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Abstract. In this paper we consider a simple variant of the Online
Dial-a-Ride Problem from a probabilistic point of view. To this end, we
look at a probabilistic version of this online Dial-a-Ride problem and
introduce a probabilistic notion of the competitive ratio which states
that an algorithm performs well on the vast majority of the instances.
Our main result is that under the assumption of high load a certain on-
line algorithm is probabilistically (1+o(1))-competitive if the underlying
graph is a tree. This result can be extended to general graphs by using
well-known approximation techniques at the expense of a distortion fac-
tor O (log|V |).

1 Introduction

This paper deals with a certain elementary problem from a general class of
transportation problems known as Dial-a-Ride problems. Dial-a-Ride problems
arise in a wide range of applications. The elementary variant considered here
was motivated by an application to a high rack warehouse.

We consider the following problem called Darp: There is one server which can
serve at most one request at a time. It serves a request by traveling to its source
location, picking up the object to transport and traveling to the destination
location where the object is delivered. The server starts from a distinguished lo-
cation (called depot) to which it has to return. Transportation is non-preemptive,
i. e., once the service of a request has started there must not be an interruption
until the request is finished at the destination location. We assume that we know
all the distances between the locations. The objective is then to minimize the
total travel distance, which is equivalent to minimizing total completion time
(also known as makespan). Although the server (an elevator in the application)
travels along a line it is convenient to model the transportation network by a
special tree called caterpillar [1]. This is the reason for focusing on trees.

As is the case for many Dial-a-Ride applications there is an online aspect:
Requests arrive over longer periods of time and should be served promptly. In
this work we analyze the performance of an online algorithm on a random request
sequence which tries to minimize total travel distance.
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There is a huge literature on Dial-a-Ride problems, both online and offline.
Frederickson and Guan [2] showed that the Darp is NP-hard even on trees.
Interestingly, the Darp can be solved in polynomial time on paths, but it is NP-
hard on caterpillars [3, 4]. For the Darp on general graphs a 9

5 -approximation
algorithm was presented by Frederickson et al. [5]. An improved algorithm for
trees proposed by Frederickson and Guan [2] has a performance ratio of 5

4 . How-
ever, it has been observed that the solutions produced by another algorithm of
Frederickson and Guan [2] called use-MST are optimal in many cases, whereas
its approximation guarantee is only 4

3 . This motivated the probabilistic analy-
sis of Coja-Oghlan et al. who showed that use-MST solves asymptotically all
instances optimally [1, 6].

So far, online versions of the Darp have been investigated for general graphs.
The algorithm SmartStart introduced by Ascheuer et al. [7] is 2-competitive
w. r. t. completion time, which is optimal. Hauptmeier et al. [3, 8] showed that
under appropriate restrictions to the request sequence the Ignore-strategy leads
to bounded average and maximum flow time.

Significance and Main Results. Competitive Analysis has been criticized since
it often leads to counterintuitive and even worthless results. In fact it is known
that there is no constant-competitive algorithm w. r. t. total travel distance for
this online problem. The reason is that the offline adversary is too strong to be
a sound yardstick for measuring the performance of an online algorithm. A way
to overcome this deficiency is to consider randomized online algorithms, which
somewhat weakens the adversary. However, in this paper we look at randomized
input which means abandoning the focus on unrealistic adversarial instances in
favor of a probabilistic model of possible instances. The idea is that this approach
leads to statements on typical behavior instead of worst-case behavior.

First we introduce a suitable probabilistic version of the Darp. In doing
so, we follow the rationale in [6]: The underlying tree is kept fixed while the
requests are generated by a random process. The reason for this is that usu-
ally the infrastructure is known and does not change, whereas the requests are
unpredictable.

