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Abstract

The Feasibility Pump of Fischetti, Glover, Lodi, and Bertacco [8, 7] has
proved to be a very successful heuristic for finding feasible solutions of mixed
integer programs. The quality of the solutions in terms of the objective value,
however, tends to be poor. This paper proposes a slight modification of the
algorithm in order to find better solutions. Extensive computational results
show the success of this variant: in 89 out of 121 MIP instances the modified
version produces improved solutions in comparison to the original Feasibility
Pump.
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1 Introduction

A mixed integer program can be stated as

(MIP) min
{

cT x | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I
}

with A ∈ R
m×n, b ∈ R

m, c, l, u ∈ R
n, and I ⊆ N = {1, . . . , n}. For solving such

problems it is important to quickly find feasible solutions of high quality: A good
primal bound helps to cut off suboptimal branches in the search tree of a branch-
and-bound based algorithm, and improvement heuristics like Local Branching [9],
guided dives, and RINS [6] can only be applied after a feasible solution has been
found.

Several heuristic methods to produce feasible solutions for (MIP) have been pro-
posed in the literature, including Hillier [14], Balas and Martin [4], Saltzman and
Hillier [18], Glover and Laguna [10, 11, 12], Løkketangen and Glover [15], Glover et
al. [13], Nediak and Eckstein [17], and Balas et al. [3, 5].

The so-called Feasibility Pump was proposed by Fischetti, Glover, and Lodi [8]
and improved by Fischetti, Bertacco, and Lodi [7]. This heuristic turned out to
be very successful in finding feasible solutions even for very hard MIP instances.
However, the quality of the solutions in terms of the objective value is sometimes
poor.

This paper suggests a slight modification of the Feasibility Pump. In contrast
to the original version, the modified Objective Feasibility Pump takes the objective
function c of the MIP into account during the course of the algorithm. Computa-
tional results show that the solution quality can indeed be improved by our approach
without losing the ability to find feasible solutions in a reasonable amount of time.
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†Konrad-Zuse-Zentrum für Informationstechnik Berlin, berthold@zib.de
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The rest of the paper is organized as follows. The remainder of Section 1 reviews
the original version of the Feasibility Pump as described by Fischetti, Bertacco, and
Lodi [7]. Section 2 introduces the modifications included in the Objective Feasibility
Pump. Finally, Section 3 gives computational results on a large test set of 121 MIP
instances from the Miplib 2003 [2], the Mittelmann test set [16], and instances from
Danna et al. [6].

1.1 The Feasibility Pump

The Feasibility Pump heuristic proceeds as follows: First the LP relaxation

(LP) min
{

cT x | Ax ≤ b, l ≤ x ≤ u
}

of (MIP) is solved and its solution x⋆ is rounded to an integer vector x̃ = [x]I . We
define [x]S with S ⊆ N as

[x]Sj :=

{

⌊xj + 0.5⌋ if j ∈ S
xj if j /∈ S.

(1)

If x̃ is not feasible, an additional LP is solved in order to find a new point in the LP
polyhedron

P := {x ∈ R
n | Ax ≤ b, l ≤ x ≤ u}

that is, w. r. t. the integer variables, closest to x̃, i.e., that minimizes

∆(x, x̃) :=
∑

j∈I

|xj − x̃j |.

The procedure is iterated using this point as new solution x⋆ ∈ P . Thereby, the
algorithm creates two sequences of points: one with points x⋆ that fulfill the inequal-
ities, and one with points x̃ that fulfill the integrality requirements. The algorithm
terminates if the two sequences converge or if a predefined iteration limit is reached.

In order to determine a nearest point x⋆ := argmin{∆(x, x̃) | x ∈ P} in P , the
following LP is solved:

min ∆(x, x̃) =
∑

j∈I:x̃j=lj

(xj − lj) +
∑

j∈I:x̃j=uj

(uj − xj) +
∑

j∈I:lj<x̃j<uj

dj

s.t. Ax ≤ b

d ≥ x − x̃

d ≥ x̃ − x

l ≤ x ≤ u.

(2)

The variables dj are introduced to model the nonlinear function dj = |xj − x̃j | for
integer variables xj that are not equal to one of their bounds in the rounded solution
x̃.

