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Abstract. This work presents an innovative short to mid-term fore-
casting model that analyzes nonlinear complex spatial and temporal
dynamics in energy networks under demand and supply balance con-
straints using Network Nonlinear Time Series (TS) and Mathematical
Programming (MP) approach. We address three challenges simultane-
ously, namely, the adjacency matrix is unknown; the total amount in the
network has to be balanced; dependence is unnecessarily linear. We use
a nonparametric approach to handle the nonlinearity and estimate the
adjacency matrix under the sparsity assumption. The estimation is con-
ducted with the Mathematical Optimisation method. We illustrate the
accuracy and effectiveness of the model on the example of the natural gas
transmission network of one of the largest transmission system operators
(TSOs) in Germany, Open Grid Europe. The obtained results show that,
especially for shorter forecasting horizons, proposed method outperforms
all considered benchmark models, improving the average nMAPE for
5.1% and average RMSE for 79.6% compared to the second-best model.
The model is capable to capture the nonlinear dependencies in the com-
plex spatial-temporal network dynamics and benefits from both sparsity
assumption and the demand and supply balance constraint.

Keywords: nonlinear time series, mathematical optimization, energy
networks

1 Introduction

Since the EU introduced market regulations in 2005, the natural gas market is
becoming increasingly competitive, moving towards short-term planning, e.g.,
day-ahead contracts, making the control of natural gas transmission networks
even more challenging. The main task of TSOs is to fulfill all transport demands,
ensuring the security of supply safely and efficiently. Since gas in the pipes trav-
els relatively slow with an average velocity of approximately 25km/h [5], a high-
precision short and mid-term forecast of supplies and demands is essential for
the efficient and safe operation of the complex natural gas transmission networks
and distribution systems.
This work is part of a joint project within the Energy Lab of a research campus
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MODAL [6] with one of Germany’s largest transmission system operators, Open
Grid Europe (OGE) [1]. Together with our industry partner, we develop a Net-
work AutoRegressive Nonlinear model with a Balance constraint (NAR-NLB)
model. The primary purpose of the proposed model is to provide a comprehensive
understanding of the network dynamic and compute high-precision, multi-step,
hourly forecasts for supply and demand nodes in the gas network. The focus is
on forecasting shorter horizons (up to 8 hours is the most relevant horizon in
practice) to support the daily operations of the gas network. The results are used
for optimizing gas transport, for example, routing the gas with compressors or
valves and finding the optimal settings for these elements [9].

2 Methodology

Let N denote the number of nodes in a large-scale complex gas transmission
network, and yt,i is the continuous response collected from node i at time point
t with 0 ≤ t ≤ T and 1 ≤ i ≤ N . In the network, N nodes are connected with
pipelines but the flow connection is unknown. At any time point t, the total sum
of gas in-flow and out-flow in the network equals zero. To capture the network
effect of the N different nodes, we propose the NAR-NLB model, where the total
gas in-flows and out-flows need to be balanced. Without loss of generality, we
assume the demeaned process for the gas network and write the model without
the intercept term. The NAR-NLB model with lag 1 is defined as:

yt,i = gi(

N∑
j=1

yt−1,jbj,i) + ϵt,i, i, j = 1, . . . , N, (1)

s.t.

N∑
i=1

gi(

N∑
j=1

yt−1,jbj,i) = 0 for all t = 1, . . . , T,

where g(·) is an unknown link function which is assumed to be smooth. ϵt,i
is a strong white noise with zero mean and finite second moment E||ϵt,i||2 <
∞. When j = i, bj,i controls the autoregressive dependence. When j ̸= i, the
parameter bj,i tells us how the j-th node influences the i-th node; that is, the
network influence of the past value of the j-th node on the current value of the
i-th node. If bj,i = 0 for all the i = 1, · · · , N and i ̸= j, then the j-th node has
no effect in the network. In (1), the constraint is imposed to the forecast of gas

flows denoted as
∑N

j=1 g(yt−1,jbj,i) for a balanced demand and supply.
The model can be represented in a matrix form:

Y = g(ZB) + E, (2)

s.t. g(ZB)1N = 0,

where Y is a T×N matrix of the observed gas flow values. Let yt = (yt,1, . . . , yt,N )
denote the gas values for all nods at time point t, we then have Y = (y1, . . . , yT )

τ .
Z is a T × N matrix containing the past values of Y. Similarly, we have Z =
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(z1, . . . , zT )
τ . The parameter matrix B is a N×N matrix with unknown param-

eters bj,i. Given the autoregressive dependence reflected by bi,i for i = 1, . . . , N
in the diagonal elements of B, let the non-diagonal elements of matrix B define
the weighted adjacency matrix. The column vector Bi = (b1,i, . . . , bN,i)

⊤ of the
weighted adjacency matrix represents the influence of other nodes in the network
on the future value of the i-th node. The weighted adjacency matrix is assumed
to be sparse. There is, however, no prior knowledge of the sparse structure in
terms of location and number of significant elements. Finally, 1N is a unit vector
and E is a T ×N matrix of white noise errors.