We extend the notion of “competitive ratio” in a natural way to probabilistic
input, requiring a good competitive ratio on almost all instances. We analyze
an online algorithm based on the offline algorithm use-MST mentioned above
and show that it is (1 + o(1))-competitive w. r. t. total travel distance in our
sense, assuming high load. This shows that the above-mentioned bad behavior
of all online algorithms is atypical, at least for request sequences corresponding
to our random model. Apart from this it is an example for a situation in which
an online algorithm has no big disadvantage compared to a clairvoyant offline
algorithm (having no influence on the input instance).

As far as we know this is the first time that a high-probability result for
online algorithms is obtained; so far there are only expected-competitiveness
results (e. g., [9], [10], [11], [12]).

Although the assumption of high load is unrealistic for real-world applica-
tions, our result shows that if there are many requests there is a lot of synergy



to exploit. This raises the hope that there are algorithms with a constant prob-
abilistic competitive ratio in realistic load situations.

The remaining part of the paper is structured as follows: Section 2 formally
states the variant of the Dial-a-Ride problem we consider, describes the algorithm
and defines the random request model. Section 3 contains our main result and
its proof, which relies on intermediate results proven in Sections 4 and 5.

2 Problem Statement and Algorithms

The specific properties of our Dial-a-Ride variant allow for a simple graph-
theoretic model [2]. Although we will later consider the Dial-a-Ride problem
on trees, this model is valid for general graphs. The basic observation is that
the time needed to serve a request is minimal if the server travels on a shortest
path, since the server can only deal with one request at a time. It remains to
find a good ordering of the requests.

Each location is modeled by a vertex of a graph G = (V,E) whose edges are
possible interconnections between the locations. The lengths of a connection are
provided by an edge length function d : E → R≥0. A transportation request is
an ordered pair (u, v) (or arc) of locations, its length is the length of a shortest
path from u to v. The multiset of all requests is denoted by A. A tour is a
directed closed walk (sequence of arcs) on the vertex set of our graph, which
starts and ends at the depot vertex o ∈ V and traverses each request arc exactly
once. Note that in order to obtain a tour we may have to add arcs connecting
the destination location of a request with the source location of the next one.
These arcs correspond to empty rides of the server. Notice that we do not allow
splitting a request arc into successive arcs traversing one edge each, so the non-
preemptive-transportations-requirement will be fulfilled. Our goal is to find a
tour minimizing the total travel distance.

We say that an edge {u, v} (respectively, an arc (u, v)) is traversed by an
arc (u′, v′) if the path connecting u′ and v′ contains {u, v} (respectively, the
path connecting u and v).

The algorithm use-MST [2] exploits the following observation: Since a solu-
tion to the Darp is a closed walk and we are working on a tree, each edge {u, v}
has to be traversed from u to v as often as from v to u. Let m+(u, v) be the
number of requests traversing {u, v} from u to v and m−(u, v) be the number of
requests going the other way round. Suppose m+(u, v) ≥ m−(u, v). The multi-
set B containing exactly m+(u, v)−m−(u, v) copies of (v, u) for each edge {u, v}
is called a balancing set for A. It can be seen that the digraph T ′ = (V,A ∪ B)
consists of Eulerian components. Due to the construction of B any tour has to
traverse the arcs in B. One can think of the arcs in B as unavoidable empty
rides.

To arrive at a tour it may be necessary to add further arcs to connect the
Eulerian components. This can be done by solving a SteinerTree instance
on the arc-identified graph arising if all vertices of T ′ connected by arcs are
identified, i. e., all strongly connected components are contracted to a single



vertex [2]. Thus any tour consists of request arcs, balancing arcs, and connecting
arcs. The algorithm use-MST now works as follows:

1. Compute the balancing set B.
2. Compute a set C of connecting arcs by using the MST-heuristic for the

corresponding SteinerTree instance.
3. Return an Eulerian tour of A ∪B ∪ C.

We now turn to the online problem. To model the online situation we equip
a request with a release time indicating the time the request becomes known.
The task of an online algorithm is to maintain a schedule for the current set of
requests, i. e., those requests already known and not yet served, such that the
total travel distance of the server is minimized. Each schedule is a solution of
the offline instance corresponding to the current set of requests.

