

Konrad-Zuse-Zentrum
für Informationstechnik Berlin

Yakov Novikov Raik Brinkmann

Foundations of Hierarchical SAT-Solving

ZIB-Report 05-38 (August 2005)

Takustraße 7
D-14195 Berlin-Dahlem

Germany

 1

6th International Workshop on "Boolean Problems" 2004, Freiberg University of Mining and Technology, Institute
of Computer Science, September 23-24, pp. 103-142, 2004

Foundations of Hierarchical SAT-Solving*)

 Yakov Novikov Raik Brinkmann
 Konrad-Zuse-Zentrum für Infineon Technologies AG
 Informationstechnik Berlin (ZIB) München
 yakov_nov@tut.by Raik.Brinkmann@infineon.com

Abstract

The theory of hierarchical Boolean satisfiability (SAT) solving proposed in this paper is based on a
strict axiomatic system and introduces a new important notion of implicativity. The theory makes
evident that increasing implicativity is the core of SAT-solving. We provide a theoretical basis for
increasing the implicativity of a given SAT instance and for organizing SAT-solving in a
hierarchical way. The theory opens a new domain of research: SAT-model construction. Now
quite different mathematical models can be used within practical SAT-solvers. The theory covers
many advanced techniques such as circuit-oriented SAT-solving, mixed BDD/CNF SAT-solving,
merging gates, using pseudo-Boolean constraints, using state machines for representation of
Boolean functions, arithmetic reasoning, and managing don’t cares. We believe that hierarchical
SAT-solving is a cardinal direction of research in practical SAT-solving.

Keywords: Hierarchical SAT-solving, implicativity

1 Introduction

Currently, state-of-the-art SAT-solvers are becoming the main workhorse in formal verification [1-
6]. It is intuitively clear that further progress in SAT-solving may be achieved by increasing the level
of abstraction used by SAT-solvers, as they should greatly benefit from the high level information. For
combinatorial equivalence checking it has been shown [7] that knowing the high level structure of a
system under consideration is of great theoretical and practical importance. In this paper, we provide
theoretical foundations of hierarchical SAT-solving.

Many tasks from the verification domain, as well as from others, boil down to the question whether
a discrete function with 0-1 domain and finite co-domain is constant. Given a representation of such a
function this problem can be formulated as a Boolean SAT problem by constructing a suitable
combinatorial circuit G and verifying whether a given output realizes a given constant Boolean
function (0 or 1). For example, various approaches for SAT-model construction lead to this
formulation both in hardware verification [1-5], and software verification [6]. Usually, the gates of a
circuit G implement either elementary Boolean functions (low level), bit vector arithmetic or logic
functions (such as addition, comparison, shifting, and multiplexing) on the high level, as opposed to
arbitrary Boolean functions.

Currently, practical SAT-solving (e.g. for Bounded-Model-Checking) is done on the lowest
possible level of abstraction. A problem description that is given on the high level is transformed into
low (gate) level and again into conjunctive normal form (CNF). This procedure has two main
drawbacks: 1) important information about circuit organization on the high level is lost; 2) the size of
the problem under consideration is (dramatically) increased.

Our theory is formulated to overcome these drawbacks. We view gates as blocks and a
combinatorial circuit as a system of blocks to emphasize the fact that blocks can implement complex
functions. (We adopt the concept of blocks for subsequent considerations because it provides an
intuitive way of understanding. However, our approach is not restricted to the hardware domain.) The
basic idea is to operate on blocks during SAT-solving similar to the way clauses are handled in CNFs
currently. Since clauses are used to fix conflicts and to deduce implications, the same ability should be
incorporated into block models.

*) This is a corrected and extended version of the paper. Basic changes are described in Appendix 3.

 2

Our proposed technique is based on two main principles, “encapsulation” and “divide and
conquer”. Encapsulation means that for typical blocks or structures of the application domain special
models are used during SAT-solving which encapsulate information (related to fixing conflicts and
deducing implications). Conceptually, a model can be viewed as a container storing relevant
information in a compact form and allowing for quick access. It is possible that much effort is required
to develop good models for standard blocks, however, these models can be reused effectively in SAT-
solving.

