1.2 Contributions

The following contributions are made in this thesis:

• Kendall’s shape space is applied for a 2D-to-3D fitting problem, which
estimates the 3D shape of an object using annotated landmarks on a single
2D image. This is a novel approach to the problem, and produces promising
results.

• The results obtained from Kendall’s shape space approach are compared
to the ones obtained using the active shape model, which is a frequently
used approach for the 2D-to-3D shape fitting problem.

• A method to correct the damaged structures of the basking shark speci-
mens in CT scans has been developed. This is done by representing the
3D volumetric skeletal parts of interest, in a CT scan, as a spatial graph
consisting of vertices and edges. Optimization problems are then used to
change the position of the vertices, while trying to preserve the lengths of
the edges. Once corrected, the spatial graphs can be converted back to 3D
volumetric data. This helps in creating an anatomically plausible model of
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the head skeleton of a basking shark, which can be applied to real-world
data in form of 2D images of undamaged basking sharks.

• The aforementioned optimization problems are used to open the mouth of
the sharks in the CT scans. This is essential to the project and solves the
problem of lack of real-world data in form of CT scans of basking sharks
in open mouth position.

This thesis is structured as follows: Section 2 describes the creation of the
pre-defined 3D shapes of the head skeleton of basking sharks, to be used in
the 2D-to-3D fitting problem. Sections 3 and 4 explain the details of the ASM
and KSS approaches, respectively. Section 5 described and compares the results
obtained from the two approaches. Finally, Section 6 concludes this thesis with
a discussion and outlook.
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2 Data Preparation

This section describes the process of using real-world data in form of CT scans
(represented as a 3D volumetric scalar field of size ≈ 512 × 512 × 1300) to cre-
ate a simplified representation of the parts of the head skeleton of a basking
shark involved in its feeding motion, in form of a piece-wise linear skeleton. As
mentioned in Section 1.1, the relative movement of different skeletal regions of
basking sharks is not very well studied due to their endangered status and heavy
protection. The only way to get hold of these creatures is the unfortunate event
when one of these dead sharks is washed ashore. These specimens are, how-
ever, not in their original shape due to natural rotting and collisions with other
objects. Moreover, fitting them into a CT scanner causes additional damage
to their structure. Figures 4 and 5 show usable and unusable scans of basking
sharks, respectively. Real world data in form of CT scans (provided by Mason
Dean from City University Hong Kong), combined with high quality (monocular)
image and video data, was used to create the 3D model. The regions of inter-
est were isolated from the CT scans using data segmentation, and a geometric
representation of these regions was created in form of spatial graphs consisting
of nodes and segments. This process involved a number of steps, the details of
which are presented in this section. This procedure was carried out using the
data visualization software, Amira [SWH+05].

Figure 4: Example of a usable basking shark CT scan (side view)

2.1 Image Processing

2.1.1 Image Segmentation

The first step in modelling the head skeleton of a basking shark was isolating it
from the CT scans. For this, the CT scans were segmented using a mixture of re-
gion growing and manual segmentation with interpolation. The former was used
to accelerate the process of voxel selection in a region’s interior, and the latter
was used to select the boundary of a region in a single cross-section. We could
not rely solely on automatic segmentation methods, as the signal-to-noise ratio
and the resolution of the scans was low (Figure 7), which caused the boundaries
of regions to be blurred. Even the application of image filters did not solve this
problem. Hence, at least the area close to the boundary of each region, had to be
manually segmented. This was the most time consuming part of data extraction.
Figure 6 shows the segmented regions of one of the CT scans.
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(a)

(b)

Figure 5: Side views of unusable basking shark specimens:(a) damaged and (b)
incomplete.

Figure 6: (Top view) Labeled segmented regions of the head skeleton of a basking
shark (see Figure 2). The epibranchial, ceratobranchial and pharyngobranchial
is labeled for the first gill arch only.
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Figure 7: A cross-section of a noisy basking shark CT-scan.

The segmentation was performed using available information on the anatomy
of other sharks and filter feeders [MPTS14, CHCF18], and was confirmed by
Mason Dean.

2.1.2 Skeleton creation

Once the regions responsible for feeding were isolated using segmentation, these
were ready to be studied further. To simplify the process, an abstract repre-
sentation of this region was created in the form of a spatial graph consisting of
nodes and segments. This led to the creation of a piece-wise linear skeleton of
the shark (see Figure 8). The nodes of the skeleton were placed manually by
selecting the end points of each region. The regions of the head skeleton which
were not of interest to us were not incorporated in the skeletons. These include
the mandibular arch, whose movement is largely similar to that of the hyoid arch
and the spine, which remains stationary. This left us with the hyoid arch and
the five gill arches (see Figure 2).

This simplified representation is advantageous, as it encompasses the vital
properties of the original skeleton, which include the lengths of the segments
and the connections between them. This information enabled us to study the
relative movement of the skeletal segments. Moreover, each specimen could be
represented uniquely by a set of 3D landmarks (nodes of the graph).

2.2 Data Correction and Augmentation

Initially, we were provided with five CT scans for this project but due to damaged
and incomplete scans, only three of them could be used. Even the three usable
scans had some amount of damage, and in order to create a plausible model,
corrections to their structure were needed. We were able to do this by positioning
the spine correctly using an optimization problem, which also helped in data
augmentation. This section describes the procedure in detail.

2.2.1 Skeleton splitting

Like most fish, the basking shark is bi-laterally symmetrical, i.e., the right and the
left halves are identical. Hence, the skeletons could be split into two halves, which
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(a)

(b)

Figure 8: (a) Creating a piece-wise linear skeleton of a basking shark, using the
segmented regions. (b) Top(left) and front(right) views of the skeleton.

could then be mirrored to create a full skeletons. This is a logical assumption
and was confirmed by Mason Dean. Each half skeleton consists of 26 nodes and
29 segments (Figure 10).

2.2.2 Skeleton correction

The shark scans were not perfectly straight and the spine was slightly curved in
most specimens. As the epibranchials connect to the spine via the pharyngob-
ranchials and soft-tissue, they too were curved. This lack of bi-lateral symmetry
can clearly be seen in Figure 8(b). Hence, to create a plausible 3D model of
basking sharks, it was crucial to correct the spine positioning in the half skele-
tons.
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(a)

(b)

Figure 9: Splitting skeleton into right and left halves. (a) Top-view (b) Front-
view.

Spine Correction

Note that the anatomical spine of the shark was not included in the skeleton
for simplicity. We will, however, refer to the collection of segments in Figure 10
as “spine” for ease of notation, and will represent it by the line connecting the
end nodes. It is intuitive that the movement of the rigid anatomical spine is
identical to that of this artificial spine, as the latter is nothing but the former,
excluding the soft-tissue which connects it to the pharyngobranchials.

The segments that constitute the spine have fixed length, and represent the
length between the nodes of the pharyngobranchials that connect to the spine.
Moreover, being rigid structures, the skeletal components (epibranchials, cerato-
branchials, pharyngobranchials, and ventral plate) have fixed length. This gave
rise to the idea of artificially moving the spine into a “correct” position, along
with all skeletal components connected to it. For this, we used optimization
problems which try to preserve the lengths of all the skeletal segments, while
moving the nodes to a new position. This procedure is described in Algorithm 1,
where we use the node order described in Figure 10(a), and is visualized in Figure
11. Due to steps 4 and 5 in Algorithm 1, a total of ten optimizations need to
be performed to determine Ci and Pj, ∀i ∈ {h, 1, 2, 3, 4, 5} and j ∈ {1, 2, 3, 4}.
Table 1 describes the errors obtained for each measurement, for moving the spine
in Figure 11.
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Figure 10: (a) The segment in red is referred to as the “spine” , and is repre-
sented by the end nodes (1 and 2). This segment consists of smaller segments,
connecting the intermediate nodes. (b) A half-skeleton with the sets A,B,C and
P labeled.