1.2 Implementational Issues

In the course of the algorithm, two main problems arise: First, the procedure can be
caught in a cycle. That means, the same sequence of integer and LP-feasible points
is visited over and over again. Second, the progress in driving the integer points
towards feasibility might be very slow. The first problem is handled by performing a
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so-called restart each time an integer point x̃ is generated that was already visited in
a prior iteration. In a restart a random perturbation step is executed, which shifts
some of the variables randomly up or down and installs this perturbed vector as new
integer point x̃ to continue the search. The second issue is also handled by restarts
if there was no large enough improvement in the “fractionality” measure

f(x⋆) :=
∑

j∈I

f(x⋆
j ) with f(x⋆

j ) :=
∣

∣x⋆
j − ⌊x⋆

j + 0.5⌋
∣

∣

in a certain number of iterations.
The Feasibility Pump as described by Fischetti, Bertacco, and Lodi [7] consists of

three stages. In the first stage, a couple of iterations (so-called pumping rounds) are
performed just on the binary variables B ⊆ I by relaxing the integrality conditions
on the general integer variables. If this does not yield a feasible solution, the second
stage invokes pumping rounds taking all integer variables into account. As initial
integer point x̃ one chooses a point visited in Stage 1 which was closest to the LP
polyhedron. If still no solution is found, a third stage is executed. Using a point x̃
from Stage 2 closest to P , the MIP

min {∆(x, x̃) | Ax ≤ b, l ≤ x ≤ u, xj ∈ Z for all j ∈ I} (3)

is processed by a MIP solver which stops after the first feasible solution is found.
One expects that the nearly feasible point x̃ has integer feasible points in its vicinity.
It is therefore likely that the MIP solver finds a feasible solution early in the search
process if the objective function of (3) is used.

In the implementation used by Fischetti, Bertacco, and Lodi [7], Stage 1 is
stopped

• after an LP solution x⋆ was found with all binary variables being integral,

• the fractionality measure f could not be decreased by at least 10% in a certain
number of pumping rounds, or

• a pumping round limit is reached.

The second stage is aborted for analogous reasons (using different parameter set-
tings), or if 100 restarts have been performed in Stage 2.

2 The Objective Feasibility Pump

Finding a high-quality solution of a MIP means to find a point x ∈ R
n satisfying

three conditions: x ∈ P , xj ∈ Z for all j ∈ I, and cT x is as small as possible. The
Feasibility Pump generates sequences of points fulfilling the first and the second
criteria, respectively, hopefully resulting in a point which satisfies both. However,
despite the computation of the starting point, which is chosen to be the optimum of
the LP relaxation, the third condition is disregarded. Therefore, the solution quality
is usually rather poor (see [7]).

Fischetti, Bertacco, and Lodi address this issue by either updating an objective
limit each time a new solution has been found and calling the Feasibility Pump again
on this restricted MIP, or by applying local search strategies like Local Branching [9]
or RINS [6] to improve the solution.

We take a different approach. Instead of instantly discarding the original objec-
tive function of the MIP, we gradually reduce its influence and increase the weight
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of the artificial objective function ∆ of the Feasibility Pump. The hope is that
we still converge to a feasible solution but concentrate the search on the region of
high-quality points.

In the remainder of the paper we assume c 6= 0. Our modification of the Fea-
sibility Pump replaces the distance function ∆( · , x̃) by a convex combination of ∆
and c:

∆α(x, x̃) := (1 − α)∆(x, x̃) + α
‖∆‖

‖c‖
cT x with α ∈ [0, 1]. (4)

Here, ‖ · ‖ is the Euclidean norm of a vector, and ∆ is the objective function vector
of (2): depending on the stage either ‖∆‖ =

√

|B| or ‖∆‖ =
√

|I|. We compute x⋆

using ∆α instead of ∆ in (2). In each pumping round α is geometrically decreased
with a fixed factor ϕ < 1, i.e., αt+1 = ϕαt and α0 ∈ [0, 1]. With increasing iteration
index t, this puts the emphasis more and more towards feasibility and decreases the
influence of the original objective function. Note that you can obtain the original
Feasibility Pump by choosing α0 = 0.

