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Abstract

Perfect graphs constitute a well-studied graph class witthestructure, reflected by many
characterizations with respect to different conceptsfeeegraphs are, for instance, precisely
those graphé& where the stable set polytof&AB(G) coincides with the fractional stable set
polytopeQSTAB(G). For all imperfect graph&' it holds thatSTAB(G) € QSTAB(G). ltis,
therefore, natural to use the difference between the twgi@oés in order to decide how far an
imperfect graph is away from being perfect; we discuss thierent concepts, involving the
facet set oSTAB(G), the disjunctive index oQSTAB(G), and the dilation ratio of the two
polytopes.

Including only certain types of facets f&fTAB(G), we obtain graphs that are in some
sense close to perfect graphs, for example minimally inge¢draphs, and certain other classes
of so-called rank-perfect graphs. The imperfection rats been introduced by Gerke and
McDiarmid [12] as the dilation ratio $#TAB(G) andQSTAB(G), whereas Aguilera et al. [1]
suggest to take the disjunctive index@QSTAB(G) as the imperfection index @. For both
invariants there exist no general upper bounds, but therb@rmds known for the imperfection
ratio of several graph classes [7, 12].

Outgoing from a graph-theoretical interpretation of thparfection index, we conclude that
the imperfection index is NP-hard to compute and we provettiexe exists no upper bound
on the imperfection index for those graph classes with a knbaunded imperfection ratio.
Comparing the two invariants on those classes, it seemghtbamperfection index measures
imperfection much more roughly than the imperfection ratie, therefore, discuss possible
directions for refinements.
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1 Introduction

Thestable set polytop8TAB(G) of a graphG = (V, E) is defined as the convex hull of the inci-
dence vectors of all stable sets®f(in a stable set all nodes are mutually nonadjacent). A daabn
relaxation oSTAB(G) is thefractional stable set polytop@STAB(G) given by all “trivial” facets,
thenonnegativity constraints; > 0 for all nodesi of G, and by theclique constraints

1€Q

for all cliques@ C V (in a clique all nodes are mutually adjacent). We h&UAB(G) C
QSTAB(G) for any graph but equality fgperfectgraphs only [6]. According to a famous charac-
terization recently achieved by Chudnovsky et al. [5], Hratprecisely the graphs without chordless
cyclesCoy .1 wWith k& > 2, termedodd holes or their complements, thedd antiholesC,;,; (the
complement has the same nodes @s but two nodes are adjacent@iff they are non-adjacent
in G). In particular, perfect graphs are closed under takingmements (Perfect Graph Theorem
[16]). Perfect graphs turned out to be an interesting andartapt class with a rich structure and a
nice algorithmic behaviour, see [19] for a recent surveypdrticular, several parameters which are
hard to evaluate in general can be determined in polynoinig if G is perfect [13].

For all imperfect graph& it follows that STAB(G) € QSTAB(G). Itis natural to use the differ-
ence between the two polytopes in order to determine howdartain imperfect graph is away from
being perfect. We consider three ways to classify imperdeaphs: by description STAB(G),
the imperfection ratio, and the imperfection index.

Polytopedescriptions.  The first possibility is to extend the clique constraintsodiééng QSTAB(G)
to rank constraints

Y @i < ald) (2)
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associated witharbitrary induced subgraph&’ = (V’/, E’) in order to obtainSTAB(G) (here,
a(G") denotes the cardinality of a maximum stable sefinwe havex(G') = 1iff G’ is a clique
and also write (2) as(G’, 1) < «(G’)). That way, several well-known graph classes are defined:
near-perfect graph$20] where rank constraints associated with cliques andamhele graph are
allowed only; t-perfect graphg6] resp. h-perfect graphg13] where rank constraints associated
with edges, triangles, and odd holes resp. cliques of arlgigize and odd holes are used only; and
rank-perfectgraphs [21] including the rank constraints associated alltinduced subgraphs.

Further classes of rank-perfect graphs are line graphsifphatiwebs [22]. Aine graphis obtained

by taking the edges of a given graph as nodes and connectingdues iff the corresponding edges
are incident. Arantiweb, /;, is a graph with, nodesD, ..., n — 1 and edges; iff & < |i — j| <

n —k andi # j. Antiwebs include all cliqued(;, = K} ;, all odd antinoleCy; 1 = Kapt1/2,
and all odd hole€’y. 1 = Ky;.41/4- AsS common generalization of perfect, t-perfect, and Hewmer
graphs as well as antiwebs, the classagierfect graphavas introduced in [23] as those graphs
whose stable set polytopes are given by nonnegativity cingt and rank constraints associated
with antiwebs only.