Algorithm 1 Move spine of half skeleton

1: Manually select two points, s1 and s2, for the new position of the spine. Node
1 is placed at point s1, and the vector s2 − s1 gives the direction of the new
spine. Node 2 is placed at the point s1 + ls ∗ (s2− s1), where ls is the length
of the original spine and is preserved.

2: The intermediate nodes, 5, 7, 9, 11 and 24, are placed on the new spine,
preserving the length between them.

3: The transformation that was applied to node 1 to move it to the new position,
is applied to node 13.

4: The nodes 14, 16, 18, 20, 22 and 25, representing the hyoid/gill arch mid
points, are obtained by solving for Cnew

i , i ∈ {h, 1, 2, 3, 4, 5}, in Algorithm 2.

5: The nodes 6, 8, 10 and 12, connecting the pharyngobranchials to the epi-
branchials, are obtained by solving for P new

j , j ∈ {1, 2, 3, 4}, in Algorithm 3.
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Algorithm 2 Optimizations for Cnew

Require: Sets (see Figure 10(b)) :

A = {Ah, A1, A2, A3, A4, A5}, Ai ∈ R3,

B = {Bh, B1, B2, B3, B4, B5}, Bi ∈ R3,

a = {ah, a1, a2, a3, a4, a5}, ai = d(Ci, Ai) ∈ R,
b = {bh, b1, b2, b3, b4, b5}, bi = d(Ci, Bi) ∈ R.

for i ∈ {h, 1, 2, 3, 4, 5} do

Cnew
i = arg min

c∈R3

(d(c, Ai)− ai)2 + (d(c, Bi)− bi)2 (1)

end for

Algorithm 3 Optimizations for P new

Require: Sets (see Figure 10(b)) :

A = {A1, A2, A3, A4}, Ai ∈ R3,

C = {C1, C2, C3, C4}, Ci ∈ R3,

e = {e1, e2, e3, e4}, ei = d(Ci, Pi) ∈ R,
f = {f1, f2, f3, f4}, fi = d(Pi, Ai) ∈ R

for j ∈ {1, 2, 3, 4} do

P new
j = arg min

p∈R3

((d(p, Cj)− e)2 + (d(p,Aj)− f)2) (2)

end for
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Figure 11: Moving the spine to a new position, following steps 1-5 (visualized
from top left to bottom right). The gray and the blue skeletons represent the
original and the new (moved spine) skeletons, respectively, the green nodes rep-
resent the nodes which are moved in each step and the red arrows represent the
movement of the nodes.
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Table 1: Optimization Errors for Moving Spine in Figure 11

Point Error in Optimization
Ch 3e-6
C1 3e-6
C2 3e-6
C3 3e-6
C4 3e-6
C5 3e-6
P1 2e-6
P2 2e-6
P3 2e-6
P4 1e-6

Iterations: 409 ; Computation time: 0.02 seconds.
The lower left and upper right coordinates of the 3D bounding box of
the original half skeleton in Figure 11 are (−21.39,−151.70,−994.86) and
(169.16,−62.71,−528.15), respectively.

Note that the nodes on the ventral plate, 3, 4, 15, 17, 19, 21, 23 and 26, remain
the same when moving the spine. As the sets b, e and f refer to the lengths of
the ceratobranchials, the pharyngobranchials and the epibranchials respectively,
they must be fixed during the optimizations (1) and (2). We also fixed a in
order to restrict the solution space. The optimization problems are sensitive
to initialization as there does not exist a unique solution. Hence, the sets of
points C in Algorithm 2 and P in Algorithm 3 were initialized to their positions
in the original skeleton in order to obtain a solution close to the original position.

In addition to moving the spine of the skeleton, the above method can be
modified to move the ventral plate, by placing its end nodes, 3 and 4, to the
desired position. The intermediate nodes on the ventral plate were placed
accordingly and the sets of points, C and P , are obtained by solving the
optimization problems described in steps 4 and 5.
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Virtually opening the Mouth

The above method moves the end nodes of the spine to an anatomically
legitimate position to correct the damaged skeletons. The same method can
be used to position the spine higher, thereby opening the mouth of the shark.
Similar to above, the lengths of anatomical segments are preserved with no
extra constraints. Figure 12 shows the obtained result and Table 2 describes
the optimization errors. This computation was done in an early stage of this
thesis, when even less was known about the movement of the the gill arches and
when placing the spine higher, it was placed parallel to the ventral plate. Upon
further investigation during the course of this thesis, it was revealed that this is
an incorrect motion. This is the reason for the large error when optimizing for
C5 in Table 2. As this does not interfere with the goal of this thesis, this error
is ignored.

Moving the spine and the ventral plate was performed by manually selecting
the end nodes, and since the optimizations in steps 4 and 5 are sensitive to
initialization, the new skeletons were not perfect. For example, in the open
mouth position, the gill arches were sometimes folded backwards, which is an
inaccurate configuration. In order to fix this issue, the option of rotating the
gill arches, hyoid arch and pharyngobranchials was incorporated. This was done
using the Rodriguez rotation formula [Rod40]. It states that given a vector
v ∈ R3 and the axis of rotation described by the vector e ∈ R3, the vector
vrot ∈ R3, which is the vector v rotated about e by an angle of θ, is computed
as:

vrot = v cos θ + (ê× v) sin θ + ê(ê · v)(1− cos θ),

where ê is the unit vector in the direction of e. Table 3 describes the vectors v
and e for rotating the gill arches, hyoid arch and the pharyngobranchials. For
different values of θ, the rotation changes the positions of the sets of points, C
and P , while preserving the lengths of the skeletal segments. With this, we now
had the tools to create numerous skeletal configurations by moving the spine,
the ventral plate and also rotating the gills and the pharyngobranchials.

2.2.3 Data augmentation

The ability to correct the skeletons by adjusting the spine nodes as well as rotat-
ing certain skeletal regions, allowed for generating new skeletal configurations.
These were then mirrored to create full skeletons. A nine fold increase in the
number of configurations (from 3 to 27) was achieved using this approach, includ-
ing the attainment of skeletal configurations in open mouth positions. Hence,
along with solving the issue of very limited data, this also helped to correct the
damaged skeletons and artificially open the mouth of the shark, which is a move-
ment essential for this project. Figure 14 visualizes some of the final skeletons in
various configurations. It should be noted that many more configurations can be
created using the aforementioned methods. However, for the scope of this thesis,
27 configurations were considered to be sufficient.
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Figure 12: Virtually opening the mouth of the shark, by placing the spine nodes
higher (left: original ; right: mouth opened).

