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Abstract

Perfect graphs constitute a well-studied graph class with arich structure, reflected by many
characterizations with respect to different concepts. Perfect graphs are, for instance, precisely
those graphsG where the stable set polytopeSTAB(G) coincides with the fractional stable set
polytopeQSTAB(G). For all imperfect graphsG it holds thatSTAB(G) ⊂ QSTAB(G). It is,
therefore, natural to use the difference between the two polytopes in order to decide how far an
imperfect graph is away from being perfect; we discuss threedifferent concepts, involving the
facet set ofSTAB(G), the disjunctive index ofQSTAB(G), and the dilation ratio of the two
polytopes.

Including only certain types of facets forSTAB(G), we obtain graphs that are in some
sense close to perfect graphs, for example minimally imperfect graphs, and certain other classes
of so-called rank-perfect graphs. The imperfection ratio has been introduced by Gerke and
McDiarmid [12] as the dilation ratio ofSTAB(G) andQSTAB(G), whereas Aguilera et al. [1]
suggest to take the disjunctive index ofQSTAB(G) as the imperfection index ofG. For both
invariants there exist no general upper bounds, but there are bounds known for the imperfection
ratio of several graph classes [7, 12].

Outgoing from a graph-theoretical interpretation of the imperfection index, we conclude that
the imperfection index is NP-hard to compute and we prove that there exists no upper bound
on the imperfection index for those graph classes with a known bounded imperfection ratio.
Comparing the two invariants on those classes, it seems thatthe imperfection index measures
imperfection much more roughly than the imperfection ratio; we, therefore, discuss possible
directions for refinements.
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(IMO), Universitätsplatz 2, 39106 Magdeburg, Germany, wagler@imo.math.uni-magdeburg.de

1



1 Introduction

Thestable set polytopeSTAB(G) of a graphG = (V,E) is defined as the convex hull of the inci-
dence vectors of all stable sets ofG (in a stable set all nodes are mutually nonadjacent). A canonical
relaxation ofSTAB(G) is thefractional stable set polytopeQSTAB(G) given by all “trivial” facets,
thenonnegativity constraintsxi ≥ 0 for all nodesi of G, and by theclique constraints

∑

i∈Q

xi ≤ 1 (1)

for all cliques Q ⊆ V (in a clique all nodes are mutually adjacent). We haveSTAB(G) ⊆
QSTAB(G) for any graph but equality forperfectgraphs only [6]. According to a famous charac-
terization recently achieved by Chudnovsky et al. [5], thatare precisely the graphs without chordless
cyclesC2k+1 with k ≥ 2, termedodd holes, or their complements, theodd antiholesC2k+1 (the
complementG has the same nodes asG, but two nodes are adjacent inG iff they are non-adjacent
in G). In particular, perfect graphs are closed under taking complements (Perfect Graph Theorem
[16]). Perfect graphs turned out to be an interesting and important class with a rich structure and a
nice algorithmic behaviour, see [19] for a recent survey. Inparticular, several parameters which are
hard to evaluate in general can be determined in polynomial time if G is perfect [13].

For all imperfect graphsG it follows thatSTAB(G) ⊂ QSTAB(G). It is natural to use the differ-
ence between the two polytopes in order to determine how far acertain imperfect graph is away from
being perfect. We consider three ways to classify imperfectgraphs: by description ofSTAB(G),
the imperfection ratio, and the imperfection index.

Polytope descriptions. The first possibility is to extend the clique constraints describingQSTAB(G)
to rank constraints

∑

i∈V ′

xi ≤ α(G′) (2)

associated witharbitrary induced subgraphsG′ = (V ′, E′) in order to obtainSTAB(G) (here,
α(G′) denotes the cardinality of a maximum stable set inG′; we haveα(G′) = 1 iff G′ is a clique
and also write (2) asx(G′, 1l) ≤ α(G′)). That way, several well-known graph classes are defined:
near-perfect graphs[20] where rank constraints associated with cliques and thewhole graph are
allowed only; t-perfect graphs[6] resp.h-perfect graphs[13] where rank constraints associated
with edges, triangles, and odd holes resp. cliques of arbitrary size and odd holes are used only; and
rank-perfectgraphs [21] including the rank constraints associated withall induced subgraphs.

Further classes of rank-perfect graphs are line graphs [9] and antiwebs [22]. Aline graphis obtained
by taking the edges of a given graph as nodes and connecting two nodes iff the corresponding edges
are incident. AnantiwebKn/k is a graph withn nodes0, . . . , n − 1 and edgesij iff k ≤ |i − j| ≤

n − k andi 6= j. Antiwebs include all cliquesKk = Kk/1, all odd antiholesC2k+1 = K2k+1/2,
and all odd holesC2k+1 = K2k+1/k. As common generalization of perfect, t-perfect, and h-perfect
graphs as well as antiwebs, the class ofa-perfect graphswas introduced in [23] as those graphs
whose stable set polytopes are given by nonnegativity constraints and rank constraints associated
with antiwebs only.