The standard way to measure the performance of an online algorithm is
the competitive ratio. An online algorithm OlAlg is called c-competitive if its
cost is at most c times the cost of the optimal offline algorithm on any request
sequence ω, i. e., if

OlAlg(ω) ≤ c ·Opt(ω).

If the ratio c depends on the number of requests m, OlAlg is said to be non-
competitive.

Suppose we already know a good offline algorithm Alg for Darp. One way
to construct an online algorithm from the offline algorithm is to employ the
Ignore-strategy [13], which works as follows.

– Initially the server is idle. As soon as requests arrive, we collect the requests
and solve the associated Darp instance by employing Alg. The result is a
schedule for the requests known so far.

– The server immediately starts executing this schedule. In the meantime, all
newly released requests are collected to form the request set for the next
reoptimization. This execution of a schedule is called a phase.

– If the server finishes its schedule and there are no further requests the server
becomes idle. Otherwise, a new schedule is computed as described above and
the server executes it.

This online algorithm will be called Ignore(Alg). We will be only concerned
with Ignore(use-MST).

The following simple fact shows that deterministic competitive analysis is
not of much use for Darp.

Fact 1. There is no competitive deterministic online algorithm for online Darp
w. r. t. total travel distance. 2

Proof. We can fool any online algorithm OlAlg on the following transportation
network (ε is a small positive constant less than 1):

0 1 2
1 ε

o =



Now let all requests be of the form (2, 1) and force OlAlg to return to the depot
for every request, while the offline algorithm serves them all at once. 2

The competitive ratio as a measure of performance for online algorithms has
been criticized since there are many results like this one. A by now established
way to partially circumvent those problems is to consider randomized online
algorithms. We will do the opposite: Instead of randomizing the algorithm we
look at a randomized input.

Definition 2 (Probabilistic Online model). A request sequence of length m
for a fixed tree T = (V,E) is constructed as follows:

1. The m request arcs are drawn independently at random from a symmetric
arc distribution p = (puv)u,v∈V , i. e., one such that

puv = pvu ∀u, v ∈ V.

2. Let X1, . . . , Xm be independent identically distributed random variables, which
are exponentially distributed with parameter λ. The release time Ti for re-
quest i is now given by

Ti =
∑i

j=1
Xj , 1 ≤ i ≤ m.

We will use Γ to denote the probability distribution on the request sequences
induced by p and λ.

Note that the release times are determined by exponentially distributed inter-
arrival times which is the most basic model for similar considerations in Queuing
Theory.

Consider a fixed tree T = (V,E) with edge length function d : E → R≥0 and
a symmetric request probability distribution (puv)u,v∈V . We will denote by µ
the expected request length on T and by σ2 the variance of the request length.
We say that we have high load if λ > 1

µ , i. e., requests arrive rapidly.
Last but not least we need a notion of the competitive ratio which takes

into account the probabilistic nature of the request sequence. We say that a
property holds asymptotically almost surely (a. a. s. for short, cf. [14]) for a
random object of size m, if the probability of an object satisfying the property
is 1− o(1) as m →∞.

Definition 3 (Probabilistic competitive ratio). Let OlAlg be a (deter-
ministic) online algorithm and suppose D = (Dm)m∈N is a family of probability
distributions over request sequences, where the parameter m is interpreted as the
length of the request sequence, i. e., sequences ω of length m are chosen according
to Dm. OlAlg is said to be c-competitive w. r. t. D if it satisfies

ProbD [OlAlg(ω) ≤ c ·Opt(ω)] = 1− o(1) as m →∞.



3 A High-level Analysis

In this section we will analyze the algorithm Ignore(use-MST) in our setting
from a high-level point of view, using results proven in the later sections. For
shortness, we will use Ignore instead of the more precise Ignore(use-MST)
from now on. Intuitively, we will exploit that the number of requests per phase
is high in a high load situation and the requests can be scheduled in a short tour
due to synergy effects because the number (and length) of balancing arcs needed
will be comparatively small.