Table 2: Optimization Errors for Opening Mouth in Figure 12

Point Error in Optimization
Ch 1e-6
C1 2e-6
C2 2e-6
C3 2e-6
C4 2e-6
C5 21.8121
P1 1e-6
P2 1e-6
P3 1e-6
P4 2e-6

Iterations: 192; Computation time: 0.017 seconds
The lower left and upper right coordinates of the 3D bounding box of
the original half skeleton in Figure 12 are (−21.39,−151.70,−994.86) and
(169.16,−62.71,−528.15), respectively.
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Table 3: Rotating gill arches, hyoid arch and pharyngobranchials

Point moved Vector “v” Axis “e”
Ch Ch −Mh Ah −Bh

C1 C1 −M1 P1 −B1

C2 C2 −M2 P2 −B2

C3 C3 −M3 P3 −B3

C4 C4 −M4 P4 −B4

C5 C5 −M5 A5 −B5

P1 P1 − A1 A1 − A5

P2 P2 − A2 A1 − A5

P3 P3 − A3 A1 − A5

P4 P4 − A4 A1 − A5

where Mh, Mi and M5 are the mid-points of the lines joining Ah and Bh, Ai and
Bi ∀i ∈ {1, 2, 3, 4} and A5 and B5, respectively.

Figure 13: Rotating the gills and hyoid in order to “flare” them.
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Figure 14: Examples of final skeletons in (left) closed mouth, (middle) half-open
mouth and (right) open mouth configurations. The top, middle and bottom
images show the front, side and top views of the skeletons, respectively. These
are symmetric, in contrast to the damaged original skeletons.
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3 Active Shape Model Approach

The first approach used to estimate the 3D positions of the 2D annotated land-
marks is inspired by the work of Cootes and Taylor [CTCG95]. The idea is to
apply the “Active Shape Model” for the 2D-to-3D shape fitting problem, which
requires to solve an optimization problem to find the ideal camera parameters.
Two sub-approaches, a convex and a non-convex one, have been used for this
purpose. A detailed description of the original Active Shape Model and the
sub-approaches will be described in this section.

3.1 The Original Active Shape Model

3.1.1 Introduction

The Active Shape Model (ASM) was first introduced by Cootes and Taylor in the
early 1990s [CTCG95] and has thereafter been used intensively for the purpose of
recognizing and locating non-rigid objects in the presence of noise and occlusion.
It aims at providing a robust approach, which accommodates shape variability
by arguing that when the objects deform in ways characteristic to the class of
objects they represent, the method should be able to recognize them. Further-
more, the method is specific to a class of objects and only allows inter-shape
variations, in contrast to non-rigid object recognition method which are flexible
but lack specificity [HWR+91, YHC92, LYO+90, MKW91]. This is practical in
medical applications, for example, anatomical structures can vary greatly be-
tween individuals. For this, a training set is used which contains large variations
of a shape and the model is allowed to deform only in ways represented in the
training set by interpolating between the training shapes.

Alternative ways to model non-rigid objects include the following :

1. “Hand Crafted” models, which use simple shapes like circles and lines to
model an object [YHC92, HT92].

2. Articulated Models, which use rigid objects connected by joints [BW91].

3. Active Contour Models or “Snakes”, which use energy minimizing spline
curves [KWT88, HWR+91].

4. Finite Element methods to model objects with internal properties like elas-
ticity [NA93].

3.1.2 Method

We follow the method from Cootes et al. [CTCG95]. The shape of a class of
objects is described by a set of labeled “landmark” points, each representing a
particular part of the object or its boundary. These landmark points are placed
such that they represent the features necessary for identifying the object and
differentiating between instances of an object. The vertices of a triangle are one
example. With this in mind, a set of training shapes is created such that it
includes intra-class shape variability. This is an important step as the method
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(a)

(b)

Figure 15: (a) shows a resistor shape with 32 labelled landmarks and (b) is the
training set of resistor shapes [CTCG95].

only allows for variability in shape described in the training set. In a training
set of hand shapes, for example, if the shape of a closed fist is not included, the
method will not be able to recognize it as an instance of a hand. For an eas-
ier understanding, we will explain the method using resistor shapes. Figure 15
shows a resistor shape represented by 32 labelled landmark points and examples
from the training set of resistor shapes.

As the shapes are represented by landmark points, comparison between shapes
is done by comparing the corresponding points. This is achieved by the Pro-
crustes method [Gow75]. Let xi = (xi1, yi1, xi2, yi2, . . . , xin, yin)T ∈ R2n denote
the vector of the ith training shape. Let M(s, θ)[x] be a rotation by θ and scaling
by s, such that

M(s, θ)

[
xjk
yjk

]
=

(
s cosθxjk − s sinθyjk
s sinθxjk − s cosθyjk

)
(3)

Given two shapes xi and xj, aligning them amounts to finding suitable θj, sj
and translation tj = (txj, tyj), such that the squared Procrustes distance, d2

P

defined below, is minimized:

d2
P (xi, xj) = (xi − (M(sj, θj)[xj] + tj))

T (xi − (M(sj, θj)[xj] + tj)) (4)

An essential step towards the formulation of this model, is aligning the entire
set of training shapes. This is achieved by using Generalized Procrustes
Analysis (GPA), described in Algorithm 4.

Note that given a set of N aligned shapes, the mean shape is computed as

x =
1

N

N∑
i=1

xi. (5)
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Algorithm 4 Generalized Procrustes analysis for aligning a set of shapes

Require: A set of shapes, S = {S1, S2, . . . , Sk}, Si ∈ R2n and a threshold=tol

ref ← S1

repeat
Align each Si with ref

Compute the mean shape, mean, of the set of aligned shapes

ref ← mean

until

dp(ref,mean) < tol

Upon aligning the shapes in the training set, each of them represents a point
in a 2n-dimensional space. A cloud of N points is obtained with N training
shapes and the region in which these points lie is called the “Allowable Shape
Domain” [CTCG95]. New shapes can be generated by considering the points
in this region as they will be broadly similar to the training shapes. Figure 16
visualizes the point cloud of resistor shapes.

Figure 16: The outlined shape represents the mean resistor shape and crosses
(+) depict the point cloud from the aligned training set. This image is taken
from [CTCG95].

It is assumed that this region is a 2n-dimensional ellipsoid and the goal now
is to compute the center, and the major axes of this ellipsoid [CTCG95]. x
corresponds to the center the latter is computed via Principal component
analysis (PCA) on the data. Consider S to be the covariance matrix described
as

S =
1

N

N∑
i=1

(xi − x)(xi − x)T . (6)

The eigenvectors corresponding to the largest eigenvalues of matrix S determine
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the axes of the 2n-dimensional ellipsoid describing most of the shape variation.
It is safe to assume that the t largest eigenvectors cause most of the variation
and hence the original 2n-dimensional ellipsoid can be approximated with a t-
dimensional one.

Finally, all one has to do to access any point in the allowable shape domain
is to take the mean and add a linear combination of the first t eigenvectors of
the covariance matrix S

x = x+ Pb (7)

where P is the matrix of the first t eigenvectors and b = (b1, b2, . . . , bt) is a vector
of weights.

In order to visualize this, one can study how the shape of the resistors changes,
with change in parameters (weights of the linear combination) in (7), refer to
Figure 17.

Figure 17: Effects of varying b1 , b2 and b3 of the resistor shape model [CTCG95].

3.2 Estimating 3D shape from 2D landmarks using ASM

3.2.1 Introduction

The first approach that we have used in order to obtain a 3D estimation of
the basking shark head from 2D annotated landmarks is inspired by the active
shape model described in the previous section and was proposed by Zhou et
al. [ZLHD15]. Naturally, the ASM can be extended for shapes in three dimensions
and the same procedure can be used as in the 2-dimensional case, described
above. Hence, given a set of labelled or annotated landmarks in 2D, we can
use the ASM to estimate a 3D shape whose 2D projection corresponds to the
landmarks, by finding the camera parameters. In other words, the ASM can be
used in a 2D-to-3D fitting problem which estimates the pose and the viewpoint
parameters via an optimization problem.