2



Imperfection ratio. Gerke and McDiarmid [12] introduced theimperfection ratioimp(G) as the
dilation ratio

imp(G) = min{t : QSTAB(G) ⊆ t STAB(G)}

of the two polytopes. We clearly haveimp(G) = 1 iff G is perfect andimp(G) > 1 iff G is
imperfect. Moreover,imp(G) = imp(G) holds for all graphs [12]. The imperfection ratio is NP-
hard to compute and unbounded in general [12]. So far, there are upper bounds known for the
imperfection ratio of only some graph classes, including odd holes, t-perfect, h-perfect, and line
graphs [12], antiwebs and a-perfect graphs [7] (and the corresponding complementary classes). We
introduce two further graph classes and show that they have also a bounded imperfection ratio, see
Section 2.

Imperfection index. Aguilera et al. [1] investigated the antiblocking duality of STAB(G) and
QSTAB(G) by means of the disjunctive procedure introduced in [2] (seeSection 3). They observed
that the disjunctive index ofQSTAB(G) can be seen as a measure of imperfection and defined the
imperfection indexof G as

impI(G) = min{|J | : PJ (QSTAB(G)) = STAB(G), J ⊆ V }

wherePJ (QSTAB(G)) = conv{x ∈ QSTAB(G) : xj ∈ {0, 1}, j ∈ J}. We haveimpI(G) = 0
iff G is perfect andimpI(G) = 1 if G is minimal imperfect (that isG is not perfect but every proper
induced subgraph is perfect). Moreover, it is proved in [1] that impI(G) = impI(G) holds for all
graphs.

In this paper, we discuss a graph-theoretical characterization of impI(G) as the cardinality of a min-
imum node subset meeting all minimal imperfect subgraphs ofG (see Section 3). As the graphs
G with impI(G) ≤ 1, we introduce the class ofalmost-perfect graphsas those graphsG which
admit one node whose removal yields a perfect graph. This class clearly contains perfect and mini-
mally impefect graphs, we present further examples. Moreover, we introduce the hypergraphI(G)
with the same node set asG and all node subsets inducing a minimal imperfect subgraph of G
as hyperedges. By the invariance of perfection under takingcomplements,I(G) clearly equals
I(G). Finding a minimum vertex cover inI(G) is equivalent to computingimpI(G); this reproves
impI(G) = impI(G) for all graphs and shows that evaluatingimpI(G) is NP-hard.

Finally, we discuss bounds on the imperfection index for allthe graph classes for which an upper
bound for the imperfection ratio is known. More precisely, we investigate the behaviour of the
imperfection index by means of taking disjoint unions (Section 3), taking lexicographic products
(Section 4), and substituting nodes by other graphs (Section 5). For the latter, we characterize how
several classes of rank-perfect graphs behave under substitution. We obtain that, for all those graph
classes with bounded imperfection ratio, the imperfectionindex cannot be bounded.

Hence, our results indicate that there are many more graph classes with an unbounded imperfection
index than with an unbounded imperfection ratio and that, therefore, the imperfection index mea-
sures imperfection more roughly than the imperfection ratio (see Section 6). Several suggestions
for refining conclude this paper.
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2 Graph classes with bounded imperfection ratio

Gerke and McDiarmid [12] introduced the imperfection ratiooriginally as

imp(G) = max

{

χf (G, c)

ω(G, c)
| c : V (G) → Z+

}

,

i.e., as the maximum ratio of the fractional chromatic number and the clique number in their
weighted versions, taken over all positive weight vectors.

There does not exist a general upper bound on the imperfection ratio due to the following reason.
The so-called Mycielski graphsG0, G1, G2, . . . form a famous series of graphs withω(Gi) = 2 for
all i, butχ(Gi) = 2+i [17] (whereG0 = K2, G1 = C5, andG2 is the well-known Grötzsch graph).
Larsen, Propp, and Ullman [14] proved the unexpected recurrenceχf (Gi+1) = χf (Gi) + 1

χf (Gi)
.

As imp(G) =
χf (G)

2 holds for any triangle-free graphG by [12], this implies

imp(Gi) → ∞ for i → ∞

and, thus, the Mycielski graphsG0, G1, G2, . . . form a sequence with unbounded imperfection ratio.

However, there are also classes with bounded imperfection ratio. By [12], it holds that

imp(G) = {2k+1
2k : C2k+1 shortest odd hole in G}

wheneverG is a line graph or h-perfect and

imp(G) = {2k+1
2k : 2k + 1 length of shortest odd (anti)hole in G}

for all co-h-perfect graphsG whereSTAB(G) is given by rank constraints associated with cliques,
odd holes, and odd antiholes only. As theC5 is the shortest odd (anti)hole, this implies that
imp(G) ≤ 5

4 holds for all graphsG belonging to one of these classes.