To describe the working of Ignore, we employ the following notation: P is
the number of phases, ωi and mi are the request subsequence and the number of
requests corresponding to phase i, and τi is the time needed to execute phase i.

We mentioned earlier that every solution has to use at least the request arcs
and the balancing arcs, whereas suboptimal solutions use more connecting arcs
than necessary. This gives us a good lower bound for the travel distance of Opt.
Denoting by L(ω) the total length of the requests in ω and by B(ω) the length
of unavoidable balancing arcs for a request sequence ω, we have that

Opt(ω) ≥ L(ω) + B(ω) . (1)

Similarly, we can bound Ignore(ω) as

Ignore(ω) ≤ L(ω) +
∑P

i=1
B(ωi) + 2P

∑
e∈E

d(e), (2)

where the last term is used as an upper bound for the total length of one MST
per phase.

Furthermore, we will exploit the fact that the snapshot problems solved by
Ignore have the same stochastic structure as the offline problem which is easy
to see.

We divide the set of phases into epochs: For a fixed (small) parameter ε ∈
(0, 1), phase i belongs to epoch j (j = 1, . . . , 1

ε + 1) if

m(j−1)ε ≤ mi < mjε.

We will require that starting in epoch 2 the number of requests per phase will
be strictly monotonic increasing, which happens a. a. s. This justifies the name
“epoch”. The first epoch will be treated separately for technical reasons: Here
the number of requests in a phase does not depend on m, so we are not able to
say anything about its asymptotic behaviour.

In order to arrive at the (1 + o(1))-competitive ratio, we will show that the
following properties are satisfied a. a. s. if the load is sufficiently high. In the
remainder of this paper, we will consider a fixed tree T = (V,E) with edge
length function d : E → R≥0 and a fixed probability distribution Γ over request
sequences as described above. Recall that µ and σ2 are the expectation and
variance of the request length, respectively.

1. The length L(ω) of the m requests in ω satisfies L(ω) ≥ (1−o(1))µm, which
is a direct consequence of Chebyshev’s inequality.



2. There are O (
√

m log m) ⊆ o(m) balancing arcs for m requests. Furthermore,
there are O

(√
mi log mi

)
balancing arcs generated by Ignore in phase i

during epochs 2, . . . , 1
ε + 1 (Proposition 8).

3. There are at most mε phases with a constant number of requests per phase
in epoch 1 and at most O (log m) phases in epochs j, j ≥ 2 (Proposition 10).

Theorem 4. Let the tree T = (V,E) and the edge length function d : E →
R≥0 as well as a symmetric request probability distribution (puv)u,v∈V be such
that the expected request length µ is larger than 0 and the variance σ2 is finite.
Furthermore, assume that the arrival rate λ satisfies λ > 1

µ .
Ignore(use-MST) working on the tree T with request sequences generated

by our online model according to (puv)u,v∈V and λ is
(
1 + o(1)

)
-competitive

w. r. t. Γ .

Proof. We tacitly assume that the properties 1, 2 and 3 stated above hold. Let
∆ denote the diameter of T under d.

We first need a good bound on the length of balancing arcs produced by
Ignore, given by the term

∑P
i=1 B(ωi) in Equation (2). The total number of

balancing arcs for the at most mε phases in epoch 1 is maximized if each phase
contains only a single request, which shows that the length of balancing arcs in
the first epoch is in O (∆mε).

Now let us estimate the number of balancing arcs Z generated in later epochs.
By definition, every phase i in epoch j serves at most mjε requests. As there are
at most O (log m) phases per epoch, we have

Z ∈ O (log m)
∑1/ε+1

j=2
O

(
mjε/2 log mi

)
⊆ O

(
log2 m

) ∫ 1/ε+2

x=2

mxε/2 dx

⊆ O
(
m1/2+ε log m

)
.

Thus the length of the balancing arcs in later epochs is O
(
∆m1/2+ε log m

)
.