The introduction of ∆α requires a modification of the cycle detection step in the
Feasibility Pump algorithm. Especially during the first pumping rounds it might
happen frequently that integer points are revisited, because of the higher resemblance
of subsequent functions ∆α( · , x̃). Reaching the same point once again, however,
does not automatically implicate that the process runs into an infinite cycle like
in the original heuristic. This is due to the fact that we are now using different
directions ∆αt

in different iterations t in contrast to the old ∆ which only depends
on the current integer point x̃. After α was decreased sufficiently, it is likely that
the algorithm leaves the cycle. We therefore remember the visited points as pairs
(x̃, αt) and conduct a restart at iteration t only if the point x̃ was already visited at
iteration t′ < t with αt′ − αt ≤ δα and δα ∈ [0, 1] being a fixed parameter value.

The pseudocode of the modified Feasibility Pump reads as follows.

Algorithm 2.1 (Objective Feasibility Pump)
Stage 1:

1. Initialize x⋆ := argmin{cT x | x ∈ P}, x̃ := [x⋆]B, S := B, t := 0, maxIter :=
maxIterST1, maxStalls := maxStallsST1, restarts := 0, L := ∅.

2. If x̃ did not change since the last iteration, round the T most fractional vari-
ables x⋆

j to the other side compared to x̃j (with T being a parameter setting).

3. While there exists (x̃′, αt′) ∈ L with x̃′ = x̃ and αt′ − αt ≤ δα, perform a
random perturbation on x̃ (see [8, 7]) and set restarts := restarts + 1.

4. If x̃ is feasible for (MIP) → stop.

5. Set L := L ∪ {(x̃, αt)}. Set t := t + 1, αt := ϕαt−1.

6. If t > maxIter , goto next stage.

7. Solve x⋆ := argmin{∆αt
(x, x̃) | x ∈ P}.

8. If x⋆ = x̃, goto next stage.

9. If f(x⋆) did not decrease by at least 10% in the last maxStalls pumping rounds,
goto next stage.

10. Set x̃ := [x⋆]S . Goto Step 2.

4



Stage 2:

1. Initialize x̃ to be an integer point of Stage 1 with minimal ∆(x, x̃), x ∈ P .
Set t := 0, S := I, maxIter := maxIterST2, maxStalls := maxStallsST2,
restarts := 0, L := ∅.

2. Perform Steps 2 to 10 of Stage 1, but if restarts > maxRestarts in Step 3, goto
Stage 3.

Stage 3:

1. Solve MIP (3) with x̃ being an integer point of Stage 2 with minimal ∆(x, x̃),
x ∈ P . Stop after the first feasible solution has been found.

3 Computational Results

This section compares the performances of the Feasibility Pump described in [7]
and the Objective Feasibility Pump described in this paper. All computations were
performed on a 3.4 GHz Pentium-4 with 512 KB cache and 3 GB RAM. CPlex 9.03
was used as underlying LP solver. We used a time limit of one hour in all runs.

3.1 Test Set and Settings

The computations were performed on a wide test set consisting of 121 instances
taken from

• Miplib 2003 [2],

• the MIP collection of Mittelmann [16], and

• the instances used in [7], which are described in [6].

In all runs we used the parameter settings for the Feasibility Pump as suggested
in [7], as follows. The maximum number of total iterations for Stages 1 and 2
were set to maxIterST1 = 10000 and maxIterST2 = 2000. The maximum number
of iterations without a pumping cycle of at least 10% improvement were set to
maxStallsST1 = 70 and maxStallsST2 = 600. For j ∈ S, the rounding (1) is modified
to [x]Sj := ⌊xj + ρ(z)⌋ with z ∈ [0, 1] chosen uniformly at random and

ρ(z) =

{

2z(1 − z) if z ≤ 1

2

1 − 2z(1 − z) if z > 1

2
.

The shifting in Step 2 is applied on a random number of T ∈ [10, 30] variables, but
only variables xj with current fractionality f(x⋆

j ) > 0.02 are regarded as shifting
candidates. For the unmodified Feasibility Pump we set α0 = 0, for the Objective
Feasibility Pump we set α0 = 1, ϕ = 0.9, and δα = 0.005.