Note that odd (anti)holes are specialpartitionable graphs; that are graphsG where, for any node
v, the subgraphG − v can be partitioned intoα(G) cliques of maximum sizeω(G) or into ω(G)
stable sets of maximum size. We shall extend the above results to a common superclass of perfect,
t-perfect, h-perfect, and co-h-perfect graphs: we call a graphG p-perfectif STAB(G) is given by
rank constraints associated with cliques and partitionable subgraphs only.

Theorem 1 LetG be a p-perfect graph andα′ = α(P ) andω′ = ω(P ); we have

imp(G) = max{α′ω′+1
α′ω′ : P ⊆ G partitionable}.

Proof: Consider a graphG having a partitionable graphP as induced subgraph. By definition, it
follows |P | = α′ω′ + 1 = n′.

Consider a vectorx ∈ QSTAB(G). We havex(P ) ≤ n′

ω′ as each node ofP can be coveredω′

times by then′ maximum cliques ofP by [3]. Let y = α′ω′

n′ x (note thaty belongs toQSTAB(G)

as α′ω′

α′ω′+1 < 1). Now,

y(P ) =
α′ω′

n′
x(P ) ≤

α′ω′

n′

n′

ω′
= α′
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holds, and thusy ∈ STAB(G). It follows thatQSTAB(G) ⊆ α′ω′+1
α′ω′ STAB(G). 2

As theC5 is also the smallest partitionable graph, this impliesimp(G) ≤ 5
4 for the larger class of

p-perfect graphs, too.

A similar result was shown in [7] for antiwebs, a-perfect graphs, and a further superclass of anti-
webs, thenear-bipartite graphswhere the set of non-neighors of every node splits into two stable
sets. According to [7], for all such graphsG,

imp(G) = max{ n′

α′ω′ : Kn′/α′ ⊆ G}

whereω′ = ⌊n′/α′⌋ holds and, in addition, the imperfection ratio of an antiwebis bounded by
imp(Kn/α) < 3

2 . The complements of antiwebs are called webs, the complements of near-bipartite
graphs are called quasi-line graphs (note that they containall line graphs). By the invariance of the
imperfection ratio under complementation, the imperfection ratio of any near-bipartite (resp. quasi-
line) graph is, therefore, characterized by means of its induced antiwebs (resp. webs) only and is
less than3

2 .

In addition, Gerke and McDiarmid [12] showed that the imperfection ratio of planar graphs is
bounded by116 (and conjectured that it is in fact bounded by3

2 ).

Finally, we present a (rough) bound on the imperfection ratio for the class of almost-perfect graphs:

Theorem 2 For any almost-perfect graphG, we haveimp(G) < 2.

Proof: Let v be a node such thatG − v is perfect. This impliesχ(G − v, c) = χf (G − v, c) =
ω(G−v, c) for all weight vectorsc > 0. On the other hand,χf (G, c) ≤ χ(G, c) ≤ χ(G−v, c)+cv

andω(G, c) ≥ max{ω(G− v, c), cv + cu(c)} with u(c) = arg maxw∈N(v) cw holds, whereN(v) is
the set of neighbors ofv in G. Thus

χf (G, c)

ω(G, c)
≤

χ(G − v, c) + cv

max{ω(G − v, c), cv}
=

χ(G − v, c) + cv

max{χ(G − v, c), cv + cu(c)}
< 2

holds for allc > 0, which completes the proof. 2

We conjecture that the true bound for the imperfection ratioof almost-perfect graphs is54 .

3 The imperfection index in graph theoretical terms

Balas et al. [2] introduced thedisjunctive procedurefor binary linear programs as a way to obtain
a complete description of the integer polytope from the polytope described by the linear relaxation.
Let V = {1, . . . , n} denote the set of binary variables. For a subsetJ = {i1, . . . , ij} of the
variables,

PJ(X) = conv{x ∈ X : xj ∈ {0, 1}, j ∈ J}

holds. It is shown in Balas et al. [2] thatPJ(X) = Pi1(Pi2(. . . Pij (X))). Clearly, PV (X) =
conv(X ∩ {0, 1}n), but also proper subsets can have this property. This resultallows to define
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the disjunctive indexof a polytopeX as the minimum size of a setJ ⊆ V such thatPJ (X) =
conv(X ∩ {0, 1}n).

The imperfection index of a graphG is defined as the disjunctive index ofQSTAB(G). The fol-
lowing result directly follows from the definition.

HereG[V − j] denotes the subgraph ofG = (V,E) induced byV \ {j}.

Lemma 3 (Ceria [4]) Pj(QSTAB(G)) = STAB(G) if and only ifG[V − j] is perfect.