Using the last results in the lower and upper bounds provided by Equa-
tions (1) and (2) yields

Ignore(ω)
Opt(ω)

≤
L(ω) +

(
O (∆mε) +O

(
∆m1/2+ε log m

))
+O (∆mε)

L(ω)

≤ 1 +
O

(
∆mε + ∆m1/2+ε log m

)
cµm

where cµ is some positive constant satisfying L(ω) ≥ cµm a. a. s. We see that
this ratio is

= 1 + o(1) as m →∞,

if we choose an ε < 1
2 , for instance ε = 1

3 . 2



This result can be used to obtain probabilistic competitiveness results for
general graphs, too. The key is to approximate the metric induced by an arbitrary
general graph G = (V,E) by a weighted tree, which is possible with distortion
O (log|V |) [15]. This gives the algorithm general-use-MST:

1. Compute a weighted tree T that approximates the metric induced by G with
distortion O (log|V |).

2. Use use-MST to solve the problem on T and convert the result to a tour
on G.

Corollary 5. Let G = (V,E) be an arbitrary graph with edge length func-
tion d : E → R≥0 and (p̃v)v∈V be a probability distribution on the vertices.
Suppose that the request probability distribution (puv)u,v∈V defined by

puv := p̃up̃v ∀u, v ∈ V

has expected request length µ > 0 and finite variance σ2. Furthermore, assume
that the arrival rate λ satisfies λ > 1

µ .
Ignore(general-use-MST) is O ((1 + o(1)) log|V |)-competitive w. r. t. Γ

on the graph G.

Proof. The request distribution is clearly symmetric. Furthermore, the upper
bound used in the preceding proof increases by at most a factor of O (log|V |).2

A short discussion of the result is in order. First note that the requirement
that requests arrive faster than they can be coped with is not a suitable assump-
tion for real-world systems. In fact we do not have reasonable load (see [8]);
queuing theorists call such a system unstable since the number of requests is
ever-increasing if the request sequence continues infinitely.

However, the result is interesting in its own right. It affirms the intuition that
if there are many requests there will be synergy effects which can be exploited.
Another issue is that the offline algorithm does not have a real advantage over
the Ignore strategy, which is obvious if the constant δ := λ − 1

µ is very large
since then most requests arrive in a short interval and Ignore works essentially
like the offline algorithm. But it is also true if δ is very small and there is real
online behaviour.

Finally, observe that this result applies also to Ignore(Opt) since the upper
bound for Ignore(use-MST) is naturally one for Ignore(Opt). This implies
that asymptotically Ignore(use-MST) is as good as Ignore(Opt).

4 Estimating the Number of Balancing Arcs

We estimate the number Z of balancing arcs needed to balance m randomly
generated requests by bounding for each edge e in the tree the number Ze of
balancing arcs traversing e. Clearly,

Z =
∑

e∈E
Ze.



Consider a fixed edge e = {u, v} of the tree. What happens to Ze if a new request
is added? The first possibility is that this new request does not use edge e so
Ze does not change. Otherwise, Ze increases (decreases) by one if the request
traverses e from v to u (from u to v). Thus we can express Ze as

Ze =
∣∣∣∑m

i=1
Xi(e)

∣∣∣ for (3)

Xi(e) :=


1 request i traverses {u, v} from u to v

−1 request i traverses {u, v} from v to u

0 else.

All Xi(e) are identically distributed. To compute the distribution, note that the
edge e induces a cut and let V (u) and V (v) be the corresponding vertex sets. If
we define

p̄uv :=
∑

u′∈V (u),v′∈V (v)
pu′v′

for each edge e = {u, v} the probability distribution of Xi(e) is given by

Prob [Xi(e) = k] =


p̄uv k = 1
p̄uv k = −1
1− 2p̄uv k = 0.

Notice that the symmetry condition on the request distribution implies that
p̄uv = p̄vu.

