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In this letter we report on a numerical investigation of the Aoki phase in the case of finite
temperature which continues our former study at zero temperature. We have performed simulations
with Wilson fermions at β = 4.6 using lattices with temporal extension Nτ = 4. In contrast to
the zero temperature case, the existence of an Aoki phase can be confirmed for a small range in κ
at β = 4.6, however, shifted slightly to lower κ. Despite fine-tuning κ we could not separate the
thermal transition line from the Aoki phase.

PACS numbers: 11.15.Ha, 12.38.Gc
Keywords: Wilson fermions, phase diagram, parity-flavor symmetry, Aoki phase, finite temperature

I. INTRODUCTION

The interest in the phase structure of Wilson fermions
coupled to SU(3) gauge fields has revived recently, in
particular due to the unexpected discovery of a first-
order transition in twisted mass QCD [1]. This transition
survives when the Wilson gauge action is replaced by a
renormalization group improved gauge action [2]. This
has brought reports on a nontrivial phase structure [3, 4]
back into the center of interest including the pioneering
paper by Aoki [5].

The Aoki phase, characterized by a non-vanishing con-
densate 〈ψ̄iγ5τ

3ψ〉 and a broken pion mass triplet, was
analyzed in the framework of chiral perturbation theory
in [6, 7]. In [7] two scenarios were described: at a given
gauge coupling β either the Aoki phase is realized in a
certain κ interval (separated by second order phase tran-
sition lines from a phase with degenerate massive pions),
or there are first order transitions in a certain interval
of twisted masses (also ending at second order transition
points).

In a recent paper [8] we have found evidence that the
Aoki phase at zero temperature is unlikely to extend to
β > 4.6, whereas the mentioned new phase transition has
been observed at β = 5.2 [1]. The change between those
two scenarios seems to happen between these two values
of β.

From the very beginning it was interesting to know
where the Aoki phase lies at finite temperature. Numer-
ical studies [9, 10] have given some indications that the
Aoki phase is completely embedded in the low tempera-
ture phase as proposed by Aoki et al. [9]. Their results
for Nf = 2 and Nτ = 4 are shown in Fig. 1. How-
ever, the results left open the question, whether the Aoki
phase will join the thermal transition line KT (β,Nτ ) as
it extends further in β for a given thermal lattice exten-
sion Nτ .

To be specific, the following observations were made by
Aoki et al. [9] for Nf = 2 dynamical flavors: For Nτ = 4
at β = 3.5 (on a 83 × 4 lattice) a finite parity-flavor
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FIG. 1: The phase diagram with Wilson fermions at finite
temperature as presented in [9]. We have added a point at
β = 4.6 where we have found evidence for the Aoki phase.

breaking condensate 〈ψ̄iγ5τ
3ψ〉 was found in a κ interval

where mπ± = 0. Surprisingly, the cusp of the Aoki phase
moved slightly towards larger β when Nτ is increased.
In fact, going from Nτ = 4 to Nτ = 8 resulted only in a
shift from β = 4.0 to β = 4.2. At larger β no evidence
for the Aoki phase — at finite temperature — has been
found in unquenched simulations so far.

In a finite-temperature study by the MILC collabora-
tion on a 123 × 6 lattice [3] metastabilities of plaquette
values at (β, κ) =(4.8,0.19), (5.02,0.18) and (5.22,0.17)
were found. This observation could be compatible with
the metastability at (5.20, 0.1715) observed in [1].

A possible scenario could be that the tip of the cusp
simply stops moving and turns into a first order line along
which mπ 6= 0, separating phases with mq < 0 (at high
κ) from mq > 0 (at low κ) [11, 12].

What happens to the first order phase transition line
at weaker coupling? Is it universal and how does this
affect the continuum limit? Does the transition extend to
β → ∞ as a single first order line? Or does it split again
giving room for a new Aoki-like phase enclosed? Can the
Aoki phase extend towards β → ∞ being enclosed by
two second order lines using improved actions?
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FIG. 2: The real part of the Polyakov loop, its susceptibility
χL and the order parameter 〈ψ̄iγ5τ

3ψ〉 as a function of κ at
h = 0.005 and 0.001 fixed. The lower panels shows h = 0.003
additionally. The data have been obtained from simulations
on a 83 × 4 and a 103 × 4 lattice at β = 4.6. Throughout the
same symbols are used.
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FIG. 3: The (exponential) autocorrelation time τexp (in terms
of HMC trajectories) of the real part of the Polyakov loop is
shown as a function of κ for two different values of h. The
lattice size is 103 × 4.

