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Abstract. A new adaptive approach for one–dimensional scalar conservation laws with convex flux
is proposed. The initial data are approximated on an adaptive grid by a problem dependent, monotone
interpolation procedure in such a way, that the multivalued problem of characteristic transport can be
easily and explicitly solved. The unique entropy solution is chosen by means of a selection criterion
due to Hopf and Lax. For arbitrary times, the solution is represented by an adaptive monotone spline
interpolation. The spatial approximation is controlled by local L1–error estimates. As a distinctive
feature of the approach, there is no discretization in time. The method is monotone on fixed grids.
Numerical examples are included, to demonstrate the predicted behavior.
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Introduction. A fundamental idea for supporting the development of robust, re-
liable, and efficient software is adaptivity. In the field of ordinary differential equations,

and more recently, elliptic and parabolic partial differential equations much progress
has been made in this direction.

For inherent structural reasons, the situation is much more difficult for hyper-
bolic conservation laws. However, adaptivity is of immense importance for this kind
of problems, which are known to exhibit propagating waves, of both characteristic and

subcharacteristic nature. In problems, for which the solution must be computed accu-
rately in the frontal regions of the waves, such as chemical combustion or the accretion
of matter to form a star, numerical computation on a fixed grid tends to be too costly,
since a fine grid would be required everywhere.

Two major suggestions have been made to introduce adaptivity to hyperbolic con-
servation laws, cf. the survey article of Hedstrom and Rodrique [5] and the discus-
sion therein. First, the moving grid approach. This approach is essential a 1D one, for
higher dimensional difficulties consider Zegeling and Blom [14, Example II]. More-

over, even in the 1D case, it suffers from difficulties introduced by interacting waves,
or by the creation of new waves. The second approach uses static adaptive space grids
and possible local time steps. Since most of the suggested algorithms in this direction
use explicit methods, they have to restrict, at least locally, the time step by a CFL

condition, e.g., the algorithm of Lucier [10, p. 183, 191]. This yields time steps in
the same order of magnitude as the smallest resolution in space, even for uniformly
propagating waves, a fact, which essentially slows down these algorithms. Local time

steps are a slight remedy for that problem, at least, if the occurring wave speeds differ
largely.
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Implicit methods allow for a time step, which is independent of the spatial mesh,

but tend to introduce too much dissipation, and are too costly. They are ideally suited
for adaptive methods for parabolic problems, e.g. [2].

In this report we propose a new adaptive approach, which fully exploits the char-
acteristic transport of (scalar) conservation laws. As an essential new feature, there

is no discretization in time at all. However, up to now, the problem class, to which
our algorithm can be applied, is quite restricted. Future research will help to clar-
ify, whether the main ideas of the approach are capable of more complex, and more
interesting problems.

The main idea of our algorithm consists in perturbing initial data, by approximating
them with a certain adaptive, problem dependent interpolation procedure in space.
This is done in a way, that the characteristic directions, which connect a given space–

time point backwards with this new initial data, can be easily accessed. The correct
value, giving the entropy solution within this multivalued solution, is obtained by a
certain minimum condition due to Lax [7]. In order to represent our solution for
fixed times, again, we choose an adaptive interpolation in space, e.g., a piecewise linear

interpolation. Other adaptive, and monotone spline interpolation procedures could be
used. The adaptive refinement of the interpolation grids is governed by local L1–error
estimates, in a way, similar to techniques known in finite element computations [1, 2, 12].

For uniform grids one could describe the approximation made by our approach as

second order in smooth regions, and first order in neighborhoods of shocks. Moreover,
for fixed grids, adaptive or not, the approach is monotone. Note that the whole approach
is intimately connected with the concept of entropy solutions. They are the only ones
which form a stable, in fact contractive, semigroup. Thus a well–aimed perturbation of

initial data is only sensible for this concept of solutions.
The report is organized as follows. In Section 1 we present the necessary theoretical

material to describe our algorithm. In Section 2 the algorithm is described in detail.