This immediatly implies:

Corollary 4 impI(G) = 1 if and only if there exists a nodej ∈ V such thatG[V − j] is perfect.

This shows in particular that the almost-perfect graphs areexactly those graphsG with and imper-
fection index at most one (as they are defined to admit one nodewhose removal results in a perfect
graph). Clearly, all perfect graphsG are almost-perfect byimpI(G) = 0 as well as all minimally
imperfect graphsG by impI(G) = 1 (note that in the latter graphs, removingany node yields a
perfect graph). A subclass of t-perfect graphs, thealmost-bipartite graphs, forms a further class
with imperfection index at most one as they are defined to admit one node whose removal yields a
bipartite graph.

Note that the class of almost-perfect graphs clearly contains graphs other than perfect, minimal im-
perfect, and almost-bipartite graphs, e.g., all odd wheelsand odd antiwheels (the latter are obtained
as complete join of an odd antihole and a single node).

Clearly, Lemma 3 can be generalized further as follows (thiswas independently observed in [18]
and [15]).

Lemma 5 PJ(QSTAB(G)) = STAB(G) if and only ifG[V − J ] is perfect.

Proof: AssumePJ(QSTAB(G)) = STAB(G). We projectPJ(QSTAB(G)) on V − J . On the
one hand, this face equalsSTAB(G[V − J ]) asPJ(QSTAB(G)) = STAB(G). On the other hand,
this face equalsQSTAB(G[V − J ]) as we project out exactly those variables that were affectedby
the lift and project procedurePJ . This implies thatQSTAB(G[V − J ]) = STAB(G[V − J ]) and
G[V − J ] is perfect.

Conversely,G[V − J ] perfect impliesQSTAB(G[V − J ]) = STAB(G[V − J ]). PJ(QSTAB(G))
is the convex hull of all extreme points ofQSTAB(G) with 0-1 entries on the coordinates inJ .
By QSTAB(G[V − J ]) = STAB(G[V − J ]), all remaining entries of those extreme points are
integer-valued as well. 2

Therefore,J is a subset of nodes meeting all minimal imperfect subgraphsof G. By the Perfect
Graph Theorem [16], an induced subgraphG′ of G is minimally imperfect if and only if its com-
plementG

′
is minimally imperfect. Hence, the same node-subsetJ meets all minimal imperfect

subgraphs in the complementary graph, which implies:

Corollary 6 Let G = (V,E) be a graph. PJ(QSTAB(G)) = STAB(G) holds for a subset of
nodesJ ⊆ V if and only ifPJ(QSTAB(G)) = STAB(G).
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This reproves the invariance of the imperfection index under taking complements, originally ob-
tained by Aguilera et al. [1].

We shall formalize the computation of the imperfection index further. For a graphG = (V,E),
we introduce the imperfection hypergraphI(G) = (V,F) on the same node set asG and all node
subsets inducing minimally imperfect subgraphs ofG as hyperedges. Obviously, we haveI(G) =
I(G). For our purpose, we look for a minimum vertex cover ofI(G), i.e., for a subsetJ ⊆ V
meeting all hyperedges. Obviously, any vertex cover ofI(G) corresponds to a subsetJ ⊆ V with
G[V − J ] perfect resp. withPJ(QSTAB(G)) = STAB(G). This implies that the imperfection
index ofG equals the vertex cover numberτ(I(G)).

Lemma 7 For any graphG, impI(G) = impI(G) = τ(I(G)) = τ(I(G)).

From this graph-theoretical reformulation ofimpI(G), we infer:

Lemma 8 The number of disjoint minimally imperfect subgraphs ofG is a lower bound onimpI(G).

Proof: Let S be a set of mutually disjoint subsets ofV that induce minimally imperfect subgraphs.
For allS ∈ S we have to select at least one vertex in the vertex cover. Thus, τ(I(G)) is at least the
size ofS. 2

Corollary 9 The imperfection index of a graphG equals the sum of the imperfection indices of its
maximal 2-connected induced subgraphs.

As a consequence, we obtain that the imperfection index cannot be bounded for several classes of
graphs.

Theorem 10 For the following graph classesG, there exists no upper bound on the imperfection
index impI(G), G ∈ G: t-perfect graphs (and therefore, also h-perfect, p-perfect, a-perfect, rank-
perfect graphs); line graphs (and therefore, also quasi-line graphs); planar graphs.

Proof: Let kC5 be the disjoint union ofk 5-holes. Then we obviously haveimpI(kC5) = k and, in
particular,

impI(kC5) → ∞ if k → ∞.

