
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

THORSTENSCHÜTT, FLORIAN SCHINTKE,
ALEXANDER REINEFELD

Chord#: Structured Overlay Network for
Non-Uniform Load-Distribution

ZIB-Report 05-40 (August 2005)

Chord#: Structured Overlay Network for
Non-Uniform Load-Distribution

Thorsten Scḧutt, Florian Schintke, Alexander Reinefeld

Zuse Institute Berlin (ZIB)

{schuett,schintke,reinefeld }@zib.de

August 31, 2005

Abstract

Data lookup is a fundamental problem in peer-to-peer systems: Given a
key, find the node that stores the associated object. Chord and other P2P al-
gorithms use distributed hash tables (DHTs) to distribute the keys and nodes
evenly across a logical ring. Using an efficient routing strategy, DHTs pro-
vide a routing performance ofO(log N) in networks ofN nodes.

While the routing performance has been shown to be optimal, the uni-
form key distribution makes it impossible for DHTs to support range queries.
For range queries, consecutive keys must be stored on logically neighboring
nodes.

In this paper, we present an enhancement of Chord that eliminates the
hash function while keeping the same routing performance. The resulting
algorithm, named Chord#, provides a richer functionality while maintaining
the same complexity. In addition to Chord, Chord# adapts to load imbalance.

1 Introduction

Peer-to-peer (P2P) systems have properties that make them ideally suited for build-
ing large distributed systems: They provide scalability, fault tolerance and, to a
certain extent, local self-organization.

One of the most interesting research problems in P2P systems is thedata
lookup problem: How to find objects in a large P2P system in an efficient and scal-
able manner? Many schemes for routing lookup queries have been proposed [2]:
Network flooding (Gnutella), superpeer networks (KaZaA, FastTrack), unstruc-
tured routing with caching for anonymous data management (Freenet), skip lists

1

(Chord, DKS), tree-like data structures (Kademlia, Pastry, Tapestry), multi-dimen-
sional coordinate spaces (CAN), and many more.

State-of-the-art systems employ a two-stage data lookup: First a hash func-
tion is used to convert the search key into a numeric value and then one of the
above mentioned routing methods is applied to retrieve the object or its metadata.
The first step was considered necessary, because the DHT evenly distributes the
key space over all nodes, thereby avoiding load imbalances, but preventing range
queries.

We present a lookup method that does the routing without DHTs. It has the
same favorable properties and performance as Chord [12] but allows more ex-
pressive queries. We describe our new method along the Chord protocol, but it
can analogously be applied to other P2P systems that are based on DHTs, like
DKS(N,k,f) [1], without influencing their additional properties.

In the remainder of this paper, we briefly recall the purpose of lookup services
and review the Chord protocol. Thereafter, we present our Chord# algorithm,
which is simple to implement, and discuss its performance, both analytically and
empirically.

2 Lookup Services

One major challenge in building large distributed systems is to devise alookup
servicethat scales over millions of nodes and allows to add or remove nodes at any
time without disrupting or compromising the service. We distinguish three kinds
of lookup services: name, directory, and discovery services.

Name servicesprovide a mapping between names and attributes. They are used
by clients to obtain attributes of resources, services or objects when given their
name. The named entities can be of many types: They may hold the addresses
and other details of users, computers, networks, or objects. The Internet DNS
(domain name service) is an example of a distributed name service. It maps domain
names to IP numbers. It does so by looking up the domain names in a hierarchy
of tables stored in routers or computers. If one DNS server does not know how
to translate a particular domain name, it asks the server in the next higher layer of
the DNS hierarchy, and so on, until the correct IP address is returned. Thereby,
the DNS system creates an overlay network for its own metadata management.
Caching schemes have been introduced for faster access with less network traffic,
but nonetheless the principle behind DNS is a simple hierarchical scheme.