Because we wanted to investigate the performance of the Feasibility Pump used
as heuristic inside a MIP solver, we applied the MIP preprocessing of CPlex prior
to running the Feasibility Pump algorithm itself. This usually avoids difficulties
with the scaling of degenerated objective functions in the modified distance function
∆α, see (4). For example, some instances in our test set have objective functions
consisting of only a single artificial variable which is defined as a linear combination of
several other variables by an equality constraint. Such equations lead to unbalanced
situations in the calculation of ∆α, since in this case the norm ‖∆‖ is misleading.
We observed that MIP preprocessing usually resolves this issue.
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3.2 Results

Table 1 and Table 2 compare the performance of the two Feasibility Pump versions.
The left hand sides show the results of the original version proposed by Fischetti,
Bertacco, and Lodi [7]. The right hand sides show the results of the Objective
Feasibility Pump described in this paper. The column ‘Objective’ contains the
objective values of the feasible solutions that were found with either algorithm. A
bar ‘–’ means that no solution was found in the time limit of one hour. ‘Gap’ denotes
the percentage gap γ to the optimal or best known solution of the corresponding
instance. It is printed in bold face if the corresponding algorithm produced a solution
with a better or equal value than the other version of the Feasibility Pump. The
gap is calculated as

γ := 100 ·
(c̃ − c⋆)

|c⋆|

with c̃ being the value of the heuristic solution and c⋆ being the optimal or best
known solution value of the instance. If c̃ = c⋆ we define γ := 0. If c̃ > c⋆ and
c⋆ = 0 we define γ := ∞. The instances displayed in italics in the tables are those
for which we do not know the optimal solution. In this case we compare to the best
solution we know, which was either generated by CPlex 9.1 running for an hour
with default settings, retrieved from the Miplib 2003 web site [1], or produced by
one of the Feasibility Pump versions.

Column ‘Time’ shows the time in seconds to find a solution. ‘Iter’ and ‘Rst’
represent the total number of pumping rounds and restarts, respectively, applied
in Stage 1 and Stage 2. The stage at which the solution was found is shown in
Column ‘St’. The geometric means at the bottom of Table 2 are calculated over all
instances for which a solution was found by both versions of the Feasibility Pump. In
the calculations of the geometric means individual values smaller than 1 are replaced
by 1.

As one can see in the tables the Objective Feasibility Pump produced a strictly
better solution in 89 out of 121 cases, whereas the unmodified Feasibility Pump
ranked first in 17 cases. On 11 instances both versions computed the same objective
value, and for 4 instances both versions were not able to find any feasible solution
within one hour. Only on one instance, namely acc-6, the original version could
find a solution while the Objective Feasibility Pump did not succeed.

The running times usually differ only slightly in terms of absolute numbers. Only
on some instances the Objective Feasibility Pump was significantly slower, namely
on air04, dano3mip, momentum3, mzzv42z, rd-rplusc-21, the three dano instances,
on qap10, acc-6, and neos16. However, for all those instances except acc-6 a
better solution was found. The Objective Feasibility Pump was substantially faster
on momentum1, protfold, t1717, icir97 potential, and neos10. Nevertheless,
the solutions on these instances are at least as good as the ones of the unmodified
Feasibility Pump. The quality improvement can also be seen in the geometric means:
The mean gap was reduced from 55.0% to 29.5%, while the running time increased
only slightly.

The different behavior of the two Feasibility Pump versions is displayed in Fig-
ure 1 for selected problem instances. The figures show the evolution of the objective
values of the LP solutions x⋆ and their fractionalities f(x⋆) during the course of the
algorithm. The graphs on the left hand side arise from the unmodified version, while
the ones on the right hand side arise from the Objective Feasibility Pump.

In the upper plots (aflow40b) one can see that the original version of the Feasi-
bility Pump rapidly left the region of small objective values while the fractionality
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Figure 1. Evolution of the objective value and sum of fractionalities for aflow40b,
rococoB11-010000, and rout.
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measure decreased quite fast. However, the algorithm was not able to drive the
solution to integrality before restarting at iteration 10. At this point, the objective
value was already far away from the optimal solution. In contrast, the Objective
Feasibility Pump stayed much closer to the optimal solution value of 1168 but did
not decrease the fractionality measure as fast. Nevertheless, after 15 iterations a
feasible solution was found with an objective value that was already exceeded after
four iterations of the unmodified Feasibility Pump.

The two plots of rococoB11-010000 show an example where both versions pro-
duced a similar solution in the same number of iterations, although the two algo-
rithms behaved differently. Again, the unmodified Feasibility Pump increased the
objective value and decreased the fractionality faster than the Objective Feasibility
Pump.