3.2.2 Problem Formulation

The problem at hand is that of 2D-to-3D shape fitting, where the unknown 3D
shape of an object is estimated using annotated landmarks in 2D. The landmarks
are usually marked manually by the user.
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Determining the 3D shape of an object from a single viewpoint is an ill-posed
problem and is an impossible task without any prior information on its shape.
What enables human beings from performing this task is the visual memory of
the 3D shape, which can be put to use when viewing the shape from a single
viewpoint. For example, one can estimate the depth of a table when viewing it
from the front. In order to deal with this issue, the algorithm can be provided
with a set of training shapes, as used in ASM. The unknown 3D shape can then
be estimated as a linear combination of the training shapes.

Let S1, S2, . . . , Sk such that each Si ∈ R3×p be the set of training shapes where
the object is described by p landmarks. Then the unknown 3D shape X ∈ R3×p

can be represented as

X = R
k∑
i=1

ciSi + T1T (8)

where R ∈ SO(3) is a rotation matrix, T ∈ R3×1 is the translation vector and
c = (c1, . . . ck) is the vector of weights of the linear combination.

Let W ∈ R2×p represent the annotated 2D landmarks, then

W =
∏

(R
k∑
i=1

ciSi + T1T ), (9)

where
∏

corresponds to the weak-perspective camera matrix [Alo90] such that∏
=

(
s 0 0
0 s 0

)

with s ∈ R. This is a widely used assumption in order to reduce the problem
complexity and works well in most cases where the object depth is small com-
pared to the distance of the object from the camera.

The data is centered to simplify the problem:

W =

(
s 0 0
0 s 0

)
R

k∑
i=1

ciSi

= sR[1,2]

k∑
i=1

ciSi.

Absorbing s in c, i.e. assuming c = (sc1, sc2, . . . , sck), gives

W = R[1,2]

k∑
i=1

ciSi (10)
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In order to solve for the pose parameters (c) and the viewpoint parameter (R),
the following non-convex optimization problem needs to be solved, which mini-
mizes the re-projection error and induces sparsity in the vector of weights:

min
R[1,2],c

‖W −R[1,2]

k∑
i=1

ciSi‖2
F + λ||c||1

s.t. R[1,2]R
T
[1,2] = I2, (11)

where ‖.‖2
F refers to the squared Frobenius norm of a matrix and ||.||1 to be

l1−norm of a vector. The second term can be omitted if sparsity of c is not
required. We solve (11) using two different approaches.

3.2.3 Non-convex Formulation

The first approach aims to solve (11), a non-convex optimization problm due
to the orthogonality constraint. For this, an alternating minimization scheme
can be employed, which updates R[1,2] and c alternatively via optimization over
Stiefel manifold, V2,3 = {Q ∈ R2×3, QQT = I2}, and Rk respectively. In this
case, however, the optimization is sensitive to initialization.

Zhou et al. describe a method to convert the optimization problem in (11)
to a convex problem, by relaxing the orthogonality constraint. The next section
provides the details of this formulation, adopted from the publication by Zhou
et al. [ZLHD15].

3.2.4 Convex formulation

This section deals with the convex relaxation of the orthogonality constraint in
(11) and converting the problem to a convex optimization problem.

Note that in (10), a single rotation is applied to a linear combination of
the training shapes. If, however, a separate rotation is applied to each training
shape, a linear representation of W can be reached and the bi-linear form in (10)
is removed. As the degrees of freedom are increased, this formulation may lead
to bizarre shapes which are very different from the ones in the training set. This
issue can be dealt with to a large extent by including a sparsity constraint on
the number of training shapes used.

The new formulation of (11) is:
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W =
∏

(
k∑
i=1

ci(RiSi))

=
k∑
i=1

ciRi[1,2]Si

=
k∑
i=1

MiSi

s.t. MiM
T
i = ciI2 (12)

where Mi = ciRi[1,2] ∈ R2×3.

The next step towards achieving a convex formulation of (12) is to replace
the orthogonality constraint by its convex counterpart. The convex hull of a
set X, denoted by conv(X), is the smallest convex set containing X. Zhou et
al. [ZLHD15] prove that

conv{Y ∈ Rm×n |Y TY = s2In} = {Y ∈ Rm×n | ‖Y ‖2 ≤ |s|},

where ‖Mi‖2 refers to the spectral norm of Mi, which is it’s largest singular
value. Using this result, we are only a few steps away from achieving the final
formulation of the optimization problem introduced in (11), which uses sparsity
of weights and the relaxed orthogonality constraint.
Consider the following optimization problem

min
c,M1,...,Mk

k∑
i=1

|ci|

s.t. W =
k∑
i=1

MiSi ,

‖Mi‖2 ≤ |ci| ∀i ∈ [1, k] (13)

We can rewrite (13) as

min
M1,...,Mk

k∑
i=1

‖Mi‖2

s.t. W =
k∑
i=1

MiSi.

The above formulation works in noiseless cases, but to account for noise in real-
world applications, the following regularized least-squares optimization problem
can be used
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min
M1,...,Mk

‖W −
k∑
i=1

MiSi‖2
F + λ

k∑
i=1

‖Mi‖2. (14)

The solution of (14) will estimate Mi minimizing the objective. Note that mini-
mizing the spectral norm of a matrix is equivalent to minimizing the l∞−norm
of the vector of its singular values [ZLHD15]. Doing so reduces the matrix norm
towards zero, which in turn shrinks its singular values to be equal. This forces
the matrix towards a zero matrix, which aims at inducing sparsity of the weights
and orthogonality of each Mi. Each Mi can then be used to estimate each ci and
Ri[1,2] using

ci = ‖Mi‖2 ,

Ri[1,2] =
Mi

ci

The third row the the rotation matrix Ri is calculated by taking the cross-product
of the first two rows. The final shape is estimated by:

X =
k∑
i=1

ciRiSi

Solving the optimization problem

The algorithm to solve the optimization problem in (14) is based on the Al-
ternating Direction Method of Multipliers(ADMM) [BPC11]. By introducing an
auxiliary variable Y , (14) can be reformulated as:

min
Mc,Y

1

2
‖W − Y Sc‖2

F + λ
k∑
i=1

‖Mi‖2,

s.t. Mc = Y , (15)

where Mc ∈ R2×3k such that Mc = [M1M2 . . .Mk], and Sc ∈ R3k×p such that
Sc = [S1S2 . . . Sk]

T (the subscript c refers to concatenated).