As such graphskC5, k ≥ 1 belong to the classes of t-perfect graphs as well as line graphs as well
as planar graphs, the result follows for all these classes and their superclasses. 2

Similar constructions are possible by linking odd holes through additional edges to a chain; even in
highly connected graphs many disjoint odd holes can occur:

Theorem 11 For the following graph classesG, there exists no upper bound on the imperfection
indeximpI(G), G ∈ G: webs and antiwebs (and therefore, also a-perfect, near-bipartite, and quasi-
line graphs).
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Proof: Let K5k/(k+1) be the web with5k nodes that is the complement ofK5k/(k+1). For i ∈

{1, . . . , 5k}, K5k/(k+1) contains the 5-holeC(i) = {i, i + k, i + 2k, i + 3k, i + 4k}. Hence,
K5k/(k+1) containsk disjoint 5-holesC(i) for 1 ≤ i ≤ k. This implies thatimpI(K5k/(k+1)) ≥ k
and, in particular,

impI(K5k/(k+1)) → ∞ if k → ∞.

Thus, there is also no upper bound of the imperfection index for the classes of webs and antiwebs
as well as for any of their superclasses. 2

4 The imperfection index and lexicographic products

Thelexicographic productG1×G2 of two graphsG1 andG2 is obtained by substituting every node
of G1 by the graphG2. Let v be a node of a graphG1 thensubstitutingv by another graphG2

means to deletev and to join every neighbor ofv in G1 to every node ofG2. (Note that we exclude
the two trivial cases ifG2 = ∅ and ifv does not have any neighbor.)

Gerke and McDiarmid [12] studied the behavior of the imperfection ratio under taking lexicographic
productsG1 × G2 and showed that

imp(G1 × G2) = imp(G1) · imp(G2)

holds. Thus, the imperfection ratio cannot be bounded for any classG of graphs which is closed
under substitution (and, therefore, closed under taking lexicographic products) and contains at least
one imperfect graphG as

imp(Gi) → ∞ for i → ∞

if imp(G) > 1 (whereGi stands forG × . . . × G, i times). A necessary condition for a classG to
have bounded imperfection ratio is, therefore, thatG is closed under substituting perfect graphs for
nodes only.

We consider the behavior of the imperfection index under taking lexicographic productsG1 × G2

as well.

Theorem 12 For two graphsG1, G2 we have

impI(G1 × G2) = |G2| impI(G1) + (|G1| − impI(G1)) · impI(G2).

Proof: Let V ′
1 ⊆ V1 be a minimum node subset ofG1 = (V1, E1) such thatG1[V1 − V ′

1 ] is perfect;
in particular we haveimpI(G1) = |V ′| by Lemma 5. Similarly, letV ′

2 ⊆ V2 be a minimum node
subset ofG2 = (V2, E2) such thatG2[V2 − V ′

2 ] is perfect.

For each of the nodesv ∈ V ′
1 there exists a minimally imperfect subgraphG′

v of G1 which contains
v but none of the other nodes inV ′

1 (by the minimality ofV ′
1). Substituting the nodev by a graph

G2 creates|G2| disjoint copies ofG′
v; removingall |G2| copies ofv is required in order to meet all

copies ofG′
v .

Moreover, for each of the nodesv ∈ V1 − V ′
1 substitution withG2 results in a disjoint subgraph

isomorphic toG2. Hence, in order to obtain a perfect subgraph ofG1×G2, at leastimpI(G2) nodes
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have to be removed from each of those subgraphs. Let us removethe copies ofV ′
2 . Together, this

implies that

impI(G1 × G2) ≥ |G2| |V
′
1 | + (|G1| − |V ′

1 |) · impI(G2)

= |G2| impI(G1) + (|G1| − impI(G1)) · impI(G2).

Now, suppose thatG1 × G2 is still not perfect after removal of the nodes specified above. Then,
there exists a minimally imperfect subgraphG′. If G′ is isomorphic to a subgraph ofG2, then
G2[V2 −V ′

2 ] cannot be perfect. Otherwise,G′ has to contain nodes from different copies ofG2. If it
contains at most one node from every copy,G′ is isomorphic to a subgraph ofG1 andG1[V1 − V ′

1 ]
cannot be perfect.

Thus,G′ has to contain at least two nodes from one of the copies and nodes from at least two copies.
By the Strong Perfect Graph Theorem,G′ is either an odd hole or an odd antihole. First, assume
G′ is an odd hole. Consider a copy ofG2 from which at least two nodesv1, . . . , vk (k ≥ 2) belong
to G′ and letu be a neighbor of one of the nodes, not part of the copy. Nodeu is adjacent to all
nodesv1, . . . , vk which implies thatk = 2 (otherwiseG′ is not an odd hole). Moreover, sinceG′

has at least 5 nodes, there has to be another neighborw of v1, v2, not part of the copy. Sincew is
also adjacent to bothv1 andv2, we obtain aC4 as subgraph ofG′ which violates the assumptionG′

being an odd hole.