Two numerical examples show in Section 3 the theoretically expected behavior.

1. Theoretical Preparations. We are concerned with the solution of scalar con-

servation laws

ut + f(u)x = 0, u(·, 0) = u0,(1)

where u(·, t) is a function on R. Our general assumptions on the flux f will be
• f : R → R is convex and C1,
• α ≡ f ′ : R →]α−, α+[ is one–one, onto and nondecreasing.

Thus, there exists β ≡ α−1 : ]α−, α+[→ R. By f∗ : ]α−, α+[→ R we denote the

Legendre–Fenchel dual of f , defined as

f∗(z) = sup
v
(vz − f(v))

= uα(u)− f(u) with u = β(z).

Theory of convex functions (e.g., Tikhomirov [13]) states that

(f∗)′ = β,
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a fact, which can be easily verified if f ∈ C2.

Our whole approach heavily relies on the following characterization of that weak
solution, which satisfies the entropy condition.

Theorem 1.1. (Lax [7]). Let u0 ∈ L1(R) and U0(y) =
∫ y
−∞ u0(ξ)dξ. For x ∈ R,

t > 0 define

u(x, t) = β
(
x− y

t

)
,

where y = y(x, t) ∈]x−tα−, x−tα+[ is any value which minimizes

U0(y) + tf∗
(
x− y

t

)
= min! .(2)

Then u(·, t) ∈ L1(R) is the unique entropy solution of the conservation law under con-
sideration.

If there exist several different values y, which minimize (2) for a given x, then x is
the position of a shock discontinuity. The limits u(x−0, t), u(x+0, t) exist, and

u(x−0, t) ≥ β
(
x− y

t

)
≥ u(x+0, t)

holds for every such y.

Remark. For u ∈ L∞(R), u− ≤ u0 ≤ u+ a.e., the solution only depends on f
restricted to the interval [u−, u+].

This Theorem has quite some history. Hopf [6] stated it for the inviscid Burgers
equation ut+uux = 0. He obtained the result in the limit μ → 0 of his explicit solution
(i.e., the Cole–Hopf transformation to the heat equation) of the viscid Burgers equation
ut+uux = μuxx. Later Lax [7] generalized the result to arbitrary convex fluxes f . A nice

interpretation as Bellman’s approach to the Hamilton–Jacobi equation vt + f(vx) = 0
can be found in Lax [8] or Conway and Hopf [3]. In fact, U(x, t) =

∫ x
−∞ u(ξ, t)dξ

satisfies the Hamilton–Jacobi equation and

U(x, t) = min
y

(
U0(y) + tf∗

(
x− y

t

))
,

if f is adjusted to f(0) = 0. This formula is actually connected with the modern notion
of viscosity solutions of more general Hamilton–Jacobi equations, we refer to the book

of P.-L. Lions [9].
Our approach uses the fact that, for certain u0, the set of values y which possibly

minimize (2) can be considerably restricted. A first step in that direction is the following

Corollary 1.2. Assumptions as in Theorem 1.1. Additionally let u0 be continu-
ous. Any value y ∈]x−tα−, x−tα+[ which minimizes (2) satisfies

y + tα(u0(y)) = x,(3)

and allows to set u(x, t) = u0(y).
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Proof. Differentiating relation (2) yields, by continuity of u0,

u0(y)− β
(
x− y

t

)
= 0.

This implies both assertions.
The nonlinear equation (3) is just the one which allows to construct, for smooth

u0 and small t, by means of the implicit function theorem, a classical solution of the
conservation law. For larger t, equation (3) does not have a unique solution y for
whole intervals of x. Thus, the minimum condition (2) can be understood as a selection
principle for the right y.

The following stability result allows us to change u0 slightly, in order to obtain
simpler problems of the kind (3).

Theorem 1.3. (Quinn [11]). The entropy solutions of (1) form an L1–contractive
semigroup St. Thus, for u0, v0 ∈ L1(R), the corresponding entropy solutions satisfy the

estimate

||Stu0 − Stv0||L1 ≤ ||u0 − v0||L1(4)

for all t ≥ 0. A proof may also be found in Lax [8].

