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Abstract

The matchings in a complete bipartite graph form a simplicial
complex, which in many cases has strong structural properties. We
use an equivalent description as chessboard complexes: the complexes
of all non-taking rook positions on chessboards of various shapes.

In this paper we construct ‘certificate k-shapes’ Σ(m, n, k) such
that if the shape A contains some Σ(m, n, k), then the (k−1)-skeleton
of the chessboard complex Δ(A) is vertex decomposable in the sense of
Provan & Billera. This covers, in particular, the case of rectangular
chessboards A = [m]×[n], for which Δ(A) is vertex decomposable if
n ≥ 2m−1, and the (�m+n+1

3 �−1)-skeleton is vertex decomposable in
general.

The notion of vertex decomposability is a very convenient tool to
prove shellability of such combinatorially defined simplicial complexes.
We establish a relation between vertex decomposability and the CL-
shellability technique (for posets) of Björner & Wachs.

�� Introduction�

Consider a chessboard of size m × n. [We will assume m ≤ n for this in-
troduction.] Every non-taking rook configuration (that is, no two rooks on
the same row or column) on the chessboard can be identified with the set of
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squares it occupies. The set of all such rook configurations forms an abstract
simplicial complex: the empty set of rooks is non-taking, and any subset of
a non-taking configuration is non-taking as well.

This simplicial complex, the chessboard complex Δm,n, appears in several
interesting combinatorial situations: as a coset complex K(m,n) of certain
subgroups in the symmetric group studied by Garst [Ga, Chap. 3], as a mul-
tiple deleted join of a 0-complex as studied by Sarkaria [Sa], as a complex of
injective functions Pm,n in the analysis of Tverberg-type problems by Vrećica
& Živaljević [VZ, Sect. 2], as matching complexes M(Km,n) of complete bi-
partite graphs (see Lovász & Plummer [LP]), thus as an intersection of two
partition matroids, and probably in many more situations — see also the
introduction of [BLVZ].

Since the chessboard complexes are so easy to define and appear to be the
combinatorial essence in such diverse situation, there is a strong interest in
understanding their combinatorial and topological properties. In particular,
several of the applications (as in [VZ]) need information on connectivity
properties.

Recall the following (well-known) hierarchy of properties of simplicial
complexes:

vertex decomposable =⇒ shellable =⇒ homotopy CM =⇒ CM.

The first result for chessboard complexes was Garst’s Theorem [Ga, Thm. 15]:
Δm,n is Cohen-Macaulay (CM) if and only if n ≥ 2m−1. This was recently
strengthened by Björner, Lovász, Vrećica & Živaljević [BLVZ]: the complexes
are always min{m−2, �n+m+1

3
�−2}-connected, so the (�n+m+1

3
�−1)-skeleton

of Δm,n is homotopy Cohen-Macaulay. The Cohen-Macaulay property has
strong enumerative consequences (see [Bj2, Sect. 7.5]): we get information
on the matching polynomials of complete bipartite graphs [LP] from this.

On the combinatorial side this suggests — see the ‘Final Remark’ by
Björner, Lovász, Vrećica & Živaljević — that Δm,n should be shellable for
n ≥ 2m−1, and that the (�n+m+1

3
�−1)-skeleton of Δm,n should be shellable.

[Whoever thought about this noticed, however, that the ‘obvious approach’
does not work: the lexicographic ordering on the facets does not produce a
shelling for the natural orderings on the vertices; also, it is not clear at first
how the condition n ≥ 2m−1 should come into such a proof.] Shellability is
a strong statement: in addition to homotopy Cohen-Macaulayness it implies

2



(at least in principle) the construction of a distinguished homology basis, see
Björner’s discussion in [Bj2, Sect. 7.7].