ForG′ being an odd antihole, a similar argumentation on the complement ofG1×G2 can be carried
out to prove thatG′ cannot be an odd antihole as well. Hence,G1 × G2 is perfect after removal of
the nodes specified above. 2

Thus, also the imperfection index cannot be bounded for any classG of graphs which is closed
under substitution (and, therefore, closed under taking lexicographic products) and contains at least
one imperfect graphG. In contrary to the imperfection ratio, we have even more:

Corollary 13 LetG1 be a graph. For any perfect graphG2, we have

impI(G1 × G2) = |G2| impI(G1).

As this result clearly also applies to the two special cases,namely taking lexicographic products
whereG2 is a clique (replicatingevery node ofG1) or a stable set (multiplyingevery node ofG1),
we immediatly obtain the following:

Corollary 14 LetG be a graph class containing one imperfect graph. IfG is closed under substi-
tuting perfect graphs for nodes, replication, or multiplication, then there exists no upper bound for
the imperfection indeximpI(G), G ∈ G.

Thus, a sufficient condition for thenon-existence of an upper bound on the imperfection index
is that the graph classG in question contains an imperfect graph and is closed under substituting
certain perfect graphs, whereas a necessary condition for the existence of an upper bound on the
imperfection ratio forG is thatG is closed under substitutingperfectgraphs for nodes only.
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5 Classes of rank-perfect graphs and substitution

The results from the previous section motivate to study the behaviour of the remaining graph classes
of interest under substitution. So far, there are no bounds known on the imperfection ratio or the
imperfection index of near-perfect and general rank-perfect graphs. On the one hand, we shall check
whether these classes are closed under substituting certain perfect graphs; on the other hand, we
shall ensure that substitution of imperfect graphs is not possible. This suggests tocharacterizewhat
happens to these classes under substitution. Note that sucha characterization gives, in addition, also
some insight in how to construct graphs in the correspondingclasses. This is of particular interest,
as none of the subclasses of rank-perfect graphs is characterized in graph-theoretical terms yet (but
only in polyhedral terms by means of the facets of the stable set polytope). Thus, we shall also
address the behavior of h-perfect, co-h-perfect, p-perfect, and a-perfect graphs under substitution.

For our purpose, we shall make use of the following result:

Theorem 15 [6, 8] Let G be obtained by substituting a nodev of a graphG1 = (V1, E1) by a
graphG2 = (V2, E2). Then a non-trivial inequality is facet-defining forSTAB(G) if and only if it
can be scaled to be a facet product of the form

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈V2

a2
jxj ≤ 1 (3)

wherex(Gi, a
i) ≤ 1 is a non-trivial facet ofSTAB(Gi) for i = 1, 2.

Note that Chvátal [6] gave a linear description ofSTAB(G) outgoing from the stable set poly-
topes of the original graphs, whereas Cunningham [8] provedlater that each of the inequalities
found by Chvátal is indeed facet-defining. We study the consequences of this theorem for several
subclasses of rank-perfect graphs. Throughout this section, all non-trivial inequalities are scaled to
have right hand side equal to 1 (that means: only clique constraints keep unchanged, rank constraints
x(G′, 1l) ≤ α(G′) turn tox(G′, a) ≤ 1 with a = ( 1

α(G′) , . . . ,
1

α(G′)), and non-rank constraints have
different non-zero coefficients).

Proposition 16 Consider a graphG obtained by substituting a nodev of a graphG1 by G2. If
there is a non-trivial, non-clique facet ofSTAB(G2) thenSTAB(G) has a non-trivial, non-rank
facet.

Proof: Let G1 = (V1, E1) andG2 = (V2, E2) and take the facet product

∑

i∈Q−v

xi +
∑

j∈V2

a2
jxj ≤ 1

of a clique facet associated withQ ⊆ V1, v ∈ Q and a non-trivial, non-clique facetx(G2, a
2) ≤ 1

of STAB(G2). Then there is a nodek ∈ V2 with 0 < a2
k < 1 and the above facet product has

different non-zero coeffients: everyi ∈ Q − v has coefficient 1 but0 < a2
k < 1 (recall: we exclude

the case thatv does not have any neighbor, hence there is a cliqueQ ⊆ V1 with Q − v 6= ∅). Thus,
the above facet product is a non-trivial, non-rank facet ofSTAB(G). 2

10



That means, wheneverG2 is imperfect, the graph obtained by substitutingG2 for a node cannot be
rank-perfect. Hence, none of the classes of rank-perfect graphs (different from the class of perfect
graphs) is closed under substitution. In addition, we are interested which graphsG1 andG2 are
allowed in order to produce a rank-perfect graphG by substitution.

Theorem 17 LetG be obtained by substituting a nodev of G1 byG2. G is rank-perfect if and only
if G1 is rank-perfect andG2 is perfect.