The bottom plots (rout) show a situation where the Objective Feasibility Pump
is inferior. The original version performed 35 restarts, most of which can be seen
as spikes in the fractionality graph. The last random perturbation at iteration 96
“coincidentally” produced a feasible solution. The Objective Feasibility Pump did
not succeed to drive the fractionality to a value less than 0.5 until the last two
iterations. Only six restarts were performed. Interestingly, the cycle between two
points from iteration 12 to 30 was left without a restart just by decreasing α.

As already shown by Fischetti, Glover, and Lodi [8] and Fischetti, Bertacco, and
Lodi [7] the Feasibility Pump is a useful heuristic for mixed integer programming,
because it usually finds feasible solutions in a reasonable amount of time. Our results
show that the modification presented in this paper further improves the Feasibility
Pump: The quality of the resulting solutions is substantially enhanced with only a
slight increase in the running time.
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Original Feasibility Pump Objective Feasibility Pump

Name Objective Gap % Time Iter Rst St Objective Gap % Time Iter Rst St

10teams 958 3.7 1 6 0 1 952 3.0 5 79 16 1

a1c1s1 17762 53.2 1 8 0 1 16076.6 38.6 1 29 0 1

aflow30a 2549 120.1 0 7 1 1 4105 254.5 0 40 0 1

aflow40b 7682 557.7 0 22 3 1 2049 75.4 0 15 0 1

air04 58608 4.4 15 4 0 1 57298 2.1 164 51 9 1

air05 30883 17.1 3 3 0 1 26942 2.2 8 7 0 1

arki001 7.75064e+06 2.2 12 797 67 3 7.70474e+06 1.6 10 737 62 3

atlanta-ip 166.014 74.7 45 128 23 2 138.012 45.3 56 65 5 1

cap6000 -2.37503e+06 3.1 0 2 0 1 -2.42701e+06 1.0 0 30 0 1

dano3mip 1000 43.3 30 1 0 1 769.25 10.2 383 70 1 1

danoint 93 41.6 1 174 197 3 87 32.5 3 245 172 2

disctom -5000 0.0 9 6 0 1 -5000 0.0 11 22 0 1

ds – – >3600 265 4 2 – – >3600 254 6 2

fast0507 245 40.8 20 1 0 1 179 2.9 21 8 0 1

fiber 4.01694e+06 889.6 0 6 2 1 1.20751e+06 197.5 0 29 0 1

fixnet6 9283 133.1 0 3 1 1 4807 20.7 0 29 0 1

gesa2-o 4.91411e+07 90.6 0 15 3 2 2.6504e+07 2.8 0 29 0 2

gesa2 2.82478e+07 9.6 1 9 1 2 2.67652e+07 3.8 1 29 0 2

glass4 5.20005e+09 333.3 0 159 96 2 3.10003e+09 158.3 0 183 45 2

harp2 -6.06939e+07 17.9 0 43 13 1 -5.58762e+07 24.4 0 368 67 2