For our further development we need some notation:
• The convex hull of two points u0, u1 will be denoted by co(u0, u1).
• For u ∈ co(u0, u1) the barycentric coordinate of u is denoted by λu0,u1(u) and

satisfies

u = (1−λu0,u1(u))u0 + λu0,u1(u)u1.

• Let (y0, u0), (y1, u1) be two points in R2 with y0 < y1. The β–interpolant of

these points is given as μu0,u1 : [y0, y1] → co(u0, u1) by

μu0,u1(y) = β
(
(1−λy0,y1(y))α(u0) + λy0,y1(y)α(u1)

)
.

Our assumptions imply, that this is a monoton connection of the two points.
These β–interpolants have the very nice property that (3) may be solved uniquely,

as we show now.
Lemma 1.4. For given t > 0 define

ϕ(y) = y + tα(μu0,u1(y)),

which maps [y0, y1] onto co(ϕ(y0), ϕ(y1)). If ϕ(y0) �= ϕ(y1), the equation x = ϕ(y) is
uniquely solved by y given as

λy0,y1(y) = λϕ(y0),ϕ(y1)(x).

Proof. Simply note that

ϕ(y) = (1−λy0,y1(y))(y0 + tα(u0)) + λy0,y1(y)(y1 + tα(u1)),
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and that ϕ(yi) = (yi + tα(ui)) for i = 0, 1.

Since integrals are involved in (2), it helps a lot that integrals of β–interpolants can
be computed explicitly.

Lemma 1.5. We have, for y ∈ [y0, y1], that

∫ y

y0
μu0,u1(η)dη =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y1 − y0
α(u1)− α(u0)

f∗
∣∣∣∣∣
α(μu0,u1 (y))

α(u0)

if u0 �= u1,

(y − y0)u0 if u0 = u1.

Proof. Let u0 �= u1. The substitution ζ = (1−λy0,y1(η))α(u0) +

λy0,y1(η)α(u1) gives∫ y

y0
μu0,u1(η)dη =

y1 − y0
α(u1)− α(u0)

∫ α(μu0,u1 (y))

α(u0)
β(ζ)dζ.

Thus, the assertion follows from (f ∗)′ = β.
Now we try to approximate u0 by a piecewise β–interpolant û0, for which we have

seen that problems (3) and (2) turn out to be fairly simple. For that purpose, let u0 be
piecewise continuous with supp u0 ⊂⊂ [a, b]. Let Δ : a = y0 < y1 < . . . < yn = b be a
subdivision of that interval, with mesh–size parameter

h = max
1≤j≤n

(yj − yj−1).

Denote the subintervals by Ij = [yj−1, yj], j = 1, 2, . . . , n. The piecewise β–interpolant
IΔu0 is now defined as

IΔu0(y) =

⎧⎨
⎩

μu0(yj−1),u0(yj)(y) for y ∈ Ij, j = 1, 2, . . . , n,

0 elsewhere.

Obviously we have IΔu0 ∈ C0 and IΔu0(yj) = u0(yj), j = 1, 2, . . . , n.

Lemma 1.6. Let u be piecewise continuous on [a, b]. Then

||u− IΔu||L1[a,b] → 0 for h → 0.

If u is piecewise C2, and f ∈ C3 such that

M = ||f ′′′/f ′′3||L∞[u−,u+]||f ′′||2L∞[u−,u+] < ∞,

where u− ≤ u(x) ≤ u+ for all x ∈ [a, b], then there is a constant c = c(u,M), such that

||u− IΔu||L1[a,b] ≤ ch, and ||u− IΔu||L1(Ic) ≤ ch2.

Here Ic =
⋃

j �∈Ju Ij with Ju =
{
1 ≤ j ≤ n

∣∣∣ (u|Ij) �∈ C2
}
.