Directory servicesare inverse to name services: Given a list of attributes, a
directory search returns name(s) or address(es) of that item(s). With a directory
search, it is possible to answer queries like “Give me all PDF articles stored on

2

���������	��
����
����� �
	� ���� ���� �� ���

��� �����
��

�� ���
� � �	����	
������ �� � �� ���
� 	�� � ���� ��
	�

nodes

keys

Figure 1: Architectural layout of a lookup service

this computer that have been published by Donald Knuth before 1995”. Directory
services resemble the yellow pages in the telephone directory. Microsoft’s Active
Directory Services, the X.500 and its lean variant LDAP are typical examples of
directory services.

Discovery servicesgo one step further. They allow services to register them-
selves in spontaneous networks for later lookup. The Java-based Jini, the UDDI
web service, and the Globus MDS-2 are typical examples of discovery services
that provide standard interfaces and schemas for registering and finding services in
distributed systems.

General Layout of a Lookup Service. Fig. 1 depicts the general structure of a
lookup service [5]. Thecommand processing and query optimizationshown at the
top accepts user commands. Basic file access commands like ‘ls /usr/etc’ or ‘cat
file’ are directly forwarded to the next lower level, while more difficult commands
like a query for Knuth’s papers published before 1995 require some pre-processing
in the query optimizer.

Theaddress calculationor routing layerbetween the command processing and
the data access is needed in distributed systems for finding the nodes holding the
required data. In DNS, for example, the routing is done by a lookup in a network
router table and in Globus by a service call to MDS. In P2P systems – the topic of
our paper – the routing can be done with Chord# on a ring-like overlay network as
shown in Fig.1.

Thedata accessis responsible for the actual file access. It accesses the node
specified by the router and returns its contents to the user.

Lookup in P2P Systems. P2P systems blur the distinction between the client
and server roles. When a client node enters the P2P system, it also contributes

3

server capacities to the network. This makes the system scalable even in very large
environments with a dynamically changing number of nodes.

Many current P2P systems usedistributed hash tables (DHTs), which are a
variant of consistent hashing [6]. A DHT maps the keys to a ring in a load-balanced
way. Any publisher that wants to publish a named object must first apply a hash
function to convert the name to a numeric value and then callslookup(hash
(key)) which yields the network location of the node currently responsible for
the key. Finding objects works in the same way, a consumer who wants to re-
trieve that object also applies the hash function to the key of that object, then
callslookup(hash(key)) and thereafter retrieves the object from the resulting
node.

Nodes that join the system are also placed in the logical ring. Their position is
determined by applying the hash function to a unique id of the node. The uniform
distribution of nodes and keys is determined by the hash function and cannot be
influenced at runtime.

Performance Metrics. We distinguish four kinds of performance metrics.
The routing performanceis the average number of network hops traversed for

finding objects.
Theentry loaddenotes the number of key-value pairs each node is responsible

for. In Chord, the DHT distributes the entry load uniformly over all participating
nodes.

The query loaddenotes the average number of queries that are processed by
a node in a given time. It depends on the entry load and the distribution of the
queries. In practice, the query load is not uniformly distributed, but some popular
keys are retrieved more often than the large majority. With Chord, all queries for
a popular item [11, 13] are served by a single node only. Our approach allows to
distribute the nodes according to any load demand.

The routing load denotes the amount of routing operations performed by a
node in a given time interval. It is affected by the popularity of some well-known
servers which are used by many users as access points for submitting their queries.
Imbalances in the routing load can be reduced in Chord and Chord# likewise by
introducing an additional overlay network.

3 Traditional Chord

In Chord [2, 12], each peer is responsible for the management of a certain fraction
of the data. The peers are organized in a logical ring topology. Each retrieval
operation is forwarded to a node that is nearer to the location until the location is

4

found. As shown for node 0 in the left part of Fig.2, each node holds afinger table
containing the addresses of the node halfway, quarter-way,1

8 -way, 1
16 -way, . . .,

around the ring. When a node receives a query, it forwards it to the node in its
finger table with the highest ID not exceedinghash(key) . This way, the distance
is reduced in each step by a power of two, resulting inlog(N) hops in networks of
N nodes.