Next, we show the estimation of the unknown nonlinear function and para-
metric coefficients with mathematical programming (MP). In semiparametric
models, as in (1), it is popular to approximate the unknown nonlinear functions
using the spline smoothing approach, see [2]. We apply this technique for es-
timating the nonlinear link function g(·) for a given parameter value B using
B-splines, or so-called basis splines [3]. We estimate the unknown coefficient ma-
trix by applying the feature selection technique developed by [4] for the weighted
adjacency matrix, with additional balance constraints for the demand and supply
as follows.

min
B

∑T
t=1

∑N
i=1(yt,i − ZtBi)

2

s.t. ||Bi||0 ≤ L for i = 1, ..., N∑N
i=1 ZtBi = 0, for t = 1, ..., T

(3)

where the upper bound L for l0-norm of a column vector Bi given by

N∑
j=1

1(bj,i ̸= 0)

ensures the number of nonzeros in Bi to be less than integer L, where j ̸= i
and 1(·) denotes the indicator function. We use the estimated coefficient matrix
B̂i for i = 1, . . . , N to approximate the unknown nonlinear function g(·) using
the B-spline interpolation [2]. To estimate the function, the B-spline requires the
hyperparameters such as knots, spline coefficients, and degree of a spline.

Bk,m(θ) =
θ − θk

θk+m − θk
Bk,m−1(θ) +

θk+m+1 − θ

θk+m+1 − θk+1
Bk+1,m−1(θ), (4)

Bk,0(θ) =

{
1, if θk ≤ θ < θk+1

0, otherwise
.

Finally, we estimate the B-spline coefficients αk,i with MP.

min
αk,i

∑T
t=1

∑N
i=1(yt,i −

∑N
j=1

∑Pk

k=0 αk,iBk,m(ZtB̂i))
2, i = 1, . . . , N, (5)

3 Experimental setup

In this paper, we study the nonlinear dependencies and dynamic patterns of
natural gas flows in the high-pressure gas pipeline network of OGE [1]. The
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dataset consists of demand and supply nodes with an hourly time resolution for
a period of one year. To demonstrate the effectiveness of the proposed model, we
consider a small network of one supply (S1) and four demand nodes (D1-D4).
Figure 1 illustrates the temporal dependence among the five observed nodes.
As it can be seen in the diagonal, there is a strong positive autocorrelation of
each node with its own past values, while off the diagonal, the cross-correlations
represent the dynamic temporal dependency among different nodes.

Fig. 1: Sample cross-correlation heatmap for one supply and four demand nodes
in gas network.

We calculate an out-of-sample forecast in real time starting from 05:00 and
predict 1 to 24 hours ahead forecast. Multi-step forecasts are made for the next
day, for a total of 3 months. We use the training-validation technique to choose
optimal hyperparameters in the NAR-NLB model for the sparsity estimation,
spline order and number of knots. With the chosen parameters, we estimate the
weighted adjacency matrix B at each point by training the model on the past
seven days of balanced network data. With a rolling window size of 168 hours
(i.e., seven days), we move forward one period at a time to update the sparse
adjacency matrix and then forecast until we reach the end of the sample.

In order to evaluate the quality of the obtained results, we compare the per-
formance of NAR-NLB model with well-known benchmarks: Baseline forecast
(repeating value for the same hour of the previous day) and ARIMA as well as
with Network Autoregressive Linear model with Balance constraint (NAR-LB)
proposed by Zakiyeva and Petkovic in [8]. We determine the best ARIMA mod-
els for a univariate time series of five considered nodes according to an Akaike
information criterion (AIC) using 28 days of the rolling window. The setup for
NAR-LB model is identical to the proposed model. The performance of NAR-
NLB model is measured and quantified by calculating the forecast accuracy for
individual nodes, as well as the mean for the entire network. We use mean daily
root mean squared error (RMSE) and mean daily normalized mean absolute
percentage error (nMAPE) defined as:
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RMSE =
∑

d∈Dtest

√
1
H

∑H−1
h=0 (qd,h−q̂d,h)2

|Dtest| ,

nMAPE =
∑

d∈Dtest
( 100%

H

∑H−1
h=0 |

qd,h−q̂d,h
max(q)

|)
|Dtest| ,

where qd,h and q̂d,h are the real and forecasted values of the natural gas flows
on day d and hour h while H is a forecasting horizon.