Imperfection ratio. Gerke and McDiarmid [12] introduced tlmperfection ratioimp(G) as the
dilation ratio

imp(G) = min{t : QSTAB(G) C ¢t STAB(G)}
of the two polytopes. We clearly havenp(G) = 1 iff G is perfect andmp(G) > 1iff G is
imperfect. Moreoverimp(G) = imp(G) holds for all graphs [12]. The imperfection ratio is NP-
hard to compute and unbounded in general [12]. So far, thereigper bounds known for the
imperfection ratio of only some graph classes, including bdles, t-perfect, h-perfect, and line
graphs [12], antiwebs and a-perfect graphs [7] (and theespanding complementary classes). We
introduce two further graph classes and show that they Haweasbounded imperfection ratio, see
Section 2.

Imperfection index. Aguilera et al. [1] investigated the antiblocking duality $TAB(G) and
QSTAB(G) by means of the disjunctive procedure introduced in [2] @eetion 3). They observed
that the disjunctive index d)STAB(G) can be seen as a measure of imperfection and defined the
imperfection indexf G as

impy(G) = min{|J| : P;(QSTAB(G)) = STAB(G),J CV}

whereP;(QSTAB(G)) = conv{z € QSTAB(G) : z; € {0,1},j € J}. We haveimp;(G) = 0
iff G is perfect andmp;(G) = 1 if G is minimal imperfect (that i+ is not perfect_but every proper

induced subgraph is perfect). Moreover, it is proved in fHtimp;(G) = impi(G) holds for all
graphs.

In this paper, we discuss a graph-theoretical charactemizaf imp;(G) as the cardinality of a min-
imum node subset meeting all minimal imperfect subgraphS ¢$ee Section 3). As the graphs
G with imp;(G) < 1, we introduce the class @imost-perfect graphas those graph& which
admit one node whose removal yields a perfect graph. Thés digarly contains perfect and mini-
mally impefect graphs, we present further examples. Magave introduce the hypergragiG)
with the same node set &s and all node subsets inducing a minimal imperfect subgrdpfy o
as hyperedges. By the invariance of perfection under takomgplementsZ(G) clearly equals

Z(G). Finding a minimum vertex cover iA(G) is equivalent to computingnp;(G); this reproves

impr(G) = impy(G) for all graphs and shows that evaluatimgp;(G) is NP-hard.

Finally, we discuss bounds on the imperfection index fotlal graph classes for which an upper
bound for the imperfection ratio is known. More preciselye imvestigate the behaviour of the
imperfection index by means of taking disjoint unions (8st®), taking lexicographic products

(Section 4), and substituting nodes by other graphs (SebjioFor the latter, we characterize how
several classes of rank-perfect graphs behave undertsiibsti We obtain that, for all those graph
classes with bounded imperfection ratio, the imperfecinalex cannot be bounded.

Hence, our results indicate that there are many more gragkes with an unbounded imperfection
index than with an unbounded imperfection ratio and thattetfore, the imperfection index mea-

sures imperfection more roughly than the imperfectionorédee Section 6). Several suggestions
for refining conclude this paper.



2 Graph classeswith bounded imperfection ratio

Gerke and McDiarmid [12] introduced the imperfection radr@inally as

xs(G,¢)
w(G,c)

imp(G) = maX{ e V(G) — Z+} ,

i.e., as the maximum ratio of the fractional chromatic numdied the clique number in their
weighted versions, taken over all positive weight vectors.

There does not exist a general upper bound on the impenfieciom due to the following reason.
The so-called Mycielski graphs,, G, G2, . .. form a famous series of graphs withiGG;) = 2 for
all 4, butx(G;) = 2+1i[17] (WhereG, = K,, G; = C5, andG;, is the well-known Grotzsch graph).
Larsen, Propp, and Uliman [14] proved the unexpected renoey ¢(Git1) = x7(Gi) + W

Asimp(G) = Xf(G) holds for any triangle-free grapgh by [12], this implies
imp(G;) — oo for i — oo

and, thus, the Mycielski graplisy, G1, G, . . . form a sequence with unbounded imperfection ratio.