liu 6378 444.2 0 1 0 1 4100 249.8 1 168 17 1

manna81 -12891 2.1 0 6 0 2 -12894 2.1 0 8 0 2

markshare1 362 36100.0 0 3 0 1 194 19300.0 1 66 4 1

markshare2 1523 152200.0 0 2 0 1 365 36400.0 0 69 1 1

mas74 18692.3 58.4 0 3 0 2 19033.1 61.3 0 106 12 1

mas76 72860.6 82.1 0 2 0 1 50124 25.3 0 107 15 1

misc07 4100 45.9 1 37 6 1 3425 21.9 0 129 24 1

mkc -288.01 48.9 0 3 0 1 -289.95 48.6 0 13 0 1

mod011 -2.38751e+07 56.2 0 1 0 1 -4.56201e+07 16.4 1 12 0 1

modglob 3.08143e+07 48.6 0 1 0 1 2.10876e+07 1.7 0 63 24 1

momentum1 359238 3.7 818 416 186 3 346535 0.0 223 351 118 3

momentum2 – – >3600 504 139 3 – – >3600 522 158 3

momentum3 509585 37.7 272 148 26 1 420724 13.7 599 173 13 1

msc98-ip 3.02737e+07 30.1 34 19 0 1 3.02655e+07 30.1 38 81 10 1

mzzv11 -11286 48.0 118 688 114 3 -17688 18.6 112 699 75 3

mzzv42z -12472 39.3 22 21 6 1 -15470 24.7 78 696 117 3

net12 337 57.5 8 103 52 1 337 57.5 14 257 66 2

noswot -26 36.6 0 2 0 1 -40 2.4 0 30 0 2

nsrand-ipx 78240 52.8 0 2 0 1 89120 74.1 1 10 0 1

nw04 19124 13.4 3 2 0 1 17856 5.9 9 33 0 1

opt1217 -16 0.0 0 3 0 1 -16 0.0 0 43 1 1

p2756 91972 2844.0 2 799 32 3 89266 2757.4 3 772 41 3

pk1 78 609.1 0 1 0 1 83 654.5 0 57 3 1

pp08a 12180 65.7 1 4 0 1 10940 48.8 0 11 0 1

pp08aCUTS 10750 46.3 0 2 0 1 8530 16.1 0 9 0 1

protfold -10 66.7 683 620 128 3 -12 60.0 268 713 106 3

qiu 1945.5 1564.2 0 1 0 1 625.709 570.9 0 9 0 1

rd-rplusc-21 173065 1.1 375 637 120 3 171182 0.0 790 525 109 3

roll3000 18812 45.5 0 68 17 1 24417.6 88.9 6 536 118 3

rout 1720.82 59.7 0 96 35 2 1773.95 64.6 0 86 6 2

set1ch 72987.8 33.8 1 4 0 1 84167.5 54.3 0 29 0 1

seymour 527 24.6 1 1 0 1 445 5.2 3 8 0 1

sp97ar 9.57074e+08 44.0 3 1 0 1 9.40566e+08 41.5 3 9 0 1

stp3d – – >3600 26 2 1 – – >3600 17 0 1

swath 1630.8 192.4 3 107 13 1 1280.95 129.6 13 238 39 2

t1717 237564 22.9 556 56 10 1 195779 1.3 171 30 0 1

timtab1 1.51227e+06 97.7 1 174 23 2 1.33858e+06 75.0 1 334 30 2

timtab2 1.91798e+06 57.7 1 477 38 2 1.73262e+06 42.5 4 1557 116 3

tr12-30 269910 106.7 0 9 0 1 163794 25.4 0 24 0 1

vpm2 19.5 41.8 0 2 0 1 15.25 10.9 0 10 0 1

Table 1. Comparison of original feasibility pump and objective sensitive version
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Original Feasibility Pump Objective Feasibility Pump