The principle divide and conquer complements the first one. When the workload is distributed
among block models, the SAT-solver effectively becomes a coordinator. The evident gain is that a
SAT-solver needs to branch only on variables describing interconnections between blocks. This results
in a reduction of the search space in comparison to branching on all internal block variables.

Note that the search space can be greatly reduced by branching only on the inputs of a
combinatorial circuit. In this case, SAT-solving is in fact reduced to simulation using Boolean
constraint propagation. However, modern practical SAT-algorithms try to encounter conflicts as early
as possible (e.g. by using special decision making strategies such as VSIDS [8] or similar [9,10], as
well as signal correlation [11]) and deduce new conflict clauses based on clauses topologically close to
the conflicting variables (first UIP conflict analysis strategy [12,13]). Our theory allows using these
popular techniques. In addition it provides a chance to increase the performance of SAT-tools based on
the principles of “encapsulation” and “divide and conquer”.

 Both principles potentially reduce the overall SAT-solving time and validate the concept of
hierarchical SAT-solving. We call our approach hierarchical SAT-solving because it allows for system
structure and uses models of blocks which potentially can be of any complexity. A block model can be
a system of smaller blocks, as well as any mathematical construction satisfying our proposed axiomatic
system.

The efficiency of the SAT-solving process highly depends on the properties of the mathematical
models used in each block. For example, suppose that a block model can propagate signals only
forward (from inputs to outputs). Then this is restrictive for a SAT-solver. For instance, two outputs of
a block may be assigned to 1 whereas this combination of signals is inconsistent with respect to
implemented function. In this case, a contradiction is not detected until all possible value combinations
for block inputs have been tried. In the rest of the paper, we refer to inputs and outputs of a block as
pins.

Now the following questions arise: a) What properties should models of system blocks possess to
be most beneficial from the point of view of hierarchical SAT-solving? b) How can a given model be
improved, if it is not good enough? c) How should the hierarchical SAT-solving process be organized?
The key notion introduced here to answer these questions is “implicativity”. Implicativity is a number
conceptually characterizing the ability of a block to propagate values between its pins. We show that, if
a system (considered as a big block) has maximal implicativity, then SAT-solving for the system
becomes trivial. We show how the implicativity of a model can be measured, increased and extended
up to maximal possible.

The theory proposed here shows that hierarchical SAT-solving boils down to increasing the
implicativity of a system. In particular, this can be done by increasing the implicativity of its blocks
(e.g. during preprocessing). In general, developing models with maximal implicativity is a challenge,
as they have to be able to encapsulate an exponential number of conflicts and implicates. Our optimism
is based on the observation that often typical and regular structures are used for function
representation. Therefore, SAT model designers may focus on these particular cases. We show that
traditional models, including but not limited to CNFs and binary decision diagrams (BDDs), can be
used as block models within our framework. It is important to underline that a mathematical model of a
block can be based on a more powerful system of calculus than general resolution. As a result,
hierarchical SAT-solving can be more powerful in this context than general resolution.

In this work, we show how recent directions of research, currently disjoint but proven to be
efficient, fit into our framework. The considered examples are circuit-oriented SAT-solving [11,14,15],
mixed BDD/CNF SAT-solving [16-20], merging gates [4,21-23], using pseudo-Boolean constraints
[24], using state machines for representation of Boolean functions [25], arithmetic reasoning [26], and
managing don’t cares [27]. All theses techniques directly or implicitly construct block models with
maximal or increased implicativity. Our theory opens a rich domain for incorporating other
mathematical models into practical SAT-solvers.