However, there are also classes with bounded imperfectibm By [12], it holds that
imp(G) = {2l : Oy, 1 shortest odd hole in G}

whenevelG is a line graph or h-perfect and
imp(G) = {2k+1 2k + 1 length of shortest odd (anti)hole in G}

for all co-h-perfect graph& whereSTAB(G) is given by rank constraints associated with cliques,
odd holes, and odd antiholes only. As tbg is the shortest odd (anti)hole, this implies that
imp(G) < % holds for all graphg+ belonging to one of these classes.

Note that odd (anti)holes are spedqurtitionable graphsthat are graph&: where, for any node
v, the subgrapl&G — v can be partitioned inte((G) cliques of maximum size)(G) or into w(G)
stable sets of maximum size. We shall extend the above sdsudt common superclass of perfect,
t-perfect, h-perfect, and co-h-perfect graphs: we callaplyts p-perfectif STAB(G) is given by
rank constraints associated with cliques and partitiamabbgraphs only.

Theorem 1 LetG be a p-perfect graph and’ = «(P) andw’ = w(P); we have

imp(G) = max{ O‘;“f:jl : P C G partitionable}.

Proof: Consider a graplds having a partitionable grapR as induced subgraph. By definition, it
follows |P| = o/w' + 1 =1n'.

Consider a vector € QSTAB(G). We haver(P) < Z— as each node aP can be covered’
times by then’ maximum cliques of by [3]. Lety = 2% (@)
asOMJrl < 1). Now,




holds, and thug € STAB(G). It follows thatQSTAB(G) C ““+1STAB(G). O

o'w

As theCj is also the smallest partitionable graph, this implies(G) < 2 for the larger class of
p-perfect graphs, too.

A similar result was shown in [7] for antiwebs, a-perfectmrs, and a further superclass of anti-
webs, thenear-bipartite graphswvhere the set of non-neighors of every node splits into twblet
sets. According to [7], for all such graplig

imp(G) = max{a’,@—(;, t Ky € GY

wherew’ = [n//a/| holds and, in addition, the imperfection ratio of an antiwelbounded by
imp(K,, /o) < % The complements of antiwebs are called webs, the complsménear-bipartite
graphs are called quasi-line graphs (note that they coathlime graphs). By the invariance of the
imperfection ratio under complementation, the imperéactiatio of any near-bipartite (resp. quasi-
line) graph is, therefore, characterized by means of itaded antiwebs (resp. webs) only and is
less tharg.

In addition, Gerke and McDiarmid [12] showed that the impetibn ratio of planar graphs is
bounded byt (and conjectured that it is in fact bounded $y

Finally, we present a (rough) bound on the imperfectiororfi the class of almost-perfect graphs:
Theorem 2 For any almost-perfect grapfy, we havemp(G) < 2.

Proof: Letv be a node such that — v is perfect. This implies((G — v,¢) = xf(G — v,¢c) =
w(G —w, c) for all weight vectors: > 0. On the other hand, (G, ¢) < x(G,c) < x(G—v,c)+c,
andw(G, ¢) > max{w(G — v, ), ¢, + cy(e) } With u(c) = arg max,,e n(y) cw holds, whereN (v) is
the set of neighbors afin G. Thus

Xf(G>C) < X(G_U>C)+Cv _ X(G_ch)+cv <9
w(G,c) ~ max{w(G —v,c),c,}  max{x(G —v,c),c, + cy(e)}
holds for allc > 0, which completes the proof. O

We conjecture that the true bound for the imperfection ratialmost-perfect graphs %

3 Theimperfection index in graph theoretical terms

Balas et al. [2] introduced thdisjunctive proceduréor binary linear programs as a way to obtain
a complete description of the integer polytope from the fopg described by the linear relaxation.
Let V = {1,...,n} denote the set of binary variables. For a subget {i;,...,i;} of the
variables,

P;(X)=conv{z € X :z; € {0,1},j € J}

holds. It is shown in Balas et al. [2] thdt;(X) = P, (P;,(... P;(X))). Clearly, Py(X) =
conv(X N {0,1}™), but also proper subsets can have this property. This raialts to define



the disjunctive inde)of a polytopeX as the minimum size of a set C V such thatP;(X) =
conv(X N{0,1}").

The imperfection index of a grapfi is defined as the disjunctive index @STAB(G). The fol-
lowing result directly follows from the definition.

HereG[V — j] denotes the subgraph 6f= (V, E) induced byl \ {;}.

Lemma 3 (Ceria[4]) P;(QSTAB(G)) = STAB(G) if and only ifG[V — j] is perfect.

This immediatly implies:

Corallary 4 imp;(G) = 1if and only if there exists a nodec V such thatz[V — j] is perfect.