Proof. We proof the second, smooth part. The first part follows by usual density
arguments. Take any j �∈ Ju, and denote the linear interpolation operator at the nodes

yj−1, yj by IL. Since by construction

ILIΔ = IL
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we estimate by the usual error expression for linear interpolation

||u− IΔu||L∞(Ij ) ≤ ||u− ILu||L∞(Ij ) + ||IΔu− ILIΔu||L∞(Ij)

≤ h2

8

(
||u′′||L∞[a,b] + ||μ′′

u(yj−1),u(yj)
||L∞(Ij )

)
.

Now we compute, for y ∈ Ij, that

μ′′
u(yj−1),u(yj)

(y) = − f ′′′
(
μu(yj−1),u(yj)(y)

)
f ′′
(
μu(yj−1),u(yj)(y)

)3
(
α(u(yj))− α(u(yj−1))

u(yj)− u(yj−1)
·u(yj)− u(yj−1)

yj − yj−1

)2

= − f ′′′
(
μu(yj−1),u(yj)(y)

)
f ′′
(
μu(yj−1),u(yj)(y)

)3 f ′′ (η)2 u′(ζ)2

for some η ∈ co(u(yj−1), u(yj)), ζ ∈ Ij. Hence, it is ||μ′′
u(yj−1),u(yj)

||L∞(Ij ) ≤ M ||u′||2L∞[a,b].
For j ∈ Ju, we simply estimate

||u− IΔu||L1(Ij) ≤ 2||u||L∞[a,b]h.

Finally, we observe that #Ju ≤ ν as h → 0, because we assumed that u is piecewise

C2. Thus, we obtain

||u− IΔu||L1[a,b] ≤ b− a

8

(
||u′′||L∞[a,b] +M ||u′||2L∞[a,b]

)
h2 + 2ν||u||L∞[a,b]h

and

||u− IΔu||L1(Ic) ≤
b− a

8

(
||u′′||L∞[a,b] +M ||u′||2L∞[a,b]

)
h2.

Note that the same result holds for the piecewise linear interpolation operator IL,
as introduced in the proof.

Remark. The value of the constant M is invariant against transformations f 
→ γf

with γ > 0.
Another important property of IΔ is monotonicity. This is a fairly simple conse-

quence of the assumed monotonicity of α, β.

Lemma 1.7. Let u, v be piecewise continuous. The pointwise inequality u ≤ v
implies that pointwise IΔu ≤ IΔv. The same holds for the linear interpolation operator
IL.

2. The Algorithm. Our algorithm solves the following problem: Given a conser-
vation law (1), a piecewise continuous initial u0, compute, for an accuracy TOL and a

time t > 0, an approximation û(·, t) to the solution u(·, t) such that

||u(·, t)− û(·, t)||L1 ≤ TOL .(5)

The idea behind it is described very roughly as
6



A. Approximate u0 by a piecewise β–interpolant v0 = IΔu0, such that

||u0 − v0||L1 ≤ TOL /2.

B. The exact solution v(·, t) = Stv0 to the initial v0 can exactly and easily be

pointwise evaluated.
C. Approximate v(·, t) by a piecewise linear interpolant û(·, t) = ILv(·, t), resp. a

piecewise β–interpolant û(·, t) = IΔtv(·, t), such that

||v(·, t)− û(·, t)||L1 ≤ TOL /2.

We denote our approximation operator by Pt : u0 
→ û(·, t). If these steps can be
achieved, Theorem 1.3 guarantees for the accuracy requirement (5).

The choice of the interpolant in Step C, i.e., IL or IΔt , is not really important. In
fact, any adaptive monotone spline interpolation, which controls the L1–approximation
error, could be used to represent the solution for fixed times. The β–interpolant should

be taken, if we intend to use the solution at a particular time as new initial data for
another computation.

We now describe each step more closely. Note that Steps A and C are quite similar
tasks.