In this paper we establish an even stronger condition: the (�n+m+1
3

�−1)-
skeleton of Δm,n is vertex decomposable in the sense of by Provan & Billera
[BP] [PB], see Section 1. According to Provan & Billera [PB, Thm. 2.10]
this additionally implies the “Hirsch bound” on the diameter; applied to
the skeleta of chessboard complexes Δm,n it says that every non-taking rook
position of k rooks on the (m×n)-chessboard can be transformed into any
other position in at mostmn−k single-rook moves, so that every intermediate
position is non-taking as well, if k ≤ �n+m+1

3
�. It seems that this upper bound

for the number of moves is non-trivial, although by far not best possible. It
would be interesting to determine the exact bound.

Our proofs of vertex decomposability will apply to the skeleta of chess-
board complexes of quite arbitrary shapes (corresponding to matching com-
plexes of general bipartite graphs). Following [BLVZ], we will identify the
squares in the ‘infinite chessboard’ with ZZ2 in matrix notation, where the
square (i, j) lies i rows below and j columns to the right of some reference
point/square (0, 0).

In the course of the investigation it turns out that the structure that
determines the shellability of the ‘classical’ rectangular chessboard complex
is the largest diamond shape

Σm := {(i, j) ∈ [m]×ZZ : 0 ≤ j−i ≤ m−1}.
it contains, where we use the notation [m] := {1, . . . , m}. Figure 0.1 shows
the diamond shapes Σ1,Σ2,Σ3,Σ4, where every square is labeled by the cor-
responding pair in ZZ2.

Σ1: 1,1
Σ2:

1,1 1,2

2,2 2,3 Σ3:

1,1 1,2

2,2

1,3

2,3

3,3

2,4

3,4 3,5
Σ4:

Figure 0.1: The diamond shapes Σm

With these shapes, we find that for any subset A of an (m × n)-board
that contains an isomorphic copy of the diamond board Σm (i.e., allowing for
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row and column permutations and transposition), the chessboard complex
Δ(A) is shellable.

Theorem 0.1. Let A ⊆ [m] × ZZ be a finite subset that contains the
diamond shape Σm. Then Δ(A) is vertex decomposable of dimension m−1.

This formulation is not only stronger than the statement for rectangu-
lar chessboards, it also admits a simple inductive proof. In this paper, we
actually will give the proof in two versions. In Theorem 2.3 we will demon-
strate the simplicity of the proof technique on the basic version for rectangu-
lar chessboards, which yields a statement that is weaker than Theorem 0.1.
However, Theorem 0.1 can be proved along the same line, and in Theorem 3.3
we will show the power of the technique by proving the most general version
we know for skeleta of complexes of planar shapes; this Theorem 3.3 also
contains Theorem 0.1 as a very special case — see the end of Section 3.

�� Vertex decomposable complexes and shellability�

An (abstract, finite) simplicial complex is a family of sets Δ ⊆ 2E that
contains ∅ and with any set also contains all its subsets. See Björner [Bj3]
for a basic treatment of simplicial complexes and their combinatorics. Here
we will only review the notions that are needed in the following.

We refer to E as the ground set, which contains the set of vertices V (Δ) =
{e ∈ E : {e} ∈ Δ}. We admit the empty complex Δ = {∅} in our discussions
(and use it to start inductions on the size of the vertex set).

Using geometric language, we refer to the sets in Δ as faces of Δ, where
the dimension of a face is one less than its cardinality: dim(A) = |A|−1 for
A ∈ Δ. The dimension dim(Δ) of Δ is the largest dimension of a face in Δ.
A simplicial complex is pure if all its maximal faces have the same dimension.
For example, a simplicial complex of dimension 0 is just a non-empty set of
vertices. A simplicial complex of dimension 1 is a graph with at least one
edge; it is pure if it does not have an isolated vertex.