In a dynamic network, the finger tables may become outdated whenever nodes
enter or leave the system. Still, the system is able to locate all keys. A newly
entering noden inserts itself into the ring by asking an arbitrary node to look upn’s
key. It then sets its own successor pointer and updates the predecessors successor
list. The rest of the finger table entries can be either copied from its predecessor
or updated later on during the routing. It is easy to see that even when the finger
list is out-of-date or corrupt, Chord still makes progress – just a little bit slower.
If all finger entries should fail, each Chord node has additionalr pointers to itsr
immediate successors that can be used for routing.

The pointers are calculated in the key-space rather than in the node-space. The
pointers refer to the nearest node with a greater id in the ring (see Fig.2). The
distinction between key- and node-space is not necessary for Chord, because keys
and nodes are randomly distributed across the ring by the hash function [6].

4 Chord#

The key idea of Chord# is to substitute Chord’s hash function by a key-order-
preserving function and adjusting the finger tables accordingly.

In Chord, the DHT ensures that the keysand nodes are evenly distributed
over the ring. This allows Chord to compute the placement of its pointers in
the key space rather than the node space. The entries in the finger table cross
1
2 , 1

4 , 1
8 , . . . , 1

2m of the keys (Fig.2), thereby guaranteeing a routing performance
of O(log N).

In Chord#, we eliminated the hash function to allow range queries and active
load-balancing for various criteria, like changing the query or entry load. As a
result, the keys are not uniformly distributed over the key space but follow some
density function. In order to maintain the same logarithmic routing effort as Chord,
we need to compute the pointers in such a way that they cross1

2 , 1
4 , 1

8 , . . . , 1
2m of

thenodesin the ring.
Fig. 2 shows what would happens when the standard Chord pointer placement

algorithm would be used in a ring without evenly distributed nodes. As Chord cal-
culates the pointees independently of the node distribution, several pointers would
point to the same node. This reduces the effective size of the routing table and

5

5

0
1

2

3

4

6

7
8

9

15

14

13

12

11

10

(8,9]

(9,11]

(0,8]

5

0
1

2

3

4

6

7
8

9

15

14

13

12

11

10

(11,0]

1/2
1/4

1/8

1/16

1/8
1/16

1/2, 1/4

(8,9]

(9,11]

(0,8]

(11,0]

Figure 2: Pointers in Chord (left) vs. pointers in Chord# (right)

thereby the routing performance. Chord# on the other hand guarantees almost per-
fect usage of the routing table. The116 and1

8 pointers point to the correct nodes, the
1
4 th and1

2nd pointers are useless in this scenario as there are only22 nodes in the
system, which needs only 2 pointers. (Note: the names of the pointers are based
on Chords scheme.)

4.1 Handling Non-Uniform Distributions

Assuming a ring with equally loaded nodes which are not evenly distributed across
the ring, because the keys are no longer evenly distributed, we now investigate the
distribution of nodes across the ring. To describe the node distribution we define
the density functiond(x) over the key space. It gives for each pointx in the key
space the reciprocal of the width of the corresponding interval.

As Chord is based on consistent hashing the following theorem holds true [6].

Theorem 1 (Consistent Hashing):For any set ofN nodes andK keys, with high
probability [12]:

1. Each node is responsible for at most(1 + ε)K
N keys

2. When node(N + 1) joins or leaves the network, responsibility forO(K
N)

keys changes hands (and only to or from the joining or leaving node).

For Chord withN nodes and a key space size ofK = 2m the density function
can be approximated byd(x) = N

2m (the reciprocal ofKN andK = 2m).

Lemma 1 The integral overd(x) equals the number of nodes in a rangea to b.
Hence, the integral over the whole key space is:∫

keyspace

d(x) dx = N.