Proof: Let G1 = (V1, E1) andG2 = (V2, E2). Assume first thatG1 is rank-perfect andG2 is
perfect. ThenSTAB(G1) admits only non-trivial facetsx(G1, a

1) ≤ 1 with a1
i ∈ {0, c}. Each

facet product

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈Q

xj ≤ 1

of x(G1, a
1) ≤ 1 with an arbitrary clique facet associated withQ ⊆ V2 has againa1

i ∈ {0, c} as
only coefficients. Thus, the only non-trivial facets ofSTAB(G) are rank constraints.

Conversely, ifG is supposed to be rank-perfect thenG2 has to be perfect (otherwiseSTAB(G2)
has a non-trivial facet different from a clique constraint and STAB(G) has a non-rank facet by
Proposition 16). G1 has to be rank-perfect (otherwiseSTAB(G1) has a non-trivial, non-clique
facet and its facet product with an arbitrary clique facet ofSTAB(G2) yields a non-trivial, non-
clique facet ofSTAB(G)). 2

Thus, precisely substituting perfect graphs for nodes preserves rank-perfectness and substituting
imperfect graphs for nodes in near-perfect, h-perfect, a-perfect, or p-perfect graphs cannot preserve
the membership in those classes, too. We are interested whether there are further requirements in
order to obtain graphs belonging to one of these classes by substitution.

Note that Shepherd [20] showed that the class of near-perfect graphs is closed under replication
(i.e., the special case of substitution whereG2 is a clique). We ensure that there is no other way to
produce a near-perfect graph by substitution.

Theorem 18 LetG be obtained by substituting a nodev of G1 byG2. G is near-perfect if and only
if either G1 andG2 are perfect orG1 is near-perfect andG2 is a clique.

Proof: The if-part follows from Shepherd [20], thus we only have to treat the only if-part. Let
G1 = (V1, E1) andG2 = (V2, E2). Clearly, if G is supposed to be perfect thenG1 andG2 have
to be perfect due toG1, G2 ⊆ G. Hence assume thatG is near-perfect and imperfect. ThenG2

has to be perfect, otherwiseSTAB(G2) has a non-trivial facet different from a clique constraint and
G is not rank-perfect by Proposition 16.G imperfect andG2 perfect impliesG1 imperfect, hence
STAB(G1) has a non-trivial, non-clique facetx(G1, a

1) ≤ 1. In particular, there is a nodek ∈ V1

with 0 < a1
k < 1. Consider the facet product

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈Q

xj ≤ 1

11



of x(G1, a
1) ≤ 1 with an arbitrary clique facet associated withQ ⊆ V2. Then the facet product

is a non-trivial, non-clique facet ofSTAB(G) by 0 < a1
k < 1 and, thus, the full rank facet asG

is near-perfect. Therefore, all coefficients are equal to1α(G) anda1
i = 1

α(G) for all i ∈ V1 and

Q = V2 follows. Hence,x(G1, a
1) ≤ 1 is the full rank facet ofSTAB(G1) (noteα(G) = α(G1)

by Q = V2) and its only non-trivial facet different from a clique constraint, andG2 is a clique. 2

Finally, we also address the behavior of the remaining subclass of rank-perfect graphs under substi-
tution. We obtain the following result for p-perfect graphs:

Theorem 19 LetG be obtained by substituting a nodev of G1 by G2. G is p-perfect if and only if
G1 is p-perfect and eitherv is not contained in any partitionable subgraph ofG1 andG2 is perfect
or v is contained in a partitionable subgraph ofG1 andG2 is a stable set.

Proof: LetG1 = (V1, E1) andG2 = (V2, E2). Assume firstG1 to be p-perfect. Ifv is not contained
in any partitionable subgraphP of G1 and G2 is perfect, thenSTAB(G) has besides facets of
STAB(G1) with vanishing coefficient forv only products of trivial or clique facets, henceG is
p-perfect. IfG2 is a stable set, the assertion follows since multiplicationpreserves p-perfectness: If
G2 is stable then all non-trivial facets ofSTAB(G2) are clique constraints associated with a single
node and all facet products (3) ofSTAB(G) are obtained by simply replacingv by a node ofG2

(i.e.,STAB(G) contains|G2| copies of every facetx(G1, a
1) ≤ 1 of STAB(G1) with a1

v 6= 0).