This shows in particular that the almost-perfect grapheasetly those graph§ with and imper-
fection index at most one (as they are defined to admit one wbdee removal results in a perfect
graph). Clearly, all perfect graplts are almost-perfect bymp;(G) = 0 as well as all minimally
imperfect graphss by imp;(G) = 1 (note that in the latter graphs, removiagy node yields a
perfect graph). A subclass of t-perfect graphs, dhmost-bipartite graphsforms a further class
with imperfection index at most one as they are defined to adn& node whose removal yields a
bipartite graph.

Note that the class of almost-perfect graphs clearly costgiaphs other than perfect, minimal im-
perfect, and almost-bipartite graphs, e.g., all odd whaedtsodd antiwheels (the latter are obtained
as complete join of an odd antihole and a single node).

Clearly, Lemma 3 can be generalized further as follows {tlas independently observed in [18]
and [15]).

Lemma5 P;(QSTAB(G)) = STAB(G) if and only ifG[V — J] is perfect.

Proof: AssumeP;(QSTAB(G)) = STAB(G). We projectP;(QSTAB(G)) onV — J. On the
one hand, this face equa&TAB(G[V — J]) asP;(QSTAB(G)) = STAB(G). On the other hand,
this face equal§)STAB(G[V — J]) as we project out exactly those variables that were affdayed
the lift and project procedur®;. This implies thatQSTAB(G[V — J]|) = STAB(G[V — J]) and
G|V — J] is perfect.

ConverselyG[V — J] perfect impliesQSTAB(G[V — J]|) = STAB(G[V — J]). P;(QSTAB(G))
is the convex hull of all extreme points @fSTAB(G) with 0-1 entries on the coordinates Jh
By QSTAB(G[V — J]) = STAB(G[V — J]), all remaining entries of those extreme points are
integer-valued as well. O

Therefore,J is a subset of nodes meeting all minimal imperfect subgrapis. By the Perfect
Graph Theorem [16], an induced subgraghof G is minimally imperfect if and only if its com-
plement@' is minimally imperfect. Hence, the same node-subseteets all minimal imperfect
subgraphs in the complementary graph, which implies:

Corollary 6 Let G = (V. E) be a graph. P;(QSTAB(G)) = STAB(G) holds for a subset of

nodesJ C V if and only if P;(QSTAB(G)) = STAB(G).
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This reproves the invariance of the imperfection index unidking complements, originally ob-
tained by Aguilera et al. [1].

We shall formalize the computation of the imperfection idierther. For a graplG = (V, E),
we introduce the imperfection hypergraphG) = (V, F) on the same node set &sand all node
subsets inducing minimally imperfect subgraphs-cés hyperedges. Obviously, we haig~) =
Z(G). For our purpose, we look for a minimum vertex coverZgty), i.e., for a subse/ C V
meeting all hyperedges. Obviously, any vertex covef @) corresponds to a subsétC V' with
G[V — J] perfect resp. with?;(QSTAB(G)) = STAB(G). This implies that the imperfection
index of G equals the vertex cover numbe(Z (G)).

Lemma 7 For any graphG, imp;(G) = imp;(G) = 7(Z(GQ)) = 7(Z(G)).
From this graph-theoretical reformulationiaip;(G), we infer:
Lemma 8 The number of disjoint minimally imperfect subgraphé&a$ a lower bound ofimpy(G).

Proof: Let S be a set of mutually disjoint subsetsidfthat induce minimally imperfect subgraphs.
For all.S € S we have to select at least one vertex in the vertex cover., TH$G)) is at least the
size ofS. O

Corollary 9 The imperfection index of a grapgh equals the sum of the imperfection indices of its
maximal 2-connected induced subgraphs.

As a consequence, we obtain that the imperfection indexatdmbounded for several classes of
graphs.

Theorem 10 For the following graph classe§, there exists no upper bound on the imperfection
indeximpy(G), G € G: t-perfect graphs (and therefore, also h-perfect, p-petfa-perfect, rank-
perfect graphs); line graphs (and therefore, also quasglgraphs); planar graphs.

Proof: Let kC5 be the disjoint union ok 5-holes. Then we obviously hawep;(kC5) = k and, in
particular,
impy(kCs) — oo if k — oo.