Step A. Here, the choice of an appropriate mesh Δ is the essential problem. This

will be done in an adaptive way, starting with a coarse mesh Δ0. The main loop reads
as:

while (estimated L1–error > TOL /2)
{

Δk+1 = refine(Δk);
k = k + 1;

}
Let the kth mesh be Δk : a = yk0 < yk1 < . . . < yknk

= b. For the following, we will
suppress the index k. The L1–error is composed as

ε = ||u0 − IΔu0||L1 =
n∑

j=1

εj,

with

εj =
∫ yj

yj−1

∣∣∣u0(ξ)− μu0(yj−1),u0(yj)(ξ)
∣∣∣ dξ.

The local error εj will be estimated by a trapezoidal sum, introducing the midpoint of
Ij. Thus, noting the interpolation property, we obtain the local estimate

εj ≈ ηj =
(yj − yj−1)

2

∣∣∣∣u0

(
yj−1 + yj

2

)
− μu0(yj−1),u0(yj)

(
yj−1 + yj

2

)∣∣∣∣ .
We remark that

μu0(yj−1),u0(yj )

(
yj−1 + yj

2

)
= β

(
1

2

(
α(u0(yj−1)) + α(u0(yj))

))
.
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This error estimate is sensible for accuracy and complexity reasons. The global estimate

is thus given as

η =
n∑

j=1

ηj.

For actual refinement we need some refinement strategy, which uses the local infor-

mation provided by the indicators ηj. We build our strategy along the lines of an idea,
which was introduced by Babuška and Rheinboldt [1] for elliptic problems. The
whole refinement is governed by a single value, cut:

bisect Ij if ηj > cut.

We would like to choose cut in such a way that the local errors are nearly equidistributed.
For this reason, we use a simple heuristic prediction scheme to forecast, what may

happen to ηj, if Ij is subdivided. We may assume

ηj = cjh
λj

j as hj → 0,

with hj = meas(Ij). Suppose Ij was generated by subdividing Ioldj with local error ηoldj .
The ηj–value after subdivision of Ij will thus be approximately

ηnewj =
η2j
ηoldj

.

Clearly now, we should refine only those elements Ij, which have an ηj–value above the
largest predicted new η–value in the next mesh:

cut = max
j

ηnewj .

Remark. In the case that Ij is bisected, we note that u0((yj−1+yj)/2) has already been

computed for ηj . Thus, we can readily assign this value to the new node.

The actual implementation of mesh refinement can easily be done by means of
packages designed for finite element computations which use tree data structures, e.g.,
Roitzsch [12].

After the adaptive refinement we are provided with the final mesh Δ, an error
estimate η < TOL /2, and each node yj carries the interpolation information u0(yj). For
purposes of Step B, we should additionally store in each node the integral information

∫ yj

−∞
IΔu0(ξ)dξ,

which can be computed by successive application of Lemma 1.5.

Step C. The piecewise linear approximation (piecewise β–interpolant) û = Ptu0 to
v(·, t) = Stv0 is computed in a similar fashion as v0 = IΔu0, creating its own mesh Δt,

which in general will differ from Δ. This approximation procedure only demands the
possibility of evaluating v(x, t) for certain points x.
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Step B. How to compute v(x, t) for a given x? This question will be addressed now.

In preparation of any evaluation, the following values are computed

ϕ(yj) = yj + tα(v0(yj))

for j = 0, 1, . . . , n. These are the positions of the characteristic transport of the points
yj. Given x, we first determine the set Jx of indices j, such that the equation (3), i.e.,

x = y + tα(v0(y))(6)

possesses a solution y ∈ Ij. By construction of v0 and Lemma 1.4, this set is exactly
given by

Jx = {1 ≤ j ≤ n | x ∈ co(ϕ(yj−1), ϕ(yj))} .

For j ∈ Jx with ϕ(yj−1) �= ϕ(yj), we compute the barycentric coordinate

λj = λϕ(yj−1),ϕ(yj)(x),

which is, by Lemma 1.4, also the barycentric coordinate of the unique solution ȳj ∈ Ij,
i.e., ȳj = (1−λj)yj−1 +λjyj. In the exceptional case j ∈ Jx, ϕ(yj−1) = ϕ(yj), all values

yj−1 ≤ y ≤ yj satisfy (6). Thus, the value of the expression in (2) remains constant on
the whole interval [yj−1, yj]. Hence, we may take ȳj = yj−1 as representative candidate
for the minimizing value of (2). Summarizing, our construction of v0 allows us to

compute a set of critical points of (2) with cardinality #Jx, in which a minimizing
value is included.