6

Proof. We first investigate the integral of an interval fromai to ai+1, whereai

andai+1 are the left and the right end of the key range owned by a node.

ai+1∫
ai

d(x) dx
?= 1.

Becauseai andai+1 mark the begin and the end of one interval served by one
node,d is constant for the whole range. The width of this interval isai+1 − ai

and therefore according to its definitiond(x) = 1
ai+1−ai

. Because we choseai and
ai+1 to span exactly one interval, the result is one, as expected.

The integral over the whole key space equals the sum of all intervals, which is
N : ∫

keyspace

d(x) dx =
N−1∑
i=0

ai+1∫
ai

d(x) dx = N

Lemma1 can be used, e.g., to predict the number of nodes in the systemÑ
having an approximation ofd(x), d̃(x). Nodes can compare12 log(Ñ) with their
observed average routing performance to evaluate the quality of theird̃(x) and
take actions to improve it. For dynamic systems it is unreasonable to assume exact
knowledge ofd.

4.2 Pointer Placement Algorithm

Both, Chord and Chord# use logarithmically placed pointers, so that searching is
done inO(log N). Chord, in contrast to our scheme, computes the placement of
its pointers in the key space. This ensures that with each hop the distance in the
key space to the searched key is halved, but it does not ensure that the distance
in the node space is also halved. So, a search may need more thanO(log N)
network hops. According to Theorem1, the search in the node space takes with
high probabilityO(log N) steps. In regions with less than average sized intervals
(d(x) � N

K) the routing performance degrades.
In a noden, Chord places the pointerspk according to the following scheme:

pk = (n + 2k−1) mod2m, 1 ≤ k ≤ m (1)

Using our integral approach from Lemma1 and the density functiond(x), we
develop an equivalent pointer placement algorithm as follows. First, we take a
look at the farthest pointerpm. It points ton + 2m−1 when the complete key space

7

has a size of2m. This corresponds to the opposite side ofn in the Chord ring.
With a total ofN nodes this pointer links to theN2 -th node to the right withhigh
probabilitydue to the consistent hashing theorem.

With equation1 it is now possible toexactlypredict one keypm which is stored
on theN

2 -th node to the right.

pm∫
n

d(x)dx =
N

2

Other pointers to theN4 -th, . . . ,N
2i -th node can be calculated accordingly. Point-

ers that wrap around must be handled separately.
As a result we can now formulate the following more flexible pointer placement

algorithm:

Theorem 2 (Chord Pointer Placement Algorithm): For Chord the following
two pointer placement algorithms are equivalent.

1. pi = (n + 2i−1), 1 ≤ i ≤ m

2.
∫ pi

n d(x) dx = 2i−1

2m N, 1 ≤ i ≤ m

Proof. To prove the equivalence, we setd(x) = N
2m according to Theorem1.∫ pi

n
d(x) dx =

2i−1

2m
N

∫ pi

n

N

2m
dx =

2i−1

2m
N

N

2m
(pi − n) =

2i−1

2m
N

pi = n + 2i−1

Chord balances the entry load with its hash function which uniformly dis-
tributes the key-value pairs over the nodes. In Chord# we lost this ability by
substituting the hash function with the identity. Therefore, we need to explicitly
implement load-balancing between nodes.

So overall we gained range queries and kept most of the features of the tra-
ditional Chord. But the load-balancing gets a little bit more complicated and we
still have to find a method to predictd(x). For the former we refer to existing
mechanisms like [3] and the latter will be described in the next section.