A simplex is the simplicial complex given by all the subsets of a finite
set. Thus every simplex is pure; the simplex of dimension −1 is the empty
complex. Finally, the k-skeleton of Δ is the complex of all faces in Δ of
dimension at most k:

Δ≤k := {A ∈ Δ : |A| ≤ k+1}.
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We will use the following notation for deletions, restrictions and links. If
A is any subset of the ground set, then the deletion of A from Δ is Δ\A :=
{B ∈ Δ : A ∩ B = ∅}. In particular, we need the case where A = {v} is
a single vertex of Δ. In this case we write Δ\v := Δ\{v}. We will also
use the restriction to a subset of the ground set: Δ(A) := {B ∈ Δ : B ⊆
A} = Δ\(E\A). Similarly, for any face A ∈ Δ the link is Δ/A := {B ∈ Δ :
A ∩ B = ∅, A ∪ B ∈ Δ}. Again, we write Δ/v := Δ/{v} for a vertex v of
Δ. [This notation follows matroid theory usage. One key observation is that
deletions and links commute. Any deletion of a link, or a link of a deletion,
will be referred to as a minor of the complex in question.] Using deletion
and link of a vertex as primitives, we get the following recursive definition.

Definition 1.1. (Provan & Billera [BP] [PB, Def. 2.1]) A simplicial
complex Δ is vertex decomposable if it is pure and it is either empty, or it
has a vertex v such that Δ\v and Δ/v are vertex decomposable (of smaller
size).

(If Δ is pure of dimension k, then Δ/v is automatically pure of dimension
k−1. If Δ\v is also pure, then either dim(Δ\v) = k, or we get that Δ is
a cone over Δ\v, where Δ\v = Δ/v has dimension k−1. A good example
of a complex that is pure but not vertex decomposable is the 1-dimensional

complex
r

r

r

r

.)

Equivalently, a non-empty complex Δ is vertex decomposable if and only
if it is pure and it has an ordering (v1, v2, . . . , vn) of the vertices such that

Δ\{vi, . . . , vn} and Δ/vi\{vi+1, . . . , vn} are vertex decomposable, for
1 ≤ i ≤ n.

This is the criterion used in the proofs of this paper. In fact, using the
induction hidden in this, it suffices to require

Δ\{vi, . . . , vn} is pure and Δ/vi\{vi+1, . . . , vn} is vertex decomposable,
for 1 ≤ i ≤ n.

Thus the proof of vertex decomposability amounts to specifying a good ver-
tex ordering for the complex (called shedding orders in [PB, p. 587]) and
recursively for certain of its minors.

For example, to show that Δ4,8 is vertex decomposable, our proof in
Theorem 2.3 below shows that we can take any vertex ordering that picks
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the squares, for example, with increasing labels according to the following
figure:

4

6

8

10

5

6

8

10

7

3

8

10

7

7

8

10

9

9

2

10

9

9

9

10

11

11

11

1

11

11

11

11

Figure 1.1: Shedding order for Δ4,8 = Δ([4]× [8])

The following simple lemma will be the key to our inductive treatment of
skeleta of complexes. Note that it contains the fact that the cone of a vertex
decomposable complex is again vertex decomposable as a special case. The
analogous statements for shellable and for Cohen-Macaulay complexes are
also quite obvious.

Lemma 1.2. If Δ is a finite simplicial complex whose k-skeleton Δ≤k is
vertex decomposable, then the (k+1)-skeleton (Δ ∗ v)≤k+1 of the cone over
Δ is vertex decomposable as well.

Proof. In fact, we show that if (v1, . . . , vt) is a shedding order for Δ≤k, then
(v, v1, . . . , vt) is a shedding order for (Δ ∗ v)≤k+1.

First we note that (Δ∗v)≤k+1 is a pure complex of dimension k+1, whose
maximal faces are the k-faces of Δ augmented by v, and the (k+1)-faces of
Δ. Now to see vertex decomposability, we use induction on t and simply
compute

(Δ ∗ v)≤k+1/vt = ((Δ ∗ v)/vt)≤k = ((Δ/vt) ∗ v)≤k, which is vertex
decomposable by induction, and

(Δ∗v)≤k+1\vt = ((Δ∗v)\vt)≤k = ((Δ\vt)∗v)≤k, which is also vertex
decomposable by induction.

It seems to be a natural problem to relate vertex decomposability for
complexes to the lexicographic shellability technique of Björner & Wachs
[BjW].
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Proposition 1.3. If Δ is vertex decomposable, then P (Δ) has a recursive
atom ordering in the sense of [BjW]. The converse is false in general.