In view of Theorem 1.1 and its Corollary we choose the smallest value ȳ� among
those ȳj, j ∈ Jx, which minimize (2). Our desired value of v(x, t) is given by

v(x, t) = v0(ȳ�) = β
(
(1− λ�)α(v0(y�−1)) + λ�α(v0(y�))

)
.

For the evaluation of (2) it is necessary to rely on Lemma 1.5.
If there are several values ȳk which minimize (2) among the ȳj, j ∈ Jx, we are

allowed, due to Theorem 1.1, to take any of them: In this case, x is exactly the position
of a shock of v(·, t). All minimizing ȳk produce values v(x, t) which are between the left

and the right shock value. In fact, since we choose the smallest ȳk, which minimizes
(2), we can be more specific. We obtain

v(x, t) = v(x−0, t)(7)

for any shock position x. Note that the specification ȳj = yj−1 in the case ϕ(yj−1) =

ϕ(yj) also served this purpose: It guarantees, that the smallest minimizing value of the
ȳj is really the smallest value of all minimizing values for (2).

A simple implication of the monotonicity property of IΔ and IL (Lemma 1.7),

together with the monotonicity of the semigroup, is the monotonicity of our algorithm,
restricted to fixed meshes.
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Lemma 2.1. Let u0, w0 be piecewise continuous, and pointwise u0 ≤ w0. For fixed

Δ,Δt, we obtain that pointwise Ptu0 ≤ Ptw0.

Proof. Care should be taken, if x is a shock position of both v(·, t) = StIΔu0 and
v̄(·, t) = StIΔw0. Here, one has to rely on (7). Otherwise, one would have to exclude a
neighborhood of x, if this shock–position happens to be a nodal point of Δt.

In order to run our algorithm, we need procedures for evaluating f , α and β. If β is
not given analytically, we may compute it by Newton’s method. Here, we need f ∈ C 2

and a procedure for evaluating α′ = f ′′.
function β(z)

{
u = z;

do

{
Δu = −(f ′(u)− z)/f ′′(u);
u = u+Δu;

}
until (Δu < ρTOL /(b− a));

}
The factor 0 < ρ < 1 is inserted for security reasons. Note that Newton’s method

converges monotonely for every z ∈]α−, α+[, because of the monotonicity of α = f ′.

3. Numerical Examples. The algorithm has been implemented in the program
CFAD1, written in C. All numerical experiments of this report were made using double
precision arithmetic on a SUN–SPARC 4/50 FGX.

Important: Since we can exactly evaluate v(x, t) for any (x, t), t > 0, it should be clear,
that the time–steps of the examples have been solely introduced for graphical reasons.
They are completely arbitrary and independent, and we work for all times with the
same v0. There is no discretization in time! Once more, we remark, that any adaptive

monotone spline interpolation, which controls the L1–approximation error, could be
used to represent the solution for fixed times. For simplicity, we have chosen piecewise
linear interpolation.

Example 1. Here, we consider the nonlinear conservation law

ut +

(
u4

4

)
x

= 0

with initial data

u0(x) =

{
1 for 0 ≤ x ≤ 1,

0 elsewhere.

The inverse of the flux derivative, β = (·)1/3, is quite different from a linear function,
giving the β–interpolant a distinguishable shape.
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Fig. 1. Example 1. Evolution of the solution, represented by adaptive linear interpolation.

The exact solution is given by

u(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
x
t

)1/3
0 ≤ x ≤ t

1 t ≤ x ≤ 1 + t/4
0 elsewhere

for 0 < t ≤ 4/3,

⎧⎪⎨
⎪⎩
(
x
t

)1/3
0 ≤ x ≤

(
4
3

)3/4
t1/4

0 elsewhere
for t > 4/3.