The augmented Lagrangian of (15) is

L(Mc, Y,D) =
1

2
‖W − Y Sc‖2

F + λ

k∑
i=1

‖Mi‖2

+ 〈D,Mc − Y 〉 +
µ

2
‖Mc − Y ‖2

F ,

(16)

where D is the dual variable and µ is the step size parameter. The updates of
each variable at time-step t according to ADMM are

M t
c = arg min

Mc

L(Mc, Y
t−1, Dt−1) (17)

Y t = arg min
Y

L(M t
c , Y,D

t−1) (18)

Dt = Dt−1 + µ(M t
c − Y t)
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until convergence is reached. Expanding (17), we get

arg min
Mc

L(Mc, Y
t−1, Dt−1) = arg min

Mc

(
λ

µ

k∑
i=1

‖Mi‖2 +
1

µ
〈Mc − Y t−1, Dt−1〉

+
1

2
‖Mc − Y t−1‖2

F

)
= arg min

Mc

1

2

(
‖Mc − Y t−1‖2

F + 2〈Mc − Y t−1,
Dt−1

µ
〉

+

∥∥∥∥Dt−1

µ

∥∥∥∥2

F

)
+
λ

µ

k∑
i=1

‖Mi‖2

= arg min
Mc

1

2

∥∥∥∥Mc − Y t−1 +
1

µ
Dt−1

∥∥∥∥2

F

+
λ

µ

k∑
i=1

‖Mi‖2

= arg min
M1,M2,...Mk

k∑
i=1

(
1

2
‖Mi −Qt−1

i ‖2
F +

λ

µ

k∑
i=1

‖Mi‖2

)
(19)

where Qt−1
i is the ith column matrix of Y t−1 − 1

µ
Dt−1. The proximal problem

[ZLHD15] can be used to solve (19) to get

M t
i = Dλ

µ
(Qt−1

i ) ∀i ∈ [1, k].

where Dλ
µ
(Qt−1

i ) is the solution to the proximal problem.

(18) being a quadratic form of Y has the following solution

Y t = (WSTc + µM t
c + Dt−1)(ScS

T
c + µI)−1.

This concludes the algorithm.

3.3 Implementation

Section 2 describes the creation of piece-wise linear skeletons of basking sharks,
using real-world data in form of CT scans. These skeletons are an abstract
representation of the anatomical skeleton, and are 3D spatial graphs, consisting
of 52 nodes and 58 segments. The latter describes the connection between the
nodes, and is the same for every skeleton. Hence, each skeleton is uniquely
identified by its set of nodes. A total of 27 skeletons were created in various
configurations and we consider these to be our set of training shapes, {Si}27

i=1,
Si ∈ R3×52 ∀i (p = 52 and k = 27). Given a set of 2D annotated landmarks,
W ∈ R2×52 (centered), we estimate the 3D shape corresponding to these using
the two sub-approaches in Sections 3.2.3 and 3.2.4.

For the optimization in (11), we omit the second term since sparsity of the
vector of weights is not of interest to us. The reason for this is that the opening of
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the shark’s mouth is a movement which interpolates between the configurations
created (closed, half open and open mouth), hence all shapes can contribute
to the unknown shape. We then find the rotation R and the weights c via
alternatively minimizing each parameter. The rotation is updated via steepest
descent [C+47] on Stiefel manifold, V2,3, and the weights are updated via steepest
descent on R27. This was performed in Python using the Pymanopt [BMAS14]
library, which includes optimization routines on manifolds. The gradients were
computed automatically using the Autograd [MDA15] library which uses reverse-
mode differentiation to compute gradients.

The second sub-approach aims to solve (14) via convex optimization and was
implemented in Amira, using C++. The values of λ and µ in (15) were con-
sidered to be 0.05 and 0.5 respectively, and the variables were updated until
convergence (tolerance=1e-05).

The results obtained are visualized and compared in Section 5.

34



4 Kendall’s Shape Space Approach

The second method used to estimate the 3D position of 2D annotated land-
marks, uses the theory of Kendall’s shape space. It has been used widely in the
context of geometric morphometrics, a field whose significance is ever increas-
ing due to its applications in a variety of fields, including bio-medical sciences,
anthropology and image processing. The tricky part when it comes to studying
shape variability in shape spaces like Kendall’s Shape Space, is the high dimen-
sionality and non-linearity of these spaces, as they usually lie in a highly-curved
region. A useful approach is to consider geodesics on this high-dimensional,
curved shape space. Note that by “shape-space”, we mean an abstract repre-
sentation of a space, where each point defines a unique shape. The distance
between the points in this space refers to a measure of difference between the
shapes represented by these points. In this section, we provide an introduction
to Kendall’s Shape Space, and define the necessary computations on it. Then,
we describe how it can be applied to the 2D-to-3D shape fitting problem. One
may refer to [HH14, Pen06], for more information on statistical analysis on Rie-
mannian manifolds.

4.1 Kendall’s Shape Space

An intuitive interpretation of a “shape” was provided by the English statistician
and mathematician David G. Kendall in the late 1900s [Ken84]. According to
this, a “shape” in Rn, is a set of p points in Rn, with translations, rotations and
scale removed. Equivalently, a shape is the relative arrangement of a given num-
ber of landmarks in Rn. With this definition, statistical estimates like average
and variations in shape can be computed in the shape space.

Let x1, x2, . . . , xp ∈ Rn and construct x = [x1 x2 . . . xp] ∈ Rn×p by horizon-
tally stacking the xis. Let x denote the Euclidean mean of these points and
define the “centroid size” [Boo97] or simply “size” of x by

size(x) =

√√√√ p∑
i=1

(xi − x)2. (20)

Replacing x by x−x
size(x)

, i.e., subtracting the mean from each xi and dividing by
the size, implies that x lies on the unit sphere Snp , where

Snp = {x ∈ Rn×p :

p∑
i=1

xi = 0 , ‖x‖ = 1}. (21)

The set Snp is called the “pre-shape space” and contains every point in Rn×p

with translations and scale removed (i.e., with size=1). The term pre-shape
space is used instead of just shape space as the rotations are not yet removed.
Upon removing the rotations from the pre-shape space, we obtain our shape
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Figure 18: Being curved, multi-dimensional spaces, Kendall shape spaces are
hard to visualize. The shape space of triangles in 2D, i.e. Σ2

3, is relatively easier
to visualize as it is the surface of a sphere in 3- dimensions. This figure shows
the view from the north pole of the sphere, which is visualized as the equilateral
triangle. The meridians and the equator correspond to the isosceles and flat
triangles, respectively [Kli20]

.

space. This is called Kendall’s shape space, and is represented by the quotient
space Σn

p = Snp / ∼ where x ∼ y ⇐⇒ ∃ R ∈ SO(n) with x = Ry . This
is a Riemannian manifold of equivalence classes. Provided that p ≥ n + 1, the
dimension of this space can be computed by subtracting the dimensions lost from
removing scaling (1 dimension), translations (n dimensions) and rotation (n(n-
1)/2 dimensions). Thus, the dimension of the space Σn

p is n(p−1)− 1
2
n(n−1)−1.

Let π denote the canonical projection of ∼, then the distance between two
shapes, π(x) and π(y) is

dΣ(x, y) = arccos(
n∑
i=1

λi). (22)

where λ1 ≥ λ2 ≥ · · · ≥ λm−1 ≥ |λm| are the pseudo-singular values of yxT [NYHSvT20].

For every x, y ∈ Snp , there exists an optimal rotation, R ∈ SO(n), such that:

dΣ(x, y) = d(x,Ry) (23)
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Figure 19: The intrinsic mean (left) and the extrinsic mean (right) of three points
on S1 , represented by crosses [BWHK07].

The points x and y are said to be well-positioned (denoted by x
w∼ y) , if and

only if, yxT is symmetric and d(x, y) = dΣ(x, y).