Proof. We prove, more precisely, that any shedding order for Δ is a recursive
atom ordering for the face poset P (Δ). Since P (Δ) is a semilattice, we
can use the Wachs & Walker formulation of recursive atom orderings [WW,
Sect. 7]: we have to prove that if (v1, . . . , vt) is a shedding order for Δ, then
Δ/vi has a shedding order in which the vertices in {vj : j<i, {vi, vj} ∈ Δ}
come first.

Thus it suffices to verify the following claim: if (v1, . . . , vt) is a shedding
order for Δ, and (v′

1, . . . , v
′
i′) is a shedding order for Δ/vi\{vi+1, . . . , vt}, then

(v′
1, . . . , v

′
i′, vi+1, . . . , vt) is a shedding order for Δ/vi. (From these shedding

orders one could delete the elements vj (j > i) such that {vi, vj} /∈ Δ, for
which vj is not a vertices of the complex Δ/vi.)

This is easily proved by induction on t−i, using some observations in the
proof of [PB, Prop. 2.3]. The case {vi, vt} /∈ Δ corresponds to deleting an
irrelevant element which is not in the ground set. Now if {vi, vt} ∈ Δ, then
we compute (Δ/vi)\vt = (Δ\vt)/vi and (Δ/vi)/vt = (Δ/vt)/vi. In both cases
we are done by induction.

For the converse, consider the boundary complexes of simplicial poly-
topes. These complexes are not all vertex decomposable [KK, Sects. 6.3,
6.4], although their face posets have recursive atom orderings (RAO) by
[BjW, Thm. 4.5].

Altogether we think that one should have the hierarchy:

Δ vertex decomposable =⇒ P (Δ) has RAO =⇒ Δ shellable

Here Proposition 1.3 proves the first implication and shows that the con-
verse is false. The second implication remains a conjecture, where we do not
know about the converse either. However, it is clear that vertex decompos-
ability of Δ implies shellability, by Provan & Billera [BP] [PB, Cor. 2.9]. We
note that the chain of implications can be continued as

Δ shellable ⇐⇒ P (Δ) has RCO =⇒ Δ(P (Δ)) vertex decomposable

The first equivalence, between shellability and recursive coatom orderings
(RCO), is a main result of [BjW], while the second implication, involving the
barycentric subdivision sd(Δ) = Δ(P (Δ)) of Δ, is an unpublished result of
A. Björner [Bj4].

7



�� Rectangular chessboard complexes�

Definition 2.1. For any (finite) subset A ⊆ ZZ2, we define the generalized
chessboard complex of A as the simplicial complex

Δ(A) := {B ⊆ A : i �=i′ and j �=j′ for (i, j), (i′, j′) ∈ B, (i, j) �=(i′, j′)}.

For this, we can view ZZ2 as the ground set, and let

Δ(ZZ2) = {B ⊆ ZZ2 : i �=i′ and j �=j′ for (i, j), (i′, j′) ∈ B, (i, j) �=(i′, j′)}

be the chessboard complex on the complete infinite chessboard, so that for
a finite set A ⊆ ZZ2, the chessboard complex Δ(A) is the restriction of the
infinite, infinite-dimensional complex Δ(ZZ2) to A.

In particular, this definition includes the ‘classical’ rectangular chessboard
complexes as Δm,n = Δ([m]×[n]).

Lemma 2.2. Let A be a finite subset of ZZ2, and (i, j) ∈ A. Then the
deletion and the link of the vertex (i, j) in the chessboard complex Δ(A) are
given by

Δ(A)\(i, j) = Δ(A\(i, j)) and Δ(A)/(i, j) ∼= Δ(Ai,j),

where Ai,j is the set of all (i′, j′) ∈ ZZ2 such that we have (i′′, j′′) ∈ A with
i′ = i′′ < i or i′ = i′′+1 > i, and with j′ = j′′ < j or j′ = j′′+1 > j.