8

Pointer Placement in Chord#. In the following, we will analyze the pointer
placement algorithm (ref. Theorem2) in more detail.

pi∫
n

d(x) dx =
2i−1

2m
N, 1 ≤ i ≤ m

First we split the integral into two by introducing an arbitrary pointX betweenn
andpi so that the value of both integrals is the same:

X∫
n

d(x) dx +

pi∫
X

d(x) dx =
2i−2

2m
N +

2i−2

2m
N

We further split this equation into two and assume that the value of both inte-
grals is the same:

X∫
n

d(x) dx =
2i−2

2m
N (2)

pi∫
X

d(x) dx =
2i−2

2m
N (3)

In Eq. 2, the only unknown isX but comparing it to Theorem2, we see that
X = pi−1. Applying Theorem2 to Eq.3 again we get

pi∫
pi−1

d(x) dx = 2i−2−m+k, 1 ≤ i ≤ m

which is equivalent to
pi = pi−1i−1 (4)

So, instead of approximatingd(x) for the whole range betweenn andpi, we
split the integral into two parts and treat them separately. The integral fromn to
pi−1 is equivalent to the calculation of the pointerpi−1. The remaining formula is
equivalent to the calculation of thei− 1-th pointer of the node atpi−1.

We thereby derived a recursive formula for placing the pointers where the re-
cursion ends with the successor of the current node, which makes the density func-
tion d(x) unnecessary in practice.

9

Theorem 3 (Chord# Pointer Placement Algorithm): A pointer placement al-
gorithm, that allows range queries and gets rid of the density function.

pointeri =
{

direct successor : i = 0
pointeri−1.pointeri−1 : i 6= 0

So, to calculate the 2nd (ith) pointer, a node simply asks his neighboring node
(i − 1th pointer) for his 1st (i − 1th) pointer. In general, the pointer of one level
is set to the neighbor’s neighbor on the next lower level. On the lowest level, the
pointer references to the direct neighbor.

Note that the density function is completely eliminated in this pointer place-
ment algorithm – it is never computed! The density function is only used in our
theoretical analysis to prove the correctness of the pointer placement algorithm.

For dynamic systems the pointers have to be updated from time to time. How-
ever in Sect.5 we show that the routing performance degrades gracefully. Taking
into account that the update of one pointer needs only one network-hop, the mainte-
nance overhead for dynamic systems is comparable to other Chord-based systems.
Node join and leave operations are done exactly the same way as in Chord [12].

5 Empirical Results

The following analysis supports the following two issues empirically: (a) that we
can still route inO(log N) and (b) that the pointers adapt tod fast. For the sim-
ulation we used a corpus of 629,228 English words [7]. Apart from words, that
are used in daily life, the corpus also contains short sequences of symbols/digits
like ‘1876-1909’. This corpus fits our needs particularly well because it contains
word frequencies as well. We used the frequencies to simulate common user be-
havior where a few words are searched for very often whereas the rest is seldomly
searched for (Zipf distribution [13]). We also simulated the system with evenly
distributed query- and entry-load with almost the same results as with the Zipf
distribution.

The load-balancing algorithm used in the experiments is not intended for real-
world P2P-systems. We just implemented a simple algorithm to evenly distribute
the entry load across the nodes. For scalable load-balancing algorithms we refer
the reader to other work like e.g. [3], which can be combined with our approach.

Routing Performance. For the results presented in Tab.1 we created rings of
different sizes with all words already inserted (ie. evenly distributed entry load).
The pointer placement algorithm was run for approx.2 log N rounds and then

10

avg. hops avg. hops
nodes theory practice # nodes theory practice

2 0.50 0.50 512 4.50 4.50
4 1.00 1.00 1,024 5.00 4.99
8 1.50 1.50 2,048 5.50 5.50

16 2.00 2.00 4,096 6.00 6.00
32 2.50 2.50 8,192 6.50 6.50
64 3.00 3.00 16,384 7.00 7.00

128 3.50 3.50 32,768 7.50 7.50
256 4.00 4.00 65,536 8.00 8.00

Table 1: Empirical analysis of the routing performance of Chord#: Just one entry
differs by only0.5%

20,000 queries were executed. The word frequencies were used to search for com-
mon words more often than for other words—the query load was Zipf distributed.
The average routing performance for the queries is shown in Tab.1. The measured
performance matches the theoretical results almost perfectly.

This experiment confirms our analytical results: it is indeed possible to route
with O(log N) in absence of hash functions.

