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Abstract
This paper introduces an implementation for solving the single-source

shortest path problem on distributed-memory machines. It is tailored to
power-law graphs and scales to trillions of edges. The new implementa-
tion reached 2nd and 10th place in the latest Graph500 benchmark in
June 2022 and handled the largest and second-largest graphs among all
participants.

1 Introduction
The single-source shortest path problem (SSSP) is one of the fundamental prob-
lems in combinatorial optimization and can be found in many practical applica-
tions [Chen, 1996]. Given a weighted graph and a vertex r, the SSSP is to find
shortest paths from r to all other vertices of the graph. In the age of big data,
the size of the graphs to be handled is ever increasing.

Against this backdrop, the Graph500 benchmark was initiated in 2010 to
evaluate large-scale graph processing performance [gra]. New listings of the
top-performing systems are released every six months (June and November);
the benchmark consists of a breadth-first search (BFS) and an SSSP category.
For both BFS and SSSP a measure named traversed edges per second (TEPS)
is used. Given a a graph with m edges, the TEPS for an SSSP computation on
this graph that took t seconds is defined as m

t . In the Graph500 benchmark, a
scale-free graph called Kronecker graph [Leskovec et al., 2010] is used. The term
scale-free describes a graph whose vertex degree distribution follows (at least
asymptotically) a power-law distribution. Social network graphs, for example,
are known to usually be scale-free.

Contributions This article describes a distributed memory SSSP algorithm
for large-scale graphs. It is especially tailored to scale-free graphs. As opposed
to previous state-of-the-art implementations, the new algorithm is based on
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a 2D partitioning of the adjacency matrix of the underlying graph. Further-
more, we introduce several improvements to speed up the performance. The
new algorithm is shown to scale to graphs with over 8 trillion edges. A pre-
vious implementation of the algorithm reached the 2nd and 10th place of the
Graph500 benchmark, while processing the largest and second-largest graphs of
all Graph500 SSSP participants.

2 Single-source shortest path algorithms
In the following, consider an undirected graph G = (V,E), edge weights c : E →
R≥0, and a vertex r ∈ V called root. For simplicity, we will assume that G is
connected. For any vertex v ∈ V , the distance d?(v) of v is defined as the length
(with respect to c) of a shortest path between r and v.

The SSSP algorithms described in the following all maintain a tentative
distance d(v) for each v ∈ V . Throughout the execution of the algorithms it
holds that d?(v) ≤ d(v) for all v ∈ V . At termination it holds that d?(v) = d(v)
for all v ∈ V . During execution, we say that a vertex v ∈ V is settled if
the respective algorithm can guarantee that d?(v) = d(v) holds. To update
the tentative distance d(v) of a vertex v ∈ V , a so-called relaxation along an
incident edge {u, v} of v is used. This operation is defined as follows:

d(v)← min {d(v), d(u) + c({u, v})} .

Based on this operation, we describe several SSSP algorithms below.

Dijkstra’s algorithm [Dijkstra, 1959] The algorithm maintains a partition
of V into settled, queued, and unreached vertices. Queued vertices satisfy d(v) <
∞ but are not settled yet, whereas unreached vertices satisfy d(v) =∞. Initially,
only r is queued. We set d(r) = 0, and d(v) = ∞ for all v ∈ V \ {r}. In each
iteration of Dijkstra’s algorithm, a queued vertex u with minimum tentative
distance among all queued vertices is removed from the queue. All incident
edges {u, v} of u are relaxed. Any vertex v whose tentative distance is reduced
by the relaxation is (re-) inserted into the queue. The algorithm terminates once
the queue is empty. It can be shown that a vertex is settled as soon as it has
been removed from the queue. Using a Fibonacci heap [Fredman and Tarjan,
1987], one can realize Dijkstra’s algorithm in time O(|V | log |V |+ |E|).

