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Abstract

This paper is concerned with the sensitivities of function space oriented inte-
rior point approximations in parameter dependent optimization problems. For
an abstract setting that covers control constrained optimal control problems,
the convergence of interior point sensitivities to the sensitivities of the optimal
solution is shown. Error bounds for Lq norms are derived and illustrated with
numerical examples.
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1 Introduction

In this paper we study infinite-dimensional optimization problems of the form

min
u
J(u; p) s.t. g(u) ≥ 0 (1)

where u denotes the optimization variable, and p is a parameter in the problem
which is not optimized for. The optimization variable u will be called the control
variable throughout. It is sought in a suitable function space defined over a domain
Ω. The function g(u) represents a pointwise constraint for the control. For sim-
plicity of the presentation, we restrict ourselves here to the case of a scalar control,
quadratic functionals J , and linear constraints. The exact setting is given in Sec-
tion 2 and accomodates in particular optimal control of elliptic partial differential
equations.

Let us set the dependence of (1) on the parameter aside. In the recent past, a lot
of effort has been devoted to the development of infinite-dimensional algorithms
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capable of solving such inequality-constrained problems. Among them are active
set strategies [5, 1, 11, 7, 6] and interior point methods [12, 14, 15]. In the latter
class, the complementarity condition holding for the constraint g(u) ≥ 0 and the
corresponding Lagrange multiplier η ≥ 0 is relaxed to g(u)η = µ almost everywhere
with µ denoting the duality gap homotopy parameter. When µ is driven to zero,
the corresponding relaxed solutions (u(µ), η(µ)) define the so-called central path.

In a different line of research, the parameter dependence of solutions for optimal con-
trol problems with partial differential equations and pointwise control constraints
has been investigated. Differentiability results have been obtained for elliptic [9]
and for parabolic problems [4, 8]. Under certain coercivity assumptions for second
order derivatives, the solutions u(p) were shown to be at least directionally differ-
entiable with respect to the parameter p. These derivatives, often called parametric
sensitivities, allow to assess a solution’s stability properties and to design real-time
capable update schemes.

This paper intends to investigate the interplay between function space interior point
methods and parametric sensitivity analysis for optimization problems. The solu-
tions v(p, µ) = (u(p, µ), η(p, µ)) of the interior-point relaxed optimality systems
depend on both the homotopy parameter µ, viewed as an inner parameter, and
the outer parameter p. We prove the convergence of solutions for the interior-point
relaxed problem v(p, µ) to the unrelaxed solutions v(p, 0). Moreover, we prove the
convergence of the parametric sensitivites for the interior-point relaxed problems
vp(p, µ) to the unrelaxed sensitivities vp(p, 0), and establish rates of convergence in
different Lq norms. These convergence rates are confirmed by numerical examples.

The outline of the paper is as follows: In Section 2 we define the setting for our
problem. Section 3 is devoted to the parametric sensitivity analysis of problem
(1). In Section 4 we establish our main convergence results, which are confirmed
by numerical examples in Section 5.

Throughout, c denotes a generic positive constant which is independent of the
homotopy parameter µ and the choice of the norm q. It has different values in
different locations. In case q = ∞, expressions like (r − q)/(2q) are understood in
the sense of their limit.

2 Problem Setting

In this section, we define the problem setting and standing assumptions taken to
hold throughout the paper. We consider the infinite-dimensional optimization prob-
lem

min
u
J(u; p) s.t. g(u) ≥ 0. (2)

Here, u ∈ L∞(Ω) is the control variable, defined on a domain Ω ⊂ Rd. For ease of
notation, we shall denote the standard Lebesgue spaces Lq(Ω) by Lq.
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The problem depends on a parameter p from some normed linear space P . Unless
otherwise said (Section 3), we consider p to be given and fixed and we denote by
u(p) a local optimal solution of (2).

The objective J : L∞ × P → R is assumed to have the following form:

J(u; p) =
1
2

∫
Ω
u(x)((K(p)u)(x)) dx+

1
2

∫
Ω
α(x, p)[u(x)]2 dx+

∫
Ω
f(x, p)u(x) dx

(3)

where K(p) : L2 → L∞ is a linear compact operator whose restriction K(p) : L2 →
L2 is self-adjoint and positive semidefinite. Moreover, let α(·, p) ∈ L∞ such that
α := ess inf α(·, p) > 0, and f(·, p) ∈ L∞. Note that since

∫
Ω α(x, p)[u(x)]2 dx ≥

α ‖u‖2
L2

, J is strictly convex. In addition, J is weakly lower semicontinuous and
radially unbounded and hence (2) admits a global unique minimizer u ∈ L∞ over
any nonempty convex closed subset of L∞. This setting accomodates in particular
optimal control problems with objective

J(u; p) =
1
2
‖Su− yd‖2

L2
+
α

2
‖u‖2

L2

where Su is the unique solution of, e.g., a second-order elliptic partial differential
equation with distributed control u and K = S?S.

The parameter p can enter in a linear or nonlinear fashion through the terms K, α
and f . The exact requirements are specified in Assumption 3.1 below. For simplicity
of notation, we will from now on delete the argument p from K, α and f .

From (3) we infer that the objective is differentiable with respect to the norm of L2

and we identify Ju with its Riesz representative, i.e., we have

Ju(u; p) = Ku+ αu+ f ∈ L∞.

Likewise, we write Juu(u; p) = K + αI for its second derivative, meaning that

Juu(u; p)(v1, v2) =
∫

Ω
v2(Kv1) +

∫
Ω
v1v2.