Adaptation Speed. In Fig. 5 the adaptation speed is depicted. The x-axis shows
the number of pointer updates per node whereas the y-axis shows the average rout-
ing performance for a set of 20,000 queries. For this test we also created load-
balanced rings with all words inserted and then we flushed the routing tables. For
each round we ran the pointer placement algorithm once on each node (the node or-
der was randomized) and afterwards the 20,000 queries were issued. Afterlog N
rounds the expected performance was reached.

The routing performance should have converged afterlog N updates because
with each update one entry in the routing table gets the correct value. After the
first update only the neighbor is exactly known, all other entries are either empty
or contain random values. For each following run at least one further entry gets
the correct value because of the recursive definition of the pointer placement algo-
rithm. So for a static systemlog N updates are needed, for dynamic systems more
runs may be necessary, but the routing performance converges tolog N after few
updates.

11

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

av
er

ag
e

nu
m

be
r o

f h
op

s

number of pointer updates per node

measured value
theoretical value

(a)214 nodes.

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

av
er

ag
e

nu
m

be
r o

f h
op

s

number of pointer updates per node

measured value
theoretical value

(b) 215 nodes.

 1

 2

 4

 8

 16

 32

 1 2 4 8 16 32

av
er

ag
e

nu
m

be
r o

f h
op

s

number of pointer updates per node

measured value
theoretical value

(c) 216 nodes.

Figure 3: Convergence of the routing performance for 16k, 32k and 64k nodes

12

0 ni + 1
1 ni + 2
2 ni + 4
3 ni + 8
4 ni + 16
...

...
l ni + 2l−1

0 ni + 1 ni + 2 ni + 3
1 ni + 4 ni + 8 ni + 12
2 ni + 16 ni + 32 ni + 48
3 ni + 64 ni + 128 ni + 192
4 ni + 256 ni + 512 ni + 768
...

...
...

...
l ni + 4l−1 ni + 2 · 4l−1 ni + 3 · 4l−1

a) Routing table for Chord b) Routing table for DKS withk = 4

Figure 4: Routing tables in DKS withl entries fork ∈ {2, 4}

6 Chord# Extensions

All extensions of Chord can be analogously applied to Chord#; we show this using
DKS [1] as an example. In comparison to Chord DKS provides improvements of
the maintenance overhead and of the routing performance. Arbitrary keys can
be found inO(logk N) instead ofO(log2 N) wherek can be chosen arbitrarily
at startup time. Chord# is orthogonal to the DKS extensions therefore we can
combine them and get the optimal of both approaches.

Fig. 4 shows routing tables generated by Chord# equivalent to the DKS ones
for k ∈ {2, 4} (ni + x denotes thexth neighbor of the i-th node), where DKS
for k = 2 is equivalent to Chord. The recursive definition of pointer placement
algorithm fork > 2 is ambiguous. We can (a) use different numbers of hops which
may improve the convergence (e.g.ni +64+64 = ni +32+32+32+32) and (b)
split the covered area in different ways (ni +32+16 = ni +16+32). Nonetheless
it is possible to implementO(logk N)-routing in Chord#.

7 Related Work

After Chord [12] and CAN [9] have been published in the year 2001 several other
systems with similar capabilities came up. Many recent publications focus on im-
provements to these existing systems. Range queries belong to a group of problems
for which no satisfactory solutions are known yet [4, 8].

Perhaps the most interesting approach isMercury [3]. Similar to our work
it does not use a hash function and therefore has to cope with an uneven node
distribution. In Mercury, the individual nodes use random walk sampling to de-
termine the density functiond which causes a lot of traffic for maintaining the

13

network. Chord#, in contrast, does not explicitly compute the density function and
therefore has less CPU-time and communication overhead. Multi-attribute range
queries, which we did not discuss in this paper, can be implemented analogously
to Mercury in our system.