As such graph&Cs, £ > 1 belong to the classes of t-perfect graphs as well as linehgrap well
as planar graphs, the result follows for all these classddtair superclasses. O

Similar constructions are possible by linking odd holestigh additional edges to a chain; even in
highly connected graphs many disjoint odd holes can occur:

Theorem 11 For the following graph classe§, there exists no upper bound on the imperfection
indeximpr(G), G € G: webs and antiwebs (and therefore, also a-perfect, nepasite, and quasi-
line graphs).



Proof: Let Fg,k/(kﬂ) be the web with5k nodes that is the complement &fsy /;.41). Fori €
{1,...,5k}, Ksp/p41) contains the 5-hol€'(i) = {i,i + k,i + 2k,i + 3k,i + 4k}. Hence,
K /(k+1) containsk disjoint 5-holesC'(7) for 1 < i < k. This implies thatmp; (K /(x11)) > &
and, in particular,

impI(F5k/(k+1)) — o0 if k — oo.

Thus, there is also no upper bound of the imperfection indexhie classes of webs and antiwebs
as well as for any of their superclasses. O

4 Theimperfection index and lexicographic products

Thelexicographic producty; x G, of two graphsz; andG, is obtained by substituting every node
of G1 by the graphG,. Let v be a node of a grapt¥; thensubstitutingy by another graplizo
means to delete and to join every neighbor af in G; to every node of+». (Note that we exclude
the two trivial cases it7; = () and if v does not have any neighbor.)

Gerke and McDiarmid [12] studied the behavior of the imp&téa ratio under taking lexicographic
productsG; x G, and showed that

imp(G1 x G2) = imp(G1) - imp(G3)

holds. Thus, the imperfection ratio cannot be bounded fgrcassG of graphs which is closed
under substitution (and, therefore, closed under takixigdgraphic products) and contains at least
one imperfect graply as

imp(G") — oo for i — oo

if imp(G) > 1 (whereG' stands foiGG x ... x G, i times). A necessary condition for a clagso
have bounded imperfection ratio is, therefore, thas closed under substituting perfect graphs for
nodes only.

We consider the behavior of the imperfection index undeintalexicographic product&’; x G,
as well.

Theorem 12 For two graphsG, G, we have
impr(G1 X G2) = |G2| imp1(G1) + (|G1| — imp1(G1)) - impr(G2).

Proof: LetV/ C V; be a minimum node subset 6f = (V4, E;) such thatz [V; — V]| is perfect;
in particular we havémpy(G1) = |V’| by Lemma 5. Similarly, leV; C V5, be a minimum node
subset of7 = (V2, E»2) such thatG; [V, — V] is perfect.

For each of the nodesc V] there exists a minimally imperfect subgra@t) of G; which contains
v but none of the other nodes 1y (by the minimality ofV). Substituting the node by a graph
G+ creategGs| disjoint copies of7, ; removingall |G2| copies ofv is required in order to meet all
copies ofG’,.

Moreover, for each of the nodese V; — V] substitution withG, results in a disjoint subgraph
isomorphic toGs. Hence, in order to obtain a perfect subgraplizefx G2, at leasimp;(G5) nodes
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have to be removed from each of those subgraphs. Let us retmeweopies ofl;. Together, this
implies that

impr(G1 x Ga) > |Ga| [V{|+ (|G1] — [V{]) - imp1(Ga)
= |Go| imp1(Gy) + (|G1| — imp1(Gy)) - impr(Ga).

Now, suppose thatr; x G is still not perfect after removal of the nodes specified abohen,
there exists a minimally imperfect subgraph. If G’ is isomorphic to a subgraph @¥,, then
G[Va — V] cannot be perfect. Otherwis@’ has to contain nodes from different copie<®f. If it
contains at most one node from every cafyjs isomorphic to a subgraph 6f; andG,[V; — V/]
cannot be perfect.

Thus,G’ has to contain at least two nodes from one of the copies anesrfonin at least two copies.
By the Strong Perfect Graph Theore6, is either an odd hole or an odd antihole. First, assume

G’ is an odd hole. Consider a copy 6f, from which at least two nodes;, ..., v; (k > 2) belong
to G’ and letu be a neighbor of one of the nodes, not part of the copy. Notgeadjacent to all
nodesuy, . .., v, Which implies thatt = 2 (otherwiseG’ is not an odd hole). Moreover, sin¢g

has at least 5 nodes, there has to be another neighlobr,, v2, not part of the copy. Since is
also adjacent to bothy, andw,, we obtain aC as subgraph aof’ which violates the assumptia®’
being an odd hole.