The computed solution for 0 ≤ t ≤ 5, using a time–step τ = 0.1 for graphical
reasons, can be seen in Fig. 1. If not stated otherwise, we choose as accuracy TOL =
10−4. The solution was represented by the adaptive linear interpolation of Step C.

Fig. 2. Example 1. Solution for t = 1.0, represented by adaptive linear interpolation.
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The solution for the particular time t = 1.0 is shown in Fig. 2, represented by the

adaptive linear interpolation. We observe that, as a result of our construction (7), there
is no grid point with a value between the left and the right shock value.

The development of the interpolation grid in time, here with time–step τ = 0.05,
can be seen in Fig. 3. We can observe nicely, how the rarefaction wave runs into the

Fig. 3. Example 1. Grid, using adaptive linear interpolation.

shock, and how the shock speed changes its behavior thereafter.

Fig. 4. Example 1. Grid, using adaptive β–interpolation.

Using the adaptive β–interpolation to represent the solution, we get much less grid
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points. This is precisely what should have been expected for this example: Rarefaction

waves are exactly represented by the β–interpolant of the left and right value. For the
same accuracy as above, the corresponding grid (τ = 0.05) is shown in Fig. 4.

Fig. 5. Example 1. Evolution of the error, true (...) and estimated (—).

The quality of our error estimator can be seen in Fig. 5. We observe a slight

error underestimation. Our estimated error η at time t is the sum of the estimated
β–interpolation error η0 of the initial data and of the estimated linear interpolation
error ηt of û,

η = η0 + ηt.

Compared with the true L1–error ε, we obtained for all of our experiments (i.e., 0 ≤ t ≤
5, τ = 0.05, TOL = 10−1, . . . , 10−8, linear as well as β–interpolation of the solutions),

that

0.33 ≤ η

ε
≤ 1.97 .

Finally, we show in Fig. 6 the dependence of the CPU–time (in seconds) on the
accuracy TOL, for the case, that we represent the solution at each time by the adaptive
linear interpolation. The comparison has been made using 100 time–steps of size τ =

0.05 for each accuracy. The dotted line in the double–logarithmic scale has slope −1/2.
We observe, that asymptotically

CPU-time ∝ TOL−1/2 .(8)

This is an optimal result, since, for the set S2,n of piecewise linear functions with not
more than n breaks in the first derivative, we obtain

dist(v(·, t),S2,n) = O
(
n−2

)
,

a result, which can be found in de Boor [4, Theorem III.2]. Thus, the behavior (8)

shows two things: First, that our mesh was chosen nearly optimal, second, that we
realized our algorithm with an complexity of O(#nodes).
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Fig. 6. Example 1. Computing time vs. TOL.

Example 2. The problem of this example is given by the inviscid Burgers equation

ut +

(
u2

2

)
x

= 0

with initial data

u0(x) =

{
2.4 + sin(π(x− 0.5)) for 0.5 ≤ x ≤ 2.5,
2.4 elsewhere.

This initial data does not have a compact support, but we can obviously modify our
algorithm to handle this kind of problems.

Fig. 7. Example 2. Evolution of the solution.

The continuous initial u0 develops a shock at time t = 1/π ≈ 0.318. The computed

solution can be seen in Fig. 7. It was computed with accuracy TOL = 10−4 in the time
interval [0, 1.5], using a time–step τ = 0.025.
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The corresponding grid is shown in Fig. 8. The number of grid points varies between

330 at the beginning and 11 at the end.

Fig. 8. Example 2. Evolution of the grid.

Figs. 9 and 10 show a zoom into the solution just before and just after the shock
formation. In both cases we have taken the position xs = 1.5 + 2.4t, and have shown
the computed solution in the interval [xs−0.01, xs+0.01].

Fig. 9. Example 2. Zoom into solution, just before the shock (t = 0.3).
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Fig. 10. Example 2. Zoom into solution, just after the shock (t = 0.325).
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