Obviously, Ze behaves similar to the symmetric random walk Wm of length m,
i. e., the sum of m i. i. d. random variables taking values 1 and −1 with prob-
ability 1

2 each. We give an equivalent random experiment for generating the
vector

(
Xi(e)

)
1≤i≤m

which makes the connection explicit. Intuitively, we first
choose the components of the vector which are 0 and fill up the remaining com-
ponents with a symmetric random walk. Let p := p̄uv and q := 1− 2p.

Definition 6 (Equivalent random model for Ze). Construct a random vec-
tor y =

(
Yi(e)

)
1≤i≤m

∈ {−1, 0, 1}m as follows:

– Choose a set M0 ⊆ {1, . . . ,m} of size |M0| =: m0 at random, where m0 is
binomially distributed with parameters m and q. The set M0 determines the
zeroes of y: Yj(e) := 0 for all j ∈ M0.

– Choose a realization w = (Wj)j∈[m]\M0 of the symmetric random walk of
length m−m0 at random. This determines whether the remaining positions
are −1 or 1: Yj(e) := Wj for all j ∈ [m] \M0.

Fact 7. Fix an integer m. The distributions induced by a random walk according
to Equation (3) and by the equivalent random model of Definition 6 on the set
x ∈ {−1, 0, 1}m coincide. 2



We can now directly exploit this fact to estimate E [Z] via E [Ze]. Intuitively
it is clear that the later should be smaller than the expected travel distance of
a symmetric random walk of length m.

Proposition 8. We have for the number of balancing arcs Z for m requests

Z ≤ |E|
√

2m

π
lnm ∈ O

(√
m log m

)
a. a. s.

Starting from epoch 2, every request subsequence ωi corresponding to phase i
a. a. s. fulfills B(ωi) ∈ O

(√
mi log mi

)
.

Proof. We compute E [Ze] by using the equivalent random model for Ze. Let Wm

denote the symmetric random walk of length m.
By using the Binomial Theorem and the fact that E [|Wm|] ≤ E [|Wm+k|] for

k ≥ 0 we have the estimate

E [Ze] = E
[∣∣∣∑m

i=1
Yi

∣∣∣] =
∑m

m0=0

(
m

m0

)
qm0(2p)m−m0E [|Wm−m0 |]

≤ E [|Wm|]
∑m

m0=0

(
m

m0

)
qm0(2p)m−m0

= E [|Wm|] ∼
√

2m

π
.

In the last step we exploited the asymptotics of the expected distance of the
symmetric random walk [16], namely E [|Wm|] ∼

√
2m/π, which means that

limm→∞
E[|Wm|]√

2m/π
= 1.

To obtain the sharp concentration result, we want to apply Azuma’s inequal-
ity (see [14]). We have to show that the function f(r1, . . . , rm) :=

∑
e∈E |Ze|

satisfies the required Lipschitz-condition. Suppose that request ri is replaced by
request r′i. How does this influence Ze? We have already seen that Ze changes
by at most 1 if a request is added and the same holds if a request is deleted.
Thus, Ze increases by at most 2, so we get

|f(r1, . . . , ri−1, ri, ri+1, . . . , rm)− f(r1, . . . , ri−1, r
′
i, ri+1, . . . , rm)| ≤ 2|E|.

Applying Azuma’s inequality now yields

Prob [Z ≥ E [Z] + t] ≤ exp
(
− t2

2
∑m

1 4|E|2

)
= exp

(
− t2

8|E|2m

)
.

Choosing t :=
√

m lnm shows that Z ≤ E [Z] lnm ∈ O (
√

m log m) a. a. s.,
namely with probability at least 1− 1

m2 .
Consider the phases in epochs j, j ≥ 2. In all of these phases there are at

least mε requests and Proposition 10 states that there are at most O (log m) of



them. Thus the probability that none of them violates the condition B(ωi) ∈
O

(√
mi log mi

)
is at least

(
1− 1

m2ε

)O(log m)

≥ 1−O (log m) · 1
m2ε

= 1− o(1) as m →∞

by Bernoulli’s inequality. 2

5 There are Many Requests per Phase

An important issue in this analysis is the fact that there are not too many phases,
because this keeps the number of balancing arcs generated by Ignore small. To
prove this fact we will need that the release rate is larger than the rate at which
requests can be finished. In that case the number of requests should grow (on
average) from phase to phase. There are two points to consider: First, we have
to show that once there are “lots of requests” the probability is high that this
property is also satisfied in the next phase. Second, we have to ensure that it
will not take too many phases until there are the first time “lots of requests”.