For G’ being an odd antihole, a similar argumentation on the comete ofG; x G can be carried
out to prove that?’ cannot be an odd antihole as well. Hen€g, x G is perfect after removal of
the nodes specified above. O

Thus, also the imperfection index cannot be bounded for #éass¢ of graphs which is closed
under substitution (and, therefore, closed under takixigdgraphic products) and contains at least
one imperfect graply. In contrary to the imperfection ratio, we have even more:

Corollary 13 Let (G4 be a graph. For any perfect graphs, we have

impI(G1 X Gg) = |G2| impI(Gl).

As this result clearly also applies to the two special casagjely taking lexicographic products
whereGs is a clique (eplicating every node of+;) or a stable setnultiplying every node of,),
we immediatly obtain the following:

Corollary 14 LetG be a graph class containing one imperfect graphg I closed under substi-
tuting perfect graphs for nodes, replication, or multiglimon, then there exists no upper bound for
the imperfection inde¥np;(G), G € G.

Thus, a sufficient condition for theonexistence of an upper bound on the imperfection index
is that the graph clasg in question contains an imperfect graph and is closed undestituting
certain perfect graphs, whereas a necessary conditiomdoexistence of an upper bound on the
imperfection ratio foig is thatG is closed under substitutingerfectgraphs for nodes only.



5 Classes of rank-perfect graphsand substitution

The results from the previous section motivate to study gfetsiour of the remaining graph classes
of interest under substitution. So far, there are no boumdsvk on the imperfection ratio or the
imperfection index of near-perfect and general rank-peideaphs. On the one hand, we shall check
whether these classes are closed under substitutingrceesdiect graphs; on the other hand, we
shall ensure that substitution of imperfect graphs is nesiibe. This suggests tharacterizevhat
happens to these classes under substitution. Note thaasii@racterization gives, in addition, also
some insight in how to construct graphs in the correspondiagses. This is of particular interest,
as none of the subclasses of rank-perfect graphs is chazactén graph-theoretical terms yet (but
only in polyhedral terms by means of the facets of the staiieslytope). Thus, we shall also
address the behavior of h-perfect, co-h-perfect, p-peréex a-perfect graphs under substitution.

For our purpose, we shall make use of the following result:

Theorem 15 [6, 8] Let G be obtained by substituting a nodeof a graphG; = (Vi, Ep) by a
graph Gy = (Va, E3). Then a non-trivial inequality is facet-defining fSTAB(G) if and only if it
can be scaled to be a facet product of the form

Z ayr; +al Z a?wj <1 3)

i€eVi—v JEV,

wherez(G;,a’) < 1is a non-trivial facet oS TAB(G;) fori = 1, 2.

Note that Chvatal [6] gave a linear descriptionSSFAB(G) outgoing from the stable set poly-
topes of the original graphs, whereas Cunningham [8] prdatat that each of the inequalities
found by Chvatal is indeed facet-defining. We study the equences of this theorem for several
subclasses of rank-perfect graphs. Throughout this sectlbnon-trivial inequalities are scaled to
have right hand side equal to 1 (that means: only clique caings keep unchanged, rank constraints
(G, 1) < o(G') turn toz (G, a) < 1with a = (ﬁ, e ﬁ), and non-rank constraints have
different non-zero coefficients).

Proposition 16 Consider a graphz obtained by substituting a nodeof a graphG; by G,. If
there is a non-trivial, non-clique facet 8fTAB(G>) thenSTAB(G) has a non-trivial, non-rank
facet.

Proof: LetG; = (V4, E1) andG, = (Va, E5) and take the facet product

Z xH—Za?:Ujgl

1€Q—v JjEVR

of a clique facet associated wigh C Vi, v € Q and a non-trivial, non-clique facet{Gs, a?) < 1

of STAB(G2). Then there is a node € V5 with 0 < af < 1 and the above facet product has
different non-zero coeffients: eveiye ) — v has coefficient 1 bud < ai < 1 (recall: we exclude
the case that does not have any neighbor, hence there is a cligue V; with Q — v # 0). Thus,
the above facet product is a non-trivial, non-rank facé8 BAB(G). O

10



That means, whenevé¥, is imperfect, the graph obtained by substitutidg for a node cannot be
rank-perfect. Hence, none of the classes of rank-perfeghgr (different from the class of perfect
graphs) is closed under substitution. In addition, we arerésted which graph&§; and G, are
allowed in order to produce a rank-perfect graply substitution.