Let us now turn to the constraints which are given in terms of a Nemyckii operator
involving a twice differentiable real function g : R → R with Lipschitz continuous
derivatives. For simplicity, we restrict ourselves here to linear control constraints

g(u) = u− a ≥ 0 a.e. on Ω (4)

with lower bound a ∈ L∞. The general case is commented on when appropriate.
For later reference, we define the admissible set

Uad = {u ∈ L∞ : g(u) ≥ 0 a.e. on Ω}.

In this setting, the existence of a regular Lagrange multiplier can be proved:
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Lemma 2.1. Let u be the unique global optimal solution for problem (2). Then
there exists a Lagrange multiplier η ∈ L∞ such that the necessary conditions of
optimality [

Ju(u; p)− gu(u)?η
g(u) η

]
= 0, g(u) ≥ 0, and η ≥ 0 (5)

hold. Moreover, conditions (5) are sufficient for global optimality of u.

Proof. The minimizer u satisfies the variational inequality

Ju(u; p)(u− u) ≥ 0 for all u ∈ Uad

which can be pointwisely decomposed as Ju(u; p) = 0 where g(u) > 0 and Ju(u; p) ≥
0 where g(u) = 0. Hence, η := Ju(u; p) ∈ L∞ is a multiplier for problem (2) such
that (5) is satisfied.

In the general case, the derivative gu(u) extends to a continuous operator from Lq

to Lq (see [14]) and gu(u)? above denotes its L2 adjoint. In view of our choice (4)
we have gu(u)? = I.

3 Parametric Sensitivity Analysis

In this section we derive a differentiability result for the unrelaxed solution v(p, 0)
with respect to changes in the parameter. To this end, we denote by p∗ ∈ P a given
reference parameter and by U a fixed neighborhood of p∗. Moreover, (u∗, η∗) =
v(p∗, 0) ∈ L∞×L∞ is the unique solution of (5). By L(X,Y ), we denote the space
of linear and continuous operators from X to Y .

Assumption 3.1. We assume that

(a) Ju is differentiable with respect to p into L∞

(b) such that u 7→ Jup(u; p∗) is continuous from L∞ to L(P,L∞) and

(c) Ju is Lipschitz into L∞ with respect to p in U , uniformly in a neighborhood
of u∗.

In order to formulate our result, it is useful to define the weakly/strongly active
and inactive subsets for the reference control u∗:

Ω0 = {x ∈ Ω : g(u)∗ = 0 and η∗ = 0}
Ω+ = {x ∈ Ω : g(u)∗ = 0 and η∗ > 0}
Ωi = {x ∈ Ω : g(u)∗ > 0 and η∗ = 0}
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which form a partition of Ω unique up to sets of measure zero. In addition, we
define

Ûad = {u ∈ L∞ : u = 0 a.e. on Ω+ and u ≥ 0 a.e. on Ω0}.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then there exist neighborhoods
U1 ⊂ U of p∗ and V of (u∗, η∗) and a map

U1 3 p 7→ (u(p), η(p)) ∈ L∞ × L∞

such that u(p) is the unique solution of (2) in V and η(p) is the unique Lagrange
multiplier. Moreover, this map is Lipschitz continuous (in the norm of L∞) and
directionally differentiable at p∗ (in the norm of Lq for all q ∈ [1,∞)). For any
given direction δp, the derivatives δu and δη are the unique solution and Lagrange
multiplier in L∞ × L∞ of the auxiliary problem

min
δu

1
2

∫
Ω
δu(x)((Kδu)(x)) dx+

1
2

∫
Ω
α(x)[δu(x)]2 dx+ Jup(u∗; p∗)(δu, δp)

s.t. δu ∈ Ûad. (6)

That is, δu and δη satisfy

Kδu+ αδu− δη = −Jup(u∗; p∗)(δu, δp) δuδη = 0 on Ω,

δu ∈ Ûad δη ≥ 0 on Ω0.

Proof. The main tool in deriving the result is the implicit function theorem for gen-
eralized equations [3]. To this end, we need to prove the so-called strong regularity
of the necessary conditions (5). We proceed in the following steps:

Step 1: We formulate (5) as a generalized equation. To this end, let G(u; p) =
Ju(u; p) and

N(u) = {ϕ ∈ L∞ :
∫

Ω
ϕ (u− u) ≤ 0 for all u ∈ Uad} if u ∈ Uad

while N(u) = ∅ otherwise. It is readily seen that (5) is equivalent to the generalized
equation

0 ∈ G(u; p) +N(u)

Step 2: We set up the linearization

δ ∈ G(u∗; p∗) +Gu(u∗; p∗)(u− u∗) +N(u)

and prove that its unique solution depends Lipschitz continuously on δ ∈ L∞. A
simple calculation shows that the linearization reads

δ ∈ Ku+ αu+ f +N(u). (7)
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These are the first order necessary conditions for a perturbation of problem (2) with
an additional linear term −

∫
Ω δ(x)u(x) dx in the objective, which does not disturb

the strict convexity. Consequently, (7) is sufficient for optimality and thus uniquely
solvable for any δ. If u′ and u′′ are the unique solutions of (7) belonging to δ′ and
δ′′, then (7) readily yields∫

Ω
(αu′ +Ku′ + f − δ′)(u′′ − u′) +

∫
Ω
(αu′′ +Ku′′ + f − δ′′)(u′ − u′′) ≥ 0.

From there, we obtain

α ‖u′′ − u′‖2
L2
≤

∫
Ω
α (u′′ − u′)2 ≤ ‖δ′′ − δ′‖L2‖u′′ − u′‖L2 −

∫
Ω
(u′′ − u′)K(u′′ − u′).