Now, supposeG to be p-perfect. ThenG2 is perfect by Proposition 16 (otherwiseG is even not
rank-perfect). Consider the facet product

∑

i∈V1−v

a1
i xi + a1

v

∑

j∈Q

xj ≤ 1

of an arbitrary non-trivial facetx(G1, a
1) ≤ 1 of STAB(G1) and a clique facet associated with

Q ⊆ V2. SinceG is p-perfect, every facet product is either a clique constraint (thenx(G1, a
1) ≤ 1

is a clique facet) or a rank constraint associated with a partitionable subgraphP (thenx(G1, a
1) ≤ 1

is the facet associated withP with eithera1
v = 0 or a1

v 6= 0 and |Q| = 1). That means:G1 is p-
perfect and, ifv is contained in a partitionable subgraph ofG1, thenG2 is a stable set. 2

The latter result includes the classes of h-perfect and co-h-perfect graphs (as odd holes and odd
antiholes are special partitionable graphs). A similar argumentation applies to all a-perfect graphs
(since the facet-defining antiwebs play the same role in a-perfect graphs as the partitionable sub-
graphs in p-perfect graphs). In particular, taking lexicographic products with stable sets preserves
the membership in all those classes. Thus, we can summarize the results from this section as follows
(the last point gives an alternative proof for assertions ofTheorem 10):

Corollary 20 There exists no upper bound for the imperfection index of thefollowing graph classes:

• rank-perfect graphs (closed under substituting perfect graphs for nodes);

• near-perfect graphs (closed under replication);

• h-perfect, co-h-perfect, p-perfect, and a-perfect graphs(closed under multiplication).
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6 Concluding remarks

In this paper, we have studied three different ways to classify imperfect graphs according to their
closeness to perfect graphs. Several classes of graphs are defined by their limited number of classes
of valid inequalities different from trivial and clique inequalities. The imperfection ratio has been
shown to be bounded for p-perfect graphs in this paper and forseveral other classes in previous
papers. The imperfection index has been shown to be unbounded for all those classes for which the
imperfection ratio has been shown to be bounded, cf. Tabel 1 which gives an overview of the results
achieved.

Graph classG sup{imp(G) : G ∈ G} sup{impI(G) : G ∈ G}

perfect = 1 = 0

minimal imperfect ≤ 5
4 = 1

almost-bipartite ≤ 5
4 ≤ 1

almost-perfect < 2 ≤ 1

t-perfect ≤ 5
4 ∞

h-perfect ≤ 5
4 ∞

p-perfect ≤ 5
4 ∞

line ≤ 5
4 ∞

antiwebs/webs < 3
2 ∞

a-perfect < 3
2 ∞

near-bipartite < 3
2 ∞

quasi-line < 3
2 ∞

planar ≤ 11
6 ∞

near-perfect ?? ∞

rank-perfect ?? ∞

general ∞ ∞

Table 1: Summary of the bounds

An open question is whether there exist a graph class such that the imperfection index of all members
is bounded by a constantk with 1 < k < ∞.

From the obtained results it is fair to conclude that the disjunctive index ofQSTAB(G) is a too
rough measure for determining the closeness of a graphG to the class of perfect graphs. Possible
refinements could be obtained as follows:

• The imperfection index can be redefined for (2-)connected graphs only. In this way thekC5

example cannot be taken anymore. However, the odd holes can be connected with each other
without loss of generality, and thus the new imperfection index would still not be bounded for
all the above graph classes.
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• The disjunctive procedure can be carried out with any linearcombinationπx of the variables.
The resulting polytope is then defined as

Pπ(X) = conv({x ∈ X : πx ≤ π0} ∪ {x ∈ X : πx ≥ π0 + 1})

For any near-perfect graphG and (2) withV ′ = V asπx ≤ π0, it directly followsPπ(QSTAB(G)) =
STAB(G) and the disjunctive index would equal one. Unfortunately,kC5 still needsk appli-
cations of the disjunctive procedure beforeSTAB(G) is reached.

• The unboundedness of the imperfection index for classes of graphs bases in all the above
cases on the increase of the number of nodes in the graph without leaving the class (disjoint
union, substitution, replication, multiplication). Scaling the imperfection index by the number
of nodesn = |V | could resolve this problem.

We, therefore, suggest to consider thenormalized imperfection index

impn(G) =
impI(G)

n
.

As there are no imperfect graphs with four or less nodes,impI(G) can be at mostn − 4, and thus
scaling yields a valueimpn(G) ∈ [0, 1).

All perfect graphs are exactly the graphs withimpn(G) = 0; all almost-perfect graphs satisfy
impn(G) ≤ 1

n . Even forkC5, k ≥ 1, we obtain as normalized imperfection indeximpI(kC5)
5k = 0.2,

independent ofk. Taking the lexicographic product ofk 5-holes yields a sequence with

impI((C5)
k)

|(C5)k|
→ 1 if k → ∞

(sinceimpI((C5)
k) = 5k − 4k whereas|(C5)

k| = 5k), which is consistant with the fact that also
the imperfection ratios of these graphs tend to infinity. It is, however, interesting to observe that for
the Mycielski graphsG0, G1, G2, . . . the quotient of imperfection index and number of nodes tends
to 1

3 , whereas their imperfaction ratios cannot be bounded.
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