The paper is organized as follows. First, we introduce our axiomatic system (Section 3) and present
a detailed example (Section 3). Then we formally introduce the concept of implicativity and show how
it can be measured (Sections 4 and 5). The fundamental theorem on hierarchical SAT-solving, which

 3

states that the SAT-solving problem for a block with maximal implicativity is trivial, is presented in
Section 6. Consistent models are discussed in Section 7. Section 8 shows how the implicativity of a
complex block can be estimated. In Section 9, we show that a system of blocks can be treated as any
other block. On this basis, hierarchical SAT solving can be implemented by using different kinds of
blocks (Section 10). In Section 11, we show how other techniques fit into our framework and how they
can be extended. Finally, we conclude and present some ideas for extending this work.

2 Model Specification

We consider blocks on two levels of abstraction. On the low level, the internal organization of a
block is of great importance. There, the main interest is the mathematical model used within the block,
and how it is implemented. We presume that this mathematical model can be arbitrary, for example, a
formula, an algorithm, a combinatorial circuit, or any other system of calculus.

On the high level, the internal structure of a block and the nature of its mathematical model do not
matter (encapsulation). We focus on its communicative aspects only, i.e. we consider a blocks response
under a partial value assignment to its pin variables. Conceptually, we distinguish three types of block
responses. First, a block may recognize that such an assignment is inconsistent with respect to its
mathematical model. In this case, it must report that this assignment is conflicting. Second, if the
affecting assignment is not classified as conflicting, the block can produce a value assignment to some
other pin variables. This action can be interpreted on the high level as proving an implication, i.e. the
assignment implies the response. Third, the block can provide no new information under the
assignment, i.e. the assignment is recognized neither as conflicting nor implying.

It is easy to see that the information provided by blocks in our framework suffices to solve SAT-
problems on higher levels of abstraction by branching only on their pin variables. Our goal is to define
“good behavior” in this context in a strict axiomatic way. It provides the basis for developing good low
level SAT-models to facilitate efficient hierarchical SAT-solving. Furthermore, it can help to reveal
bottlenecks in a system under consideration, i.e. “bad regions” that should be treated very carefully
during SAT-solving, leading to “clever” heuristics for SAT-solvers.

Now we introduce our system of axioms which each block has to satisfy. The fist two axioms
provide the necessary conditions for a block to behave like a usual combinatorial gate.

Axiom 1. A block B has a finite nonempty set of Boolean input and output variables, called pin
variables of the block. ⊗

Axiom 2. A block B corresponds to a Boolean vector function y = Ψ(x), where x is a vector of input
variables of the block, and y is a vector of output variables of the block. ⊗

Note, if a block has no inputs, a constant Boolean function is implemented on each its output. If a
block B has no outputs and x is the vector of its input variables, then this block corresponds to the
“idle” Boolean function ∅ = Ψ(x) which is an abstract mathematical construction used for
completeness of subsequent consideration.

A variable value assignment α will refer to a set of equalities of type x = δ where δ ∈ {0, 1}. An
equality x = δ means that variable x must be assigned to δ and is called an elementary assignment. We
consider only assignments α in which no variable is assigned to opposite values simultaneously. Given
a set of variables S, a partial assignment α to variables of S will be referred to as a value assignment to
a subset S′ of S, i.e. S′ ⊆ S. If S′ = S, we also call α a full (or complete) assignment to S, and if S′ = ∅,
α is an empty assignment to S.

Axiom 3. A block B has a mathematical model M for which a procedure “Boolean constraint
propagation” (BCP) is defined on the set of partial value assignments to its pin variables as follows.
Given a partial assignment α ,
 a) BCP does not change any elementary assignment to a variable present in α .
 b) BCP classifies whether the assignment α belongs to one of the possible abstract types conflicting or

not conflicting.
 c) If the assignment α is not conflicting, BCP can assign values to some unassigned pin variables

(opposite values can not be assigned to the same variable simultaneously), which is denoted as β =
BCP(α) where β is an additional assignment and γ = α ∪ β is a resulting assignment to pin
variables after running BCP. ⊗

 4

If an assignment α is not conflicting and β ≠ ∅, where β = BCP(α), then α implies the assignment
β and we call α an implying assignment. In this case, the model M is said to produce the implication α
⇒ β (or α ⇒ β for M). Let β be an elementary assignment (i.e. a value assignment to only one
variable), then we call α ⇒ β elementary implication. Now if βi is an elementary assignment such that
βi ∈ β , then α ⇒ βi is an elementary implication of the implication α ⇒ β (or α ⇒ βi is an
elementary implication for M).