4.1.1 The Fréchet Mean

An important measure when studying the statistics of non-linear spaces is the
“intrinsic mean” or Fréchet mean. It is the generalization of the Euclidean mean
to non-linear spaces, and a useful tool for calculating means on manifold valued
data. Let M be a Riemannian manifold M , defined using the metric dM , defined
as the geodesic distance between two points on M. The Fréchet mean of a set of
k points, {x1, x2, . . . , xk} on M is defined as the point on M which minimizes
the sum of squared distances to this set of points, that is:

xF = argmin
y∈M

k∑
i=1

dM(xi, y)2. (24)

Note that for a manifold M embedded in a Euclidean space, it is possible to
calculate the so-called “extrinsic mean”, which is defined as the projection of
the Euclidean mean on the manifold and is equivalent to solving the following
minimization problem [BWHK07]:

xE = argmin
y∈M

k∑
i=1

|xi − y|2. (25)

In case of Kendall’s Shape Space, we are interested in calculating the Fréchet
mean in order to obtain an average shape of a set of shapes. For the points
π(x1), π(x2), . . . , π(xk) ∈ Σn

p , it is defined as:

µF (π(x1), π(x2), . . . , π(xk)) = arg min
π(y)∈Σnp

(∑
i

dΣ(y, xi)
2

)
(26)

This definition can easily be extended to that of a weighted Fréchet mean, anal-
ogous to a weighted mean in Euclidean terms, as:

µF (c; π(x1), π(x2), . . . , π(xk)) = arg min
π(y)∈Σnp

(∑
i

cidΣ(y, xi)
2

)
(27)
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where c = (c1, c2, . . . , ck) is a vector of weights.
The next section explains the details of applying Kendall’s shape space to

the 2D-to-3D fitting problem.

4.2 Problem Formulation

We will now formulate a 2D-to-3D fitting optimization problem which, given a
set of p annotated landmarks in 2D, aims to find the shape in Kendall’s shape
space Σn

p , whose projection under the weak perspective camera model is closest
to this set of 2D landmarks. For this, we use a set of training shapes in Σn

p ,
and try to estimate the unknown 3D shape as a weighted Fréchet mean of these
shapes. This differs from the first approach, where the unknown shape is esti-
mated to simply be a linear combination of training shapes in 3D.

Let W = [w1, . . . , wp] ∈ R2×p represent the annotated 2D landmarks, S1, . . . , Sk,
such that each Si ∈ Σn

p be the set of training shapes and c = (c1, . . . , ck) be the
vector of weights. “Normalise” W such that it is centered and size(W ) = 1.
Then the 3D shape corresponding to W , X ∈ R3×p, is estimated by solving the
following constrained least-squares optimization problem:

min
c,R

1

2
‖W −RµF (c;S1, S2, . . . , Sk)‖2

F

s.t. RRT = I2, (28)

where R ∈ V2,3 = {Q ∈ R2×3 : QQT = I2} is the projection of µc(S1, S2, . . . , Sk)
under the weak perspective camera model [Alo90]. The 3D shape is estimated as
the weighted Fréchet mean, µF (c;S1, . . . , Sk) ∈ Σn

p . It is important to note that
as the 2D landmarks are normalised, the second term in the Frobenius norm in
(28) must also be normalised for a meaningful comparison.

4.3 Solving the Optimization Problem

We solve the constrained least-squares optimization problem in (28) via an alter-
nating minimization scheme, which updates the two parameters c, R alternately.
First, c is fixed and R is updated via manifold optimization on V2,3. Then, R
is fixed and c is updated via optimization on Rk. These steps are alternated
until convergence. This optimization is sensitive to initialisation, due to the
non-convexity of the orthogonality constraint.

4.4 Implementation

We test Kendall’s Shape Space approach for estimating the 3D shape of the head
skeleton of a basking shark, given 2D annotated landmarks of the same. The
implementation is performed using Python. In section 2, we created 27 piece-
wise linear skeletons of basking sharks, each represented uniquely by a set of 52
nodes in 3D. We use these to create the training shapes which will be used in
the optimization in (28).

38



The first step is to remove the translation (centering the points) and scale
(converting size to 1) from the set of nodes of each skeletons. By doing so, they
are converted to pre-shapes, denoted by S1, S2, . . . , S27. As the rotations are not
removed, they cannot yet be considered shapes, which are equivalence classes
of pre-shapes. We can, however, perform computations on the latter, as if two
points are well-positioned, the pre-shape distance between them is equivalent to
the shape distance.

We consider S1, S2, . . . , S27 to be the training shapes for estimating the 3D
shape of a set of annotated 2D landmarks, W , and solve the optimization prob-
lem in (28) to obtain a weighted Fréchet mean of these training shapes, such that
its projection under the weak perspective model is closest to W . We do this by
performing alternating minimization of the parameters R and c. The former is
updated via steepest descent [C+47] on V2,3 and the latter via steepest descent
on R27, using Pymanopt [BMAS14], a manifold optimization library and auto-
matic differentiation using Autograd [MDA15]. For computing the Fréchet mean
of training shapes, we use the recursive estimator presented by Chakraborty et
al [CBMV18], and the libraryGeomstats [MGLB+20].

The results are visualized in Section 5.
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5 Results

This section presents the results obtained from the ASM and KSS approaches,
applied to the 2D-to-3D shape fitting problem. As explained in Sections 3 and 4,
both approaches use a set of pre-defined 3D training shapes to estimate the 3D
shape corresponding to a set of 2D annotated landmarks. The former estimates
it simply as a linear combination of the training shapes, and the latter as a
weighted Fréchet mean of the training shapes on Kendall’s shape space. For
this, the optimization problems in (11), (14) and (28) are solved to obtain the
weights and projection parameters. We consider the shape of the parts of the
head skeleton of a basking shark which are involved in its feeding motion. The
shape consists of 52 ordered landmarks in 3D, and we use a set of 27 training
shapes. Section 2 gives the details on creating them from real-world data in form
of CT scans of basking sharks.

To judge the exactness of recovery, we perform a “cross-validation” or “leave
one out” study, which excludes a shape from the set of training shapes and tries
to reconstructs it using the other training shapes. Then, to study robustness, we
consider the performance of the approaches in presence of noise in the 2D land-
marks. Finally, performance on real-world images of basking sharks is compared.
The average computation time based on derived prototype implementation (see
Sections 3.3 and 4.4) is:

• The ASM non-convex approach takes ≈7 mins for 50 iterations.

• The ASM convex approach takes ≈0.65 seconds until convergence.

• The KSS approach takes ≈1 hour for 50 iterations.

Experiments were run on a computer with Intel(R) Xeon(R) CPU E5-1650
v3 at 3.50GHz, 64GB RAM and GeForce GTX 980 Ti GPU.

5.1 Exactness of recovery

The first test to compare the two approaches is the “leave one out” test, which
excludes one shape from the set of training shapes, and tries to estimate it using
the other training shapes. The shape distance is then computed as the Pro-
crustes distance between the true shape and estimated shape, which is defined
as the square root of the sum of differences between corresponding points in both
shapes, when aligned using the Procrustes algorithm.
For the ith training shape, Si ∈ R3×52, let Wi ∈ R2×52 represent its 2D projection.
This projection can be bi-laterally symmetric (i.e., there exists a line of symmetry
which divides the set of projected points in two mirrored halves) or asymmetric,
depending on the plane on which the landmarks are projected. Conceptually, a
good approach is one which gives a bi-laterally symmetric estimated 3D shape,
no matter what the symmetry of the 2D landmarks is. Let Xi be the shape
estimated from the other training shapes, for the projection Wi of the shape Si.
The violin plots in Figures 20 and 22 show the distance between the shapes Si and
Xi for symmetric and asymmetric projections, respectively. Some visualizations
of the skeletons can be seen in Figures 21 and 23.
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Table 4: Shape distance statistics for symmetric projection

ASM non-convex ASM convex KSS
Mean 0.107 0.516 0.097

Variance 0.003 0.129 0.003

Table 5: Shape distance statistics for asymmetric projection

ASM non-convex ASM convex KSS
Mean 0.213 0.354 0.066

Variance 0.095 0.032 0.002

In case of symmetric projection, we make the following observations:

• The ASM non-convex and KSS approaches clearly out-perform the ASM
convex approach for all training shapes. The latter produces shapes which
align perfectly with the 2D landmarks, but appear very different from the
training shapes.