Due to positive semidefiniteness of K,

‖u′′ − u′‖L2 ≤
1
α
‖δ′ − δ′′‖L2 ≤

c

α
‖δ′ − δ′′‖L∞

follows. To derive the L∞ estimate, we employ a pointwise argument. Let us
denote by Pu(x) = max{u(x), a(x)} the pointwise projection of a function to the
admissible set Uad. As (7) is equivalent to

u(x) = P
(
δ(x)− (Ku)(x)− f(x)

α(x)

)
,

and the projection is Lipschitz with constant 1, we find that

|u′′(x)− u′(x)| ≤ 1
α(x)

(
|δ′′(x)− δ′(x)|+ |(K(u′′ − u′))(x)|

)
≤ 1
α

(
‖δ′′ − δ′‖L∞ + ‖K‖L2→L∞‖u′′ − u′‖L2

)
,

from where the desired ‖u′′ − u′‖L∞ ≤ c ‖δ′ − δ′′‖L∞ follows. Since

‖η′′ − η′‖L∞ = ‖Ju(u′′; p∗)− Ju(u′; p∗)− δ′ + δ′′‖L∞

≤ ‖K(u′′ − u′)‖L∞ + ‖α‖L∞ ‖u′′ − u′‖L∞ + ‖δ′′ − δ′‖L∞

holds, we have Lipschitz continuity also for the Lagrange multiplier.

In Step 3 we deduce that u in (7) depends even directionally differentiably on δ.
To this end, let δ̂ ∈ L∞ be a given direction, let {τn} be a real sequence such that
τn ↘ 0 and let us define un to be the solution of (7) for δn = τnδ̂. We consider
the difference quotient (un − u∗)/τn which, by the Lipschitz stability shown above,
is bounded in L∞ and thus in L2 by a constant times δ̂. Hence we can extract a
subsequence such that

un − u∗

τn
⇀ û in L2.
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By compactness, K((un − u∗)/τn) → Kû in L∞ holds. Hence the sequence dn =
−(Kun + f − δn)/α converges uniformly to d∗ = −(Ku∗ + f)/α and (dn − d∗)/τn

converges uniformly to d̂ = (δ̂ − Kû)/α. We now construct a pointwise limit of
the difference quotient taking advantage of the decomposition of Ω. Note that
α(u∗ − d∗) = η∗ and un = Pdn and likewise u∗ = Pd∗ hold. On Ωi, we have d∗ > a
and thus dn > a for sufficiently large n, which entails that

un − u∗

τn
=
Pdn − Pd∗

τn
=
dn − d∗

τn
→ d̂ on Ωi.

On Ω+, η∗ > 0 implies d∗ < a, hence dn < a for sufficiently large n and thus

un − u∗

τn
=
Pdn − Pd∗

τn
=

0− 0
τn

→ 0 on Ω+.

Finally on Ω0 we have η∗ = 0 and thus d∗ = a so that

un − u∗

τn
=
Pdn − Pd∗

τn
=
Pdn − a

τn
→ max

{
d̂, 0

}
on Ω0.

Hence we have constructed a pointwise limit ũ = lim(un − u∗)/τn on Ω. As∣∣∣∣un − u∗

τn
− ũ

∣∣∣∣ ≤ ∣∣∣∣un − u∗

τn

∣∣∣∣ + |ũ| ≤
∣∣∣∣dn − d∗

τn

∣∣∣∣ + |d̂|

and the right hand side converges pointwise and in Lq to 2 |d̂| for any q ∈ [1,∞),
we infer from Lebesgue’s Dominated Convergence Theorem that

un − u∗

τn
→ ũ in Lq for all q ∈ [1,∞)

and hence ũ = û must hold. As for the Lagrange multiplier, we observe that

ηn − η∗

τn
=
Ju(un; p∗)− Ju(u∗; p∗)− δn

τn
= K

(
un − u∗

τn

)
+ α

un − u∗

τn
− δ̂

−→ η̂ := Kû+ αû− δ̂ in Lq for all q ∈ [1,∞).

It is straightforward to check that (û, η̂) are the unique solution and Lagrange
multiplier in L∞ × L∞ of the auxiliary problem

min
u

1
2

∫
Ω
u(x)((Ku)(x)) dx+

1
2

∫
Ω
α(x)[u(x)]2 dx−

∫
Ω
δ̂(x)u(x) dx s.t. u ∈ Ûad.

(8)

Finally, in Step 4, we apply Dontchev’s implicit function theorem [3, Theorem 2.4]
for generalized equations to transfer the differentiability result for the auxiliary
problem (which depends on the artificial perturbation δ) to the original problem
which depends on the parameter p. In view of Assumption 3.1, it follows that
p 7→ (u(p), η(p)) ∈ Lq × Lq is directionally differentiable at p∗ for any q ∈ [1,∞).
The derivative (δu, δη) in the direction of δp is given by the unique solution and
Lagrange multiplier of (8) with δ̂ = −Jup(u∗; p∗)(·, δp) which proves the claim.
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Remark 3.3. 1. The directional derivative map

P 3 δp 7→ (δu, δη) ∈ L∞ × L∞ (9)

is positively homogeneous in the direction δp but may be nonlinear. However,
‖(δu, δη)‖∞ ≤ c ‖δp‖P holds with c independent of the direction.

2. In case of Ω0 being a set of measure zero, we say that strict complementarity
holds at the solution u(p∗, 0). As a consequence, the admissible set for the
sensitivities Ûad is a linear space and the map (9) is linear.