Theorem 17 LetG be obtained by substituting a nodef G by Gs. G is rank-perfect if and only
if G is rank-perfect andr; is perfect.

Proof: Let Gy = (V4, F1) andGse = (Va, E2). Assume first thaty; is rank-perfect andr; is
perfect. TherSTAB(G;) admits only non-trivial facets(G1,a') < 1 with a! € {0,c}. Each
facet product

Z a}mﬁ—a}) Zrﬂj <1

1eVi—v JEQ

of #(G1,a') < 1 with an arbitrary clique facet associated withC V; has agairi! € {0,c} as
only coefficients. Thus, the only non-trivial facetsS0FAB(G) are rank constraints.

Conversely, ifG is supposed to be rank-perfect thép has to be perfect (otherwis$TAB(G>)
has a non-trivial facet different from a clique constraind&TAB(G) has a non-rank facet by
Proposition 16). G; has to be rank-perfect (otherwiS&'AB(G) has a non-trivial, non-clique
facet and its facet product with an arbitrary clique faceB®AB(G5) yields a non-trivial, non-
clique facet oSTAB(G)). O

Thus, precisely substituting perfect graphs for nodesepves rank-perfectness and substituting
imperfect graphs for nodes in near-perfect, h-perfecerdept, or p-perfect graphs cannot preserve
the membership in those classes, too. We are interestedhevitbere are further requirements in
order to obtain graphs belonging to one of these classeslsjition.

Note that Shepherd [20] showed that the class of near-figgfaphs is closed under replication
(i.e., the special case of substitution whéteis a clique). We ensure that there is no other way to
produce a near-perfect graph by substitution.

Theorem 18 LetG be obtained by substituting a nodef G; by Gs. G is near-perfect if and only
if either Gy and G, are perfect orGG; is near-perfect andr, is a clique.

Proof: The if-part follows from Shepherd [20], thus we only have iteat the only if-part. Let
G1 = (V4, E1) andGy = (Va, Es). Clearly, if G is supposed to be perfect théh and G- have
to be perfect due t61, G2 C G. Hence assume thét is near-perfect and imperfect. Théh
has to be perfect, otherwiS&'AB(G2) has a non-trivial facet different from a clique constraintia
G is not rank-perfect by Proposition 167 imperfect and~, perfect impliesG; imperfect, hence
STAB(G1) has a non-trivial, non-clique face{G;,a') < 1. In particular, there is a node < V;
with 0 < a}, < 1. Consider the facet product

Z al-lwl-—i-aiijgl

1eVi—v JEQ
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of z(G1,a') < 1 with an arbitrary clique facet associated withC V5. Then the facet product
is a non-trivial, non-clique facet §TAB(G) by 0 < a;, < 1 and, thus, the full rank facet &
is near-perfect. Therefore, all coefficients are equaclv—(}z% anda! = a(lG) foralli € V; and
Q = V, follows. Hencer(G1,a') < 1is the full rank facet o8TAB(G1) (notea(G) = a(Gy)
by Q = 13) and its only non-trivial facet different from a clique ctrasnt, andG. is a clique. O

Finally, we also address the behavior of the remaining sislsabf rank-perfect graphs under substi-
tution. We obtain the following result for p-perfect graphs

Theorem 19 Let G be obtained by substituting a nodeof G; by G,. G is p-perfect if and only if
(71 is p-perfect and eithew is not contained in any partitionable subgraph@®@f and G is perfect
or v is contained in a partitionable subgraph 6f and G, is a stable set.

Proof: LetGy = (V4, E1) andGs = (Va, Es). Assume first7; to be p-perfect. I is not contained

in any partitionable subgrapk of G; and G2 is perfect, therSTAB(G) has besides facets of
STAB(G;) with vanishing coefficient fow only products of trivial or clique facets, henceis
p-perfect. IfGs is a stable set, the assertion follows since multiplicapoeserves p-perfectness: If
G+ is stable then all non-trivial facets STAB(G2) are clique constraints associated with a single
node and all facet products (3) BTAB(G) are obtained by simply replacingby a node oGy
(i.e., STAB(G) contains|G| copies of every facet(G1,a') < 1 of STAB(G1) with al # 0).