• For comparing the ASM non-convex and KSS, a paired two-sample t-test
was performed on their samples of estimation errors. A p-value of 0.30 was
obtained, which is not significant.

• The estimated 3D shape appears symmetric for all the approaches and its
scale is comparable to that of the training shapes.

In case of asymmetric projection, we make the following observations:

• KSS approach greatly out-performs both the ASM approaches.

• The estimated 3D shapes in the case of ASM non-convex and KSS ap-
proaches, appear bi-laterally symmetric. This is not true for the ASM
convex approach, which estimates an asymmetric 3D shape in most cases.
Moreover, for 10 of the training shapes (≈ 37% of the cases), the estimated
3D shape is squished and lacks depth, but still aligns well with the 2D
landmarks. The scale of the estimated shape is comparable to the training
shapes in all the approaches.

• Upon performing a two-sample t-test on the samples of estimation errors
obtained from the ASM non-convex and KSS approaches, a p-value of 0.02
was obtained, which is significant.

5.2 Robustness

The second criteria by which we compare the approaches is robustness, which is
measured by their performance when dealing with noisy data. A good approach
is one which is able to estimate the true 3D shape, even when the 2D landmarks
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Figure 20: Shape distances between true shapes Si and estimated shapes Xi, for
a symmetric projection.

Figure 21: The front and top views of the estimated 3D shapes, in case of
symmetric 2D projection. The true shape and estimated shapes are represented
by the magenta and blue skeletons, respectively.
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Figure 22: Shape distances between true shapes, Si, and estimated shapes, Xi,
for asymmetric projection.

Figure 23: The front and top views of the estimated 3D shapes, in case of
asymmetric 2D projection. The true and estimated shapes are represented by
the magenta and blue skeletons, respectively.
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Figure 24: Shape distance between true shape Si and estimated shape Xi, when
noise sampled from N (0, si ∗ δ) is added to the symmetric projection.

contain some noise. This is useful in a real-world scenario, where the data usually
contain some amount of noise. This could be in form of errors when placing land-
marks on an image manually, especially when the resolution of the image is low
and/or the positions where the landmarks are to be placed are not clearly visi-
ble. The pharyngobranchials, for example, are usually not clearly visible in most
images of basking sharks. The task becomes even harder, when the placement
of landmarks is performed by a non-professional. We test this on each training
shape, by adding noise to its symmetric 2D projection and estimating the 3D
shape using the other training shapes, i.e., leaving out the shape being estimated
like in section 5.1. The shape distance between the estimated 3D shape and the
true shape is then compared. The ASM non-convex and KSS approaches will
be compared in this section. For the scope of this master’s thesis, we decided
to leave out the ASM convex approach as its performance for the noiseless cases
in Section 5.1 was not satisfactory, which makes it unreliable for the problem at
hand.

Let Wi ∈ R2×p denote the symmetric 2D projection of training shape Si, such
that size(Wi) = si (see (20)). Let N ∈ R2×p be a matrix of noise, such that Njk

is sampled from N (0, si ∗ δ), the normal distribution centered at 0 with scale
si ∗ δ, δ ∈ R+. We denote the noisy 2D landmarks by W̃i = W +N ∈ R2×p and
the estimated 3D shape by X̃i. The violin plots in Figure 24 compare the shape
distances between Si and X̃i for the approaches, for different values of δ. Some
examples are visualized in Figure 25.
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Figure 25: The front and top views of the estimated 3D shapes, in case of noisy 2D
landmarks, for (top) δ = 0.003, (middle) δ = 0.006 and (bottom) δ = 0.009. The
gray and the black nodes represent the noiseless and noisy projections, respectively.
The true and estimated shapes are represented by the magenta and blue skeletons,
respectively. 45



Table 6: Shape distance statistics for noisy 2D landmarks

δ 0.003 0.006 0.009
ASM NC KSS ASM NC KSS ASM NC KSS

Mean 0.117 0.100 0.123 0.111 0.130 0.121
Variance 0.004 0.003 0.004 0.003 0.004 0.005

Table 7: p−values for two-sample t−test, in case of noisy 2D landmarks.

δ 0.003 0.006 0.009
p−value 0.06 0.14 0.44

In case of noisy data, we have the following observations:

• The KSS approach out-performs the ASM non-convex approach when es-
timating the true shape in the presence of noisy 2D annotated landmarks.
Table 6 summarizes some statistics obtained from the samples.

• Table 7 shows the p−values were obtained upon performing a two sample
t−test on the samples of their shape errors. The difference between samples
is not significant in any of the cases.

• The estimated shape in both cases is symmetric and its scale is comparable
to that of the true shape.

5.3 Application on real-world data

The final criteria to compare the approaches is their performance on real-world
data. In our case, this is 2D monocular images of basking sharks in feeding
motion. Annotated 2D landmarks are placed on the image and the pre-defined
training shapes are used to estimate the 3D shape of the basking shark head
skeleton. The estimated shape can only be assessed visually, as the ground truth
is not available in this case. Figure 26 shows the 2D images with annotated
landmarks and Figures 27, 28 and 29 show the estimated 3D shapes.

Figure 26: Images of basking sharks with annotated 2D landmarks (marked in
yellow).
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Figure 27: Estimated 3D shape of the head skeleton of a basking shark, from a
single 2D image. Left to right: the estimated 3D shape in magenta , top view of
the 3D shape and side view of the 3D shape.
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Figure 28: Estimated 3D shape of the head skeleton of a basking shark, from a
single 2D image. Left to right: the estimated 3D shape in magenta , top view of
the 3D shape and side view of the 3D shape.
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Figure 29: Estimated 3D shape of the head skeleton of a basking shark, from a
single 2D image. Left to right: the estimated 3D shape in magenta , top view of
the 3D shape and side view of the 3D shape.
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We make the following observations from the three real-world applications:

• The estimated 3D shape in case of the ASM convex approach fits well with
the 2D landmarks, but can appear very different from the training shapes.
This can clearly be seen in Figures 27 and 28. Moreover, the estimated
shape is sometimes squished or elongated, and requires manual scaling of
the depth.

• For the ASM non-convex approach, the estimated 3D shape does not fit
perfectly to the 2D landmarks. It performs well in some cases (Figures 27
and 29), and the estimated shape appears to be a plausible 3D represen-
tation of the head skeleton of the shark in the image, but not so well in
others (Figure 28).

• KSS approach performs remarkably well in all three tested cases. Simi-
lar to the ASM non-convex approach, although the estimated 3D shape
does not fit perfectly to the 2D landmarks, it appears to be a plausible
representation.

• In Figures 27 and 29, the results from ASM non-convex and KSS ap-
proaches appear quite similar, but are indeed different. The shape distances
between the estimated shapes are 0.056 and 0.002, respectively.