4 Convergence of Solutions and Parametric Sensitivi-
ties

As mentioned in the introduction, we consider an interior point regularization of
problem (2) by means of the classical primal-dual relaxation of the first order nec-
essary conditions (5). That is, we introduce the homotopy parameter µ ≥ 0 and
define the relaxed optimality system by

F (u, η; p, µ) =
[
Ju(u; p)− η
g(u) η − µ

]
= 0. (10)

Lemma 4.1. For each µ > 0 there exists a unique admissible solution of (10).

Proof. A proof is given in [10]. For convenience, we sketch the main ideas here. The
interior point equation (10) is the optimality system for the primal interior point
formulation

minJ(u; p)− µ

∫
Ω

ln(g(u)) dx

of (1). For each ε > 0, this functional is lower semicontinuous on the set Mε :=
{u ∈ L∞ : g(u) ≥ ε}, such that by convexity and coercivity a unique minimizer
uε(µ) exists. Moreover, if ε is sufficiently small, uε(µ) = u(µ) ∈ intMε holds, such
that u(µ) and the associated multiplier satisfy (10).

We denote the solution of (10) by

v(p, µ) :=
(
u(p, µ)
η(p, µ)

)
.

It defines the central path homotopy as µ↘ 0 for fixed parameter p.

This section is devoted to the convergence analysis of v(p, µ) → v(p, 0) and of
vp(p, µ) → vp(p, 0) as µ ↘ 0. We will establish orders of convergence for the full
scale of Lq norms. As opposed to the previous section, we write again p instead of
p∗ for the fixed reference parameter.
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In order to avoid cluttered notation with operator norms, we assume throughout
that δp is an arbitrary parameter direction of unit norm, and we use

vp(p, µ) =
(
up(p, µ)
ηp(p, µ)

)
to denote the directional derivative of v(p, µ) in this direction, whose existence is
guaranteed by Theorem 3.2 in case µ = 0 and by Lemma 4.7 below for µ > 0.
Moreover, we shall omit function arguments when appropriate.

To begin with, we establish the invertibility of the Karush-Kuhn-Tucker operator
belonging to problem (2). Note that gη = µ implies that g + η ≥ 2

√
µ.

Lemma 4.2. For any µ > 0, the derivative Fv(v(p, µ); p, µ) is boundedly invertible
from Lq → Lq for all q ∈ [2,∞] and satisfies

‖F−1
v (·)(a, b)‖Lq ≤ c

(
‖a‖Lq +

∥∥∥ b

g + η

∥∥∥
Lq

)
.

Proof. Obviously, F is differentiable with respect to v = (u, η). In view of linearity
of the inequality constraint, we need to consider the system[

Juu −g?
u

η gu g

] [
ū
η̄

]
=

[
a
b

]
where the matrix elements are evaluated at u(p, µ) and η(p, µ), respectively. We
introduce the almost active set ΩA = {x ∈ Ω : g ≤ η} and its complement ΩI =
Ω\ΩA, the almost inactive set. The associated characteristic functions χA and
χI = 1 − χA, respectively, can be interpreted as orthogonal projectors onto the
subspaces L2(ΩA) and L2(ΩI). Dividing the second row by η, we obtain[

Juu −g?
u

gu (χA + χI) g
η

] [
ū

(χA + χI)η̄

]
=

[
a

(χA + χI) b
η

]
.

Eliminating

χI η̄ = χI
η

g

(
b

η
− guū

)
and multiplying the second row by −1 leads to the reduced system[

Juu + g?
uχI

η
g gu −g?

u

−gu −χA
g
η

] [
ū
χAη̄

]
=

[
a+ g?

uχI
b
g

−χA
b
η

]
.

This linear saddle point problem satisfies the assumptions of Lemma B.1 in [2]
(see also Appendix A) with V = L2(Ω) and M = L2(ΩA): the upper left block is
uniformly elliptic (with constant α independent of µ) and uniformly bounded since
η/g ≤ 1 on ΩI , the off-diagonal blocks satisfy an inf-sup-condition (independently
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of µ), and the negative semidefinite lower right block is uniformly bounded since
g/η ≤ 1 on ΩA. Therefore, the operator’s inverse is bounded independently of µ.
Using that g ≤ η on ΩA and η ≤ g on ΩI , we obtain

‖(ū, χAη̄)‖L2 ≤ c ‖(a+ g?
uχIb/g, χAb/η)‖L2

≤ c (‖a‖L2 + ‖b/(g + η)‖L2) .

Having the L2-estimate at hand, we can move the spatially coupling operator K to
the right hand side and apply the saddle point lemma pointwisely (with V = M =
R) to [

α+ g?
uχI

η
g gu −g?

u

gu χA
g
η

] [
ū
χAη̄

]
=

[
a+ g?

uχI
b
g −Kū

χA
b
η

]
.

Since K : L2 → L∞ is compact, we obtain

|(ū, χAη̄)(x)| ≤ c|(a+ g?
uχIb/g −Kū, χAb/η)|

≤ c (|a|+ |b|/(g + η) + ‖K‖L2→L∞‖ū‖L2)
≤ c (|a|+ |b|/(g + η) + ‖a‖L2 + ‖b/(g + η)‖L2)

for almost all x ∈ Ω. From this we conclude that

‖(ū, χAη̄)‖Lq ≤ c(‖a‖Lq + ‖b/(g + η)‖Lq

for all q ≥ 2. Moreover,

‖χI η̄‖Lq =
∥∥∥∥χI

η

g

(
b

η
− guū

)∥∥∥∥
Lq

≤ 2‖b/(g + η)‖Lq + c(‖a‖Lq + ‖b/(g + η)‖Lq)
≤ c(‖a‖Lq + ‖b/(g + η)‖Lq)

holds, which proves the claim.