Bellman-Ford algorithm [Bellman, 1958] Unlike Dijkstra’s algorithm, the
Bellman-Ford algorithm performs the relaxation operation from several vertices
in each iteration. The algorithm keeps a list of active vertices for each iteration.
Initially, only the root vertex is active. In each iteration, for each active vertex
u all incident edges {u, v} are relaxed. Each vertex whose tentative distance is
decreased is treated as an active vertex in the next iteration. The Bellman-Ford
algorithm terminates once there are no more active vertices. The algorithm is
guaranteed to require at most |V | − 1 iterations. The worst-case run time is
O(|V ||E|).

Delta-stepping algorithm [Meyer and Sanders, 2003] One observes that
Dijkstra’s algorithm requires a small amount of work (since each edge is relaxed

2



Algorithm 1: Basic delta-stepping
Data: SSSP instance I = (V,E, c, r)
Result: Shortest path distances d(v) for each v ∈ V

1 foreach v ∈ V \ {r} do d(v) := v
2 foreach k = 1, 2, 3, ... do Bk := ∅
3 d(r) := 0
4 B0 := {r}
5 B∞ := V \ {r}
6 k := 0
7 while k <∞ do
8 X := Bk

9 while X 6= ∅ do
10 X ′ := ∅
11 foreach {u, v} ∈ E with u ∈ X do
12 q :=

⌊
d(v)
∆

⌋
13 d(v) := min {d(v), d(u) + c({u, v})}
14 q′ :=

⌊
d(v)
∆

⌋
15 if q′ < q then
16 Bq := Bq \ {v}
17 Bq′ := Bq′ ∪ {v}
18 if q′ = k then X ′ := X ′ ∪ {v}
19 end
20 end
21 X := X ′

22 end
23 k := min{q > k : Bq 6= ∅ ∨ q =∞}
24 end

only once). However, it always requires |V | − 1 iterations. On the other hand,
the Bellman-Ford algorithm usually requires more work, but far fewer iterations.
The delta-stepping algorithm aims for a middleground between these two be-
haviours. Initially, choose a constant ∆ ∈ R>0. Throughout the algorithm, the
vertex set V is partitioned into buckets, depending on the tentative distances.
For each integer k ≥ 0, define

Bk := {v ∈ V : d(v) ∈ [k∆, (k + 1)∆)} .

All vertices with d(v) =∞ are assigned to the bucket B∞. The bucket index k
of any vertex v is given by

⌊
d(v)
∆

⌋
.

Initially, we set d(r) := 0 and d(v) =∞ for all v ∈ V \ {r}. Thus, B0 = {r}
and B∞ = V \ {r}. The algorithm works in so-called epochs. Each epoch k
settles all vertices in bucket Bk. Initially, we set k = 0. Each epoch k consists
of several phases. In each of these phases any vertex in Bk is considered active
if its tentative distance changed in the previous phase or the current phase is
the first one. The algorithm performs the relaxation operation along each edge
incident to an active vertex, i.e., along all edges {u, v} such that u is active.
Note that in each phase vertices can move to different buckets, according to
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their (possibly updated) tentative distances. The epoch is finished once there
are no more active vertices in Bk. In this case, k is incremented until Bk is
non-empty. If there is no non-empty bucket Bs with s > k, apart from B∞,
then the algorithm terminates. For a pseudo-code description of the above see
Algorithm 1. The alorithm obatins an SSSP instance I = (V,E, c, r) where V
is the vertex set, E the edge set, c the edge costs, and r the root node. For
simplicity, we only compute the shortest distances, but the algorithm can be
easily extended to include ancestor information in order to also provide the
SSSP tree.

Meyer and Sanders [2003] also suggest an improvement of the algorithm,
which paritions the edges into two sets. The light edges consist of all e ∈ E
such that c(e) ≤ δ. The heavy edges consist of the remaining ones. Each epoch
k is changed as follows. In all phases of the epoch only light edges are relaxed.
Once no vertices in Bk are active anymore, the algorithm relaxes along all heavy
edges {u, v} with u ∈ Bk. In this way, one can avoid redundant updates of the
tentative distances.