• The basking sharks in all three images are in feeding position with a fully
open mouth, which causes the gill arches to “flare”. This flaring cannot be
seen in the estimated shapes for any of the approaches. In all the cases, the
gill arches are folded backwards, similar to when in closed mouth position.
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6 Discussion and Outlook

This thesis was performed in association with the HFSP project titled “Inte-
grating Materials, Behaviour, Robotics and Architecture in Giant Filter-Feeding
Sharks”, which aims to study the filtering process of basking sharks, as a po-
tential bio-inspiration for high-throughput dynamic filters, as well as from an
evolutionary biological standpoint.

6.1 Comparing the approaches

The first approach used for the 2D-to-3D fitting problem, was the active shape
model (ASM) approach, which estimates an unknown 3D shape as a linear com-
bination of pre-defined training shapes. Two different formulations of this ap-
proach were tested, a non-convex and a convex one. The former is solved via an
alternating minimization method and works well for the problem at hand. It is,
however, sensitive to initialization and is unable to reliably estimate the unknown
3D shape, as seen in the case of bi-laterally asymmetric projections (Figure 22)
and some real-world applications (Figure 28). The convex formulation is not sen-
sitive to initialization and solves for a global optimum, however, the estimated
3D shapes often appear very different from the training shapes. Moreover, the
estimated shapes can sometimes be bi-laterally asymmetric and even elongated
or squished, needing a manual scaling of the depth. This is due to the fact that
the training shapes are not aligned and can be rotated before interpolation, and
the independent rotations and weights are estimated such that the objective in
(12) is minimized. Thus, the similarity of the estimated shape to the training
shapes is not guaranteed, which makes the convex formulation of the ASM ap-
proach is unattractive for the problem at hand.

A notable contribution of this thesis, is the development of a novel Kendall’s
shape space (KSS) approach for the 2D-to-3D fitting problem. In contrast to the
ASM approach, this approach uses a mathematical notion of “shape”, and per-
forms computations on the Riemannian manifold representing the set of shapes,
called Kendall’s shape space. It estimates the unknown 3D shape as a weighted
Fréchet mean of some pre-defined training shapes, lying on this space. Similar
to the ASM non-convex approach, an alternating minimization is used to solve
for the weights and viewpoint parameters, in the optimization problem. In our
experiments, this approach out-performed the ASM approach in almost all cases.
This is due to a better interpolation between the training shapes, offered by the
weighted Fréchet mean. The only drawback of KSS approach that we could find
is longer computation time, compared to the other approaches. On average,
it takes 1 hour to perform 50 iterations, compared to 7 minutes for the ASM
non-convex and < 1 second (until convergence) for the convex approaches.

When testing the approaches on real-world images of basking sharks in Sec-
tion 5.3, we observed that the 3D shapes estimated by the ASM non-convex and
KSS approaches do not fit perfectly well with the 2D landmarks. Note that both
the approaches assume the 2D landmarks to be the projection of a 3D shape,
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using the weak-perspective camera, which is not the camera used for capturing
the images. Moreover, an important pre-requisite for using them, is the avail-
ability of a comprehensive set of pre-defined training shapes, of the object being
estimated. These might be the contributing reasons for this observation.

6.2 Basking shark head skeleton data

The head skeletons of basking sharks, which were segmented from the CT scans,
were corrected by positioning the “spine” and the ventral plate to an anatomi-
cally plausible position. This was done by solving optimization problems which
move the nodes of the shark skeleton, while preserving the lengths of its segments.
The same method was used to open the mouth of the shark by positioning the
“spine” higher and the ventral plate lower. This enabled us to successfully create
pre-defined 3D training shapes of the head skeleton of basking sharks, to be used
in the 2D-to-3D shape fitting problem. The limited research available on the
relative movement of the different sub-regions of the branchial region (especially
the gill arches) of this shark, restricted the accuracy of the prepared training
shapes. We did, however, include all possible configurations of the skeleton,
which preserved the length of the regions, while moving them in a plausible way.
Rotating the gills and the pharyngobranchials is one such example. When fit
to a set of 2D annotated landmarks, the output shape is interpolated from the
training shapes. Hence, including a few extra shapes is not an issue, as long as
the estimated 3D shape fits well to the 2D landmarks. This may not be the case
with non-rigid objects with a larger variety of movement, for example, a human
stick figure. In this case, it is maybe useful to use a sparse representation of the
training shapes [ZLHD15, RKS12].

The creation of the piece-wise linear skeletons, using the 3D segmented re-
gions from the CT scans, is in fact a reversible process. Sean Hanna and his team
at Bartlett School of Architecture, UCL, used the symmetric piece-wise linear
skeletons created by us to obtain the 3D segmented regions corresponding to it.
Figure 30 visualizes this.

6.3 Outlook

Both the approaches studied for the 2D-to-3D shape fitting problem use a weak-
perspective camera model, which assumes the depth of the object to be very small
compared to the distance between the object and the camera. This simplifies the
problem but is an inaccurate assumption for estimating the 3D shape of the head
skeleton of a basking shark, as most images in their feeding position are captured
by cameras close to the swimming sharks. Hence, in our case, the depth of the
object is not small compared to the distance between the object and the camera.
A more appropriate camera model would greatly improve the results, especially
when estimating the 3D shape from real-world images of basking sharks. We
believe this could be implemented for the ASM non-convex and KSS approaches.
The ASM convex approach is derived using the assumption of a weak-perspective
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Figure 30: 3D head skeleton of a basking shark obtained from its piece-wise
linear skeleton, in (left) open and (right) closed mouth positions. The open
mouth position is viewed from the front while the closed mouth is viewed from
the top (courtesy of Aurora Tairan Li and Sean Hanna)

camera, hence, it might be harder to change the camera model in this approach.
As acknowledged in the previous sections, due to the limited time provided

for this thesis and the lack of data, these shapes were not anatomically accu-
rate. Moreover, the gills were “flared” by rotation, only for a fraction of the
pre-defined shapes. This favoured the estimated 3D shapes to have the gills
folded backwards, i.e., not flared, even in open mouth positions (see Figures 27,
28, 29). A useful next step would therefore be the creation of more pre-defined
shapes, especially in open mouth positions, for improved estimation.

As observed in Section 5, the ASM non-convex approach performed signifi-
cantly better in the case of bi-laterally symmetric 2D projections and noisy 2D
landmarks, compared to asymmetric projections. The reasons for this could be
investigated further. Kendall’s shape space approach, on the other hand, per-
forms consistently well for all the cases.

We opened the mouth of the basking shark head skeletons, by solving opti-
mization problems which try to preserve the length of the linear segments of the
skeleton while moving its nodes to new positions. Another way to do this could
be by moving the nodes of the skeleton to new positions, such that the volume
of the convex hull of the nodes is maximized and the lengths of the segments are
preserved.

By estimating the 3D shape of the head skeleton using different frames in a
2D video of a feeding basking shark, the process can be animated in 3D. The
animation of the skeleton can then be used to animate real-world volumetric
data of basking sharks, similar to Figure 30. In Kendall’s shape space, given the
initial, final and some intermediate positions of the head skeleton, a continuous
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trajectory could be computed using geodesic curves on the space. To successfully
do this, however, faster methods are needed. Speeding up KSS approach would
be an appropriate option. It would also be interesting to study the relationship
between the computation time of the approaches, and the number of training
shapes.

During the course of this project, valuable data in form of surface scans and
close-up diver footages of basking sharks were provided, which could not be used.
A useful next step could also be using this data to attain kinematic information
about the shark and incorporate this information in the current model.
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