Proof. This just states that the deletion of a vertex from a chessboard
complex corresponds to deleting the corresponding square from the board,
whereas the link is obtained by removing the corresponding row and col-
umn from the board, where we get an isomorphic complex by “closing the
gap”.

Theorem 2.3. If A is a finite set with [m]×[2m−1] ⊆ A ⊆ [m]×ZZ, then
Δ(A) is a vertex decomposable complex of dimension m−1.

Proof. We proceed by induction on m, the case m = 1 being trivial. For
m > 1, we use that by induction Δm−1,2m−2 = Δ([m−1]×[2m−2]) is vertex
decomposable of dimension m−2. Now Δ([m−1]×[2m−2] ∪ {(m, 2m−1)})
is a cone over Δm−1,2m−2 and thus vertex decomposable of dimension m−1.
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From this we use induction on |A| to see that Δ(A) is vertex decomposable
of dimension m−1 for [m−1]×[2m−2]∪ {(m, 2m−1)} ⊆ A ⊆ [m]×[2m−2]∪
{(m, 2m−1)}: in fact, the links we have to consider in the induction steps
are isomorphic to Δ(Am,i) with 1 ≤ i ≤ 2m−2 with Am,i = [m−1]×[2m−3],
so by induction they are vertex decomposable of dimension m−2.

To complete the argument, we show that whenever A is a finite set with
[m]×[2m−2] ∪ {(m, 2m−1)} ⊆ A ⊆ [m]×ZZ, then Δ(A) is vertex decom-
posable of dimension m−1. Again we use induction on |A|, where we al-
ready know the claim for the case [m]×[2m−2] ∪ {(m, 2m−1)} = A. Now if
(i, j) ∈ A with j ∈ ZZ\[2m−2], then [m−1, 2m−3] ⊆ Ai,j, and thus Δ(Ai,j)
is vertex decomposable of dimension m−2 by induction.

�� Skeleta of chessboard complexes�

Definition 3.1. A k-shape is a subset Σ(m,n, k) ⊆ ZZ2 given by

Σ(m,n, k) := {(i, j) ∈ [m]×[n] : −(2k−1) + n ≤ j−i ≤ (2k−1)−m }.

A k-shape is admissible if m,n ≤ 2k−1 and m+n+1 ≥ 3k.

�

�
2k−n

� �2k−m

�

�

m

� �
n

Figure 3.1: A typical shape, Σ(18, 24, 15)

For our induction we use that from a k-shape A, the following operations
still leave a shape that contains (an isomorphic copy of) an admissible (k−1)-
shape:
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(a) deleting the row and column of a square outside A,

(b) deleting the last row and the last column,

(c) deleting the last row and the last column, plus another row (column)
that contains a square in the last column (row).

Lemma 3.2. For S(a, b) := {(i, j) ∈ ZZ2 : a ≤ j−i ≤ b} with a < b and
(i, j) ∈ ZZ2 we have

S(a, b)i,j ⊃ S(a+1, b) for j−i > b,

S(a, b)i,j ⊃ S(a, b−1) for j−i < a.

Proof. There are three simple cases to check for the first claim (a sketch
will help). The second one follows by symmetry.

With the notation of Lemma 3.2, we have

Σ(m,n, k) = [m]×[n] ∩ S(−2k+1+n, 2k−1−m).

Theorem 3.3. If A ⊆ ZZ2 is a finite set that contains (an isomorphic
copy of) an admissible k-shape, then Δ(A)≤k−1 is vertex decomposable of
dimension k−1.

Proof. We proceed by induction on k, the case k = 1 being trivial: the only
admissible 1-shape is {(1, 1)}. For k > 1 note that

Σ(m,n, k)m,n = [m−1]×[n−1] ∩ S(−2k+1+n, 2k−1−m)

contains an admissible (k − 1)-shape, namely

Σ(m−2, n−1, k−1) if n < 2k−1,

Σ(m−1, n−2, k−1) if m < 2k−1, and

Σ(m−2, n−2, k−1) if m = n = 2k−1.
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From this, and Lemma 1.2, we get that the skeleton Δ(A)≤k−1 of the chess-
board complex for A = Σ(m,n, k)m,n ∪ {(m,n)} is vertex decomposable of
dimension k−1.