A small further improvement—which is mostly useful for distributed-memory
implementations, which have high communication costs—is suggested by Chakar-
avarthy et al. [2017]. Consider epoch k. In each phase, the relaxation operation
is only performed along light edges {u, v} such that d(u)+ c({u, v}) < (k+1)∆,
i.e., if the updated vertex would be moved into the current bucket Bk. Once the
epoch is finished, the relaxation operation is performed along all edges {u, v}
such that u ∈ Bk and d(u) + c({u, v}) ≥ (k + 1)∆.

Hybridization Another hybridization, which is especially efficient for scale-
free graphs, can be obtained by switching from Delta-stepping to Bellman-
Ford in the course of the algorithm. This approach is for example suggested
by Chakaravarthy et al. [2017]. The Delta-stepping algorithm usually requires
fewer relaxation operations, but more iterations than Bellman-Ford. However,
in scale-free graphs most relaxation operations are performed in the first few
epochs. The reason for this behaviour is that vertices with higher degree usu-
ally have smaller shortest distances and get settled in early epochs. In contrast,
the vertices with lower degree usually have larger shortest distances and get
settled only later on. Thus, a natural idea is to switch to Bellman-Ford later
on to reduce the number of epochs. The crucial decision to be taken is when to
change to Bellman-Ford. Chakaravarthy et al. [2017] suggest a simple heuristic
that tracks the number of newly settled vertices in each epoch and changes to
Bellman-Ford once a local maxima has been observed.

3 Distributed parallelization
The distribution of the graph data plays a pivotal role in the design of any par-
allel SSSP algorithm for distributed-memory. For large-scale graph processing,
the arguably two most prominent distribution patterns are 1D partitioning, see
e.g. Checconi and Petrini [2014] and 2D paritioning, see e.g. Ueno et al. [2016].

1D partitioning assigns each vertex to a specific parallel process. Addition-
ally, all edges incident to a vertex are assigned to the same process. One key
advantage of 1D paritioning is its simplicity. On the downside, it can lead
to significant load imbalances, especially for graphs that have a very different
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distribution of vertex degrees (e.g., scale-free graphs). Additionally, processing
any edge {u, v} usually involves communication between two different processes,
namely the owner process of u and the owner process of v. Overall, an extensive
all-to-all communication is required when the entire graph is processed.

2D partitioning distributes submatrices of the adjacency matrix of graph G
among the processes. Given numbers R,C ∈ 1, 2, ..., |V |, the adjacency matrix
of G is partitioned into R × C submatrices, as illustrated in Figure 1. Each of
the submatrices is assigned to a single parallel process. One advantage of the 2D
partition is a generally more even distribution of the graph data on the parallel
processes. Additionally, one can avoid the expensive all-to-all communication,
as will be demonstrated in the following.

3.1 2D-distributed SSSP
The predominant parititioning for distributed-parallel SSSP has been the 1D
partition, see Chakaravarthy et al. [2017] for the state of the art. In contrast,
we describe a 2D SSSP parallelization in the following. Consider again the
partition of the adjacency matrix into R×C submatrices illustrated in Figure 1.
The parallel processes are virtually arranged in a corresponding R × C matrix
P , where each entry (process) is referred to as P (i, j) for i ∈ {1, 2, .., R}, j ∈
{1, 2, .., C}. For example, the submatrix A1,2 in Figure 1 is assigned to the
parallel process P (1, 2). We write P ( : , j) for all the processors in the j-th
column of P , and P (i, : ) for all the processors in the i-th row of P .

The implementation of the 2D distribution for this article is based on the par-
allel BFS implementation by Ueno et al. [2016]. For example, we also use their
bitmap-based sparse matrix storage. Algorithm 2 provides the pseudo-code of
our 2D SSSP algorithm. As before, we do not include any improvements, such
as heavy/light edges, for simplicity. We assume that the buckets are distributed
among the parallel processes and each process stores only the vertices that it
owns. Allgatherv() and alltoallv() are the standard MPI collectives. Impor-
tantly, communication is only performed along the processor row and columns.
Recall that each process P (i, j) stores the adjacency sub-matrix Aij .
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Algorithm 2: Basic 2D-parallel delta-stepping
Data: SSSP instance I = (V,E, c, r)
Result: Shortest path distances d(v) for each v ∈ V