Remark 4.3. For more complex settings with multicomponent u ∈ Ln
∞ and g :

Rn → Rm, the proof is essentially the same. The almost active and inactive sets ΩA

and ΩI have to be defined for each component of g separately. The only nontrivial
change is to show the inf-sup-condition for gu.

In order to prove convergence of the parametric sensitivities, we will need the strong
complementarity (cf. [12]) of the non-relaxed solution.

Assumption 4.4. Suppose there exists c > 0 such that the solution v(p, 0) satisfies

|{x ∈ Ω : g(u(p, 0)) + η(p, 0) ≤ ε}| ≤ c εr (11)

for all ε > 0 and some 0 < r ≤ 1.
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Note that Assumption 4.4 entails that the set Ω0 of weakly active constraints has
measure zero, as

|Ω0| = |
⋂
ε>0

{x ∈ Ω : g(u(p, 0)) + η(p, 0) ≤ ε}| ≤ lim
ε↘0

c εr = 0.

In other words, strict complementarity holds at the solution u(p, 0). In our exam-
ples, Assumption 4.4 is satisfied with r = 1.

For convenience, we state a special case of Theorem 8.8 from [13] for use in the
current setting.

Lemma 4.5. Assume that f ∈ Lq, 1 ≤ q <∞ satisfies∣∣∣{x ∈ Ω : |f(x)| > s}
∣∣∣ ≤ ψ(s), 0 ≤ s <∞,

for some integrable function ψ. Then,

‖f‖q
Lq
≤ q

∫ ∞

0
sq−1ψ(s) ds.

We now prove a bound for the derivative vµ of the central path with respect to the
duality gap parameter µ.

Theorem 4.6. Suppose that Assumption 4.4 holds. Then the map µ 7→ v(µ, p) is
differentiable and the slope of the central path is bounded by

‖vµ(p, µ)‖Lq ≤ c µ(r−q)/(2q), q ∈ [2,∞]. (12)

In particular, the a priori error estimate

‖v(p, µ)− v(p, 0)‖Lq ≤ c µ(r+q)/(2q) (13)

holds.

Proof. By the implicit function theorem, the derivative vµ is given by

Fv(v(p, µ); p, µ) vµ(p, µ) = −Fµ(v(p, µ); p, µ) =
[
0
1

]
.

Hence from Lemma 4.2 above we obtain

‖vµ(p, µ)‖L∞ ≤ c ‖(g + η)−1‖L∞ ≤ c µ−1/2.

The latter inequality holds since gη = µ implies that g + η ≥ 2
√
µ.
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Now let µn, n ∈ N be a positive sequence converging to zero. We may estimate for
n > m

‖v(p, µn)− v(p, µm)‖L∞ ≤
∫ µm

µn

‖vµ(p, µ)‖L∞ dµ ≤ c

∫ µm

µn

µ−1/2 dµ

≤ c
(
µ1/2

m − µ1/2
n

)
≤ c

√
µm,

which is less than any ε > 0 for sufficiently large m ≥ mε. Thus, v(p, µn) is a Cauchy
sequence with limit point v. Using continuity of L∞ 3 v 7→ (Ju(u; p)− η, g(u)η) we
find v = v(p; 0). The limit n→∞ now yields

‖v(p, µ)− v(p, 0)‖L∞ ≤ c
√
µ, (14)

which proves (12) and (13) for the case q = ∞. From (14) and (11) we obtain

|{x ∈ Ω : g(u(p, µ)) + η(p, µ) < ε}|

≤

{
0, if ε ≤ 2

√
µ

|{x ∈ Ω : g(u(p, 0)) + η(p, 0) < ε+ c
√
µ}| otherwise

≤

{
0, if ε ≤ 2

√
µ

c (ε+ c
√
µ)r otherwise

with c independent of r. Using Lemmas 4.2 and 4.5 we estimate for q ∈ [2,∞)

‖vµ‖q
Lq
≤ cq ‖(g + η)−1‖q

Lq
≤ cqq

∫ ∞

0
sq−1ψ(s) ds

with

ψ(s) =

{
0, if s ≥ (2

√
µ)−1

c (s−1 +
√
µ)r otherwise

and obtain

‖vµ‖q
Lq
≤ cq+1q

∫ (2
√

µ)−1

0
sq−1(s−1 +

√
µ)r ds

≤ cq+1q

∫ (2
√

µ)−1

0
sq−1

(
3
2
s−1

)r

ds

= cq+1q
(3

2

)r
∫ (2

√
µ)−1

0
sq−1−r ds

= cq+1 q

q − r

(3
2

)r [
sq−r

](2
√

µ)−1

0

≤ cq+1 q

q − r
3r 2−qµ(r−q)/2.

This implies (12). As before in the proof of Theorem 4.6, integration over µ then
yields (13).
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Lemma 4.7. Along the central path, the solutions v(p, µ) are Fréchet differentiable
w.r.t. p. There exists µ0 > 0 such that the parametric sensitivities are bounded
independently of µ:

‖vp(p, µ)‖L∞ ≤ c for all µ < µ0.

Proof. By the implicit function theorem and Lemma 4.2, vp exists and satisfies

Fv(v(p, µ); p, µ) vp(p, µ) = −Fp(v(p, µ); p, µ) = −
[
Jup(u(p, µ); p)

0

]
. (15)

and ‖vp‖L∞ ≤ c ‖Jup(u(p, µ); p)‖L∞ holds. By Assumption 3.1, the right hand side
is bounded in L∞ by a constant.