As the next step we show that adding the squares of the last row and
column to A = Σ(m,n, k)m,n ∪ {(m,n)} preserves vertex decomposability of
the (k−1)-skeleton. That is, we claim that Δ(A′) is vertex decomposable for

Σ(m,n, k)m,n ∪ {(m,n)} ⊆ A′ ⊆ Σ(m,n, k).

Using induction on |A′| and the symmetry between m and n, we show that
A′

i,n contains an admissible (k−1)-shape for n−(2k−1)+m ≤ i < m. With
this we have 2k−1 < n, and using Lemma 3.2 we compute

A′
i,n = ([m−1]×[n−1])i,n ∩ (S(−(2k−1)+n, (2k−1)−m))i,m+n

⊇ [m−2]×[n−1] ∩ S(−(2k−1)+n+1, (2k−1)−m)

= Σ(m−2, n−1, k−1).

Symmetrically, for any j withm−(2k−1)+n ≤ j < n the minorA ′
m,j contains

an admissible (k−1)-shape, namely Σ(m−1, n−2, k−1). With this we know
that Δ(Σ(m,n, k))≤k−1 is vertex decomposable of dimension k−1.

Now let Σ(m,n, k) ⊆ A; we show by induction on |A| that Δ(A)≤k−1 is
vertex decomposable of dimension k−1. For this, we prove that if (i, j) ∈
ZZ2\Σ(m,n, k), then Σ(m,n, k)i,j contains an admissible (k−1)-shape, or a
translate of one.

First assume that (i, j) ∈ [m]×[n]. By symmetry, we may assume j−i >
2k−1−m, and compute

Σ(m,n, k)i,j = [m−1]×[n−1] ∩ S(−2k+1+n, 2k−1−m)i,j

⊇ [m−1]×[n−1] ∩ S(−2k+2+n, 2k−1−m)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊇ [m−2]×[n−1] ∩ S(−2k+2+n, 2k−1−m)
= Σ(m−2, n−1, k−1),
which is admissible if n < 2k−1,

⊇ [m−2]×[n−2] ∩ S(−2k+2+n, 2k−2−m)
= Σ(m−2, n−2, k−1),
which is admissible if m+n+1 > 3k,

⊇ [m−2]×[n−2] +
(
0
1

)
∩ S(−2k+1+n, 2k−2−m) +

(
0
1

)

= Σ(m−1, n−2, k−1)
(
0
1

)
,

which is admissible if m < 2k−1.
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where one of the two last cases applies: otherwise we would have n = 2k−1,
m+n+1 = 3k and m = 2k−1, thus k = 1.

Now we treat the case where i ∈ [m], but j ∈ ZZ\[m]. This corresponds to
deleting one arbitrary row from Σ(m,n, k). Since the column corresponding
to j does not hit Σ(m,n, k), we may assume that j is large, j−i > n. Thus
we get

Σ(m,n, k)i,j = [m−1]×[n] ∩ S(−2k+1+n, 2k−1−m)i,j

⊇ [m−1]×[n] ∩ S(−2k+2+n, 2k−1−m).

This contains

Σ(m−1, n−2, k−1), which is admissible if m < 2k−1,

Σ(m−2, n−1, k−1), which is admissible if n < 2k−1,

Σ(m−2, n−2, k−1), which is admissible if m+n+1 > 3k

and one of the three cases occurs. Now again the case of j ∈ [n], i ∈ ZZ\[m]
follows by symmetry, and the last case, where i /∈ [m], j /∈ [n], is implied by
any of the three previous ones.