1 foreach v ∈ V \ {r} do d(v) := v
2 foreach k = 1, 2, 3, ... do Bk := ∅
3 d(r) := 0
4 B0 := {r}
5 B∞ := V \ {r}
6 k := 0
7 while k <∞ do
8 S := {(u, d(u)) : u ∈ Bk}
9 transpose(S)

10 allgatherv(S, P (i :))
11 while S 6= ∅ do
12 S′ := ∅
13 foreach {u, v} ∈ Aij with (u, du) ∈ S do
14 S′ := S′ ∪ {(v, du+ c({u, v}))}
15 end
16 S := S′

17 alltoallv(S, P (: j))
18 transpose(S)
19 foreach (v, dv) ∈ S do
20 q :=

⌊
dv
∆
⌋

21 d(v) := min {d(v), dv}
22 q′ :=

⌊
d(v)
∆

⌋
23 if q′ < q then
24 Bq := Bq \ {v}
25 Bq′ := Bq′ ∪ {v}
26 end
27 end
28 end
29 k := min{q > k : Bq 6= ∅ ∨ q =∞}
30 end

3.2 Improvements
Several improvements of Algorithm 2 are done in our implementation. First,
those mentioned in Section 2, such as using heavy/light edges. Additionally, we
can get rid of the transpose operation, by using an adjacency matrix partition
from Yoo et al. [2005], see Figure 2. In this way, each parallel processor owns
already the correct vertices, and no transpose is needed.

Additionally, we use a modification of the direction-optimization suggested
in Chakaravarthy et al. [2017] (we cannot use the original version, because
it requires point-to-point communication betweeen the vertex owners for each
edge). Additionally, we use several smaller improvements such as filtering the
set S (by using a hashing approach) for duplicates before doing the all-to-all
operation.
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Figure 1: Distribution of the adjacency matrix
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Figure 2: Distribution of the adjacency matrix due to Yoo et al. [2005]

4 Experimental results
This section reports on two large-scale runs of our implementation. One was
on the Fugaku supercomputer, which is installed at the RIKEN Center for
Computational Science in Japan, the other one on the Lise supercomuter, which
is installed at Zuse Institute Berlin.

Fugaku consists of 158 976 compute nodes with a total of 7 630 848 cores.
The majority of the compute nodes have 32 GB memory and consist of Fujitsu
A64FX CPUs with a clock speed of 2.2 GHz each. Lise consists of 1 270 compute
nodes with a total of 121 920 compute cores. The majority of the compute nodes
have 384 GB memory, and consist of 48 Intel Cascade Lake Platinum 9242 CPUs
with a clock speed of 2.3 GHz.

In Table 1 we give the results of our implementaton on both Fugaku and
Lise. Due to availability restrictions we were only able to use half of the compute
nodes of Fugaku. In column four we report the scale value for the Graph500
graph generator. For scale s the generated graph has 2s vertices and 16 ∗ 2s

edges. Thus, the graph generated on Fugaku has roughly 8.8 ∗ 1012 edges.
Column five reports the obtained giga TEPS (GTEPS). Column 6 reports the
official ranking in the Graph500 SSSP benchmark of June 2022.

Machine # compute nodes # compute cores scale GTEPS Graph500 ranking

Fugaku 82 944 3 981 312 39 2 126 2
Lise 1 270 121 920 38 198 10

Table 1: Results of runs for the Graph500 SSSP benchmark (June 20222).

Figure 3 illustrates the TEPS distribution of the TOP 10 participants of
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Figure 3: TEPS distribution of the top 10 positions of the June 2022 Graph500
benchmark.
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Figure 4: Graph size distribution of the top 10 positions of the June 2022
Graph500 benchmark.

the Graph500 benchmark. Similarly, Figure 4 shows the graph sizes used by
the TOP 10 paritcipants. It can be seen that our submissions have the largest
(Fugaku) and second-largest (Lise) graph size among the participants. Indeed,
also beyond the TOP 10, no graph scale larger than 36 is used. This result
demonstrates the scalability of our approach with respect to the graph size.
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