II. NUMERICAL RESULTS

In this study we looked for the Aoki phase at finite
temperature at β larger than in earlier studies. We
performed numerical simulations at temporal lattice ex-
tension Nτ ≡ 4 using dynamical unimproved Wilson

fermions. The Wilson fermion matrix MW was supple-
mented by an explicit parity-flavor symmetry breaking
term, i.e. the two-flavor fermion matrix was given by

M(h) = MW + h iγ5τ
3. (1)

We simulated at β = 4.6. κ was fine-tuned in the in-
terval [0.193, 0.199] at fixed values of h. For each triple
(β, κ, h) the order parameter 〈ψ̄iγ5τ

3ψ〉, the real part of
Polyakov loop ReL and its susceptibility χL were mea-
sured. These observables are shown in Fig. 2. From the
Figure we see that ReL and χL reveal a finite temperature
transition around κ = 0.19705, while the order parame-
ter 〈ψ̄iγ5τ

3ψ〉 signals an existence of the Aoki phase in
this κ region.

Note that we had found a vestigial region around
κ ≈ 0.1984 at β = 4.6 in our previous zero-temperature
study [8]. Therefore, the Aoki phase seems to follow the
finite-temperature transition line and is shifted to some-
what lower κ compared to the zero-temperature case.
This shift, however, cannot be resolved in Fig. 1. In any
case, the Aoki phase extends inside a longer cusp than
seen in [9].

In the region of interest around κ = 0.19705 we found
rather long autocorrelations in the Monte Carlo time his-
tories in contrast to other κ values. The autocorrelation
function has been estimated for the Polyakov loop and
we found large values for the exponential τexp and the
integrated autocorrelation time τint (in terms of HMC
trajectories). Examples for τexp at h = 0.005 and 0.001
are shown in Fig. 3.

In order to study the Aoki phase, the limit

〈ψ̄iγ5τ
3ψ〉h=0 = lim

h→0

lim
V →∞

〈ψ̄iγ5τ
3ψ〉 (2)

has to be taken. Therefore, we made runs in the interval
κ ∈ [0.1968, 0.19720] at several values of h ∈ [0.001, 0.02]
using spatial volumes 83 and 103.

In the upper panels of Fig. 4 the results of those simu-
lations are shown together with fits to the data from the
largest lattice available at each h. For the fits we used
the ansatz [8]

σ(h) = A+BhC + . . . , (3)

where σ ≡ 〈ψ̄iγ5τ
3ψ〉. The value of the order param-

eter at h = 0 is given by the fit parameter A. The fits
are quite robust against the introduction of linear and
quadratic corrections. Details of the statistics achieved
are presented in Tab. I. We did not list the information
refering to the smaller lattice size 83×4 in all those cases,
where 103 × 4 data were available. The results of all our
fits are quoted in Tab. II.

The lower panels of Fig. 4 show the same results as
in the upper panels, however, in a different parametriza-
tion (so called Fisher plots, see e.g. [8, 13, 14]). This
parametrization has the advantage that the curves bend
upwards, if 〈ψ̄iγ5τ

3ψ〉 is non-zero in the limit h → 0.
Hence, the finiteness of the intercept point can be read
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FIG. 4: The upper panels show the order parameter 〈ψ̄iγ5τ
3ψ〉 as a function of h at five values of κ. The lines are fits to the

data as described in the text. The lower panels show Fisher plots of the order parameter and the corresponding fitting function
at the same values of κ as above. Throughout the same symbols are used.

κ h = 0.001 h = 0.003 h = 0.005 h = 0.010 h = 0.020

0.19680 103
× 4 1000 103

× 4 1000 103
× 4 1100 83

× 4 1000 83
× 4 90

0.19690 103
× 4 1600 103

× 4 2000 103
× 4 1600 83

× 4 1500 83
× 4 60

0.19700 103
× 4 2500 103

× 4 4100 83
× 4 3900 103

× 4 1000 83
× 4 150

0.19705 103
× 4 1900 103

× 4 1800 103
× 4 4800 103

× 4 1700 83
× 4 400

0.19710 103
× 4 3200 103

× 4 3000 103
× 4 3400 103

× 4 1700 83
× 4 150

0.19715 103
× 4 2000 103

× 4 1000 103
× 4 2500 83

× 4 300 83
× 4 200

0.19720 103
× 4 400 103

× 4 400 83
× 4 500 83

× 4 300

TABLE I: Statistics used for the final analysis at selected κ at β = 4.6.

off better. In addition, it enables us to see directly if
this intercept grows with the volume. At κ = 0.19700
we have computed the order parameter at lower values
of h also for the smaller lattice size 83 × 4. As expected,
a clear volume dependence is found, indicating that the
existence of the Aoki phase becomes visible only for suf-
ficient large volumes. The right most panels of Fig. 4
show data at (κ = 0.19720) to illustrated a case where
the order parameter 〈ψ̄iγ5τ

3ψ〉 is found to vanish.

III. DISCUSSION

By measuring the order parameter 〈ψ̄iγ5τ
3ψ〉 and ex-

trapolating it to h = 0 we conclude that there is a parity-
flavor broken phase at finite temperature (Nτ = 4) at

β = 4.6 in the interval 0.1968 ≤ κ ≤ 0.19715. In the
zero-temperature case we had found [8] that the Aoki
phase seems to end in the vicinity of β = 4.6, κ = 0.1984.
In other words, for a finite temperature the endpoint of
the Aoki phase is shifted towards larger β and also to
lower κ.