In particular, let A = [m]×[n] be a rectangular shape, and assume m ≤ n
(without loss of generality). The complex Δ(A) has dimension m−1. If
n ≥ 2m−1, then Σm = Σ(m, 2m−1, m) ⊆ A, and thus by Theorem 3.3
Δ(A)≤m−1 = Δ(A) is vertex decomposable. (This proves Theorem 0.1.) If
m ≤ n ≤ 2m−1, then for k := �m+n+1

3
� we get that Σ(m,n, k) is admissible,

and thus the (k−1)-skeleton Δ(A) is vertex decomposable. The conjecture
of Björner, Lovász, Vrećica & Živaljević [BLVZ, Conj. 1.5(a)] would imply
that this k = �m+n+1

3
� is maximal.

As a special case we meet the “challenge” of Björner, Lovász, Vrećica &
Živaljević [BLVZ, Sect. 5]: the complex of non-taking positions of at most
5 rooks on an (8 × 8)-chessboard is shellable: and our description implicitly
contains an explicit shelling of Δ([8]×[8])≤4. In fact, the same is true for
the 4-skeleton of the (7 × 7)-board, because Σ(7, 7, 5) ⊆ [7]×[7] ⊆ [8]×[8] is
admissible.
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�� Final remarks�

The following characterization of matroid complexes is well-known (see [PB,
Prop. 3.2.3] [Bj2, Ex. 7.4, Thm. 7.3.4]): if every restriction of Δ to a subset
(including the complex Δ itself) is pure, then every such restriction is a
matroid complex, and thus in particular vertex decomposable.

In the following sense the chessboard complexes are very ‘close’ to being
matroid complexes. We propose to call (Δ, A) a relative matroid complex if
Δ is a simplicial complex, A is a finite subset of its vertex set, and every
finite minor of Δ that contains A (i.e., obtained by deleting or taking links
of elements not in A) is vertex decomposable. Equivalently, Δ(A) is vertex
decomposable, and every finite minor of Δ that containsA is pure. With this,
the case A = ∅ corresponds to a usual matroid complex, whereas Theorem 3.3
establishes that (Δ(ZZ2)≤k−1,Σ) is a relative matroid complex whenever Σ
contains an admissible k-shape of Definition 3.1. It might be interesting
to study the exchange properties of such relative matroid complexes, with
the aim of deriving diameter bounds that improve upon the Hirsch bounds
(cf. the introduction).

In view of Theorem 3.3 one could ask for a complete list of minimal
certificates for vertex decomposability, that is, all minimal shapes (up to
isomorphism) that determine a relative matroid complex. Here we only
note that the list given by Theorem 3.3 is not itself complete: for exam-
ple, A = {(1, 1), (1, 2), (2, 3), (2, 4)} is a minimal certificate shape for k = 2,
distinct from the admissible shapes Σ(2, 3, 2) = Σ2, its transpose Σ(3, 2, 2),
and Σ(3, 3, 2) = {(1, 1), (2, 2), (3, 3)}, as given by Definition 3.1.

However, the parameter k is chosen maximal for each admissible shape
Σ(m,n, k). In fact, consider the set A := {(i+m−k, i) : 1 ≤ i ≤ k} ∪
Σ(m,n, k). Then {(i+m−k, i) : 1 ≤ i ≤ k} is a maximal face of Δ(A), so
the k-skeleton Δ(A)≤k cannot be pure of dimension k.

To treat infinite complexes, we need to adapt the notion of vertex de-
composability; this is quite straightforward for the definitions given after
Definition 1.1. (One can rely on Björner’s treatment of infinite shellable
complexes [Bj1, Sect. 1(A)] for guidance.) With this, we can drop the finite-
ness assumption on A in Theorem 3.3. In particular, we get connectivity
results for Δ(A) also if A is infinite (using compactness arguments). It is
easy to see that Δ(ZZ2) is in fact contractible.

13



It seems likely that our method can be applied to treat the complexes
of higher-dimensional chessboards as well, which corresponds to the match-
ing complexes of balanced complete hypergraphs. The connectivity results
of Björner, Lovász, Vrećica & Živaljević extend to this setting, see [BLVZ,
Sect. 4]. They were further generalized by H. Eriksson [Bj4]. We will not
pursue this here.
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