8 Conclusion

DHTs are state-of-the-art in P2P lookup, because they uniformly distribute the key
space over all nodes. However, they do not allow to balance the query load and they
do not support range queries. We presented an enhancement to the Chord algorithm
that performs a data lookup without using DHTs. The resulting scheme, named
Chord#, provides a richer functionality while maintaining the same complexity as
Chord. In contrast to Chord, Chord# is able to adapt to imbalances in the query
load and it supports range queries.

These new features can be used to improve lookup services in distributed sys-
tems like name, directory, and discovery services. Moreover, they provide the
means for handling more complex queries, like relational or attributed queries. In
attributed databases it is not feasible to build indexes. Rather, we store each ob-
ject descriptor ink nodes, one for each of itsk keys. To answer the query “give
me all PDF files written by Donald Knuth before 1995”, for example, the query
optimizer (ref. Fig.1) first asks the node that is responsible for ‘author=Knuth’,
intersects the results with the range query ‘< 1995’ and finally with all result-
ing documents of ‘type = PDF’. Such queries require to pass a second parameter
lookup(key,query()) to the backend. For query optimization purposes, it
would be helpful to maintain the cardinality of the data objects in the metadata.

Acknowledgements

This work was funded by the Zuse Institute Berlin as part of a long-term research
project [10] on the design of an attribute-based distributed data management sys-
tem.

References

[1] L. Alima, S. El-Ansary, P. Brand and S. Haridi. DKS(N,k,f) A family of
Low-Communication, Scalable and Fault-tolerant Infrastructures for P2P ap-
plications. In the 3rd International workshop on Global and P2P Computing

14

on Large Scale Distributed Systems, (CCGRID 2003) (Tokyo, Japan), May
2003.

[2] H. Balakrishnan, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Lookup
up data in P2P systems.Communications of the ACM, 46(2), February 2003.

[3] A. Bharambe, M. Agrawal and S. Seshan. Mercury: Supporting Scalable
Multi-Attribute Range Queries. InSIGCOMM 2004, August 2004.

[4] N. Daswani, H. Garcia-Molina and B. Yang. Open Problems in Data-sharing
Peer-to-peer Systems. InICDT 2003, January 2003.

[5] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica.
Complex queries in DHT-based peer-to-peer networks. InProceedings of
IPTPS02, March 2002.

[6] D. Karger, E. Lehman, T. Leighton, R. Panigrah, M. Levine and D. Lewin.
Consistent hashing and random trees: distributed caching protocols for re-
lieving hot spots on the World Wide Web. InProceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 654 – 663. ACM
Press, May 1997.

[7] G. Leech, P. Rayson and A. Wilson. Word Frequencies in Written and Spoken
English: based on the British National Corpus. Longman, London, 2001.

[8] S. Ratnasamy, S. Shenker, and I. Stoica. Routing algorithms for DHTs: Some
open questions. 2002.

[9] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. ACM SIGCOMM 01, San Diego, CA, USA,
2001.

[10] A. Reinefeld, F. Schintke and T. Schütt. Scalable and Self-Optimizing Data
Grids. Chapter 2 (pp. 30 - 60) in: Yuen Chung Kwong (ed.), Annual Review
of Scalable Computing, vol. 6, June 2004.

[11] M. Ripeanu, I. Foster and A. Iamnitchi. Mapping the Gnutella Network:
Properties of Large-Scale Peer-to-Peer Systems and Implications for System
Design. InIEEE Internet Computing Journal, 2002.

[12] I. Stoica, R. Morris, M.F. Kaashoek D. Karger, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for Internet application. InProceed-
ings of ACM SIGCOMM, August 2001.

15

[13] G. Zipf. Relative Frequency as a Determinant of Phonetic Change. Reprinted
from Harvard Studies in Classical Philiology, 1929.

16

	Introduction
	Lookup Services
	Traditional Chord
	Chord#
	Handling Non-Uniform Distributions
	Pointer Placement Algorithm

	Empirical Results
	Chord# Extensions
	Related Work
	Conclusion