Theorem 4.8. Suppose that Assumption 4.4 holds. Then there exist constants
µ0 > 0 and c independent of µ such that

‖vp(p, µ)− vp(p, 0)‖Lq ≤ cµr/(2q) for all µ < µ0 and q ∈ [2,∞),

where vp(p, 0) is the parametric sensitivity of the original problem.

Proof. We begin with the sensitivity equation (15) and differentiate it totally with
respect to µ, which yields

Fvv(vp, vµ) + Fvµvp + Fvvpµ = −Fpvvµ − Fpµ. (16)

First we observe Fvµ = 0, Fpµ = 0 and

− Fvv(vp, vµ)− Fpµvµ = −
[

Jupuuµ

ηpguuµ + upg
?
uηµ

]
=:

[
a
b

]
. (17)

In view of Assumption 3.1, Jupu is bounded in L∞ for sufficiently small µ. Hence
by Theorem 4.6, we have

‖a‖Lq ≤ c µ(r−q)/(2q) for all q ∈ [2,∞).

The quantities (uµ, ηµ) and (up, ηp) can be estimated by Theorem 4.6 and Lemma 4.7,
respectively, which entails

‖b‖Lq ≤ c
(
‖ηp‖L∞‖uµ‖Lq + ‖up‖L∞‖ηµ‖Lq

)
≤ c µ(r−q)/(2q) for all q ∈ [2,∞)

and sufficiently small µ. We have seen that (16) reduces to Fv(vpµ) = (a, b)>.
Applying Lemma 4.2 yields

‖vpµ‖Lq ≤ c
(
‖a‖Lq + ‖b/(g + η)‖Lq

)
≤ c

(
µ(r−q)/(2q) + µ(r−q)/(2q)−1/2

)
≤ c µ(r−2q)/(2q)
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and thus

‖vpµ‖Lq ≤ c µ(r−2q)/(2q) for all q ∈ [2,∞).

Integrating over µ > 0 as before, we obtain the error estimate

‖vp(p, µ)− v‖Lq ≤ c
q

r
µr/(2q),

where v = limµ↘0 vp(p, µ). Taking the limit µ ↘ 0 of (15) and using continuity of
L∞ × L2 3 (v, vp) 7→ Fv(v) vp + Fp(v) ∈ L2, we have

Fv(v(p, 0); p, 0) v + Fp(v(p, 0); p, 0) = 0,

that is,

Juu(u(p, 0); p, 0)u− gu(u(p; 0)) η = −Jup(u(p, 0); p) (18)
η(p, 0)gu(u(p, 0))u+ g(u(p, 0)) η = 0. (19)

From (19) we deduce that

u = 0 on the strongly active set Ω+

η = 0 on the inactive set Ωi,

which together with (18) uniquely characterize the exact sensitivity, see Theo-
rem 3.2. Note that strict complementarity holds at u(p, 0), i.e., Ω0 is a null set
in view of Assumption 4.4. Hence the limit v is equal to the sensitivity derivative
vp(p, 0) of the unrelaxed problem.

Comparing the results of Theorem 4.6 and 4.8, we observe that the convergence of
the sensitivities lags behind the convergence of the solutions by a factor of

√
µ, see

also Table 1. Therefore Theorem 4.8 does not provide any convergence in L∞. This
was to be expected since under mild assumptions, up(p, µ) is a continuous function
on Ω for all µ > 0 while the limit up(p, 0) exhibits discontinuities at junction points,
compare Figure 1.

It turns out that the convergence rates are limited by effects on the transition
regions, where g(u) + η is small. However, sufficiently far away from the boundary
of the active set, we can improve the L∞ estimates by r/4:

Theorem 4.9. Suppose that Assumption 4.4 holds. For β > 0 define the β-
determined set as

Dβ = {x ∈ Ω : g(u(p, 0)) + η(p, 0) ≥ β}.

The the following estimates hold:

‖v(p, µ)− v(p, 0)‖L∞(Dβ) ≤ cµ(r+2)/4 (20)

‖vp(p, µ)− vp(p, 0)‖L∞(Dβ) ≤ cµr/4 (21)
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Proof. First we note that due to the uniform convergence on the central path there
is some µ̄ > 0, such that g(u(p, µ)) + η(p, µ) ≥ β/2 for all µ ≤ µ̄ and almost all
x ∈ Dβ. We recall that the derivative of the solutions on the central path vµ is
given by

Fv(v(p, µ); p, µ) vµ(p, µ) = −Fµ(v(p, µ); p, µ) =
[
0
1

]
.

We return to (23) in the proof of Lemma 4.2 with a = 0 and b = 1. Pointwise
application of the saddle point lemma on Dβ yields

‖vµ‖L∞(Dβ) ≤ ‖(g + η)−1‖L∞(Dβ) + ‖K‖L2→L∞‖uµ‖L2(Ω)

≤ 2
β

+ c µ(r−2)/4 for all µ ≤ µ̄

by Theorem 4.6. Integration over µ proves (20). Similarly, vpµ is defined by (23)
with a and b given by (17). Thus we have

‖vpµ‖L∞(Dβ) ≤ c
(
‖b‖L∞(Dβ)‖(g + η)−1‖L∞(Dβ) + ‖K‖L2→L∞‖vpµ‖L2(Ω)

)
≤ c

(
µ−1/2 · 2

β
+ µ(r−4)/4

)
≤ c µ(r−4)/4.

Integration over µ verifies the claim (21).