The following lemma bounds the probability that in an interval of length τi

significantly less requests arrive than are expected. We will use the well-known
result from Queuing Theory that the number of requests generated by a process
with exponentially distributed interarrival times is Poisson-distributed [17].

Lemma 9. Recall that mi denotes the number of requests in phase i and that τi

is the time needed to serve these requests. Fix an α ∈ (0, 1).

Prob [mi+1 ≤ αλτi | mi = k] ∈ O
(
e−λτi

)
.

Note that τi implicitly depends on k.

Proof. Some calculations which can be found in the appendix. 2

Proposition 10. Let the arrival rate be λ = 1
µ + δ for some positive constant δ

and fix some ε ∈ (0, 1).
Then the first epoch a. a. s. consists of at most mε phases with at least a

constant number of requests per phase. Furthermore, in each epoch j, j > 2, the
number of requests increases from phase to phase (with the possible exception of
the last phase) and thus the epoch consists of O (log m) phases a. a. s.

Proof. We first show that after time mε we have a. a. s. Ω(mε) requests. The
fact that mi ≥ mε together with Lemma 9 can be used to establish mi+1 > mi

a. a. s. This allows us to conclude that there are at most O (log m) phases, which
in turn can be used to show that mi+1 > mi for all i in the later epochs. Details
can be found in the appendix. 2



6 Conclusions

We have introduced a novel notion of the competitive ratio for probabilistic input
sequences and we showed a first non-trivial result for this new notion. Of course,
the high-load assumption is somewhat artificial. The behavior in a normal load
setting is more complicated and it will be a challenging task to do a similar
analysis. We believe that a careful analysis will provide handholds for analyzing
different objective functions.

Acknowledgements I want to thank my colleague Sven O. Krumke for some sug-
gestions and fruitful discussions.
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A Proofs

Lemma 9. Recall that mi denotes the number of requests in phase i and that τi

is the time needed to serve these requests. Fix an α ∈ (0, 1).

Prob [mi+1 ≤ αλτi | mi = k] ∈ O
(
e−λτi

)
.

Note that τi implicitly depends on k.

Proof. Using the distribution function of the Poisson distribution we can express
the left hand side as

Prob [mi+1 ≤ αλτi | mi = k] ≤
∑αλτi

i=0

(λτi)i

i!
e−λτi

= e−λτi

∑αλτi

i=0

(λτi)i

i!
.

To prove the lemma we need to show that the sum at the right hand side is
in O

(
ecλτi

)
for some c < 1. To simplify our computations let x := λτi and

i0 := αx. Since α < 1 we know that the summands are increasing which leads
to the bound ∑i0

i=0

xi

i!
≤ i0

(
xi0

i0!

)
+ 1

∼ i0
xi0ei0

√
2πi0 (αx)i0

=

√
i0
2π

( e
α

)i0

=

√
i0
2π

ei0(1−ln α)

≤ eα(1−ln α)x+O(1) ∈ O (ecx) .

The function f(α) := α(1−lnα) is strictly increasing in (0, 1) and limα↗1 f(α) =
1, so the constant c is smaller than 1. 2



Proposition 10. Let the arrival rate be λ = 1
µ + δ for some positive constant δ

and fix some ε ∈ (0, 1).
Then the first epoch a. a. s. consists of at most mε phases with at least a

constant number of requests per phase. Furthermore, in each epoch j, j > 2, the
number of requests increases from phase to phase (with the possible exception of
the last phase) and thus the epoch consists of O (log m) phases a. a. s.