Thus, the behavior of a block is determined by its BCP-procedure. We use the notion of procedure
to emphasize the algorithmic nature of the model M. The model stores information which is extracted
by the BCP-procedure. We use Boolean constraint propagation for bridging the gap with respect to
traditional BCP on CNF, moreover, as we show in Section 3, the traditional BCP for CNFs satisfies
our system of axioms. In general, BCP-procedures can be quite different depending on the models
used.

Now, we introduce an axiom on monotony which is naturally satisfied by realistic models as shown
in the sequel.

Axiom 4. (Monotone classification) Let α be a partial assignment to the pin variables of a block B, and
let M be a model of B.
a) If an assignment α is conflicting for M, then any assignment α′ containing α is conflicting for M.
b) For any elementary implication α ⇒ βi for M and for any assignment γ such that γ ∩ (α ∪ βi ∪

¬βi) = ∅, there is an elementary implication α ∪γ ⇒ βi or α ∪γ is conflicting for M.
c) For any elementary implication α ⇒ βi for M the assignment α ∪ βi is not conflicting for M. ⊗

The BCP-procedure should be consistent with the vector functionΨ. Now we consider how BCP
and the function Ψ should be coordinated.

Given a full assignment α to inputs of a block B, the assignment (α , Ψ(α)) can be viewed as
permissible complete assignment to pin variables of the block. The Boolean function f(x,y) that is
defined as a characteristic function of the set of all permissible complete assignments to pin variables
of the block B is called the permission (or characteristic) function of the block. If a block B has no
outputs, its permission function f(x) is defined as an arbitrary Boolean function depending on variables
x.

Example 1. Consider a 1-bit adder (Fig.1(a)). It has three
inputs and two outputs where a is the first addend, b is the
second addend, c is the carry input, y is the carry output,
and z is the sum. Let x = (a,b,c), y = (y,z), then the vector
function y =Ψ(x) of the adder is defined by the table
represented in Fig.1(b). The permission function f(x,y) for
the block (Fig. 1(a)) is the Boolean function taking value 1
only on the combinations of values for a,b,c, z, and y
shown in Fig.1(b). ⊗

Recall that a clause (or an elementary disjunction) is a
disjunction of literals where a literal is a Boolean variable
or its negation. From now on, we only consider clauses
that do not simultaneously contain a literal and its

negation. Given a clause d, consider the value assignment α to all variables of the clause such that it is
unsatisfied. Then we say that the assignment α is represented by the clause d. For example, clause a ∨
¬b ∨ c represents the assignment a = 0, b = 1, c = 0 (we omit brackets for the sake of simplicity). Note
that the empty assignment, i.e. one that contains no value assignment to a variable, is represented by
the empty clause. Considered as a Boolean function the empty clause is equivalent to the constant 0.

Let β be an elementary assignment, say β = {x = δ}. Then ¬β denotes the elementary assignment
that assigns an opposite value to the variable x as opposed to β, i.e. ¬β = {x = ¬δ}. Consider an
elementary implication α ⇒ β. We say that a clause d represents the elementary implication α ⇒ β, if
the clause represents the assignment α ∪ ¬β. An explanation of this terminology is the following.
Suppose, d = a ∨ ¬b ∨ c. After assigning a = 0 and b = 1, the only way of satisfying the clause d is to
set c to 1. So, the clause d provides a way to derive c = 1 under the assignment a = 0, b = 1. This kind
of value derivation is used in the standard BCP-procedure for CNFs, which is specified in Section 3.