Before we turn to our numerical results, we summarize in Table 1 the convergence
results proved.

norm v(p, µ) → v(p, 0) vp(p, µ) → vp(p, 0)

Lq(Ω) (r + q)/(2q) r/(2q)
L∞(Ω) 1/2 —
L∞(Dβ) (r + 2)/4 r/4

Table 1: Convergence rates for Lq, q ∈ [2,∞), and L∞ of the solutions and their
sensitivities along the central path.

Remark 4.10. One may ask oneself whether the interior point relaxation of the
sensitivity problem (6) for vp(p, 0) coincides with the sensitivity problem (16) for
vp(p, µ) on the path µ > 0. This, however, cannot be the case, as (6) includes
equality constraints for up(p, 0) on the strongly active set Ω+, whereas (16) shows
no such restrictions.
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5 Numerical Examples

5.1 An Introductory Example

We start with a simple but instructive example:

min
∫

Ω

1
2
(u(x)− x− p)2 dx s.t. u(x) ≥ 0

on Ω = (−1, 1). The simplicity arises from the fact that this problem is spatially de-
coupled and K ≡ 0 holds. Nevertheless, several interesting properties of parametric
sensitivities and their interior point approximations may be explored.

The solution is given by u(p, 0) = max(0, x+ p) with sensitivity

up(p, 0) =

{
1, x+ p > 0
0, x+ p < 0.

The interior point approximations are

u(p, µ) =
p+ x

2
+

1
2

√
(p+ x)2 + 4µ

and their sensitivities

up(p, µ) =
1
2

+
p+ x

2

√
1

(p+ x)2 + 4µ
.

Finally, the Lagrange multiplier and its sensitivity are given by

η(p, µ) = u(p, µ)− x− p

ηp(p, µ) = up(p, µ)− 1.

As a reference parameter, we choose p = 0. From the solution we infer that

{x ∈ Ω : g(u(p, 0)) + η(p, 0) ≤ ε} = [−ε, ε]

so Assumption 4.4 is satisfied with r = 1.

A sequence of solutions obtained for a discretization of Ω with 212 points and µ ∈
[10−6, 10−1] is depicted in Figure 1. The error of the solution ‖u(p, µ)− u(p, 0)‖Lq

and the sensitivities ‖up(p, µ) − up(p, 0)‖Lq in different Lq norms are given in the
double logarithmic Figure 2. Similar plots can be obtained for the multiplier and
its sensitivities.

Table 2 shows that the predicted convergence rates for q ∈ [2,∞] are in very good
accordance with those observed numerically. The numerical convergence rates are
estimated from

log
‖u(p,µ1)−u(p,0)‖Lq

‖u(p,µ2)−u(p,0)‖Lq

log µ1

µ2

(22)
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Figure 1: Interior point solutions (left) and their sensitivities (right) for µ ∈
[10−6, 10−1].

and the same expression with u replaced by up, where µ1 and µ2 are the smallest
and the middle value of the sequence of µ values used. The corresponding rates for
the multiplier are identical. Our theory does not provide Lq estimates for q < 2.
However, since exact solutions are available here, we can calculate

‖u(p, µ)− u(p, 0)‖L1 =
1
2

(√
1 + 4µ− 1

)
+ µ ln

√
1 + 4µ+ 1√
1 + 4µ− 1

‖up(p, µ)− up(p, 0)‖L1 = 1 +
√

4µ−
√

1 + 4µ.

Hence the L1 convergence orders approach 1 and 1/2, respectively, as µ ↘ 0, see
Table 2.
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Figure 2: Convergence behavior of solutions (left) and their sensitivities (right) for
q ∈ {2, 4, 8,∞}.
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control control sensitivity
q predicted observed predicted observed

1 — 0.9132 — 0.4960
2 0.7500 0.7476 0.2500 0.2481
4 0.6250 0.6221 0.1250 0.1214
8 0.5625 0.5571 0.0625 0.0565
∞ 0.5000 0.5000 — —

Table 2: Predicted and observed convergence rates in different Lq norms for the
control and its sensitivity.

5.2 An Optimal Control Example

In this section, we consider a linear-quadratic optimal control problem involving an
elliptic partial differential equation:

min
u
J(u; p) =

1
2
‖Su− yd + p‖2

L2
+
α

2
‖u‖2

L2
s.t. u− a ≥ 0 and b− u ≥ 0

where Ω = (0, 1) ⊂ R and y = Su is the unique solution of the Poisson equation

−∆y = u on Ω
y(0) = y(1) = 0.

The linear solution operator maps u ∈ L2 into Su ∈ H2 ∩H1
0 . Moreover, S? = S

holds and K = S?S is compact from L2 into L∞ so that the problem fits into our
setting. To complete the problem specification, we choose α = 10−4, a ≡ −40,
b ≡ 40 and yd = sin(3πx) as desired state. The reference parameter is p = 0.
The presence of upper and lower bounds for the control requires a straightforward
extension of our convergence results which is readily obtained and verified by this
example.