Proof. Let us first examine how many requests are unserved at time t(m). Denote
by Nt(m) the number of requests already released at time t(m) and by Dt(m) the
number of requests already served. Clearly, Nt(m) is Poisson-distributed with pa-
rameter λt(m), so we have E

[
Nt(m)

]
= λt(m). Invoking Chebyshev’s inequality

with t :=
√

t(m) log m tells us that Nt(m) ≥ (1− o(1))λt(m) a. a. s.
We already noted that m requests need a. a. s. at least time (1 − o(1))mµ

to be served. If t(m) is sufficiently large we can assume that each request takes
time (1− o(1))µ, providing us with the bound Dt(m) ≤ t(m)

(1−o(1))µ = (1+o(1))
µ t(m).

Combining both estimates we see that at time t(m) there are at least

Nt(m) −Dt(m) ≥ (1− o(1))λt(m)− (1 + o(1))
µ

t(m)

= t(m)
(

(1− o(1))
(

1
µ

+ δ

)
− (1 + o(1))

µ

)
= t(m)

(
(1− o(1))δ − o(1)

µ

)
= δ(1− o(1))t(m)

requests in the system. Choosing t(m) := mε we have that after at most mε

phases with at least constantly many requests there is a first phase with Ω(mε)
requests.

It remains to establish that once Ignore-phases feature mε requests (i. e., as
of epoch 2) the sequence of requests in the phases is strictly monotonic increasing
a. a. s., that is mi+1 > mi for all phases i + 1 6= P in epoch j, j ≥ 2. Assume for
the moment that there are at most O (log m) phases in those epochs and that
the request generation process is not stopped after the mth request.

Suppose phase i0 is the first phase of epoch 2. Since the length of k requests
is a. a. s. ≥ (1− o(1))µk, we see that τi0 ≥ (1− ε0)µmi0 a. a. s. for some suitable
ε0 ∈ (0, 1). We want to invoke Lemma 9 to guarantee that mi0+1 > mi0 a. a. s.,
so we need an α such that αλτi0 > mi0 , or equivalently

α

(
1
µ

+ δ

)
(1− ε0)µmi0 > mi0 .

From the last inequality we get the condition

α >
1

(1 + δµ)(1− ε0)



for an appropriate choice of α. On the other hand, α has to be less than 1,
leading to another condition on ε0

1 >
1

(1 + δµ)(1− ε0)
⇐⇒ 1− ε0 >

1
1 + δµ

.

There are values for α and ε0 which obey all conditions so we get that mi0+1 >
mi0 a. a. s.

In the preceding argument we did not explicitly use that we dealt with the
first phase of epochs 2, . . . , 1

ε + 1, so this choice of α and ε0 indeed guarantees
mi+1 > mi for all i+1 > i0. We still have to consider the probability that we have
this kind of “success” for all phases. By Bernoulli’s inequality, the probability
that mi+1 > mi for all i ≥ i0 is at least(

1−O
(
e−λmε

))O(log m)

≥ 1−O (log m) · O
(
e−λmε

)
= 1− o(1) as m →∞.

Similarly, the probability that τi ≥ (1− ε0)µmi for all i ≥ i0 is at least(
1− σ2m−ε/3

)O(log m)

≥ 1−O (log m) · σ2m−ε/3 = 1− o(1) as m →∞.

Here we used the fact that the length Lm of m requests is at least µm −m2/3

with probability at most σ2m−1/3 (Chebyshev inequality).
So far we have seen that the number of requests per phase is a. a. s. strictly

monotonic increasing provided that there are at most O (log m) phases in the
last epochs and there are infinitely many requests. The number of requests per
phase grows by a factor of αλ(1 − ε0)µ > 1 so there are at most O (log m)
phases in an epoch. This holds also if we consider only the first m requests of
the infinitely many requests, since then only the last phase P may violate the
increasing-condition. Since there are not more than 1

ε + 1 epochs the number of
phases is indeed O (log m) in total. 2