This result differs from [9, 10] where the endpoint
of the Aoki phase for Nτ = 4 was seen at β = 4.0,
κ = 0.22. The finite-temperature transition line de-
termined in Refs. [9, 10] crosses the interval β = 4.6,
0.1968 ≤ κ ≤ 0.19715 in which we see the Aoki phase. Al-
though we have studied the respective κ interval in rather
small steps, we are not able to separate (the boundary
of) the Aoki phase from the thermal phase transition
(cf. Fig. 1). We plan to extend our investigation to larger
Nτ values in the near future.
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κ fit A B C D E χ2/ndf fit A B C D E χ2/ndf

1 0.015(1) 1 0.67(1) 0 0 0.24 2 0.016(1) 1.07(7) 0.69(2) 0 0 0.24
0.19680

3 0.026(1) 1 0.68(1) 0.1(1) 0 0.23 4 0.015(1) 1 0.68(1) 0 2(2) 0.19

1 0.021(1) 1 0.70(1) 0 0 0.57 2 0.022(2) 0.73(4) 0.73(4) 0 0 0.65
0.19690

3 0.022(2) 1 0.72(2) 0.2(2) 0 0.64 4 0.022(1) 1 0.71(1) 0 4(4) 0.59

1 0.022(2) 1 0.70(1) 0 0 2.48 2 0.026(1) 1.5(2) 0.81(3) 0 0 0.56
0.19700

3 0.026(2) 1 0.76(3) 0.6(2) 0 0.59 4 0.025(2) 1 0.72(1) 0 11(4) 0.87

1 0.019(2) 1 0.68(1) 0 0 4.0 2 0.023(4) 1.2(3) 0.74(7) 0 0 4.3
0.19705

3 0.022(3) 1 0.72(4) 0.3(3) 0 4.3 4 0.022(3) 1 0.70(2) 0 5(6) 4.2

1 0.019(2) 1 0.68(1) 0 0 2.48 2 0.017(2) 0.9(3) 0.66(9) 0 0 3.54
0.19710

3 0.017(5) 1 0.67(4) -0.1(4) 0 3.49 4 0.017(4) 1 0.67(2) 0 -4(8) 3.31

1 0.012(3) 1 0.66(1) 0 0 4.74 2 0.008(9) 0.6(1) 0.84(3) 0 0 6.26
0.19715

3 0.008(8) 1 0.63(6) -0.3(6) 0 6.26 4 0.009(6) 1 0.64(3) 0 -9(13) 5.8

1 -0.005(6) 1 0.61(2) 0 0 5.16 2 0.019(10) 7(1) 1.2(4) 0 0 6.26
0.19720

3 0.015(10) 1 1(27) 3(41) 0 0.65 4 0.014(2) 1 0.77(3) 0 60(8) 0.14

TABLE II: The parameters of the ansatz σ(h) = A + BhC +Dh + Eh2 fitted to the data of 〈ψ̄iγ5τ
3ψ〉 at β = 4.6 without

(fits labeled 1 and 2), with linear, or with quadratic corrections (labeled 3 and 4). At each h the result from the largest lattice
was used in the fit (for details see Table I). Fixed parameters are given by their value without indicating an error. In each case
the first fit (bold numbers) was used in Fig. 4.
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bund für Hoch- und Höchstleistungsrechnen (HLRN).
A. Sternbeck would like to thank the DFG-funded grad-
uate school GK 271 for financial support. E.-M. I. is

supported by DFG through the Forschergruppe FOR
465 (Mu932/2-3). M. M.-P. acknowledges DFG sup-
port through SFB/TR 9. E.-M. I. wishs to send a spe-
cial thank to S. Aoki for the invitation to the workshop
Lattice QCD simulations via International Research Net-
work, Shuzenji, Japan, September 2004. The discussions
there have motivated the extension of our previous work
to finite temperature.

[1] F. Farchioni et al., Eur. Phys. J. C39, 421 (2005), hep-
lat/0406039.

[2] F. Farchioni et al., Eur. Phys. J. C42, 73 (2005), hep-
lat/0410031.

[3] T. Blum et al., Phys. Rev. D50, 3377 (1994), hep-
lat/9404006.

[4] S. Aoki et al. (JLQCD) (2004), hep-lat/0409016.
[5] S. Aoki, Phys. Rev. D30, 2653 (1984).
[6] S. R. Sharpe and J. Singleton, Robert, Phys. Rev. D58,

074501 (1998), hep-lat/9804028.
[7] G. Münster, JHEP 09, 035 (2004), hep-lat/0407006.
[8] E.-M. Ilgenfritz, W. Kerler, M. Müller-Preussker,
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