To illustrate our results, we discretize the problem using the standard 3-point finite
difference stencil on a uniform grid with 512 points. The interior point relaxed
problem is solved for a sequence of duality gap parameters µ ∈ [10−7, 10−1] by
applying Newton’s method to the discretized optimality system. The corresponding
sensitivity problems require only one additional Newton step each since p ∈ R. To
obtain a reference solution, the unrelaxed problem for µ = 0 is solved using a primal-
dual active set strategy [5,1], which is also used to find the solution of the sensitivity
problem at µ = 0. The sequence of solutions u(p, µ) and sensitivity derivatives
up(p, µ) is shown in Figure 3. As in the previous example, the error of the solution
‖u(p, µ)−u(p, 0)‖Lq and the sensitivities ‖up(p, µ)−up(p, 0)‖Lq in different Lq norms
are given in the double logarithmic Figure 4. In order to compare the predicted
convergence rates with the observed ones, we need to estimate the exponent r in
the strong complementarity Assumption 4.4. To this end, we analyze the discrete
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Figure 3: Interior point solutions (left) and their sensitivities (right) for µ ∈
[10−7, 10−1].

solution u(p, 0) together with its Lagrange multiplier η(p, 0) = Ju(u(p, 0); p) whose
positive and negative parts are multipliers for the lower and upper constraints,
respectively. A finite sequence of estimates is generated according to

rn ≈
log |Ωn|

|Ωmin|

log εn
εmin

,

where εmin is the smallest value of ε > 0 such that {x ∈ Ω : u(p, 0)−a+η+(p, 0) ≤ ε}
contains 10 grid points. |Ωmin| is the measure of the corresponding set. Similarly,
we define εmax as the maximum value of u(p, 0)− a+ η+(p, 0) on Ω and

εn = exp
(
log(εmin) +

n

20
(log(εmax)− log(εmin))

)
, n = 0, . . . , 20.
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Figure 4: Convergence behavior of solutions (left) and their sensitivities (right) for
q ∈ {2, 4, 8,∞}.
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control control sensitivity state state sensitivity
q predicted observed predicted observed observed observed

1 — 0.8403 — 0.4894 0.8731 0.5096
2 0.7500 0.7136 0.2500 0.2470 0.8739 0.4934
4 0.6250 0.5961 0.1250 0.1169 0.8739 0.4710
8 0.5625 0.5387 0.0625 0.0484 0.8765 0.4482
∞ 0.5000 0.4978 — — 0.8801 0.4015

Table 3: Predicted and observed convergence rates in different Lq norms for the
control and its sensitivity, and observed rates for the state and its sensitivity.

|Ωn| is again the measure of the corresponding set. For the current example, we
obtain the sequence {rn} shown in Figure 5, from which we deduce the estimate
r = 1. The same result is found for the upper bound.

Table 3 shows again the predicted and observed convergence rates for the control and
its sensitivity, as well as the observed rates for the state y = Su and its sensitivity.
All observed rates are estimated using (22) with µ1 and µ2 being the two smallest
nonzero values of µ used. Again, the observed convergence rates for the control are
in good agreement with the predicted ones and confirm our analysis for q ∈ [2,∞].
Since in 1D, the solution operator S is continuous from L1 to L∞, the observed
rates for the control in L1 carry over to the state variables in Lq for all q ∈ [2,∞],
and likewise to the adjoint states. Similarly, the L1 rates for the control sensitivity
carry over to the Lq rates for the state and adjoint sensitivities.
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Figure 5: Sequence of estimates rn for the exponent in the strong complementarity
assumption.
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5.3 A Regularized Obstacle Problem

Here we consider the obstacle problem

min
u∈H1

0

‖∇u‖2
L2

+ p〈u, l〉 s.t. u ≥ −1 (23)

on Ω = (0, 1)2 ⊂ R2, which, however, does not fit into the theoretical frame set in
§ 2. Formally dualizing (23) leads to

min
η∈H−1

〈η,−∆−1η〉+ p〈η,∆−1l〉 s.t. η ≥ 0,

where ∆ : H1
0 → H−1 denotes the Laplace operator. Adding a regularization term

for the Lagrange multiplier η, we obtain

min
η∈L2

〈η,−∆−1η〉+ p〈η,∆−1l〉+
α

2
‖η‖2

L2
s.t. η ≥ 0. (24)

This dualized and regularized variant of the original obstacle problem (23) fits into
the theoretical frame presented above. The original constraint u+1 is the Lagrange
multiplier associated to (24). For the numerical results we choose α = 1, p = 1,
and an arbitrary linear term l = 45(2 sin(xy) + sin(−10x) cos(8y − 1.25)), which
results in a nice nonsymmetric contact region. The problem has been discretized
on a uniform cartesian grid of 512 × 512 points using the standard 5-point finite
difference stencil. Intermediate iterates and sensitivities computed on a coarser grid
are shown in Figure 6. The convergence behaviour is illustrated in Figure 7. Again,
the observed convergence rates are in good agreement with the predicted values for
r = 1. For larger values of q the numerical convergence rate of up(µ) is greater than
predicted. This can be attributed to the discretization, since for very small µ the
linear convergence to the solution of the discretized problem is observed.
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Figure 6: Interior point solution u(µ) (left) and sensitivities up(µ) (right) for the
regularized obstacle problem at µ=5.7e-4.
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A A Saddle Point Lemma

For conveniece we state here the saddle point lemma by Braess and Blömer [2,
Lemma B.1].

Lemma A.1. Let V and M be Hilbert spaces. Assume the following conditions
hold:

1. The continuous linear operator B : V → M∗ satisfies the inf-sup-condition:
There exists a constant β > 0 such that

inf
ζ∈M

sup
v∈V

〈ζ,Bv〉
‖v‖V ‖ζ‖M

≥ β .

2. The continuous linear operator A : V → V ∗ is symmetric positive definite
on the nullspace of B and positive semidefinite on the whole space V : There
exists a constant α > 0 such that

〈v,Av〉 ≥ α‖v‖2
V for all v ∈ kerB

and
〈v,Av〉 ≥ 0 for all v ∈ V .

3. The continuous linear operator D : M → M∗ is symmetric positive semi-
definite.

Then, the operator [
A B∗

B −D

]
: V ×M → V ∗ ×M∗

is invertible. The inverse is bounded by a constant depending only on α, β, and the
norms of A, B, and D.
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