4 Results

We demonstrate the multistep-ahead out-of-sample forecasting results in a bal-
anced network. Table 1 shows an average RMSE and nMAPE for three different
forecasting horizons (1h, 12h and 24h ahead) comparing to the alternative mod-
els for five gas nodes of the balanced network. The results show that NAR-NLB
consistently outperforms all benchmark models. It can be noted that the differ-
ence is the smallest between NAR-LB and NAR-NLB models, which strongly
indicates that using the network dynamic information as well as balancing con-
straint benefits the forecasting accuracy.

For shorter horizon, the NAR-NLB performs as the most accurate forecast
model with the smallest forecast errors. This illustrates that modeling the non-
linear network dynamics improves the average forecast errors of the NAR-LB
model from RMSE 6.294 and nMAPE 13.4% to RMSE 4.293 and nMAPE 1%.
The difference in prediction performance with NAR-NLB is most significant for
the shorter horizons, where nMAPE is improved for 5.1% and RMSE for 79.6%
compared to the second best alternative model (ARIMA). As for the longer hori-
zons (12h), NAR-NLB performs similar to NAR-LB model with the improvement
of nMAPE by 1.4%. Similarly, for 24 hours ahead forecast, NAR-NLB provides
similar second-best accurate prediction as the BAS with a difference of nMAPE
around 0.01%. Note that for calculating muti-step ahead forecast we are using
recursive strategy, which can lead to accumulation of errors for longer horizons.
The obtained results clearly show that proposed model benefits from modeling
nonlinear temporal dependencies in the network.

RMSE nMAPE

H NAR-NLB BAS ARIMA NAR-LB NAR-NLB BAS ARIMA NAR-LB

1 4.293 46.178 21.049 6.294 1% 14.3% 6.1% 13.4%
12 3.804 48.002 50.585 42.671 8.5% 13.1% 12.1% 9.9%
24 60.268 48.494 69.978 68.420 13.2% 13.1% 15.77% 14.2%

Table 1: Comparison of the NAR-NLB model and the alternative time series
models on multi step-ahead gas flow forecasts at five nodes in a balanced network.

By taking into account both nonlinear dynamics and sparse dependent struc-
ture, the NAR-NLB model provides superior performance compared to the three
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alternative predictive models. The NAR-NLB is able to capture the nonlinear
dependencies in the complex spatial-temporal network dynamics. It improves
out-of-sample forecast accuracy of individual nodes and consequently, there are
fewer balancing errors in the network. Furthermore, the estimated adjacency
matrix in NAR-NLB provides additional information on the cross-dependencies
between the nodes, which shows the influential nodes that drive the network
dynamics. In summary, it is useful to introduce both the nonlinearity and spar-
sity assumption together with the demand and supply balance constraint for
accurate and stable forecasts in energy networks.

5 Conclusion

In this paper, we propose a network autoregression nonlinear model with bal-
ance constraint for robust short to mid-term forecasting and analyzing nonlinear
complex spatial and temporal dynamics in energy networks under demand and
supply constraints. The results show that the proposed model consistently out-
performs the alternative models, improving the nMAPE by up to 5.1% compared
to the second-best benchmark model, benefiting from modeling nonlinear de-
pendencies between different nodes in the network and from implying balancing
constraints on demand and supply.

Acknowledgement

The work for this article has been conducted within the Research Campus Modal
funded by the German Federal Ministry of Education and Research (fund num-
bers 05M14ZAM, 05M20ZBM).

References

1. Open Grid Europe GmbH, www.oge.net, 15.07.2022.
2. C. De Boor (1978). A practical guide to splines (Vol. 27, p. 325). New York: Springer-

Verlag.
3. R. L. Eubank (1999). Nonparametric regression and spline smoothing. CRC press.
4. D. Bertsimas, A. King, R. Mazumder (2016). Best subset selection via a modern

optimization lens. The annals of statistics, 44(2), 813-852.
5. Y. Chen, T. Koch, N. Zakiyeva, B. Zhu, Modeling and forecasting the dynamics

of the natural gas transmission network in Germany with the demand and supply
balance constraint, Applied Energy, Volume 278,2020, ISSN 0306-2619,

6. Research Campus MODAL, EnergyLab, https://forschungscampus-modal.de
(01.07.2022)

7. M.Petkovic Y.Chen, I.Gamrath et al. A Hybrid Approach for High Precision Predic-
tion of Gas Flows, Energy Syst 13, 383–408 (2022). https://doi.org/10.1007/s12667-
021-00466-4

8. N. Zakiyeva, M.Petkovic, Modeling and forecasting gas network flows with multi-
variate time series and mathematical programming approach, Operations Research
Proceedings 2021, GOR

9. Hoppmann-Baum, K., Hennings, F., Lenz, R. et al. Optimal Operation of Transient
Gas Transport Networks. Optim Eng 22, 735–781 (2021).


	Mathematical Optimization for Analyzing and Forecasting Nonlinear Network Time Series 