Now, suppos€= to be p-perfect. Theldrs is perfect by Proposition 16 (otherwige is even not
rank-perfect). Consider the facet product

Z ailwi—i-a})ijgl

1eVi—v JEQ

of an arbitrary non-trivial facet(G1,a') < 1 of STAB(G;) and a clique facet associated with
Q C V. Sinced is p-perfect, every facet product is either a clique coigtighenz(Gq,a') < 1
is a clique facet) or a rank constraint associated with atjparable subgrapt® (thenz(Gy,a') < 1
is the facet associated with with eitheral = 0 oral # 0 and|Q| = 1). That meanst is p-
perfect and, ifv is contained in a partitionable subgraph(of, thenGs, is a stable set. O

The latter result includes the classes of h-perfect and-perfect graphs (as odd holes and odd
antiholes are special partitionable graphs). A similauargntation applies to all a-perfect graphs
(since the facet-defining antiwebs play the same role inreegtegraphs as the partitionable sub-
graphs in p-perfect graphs). In particular, taking lexiamiic products with stable sets preserves
the membership in all those classes. Thus, we can summhaeizesults from this section as follows

(the last point gives an alternative proof for assertion§rwforem 10):

Corollary 20 There exists no upper bound for the imperfection index dialf@mving graph classes:

e rank-perfect graphs (closed under substituting perfeapgs for nodes);
e near-perfect graphs (closed under replication);

e h-perfect, co-h-perfect, p-perfect, and a-perfect grafahessed under multiplication).

12



6 Concluding remarks

In this paper, we have studied three different ways to diagsiperfect graphs according to their
closeness to perfect graphs. Several classes of graphefareddby their limited number of classes
of valid inequalities different from trivial and clique igealities. The imperfection ratio has been
shown to be bounded for p-perfect graphs in this paper andefeeral other classes in previous
papers. The imperfection index has been shown to be unbddodall those classes for which the
imperfection ratio has been shown to be bounded, cf. Tabdli¢hrgives an overview of the results
achieved.

Graph clasy | sup{imp(G) : G € G} | sup{impi(G) : G € G}
perfect =1 =0
minimal imperfect <3 =1
almost-bipartite <3 <1
almost-perfect <2 <1
t-perfect <2 00
h-perfect <2 00
p-perfect <2 00
line < % 00
antiwebs/webs <3 00
a-perfect <3 00
near-bipartite <3 o0
quasi-line <3 o0
planar <4 00
near-perfect ?7? 00
rank-perfect ?? 00
general 0 0

Table 1: Summary of the bounds

An open question is whether there exist a graph class sutththanperfection index of all members
is bounded by a constahtwith 1 < k£ < oc.

From the obtained results it is fair to conclude that theudisfive index ofQSTAB(G) is a too
rough measure for determining the closeness of a gfaph the class of perfect graphs. Possible
refinements could be obtained as follows:

e The imperfection index can be redefined for (2-)connecteglgs only. In this way th&Cs
example cannot be taken anymore. However, the odd holeseceonmected with each other
without loss of generality, and thus the new imperfectiatexwould still not be bounded for
all the above graph classes.

13



e The disjunctive procedure can be carried out with any limeanbinationrz of the variables.
The resulting polytope is then defined as

Pi(X)=conv({r e X :mx <mo}U{z € X :mx >my+1})

For any near-perfect graghand (2) withV’ = V asmz < 7, it directly follows P, (QSTAB(G)) =
STAB(G) and the disjunctive index would equal one. Unfortunatedy; still needsk appli-
cations of the disjunctive procedure bef&€AB(G) is reached.

e The unboundedness of the imperfection index for classesagfhg bases in all the above
cases on the increase of the number of nodes in the graphuvitaving the class (disjoint
union, substitution, replication, multiplication). Sice the imperfection index by the number
of nodesn = |V| could resolve this problem.

We, therefore, suggest to consider timemalized imperfection index

impI(G).

n

imp,(G) =

As there are no imperfect graphs with four or less noileg;(G) can be at most — 4, and thus
scaling yields a valuanp,(G) € [0,1).

All perfect graphs are exactly the graphs withp, (G) = 0; all almost-perfect graphs satisfy

imp,(G) < % Even forkCs, k > 1, we obtain as normalized imperfection ind@% =0.2,
independent ok. Taking the lexicographic product &f5-holes yields a sequence with

impy ((C5)*)
[(C5)*]

(sinceimpr ((C5)*) = 5% — 4% whereag(Cs)*| = 5*), which is consistant with the fact that also
the imperfection ratios of these graphs tend to infinitys |thiowever, interesting to observe that for
the Mycielski graphs+y, G1, G2, . .. the quotient of imperfection index and number of nodes tends
to % whereas their imperfaction ratios cannot be bounded.

— 1lif k — o0
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