Name Objective Gap % Time Iter Rst St Objective Gap % Time Iter Rst St

bell3a 9.85707e+07 11121.2 0 78 35 2 7.21256e+07 8110.7 0 63 6 2

bell5 4.81498e+07 437.0 0 29 10 2 4.08948e+07 356.1 0 148 37 2

gesa3 3.5368e+07 26.4 0 21 5 2 2.89813e+07 3.5 1 29 0 2

gesa3 o 6.76543e+07 141.7 1 29 8 2 2.87697e+07 2.8 0 29 0 2

l152lav 4781 1.2 0 11 1 1 4757 0.7 0 22 0 1

stein45 45 50.0 0 1 0 1 35 16.7 0 9 0 1

ran8x32 6033 15.0 0 2 0 1 5817 10.9 0 9 0 1

ran10x26 5050 18.3 0 2 0 1 4833 13.2 0 9 0 1

ran12x21 4330 18.2 0 2 0 1 4231 15.5 0 8 0 1

ran13x13 3705 13.9 0 2 0 1 3820 17.5 0 9 0 1

binkar10 1 7170.23 6.3 0 3 0 1 7156.21 6.1 1 3 0 1

eilD76 1616.97 82.6 10 530 113 3 2300.06 159.8 10 575 106 3

irp 12715.3 4.6 2 9 1 1 12162.4 0.0 1 5 0 1

mas284 105336 15.2 0 3 0 1 99522.7 8.9 0 108 8 2

prod1 -42 25.0 0 29 9 1 -53 5.4 0 29 0 1

bc1 3.52343 5.5 2 1 0 1 5.4391 62.9 2 7 0 1

bienst1 72.9757 56.1 0 7 3 1 55.5 18.7 0 57 8 1

bienst2 88.2326 61.6 0 7 4 1 73.6667 34.9 1 60 7 1

dano3 3 629.604 9.2 25 1 0 1 576.345 0.0 47 12 0 1

dano3 4 646.702 12.2 26 1 0 1 576.435 0.0 76 33 0 1

dano3 5 667.574 15.7 26 1 0 1 576.994 0.0 106 21 0 1

mkc1 -522.815 13.9 0 3 0 1 -563.1 7.3 0 7 0 1

neos1 85 347.4 1 189 36 2 68 257.9 1 82 8 1

neos2 898.216 97.5 8 829 117 3 958.977 110.8 7 846 102 3

neos3 1278.4 2241.4 12 809 110 3 1630.21 2885.7 8 762 102 3

neos4 -4.81256e+10 1.0 3 264 152 3 -4.8132e+10 1.0 3 226 119 3

neos5 -4.81256e+10 1.0 4 264 152 3 -4.8132e+10 1.0 3 226 119 3

neos6 137 65.1 4 26 3 1 93 12.0 12 37 0 1

neos7 5.2039e+06 620.8 0 52 23 2 1.10593e+06 53.2 1 91 17 2

nug08 214 0.0 2 2 0 1 214 0.0 3 2 0 1

qap10 442 30.0 27 1 0 1 386 13.5 62 5 0 1

seymour1 435.9 6.1 2 1 0 1 427.063 4.0 3 6 0 1

swath1 499.711 31.8 1 4 0 1 439.106 15.8 2 44 3 1

swath2 1337.12 247.1 0 10 2 1 641.544 66.5 2 40 1 1

acc-0 0 0.0 0 2 0 1 0 0.0 0 2 0 1

acc-1 0 0.0 2 4 0 1 0 0.0 1 3 0 1

acc-2 0 0.0 2 7 0 1 0 0.0 3 7 0 1

acc-3 0 0.0 10 6 0 1 0 0.0 12 7 0 1

acc-4 – – >3600 323 141 3 – – >3600 247 124 3

acc-5 0 0.0 1847 316 116 3 0 0.0 2054 300 110 3

acc-6 0 0.0 1017 305 116 3 – – >3600 481 109 3

ic97 potential 4568 14.7 2 752 24 3 4433 11.3 2 797 20 3

ic97 tension 4487 13.8 1 707 74 3 4539 15.1 1 958 105 3

icir97 tension 7309 13.8 8 718 117 3 7288 13.4 9 783 113 3

icir97 potential 7724 16.6 62 771 17 3 7526 13.7 24 807 16 3

nh97 potential 1598 12.7 10 760 32 3 1554 9.6 17 902 41 3

nh97 tension 1575 4.2 10 1076 59 3 1511 0.0 11 1634 110 3

B10-011000 117462 499.1 1 21 2 1 108472 453.3 1 29 0 1

B10-011001 117109 444.5 0 20 2 1 108472 404.3 1 29 0 1

B11-010000 219275 547.4 2 29 2 1 215163 535.2 1 29 0 1

B11-110001 206342 342.0 3 29 1 1 208823 347.3 4 29 0 1

B12-111111 80931 89.0 46 1368 104 3 83096 94.1 35 855 66 3

C10-001000 255030 2124.4 0 29 4 1 159137 1288.0 0 29 0 1

C10-100001 239789 1135.3 1 29 4 1 134440 592.6 1 29 0 1

C11-010100 146524 450.4 1 33 5 1 136976 414.6 2 29 0 1

C11-011100 130241 488.1 1 9 1 1 128149 478.7 1 29 0 1

C12-100000 534256 1282.7 4 29 0 1 456140 1080.5 5 29 0 1

C12-111100 115593 209.1 2 7 0 1 113210 202.8 2 26 0 1

neos10 2 100.2 41 58 10 1 2 100.2 5 21 0 1

neos16 458 2.0 88 696 67 3 451 0.4 383 857 104 3

neos20 -199 54.1 3 711 48 3 -199 54.1 7 748 70 3

Geom. Mean 55.0 3.2 17.1 4.3 29.5 3.8 53.4 4.6

Table 2. Comparison of original feasibility pump and objective sensitive version (cont’d)
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