A clause d is called implicate of a Boolean function f, if f implies d, i.e. (f → d) = 1.
Axiom 5. Let α be a partial assignment to the pin variables of a block B and let β = BCP(α).

 add

c
a

b c

y z

(a)

 a b c z y
 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

(b)
Fig.1 1-Bit-Adder

 5

a) If α is classified to be conflicting under the BCP-procedure of the block, then the clause
representing the assignment α is an implicate of the permission function f of the block.

b) If α implies an assignment β, then for each elementary assignment βi ∈ β the clause representing
the elementary implication α ⇒ βi is an implicate of the permission function f of the block. ⊗

Discussion: A semantic interpretation of conflicting and implying assignments is the following one.
Suppose a Boolean function ϕ(x) is tested to be constantly 0. Let N1 and N0 be its On-set and Off-set
respectively. Let α be a partial assignment to the variables x, and let Cube(α) be the set of all complete
assignments containing α . Let P be a procedure which tries to find a counterexample, i.e. a complete
assignment α′ ∈ N1. Let P first generate some partial assignments α and then try to extend them to find
a counterexample α′ ∈ Cube(α). From the point of view of this procedure, an assignment α is
conflicting, if Cube(α) ⊆ N0, because there is no counterexample α′ ∈ Cube(α). However, if Cube(α)
∩ N1 ≠ ∅, the assignment α can not be classified as conflicting, because it still can be extended to a
counterexample. Thus, an assignment can be classified as conflicting only, if it can be represented by
an implicate of ϕ(x). Note that permission functions play the role of the function ϕ(x) when solving
SAT-instances in our theory. (This is formulated in Lemma 25 given in Appendix more precisely.)

On the other hand, an elementary implication α ⇒ βi is correct, if the assignment α ∪ ¬βi is
potentially conflicting, i.e. Cube(α ∪ ¬βi) ⊆ N0. We say “potentially conflicting”, because we don’t
postulate that a model must recognize conflicts.

Note, the implication α ⇒ βi can be logically deduced from the fact that the assignment γ = α ∪
¬βi is represented by an implicate of the function ϕ(x). Let α = {a = 1, b = 1} and ¬βi = {c =0}, and
let the assignment γ = α ∪ ¬βi be represented by an implicate of ϕ(x). Then γ = {a = 1, b = 1, c = 0} is
potentially conflicting, i.e. all complete assignments satisfying the condition (a = 1) ∧ (b = 1) ∧ (c = 0)
are falsifying ϕ(x). To avoid this potential conflict we should consider assignments satisfying the
complemented condition ¬ ((a = 1) ∧ (b = 1) ∧ (c = 0)) which is equivalent to ¬ ((a = 1) ∧ (b = 1)) ∨
(c = 1). By using (¬A ∨ x) ⇔ (A ⇒ x), the latter formula can be formally transformed into ((a = 1) ∧
(b = 1)) ⇒ (c = 1), i.e. α ⇒ βi. ⊗

A block without outputs is called block-constraint (as opposed to a normal block having at least
one output). We need block-constraints in our theory to describe constraints over variables of the
system under consideration. A block-constraint having a permission function f(x) can classify
assignments to its inputs like a normal block and this classification must correlate with the function
f(x) in accordance to Axiom 5.

Axiom 6. A model M of a normal block B simulates the vector function Ψ of the block, i.e. for each
full value assignment α to the input variables of a block B, the BCP-procedure deduces a full value
assignment β to the output variables of the block, such that β = Ψ(α). ⊗

Axioms 5 and 6 postulate the consistency of the BCP-procedure and the vector function Ψ of a
block.

3 CNF-Based Block Models

Recall that that CNF is defined as conjunction of clauses. We say that a CNF C(x) represents a
Boolean function f(x), if C(x) = f(x). In this section, we show that a CNF representing the permission
function f of a block B is a model of the block under the BCP-procedure for CNF’s described below.

Given a CNF C and a partial value assignment α to variables of the CNF, BCP(α) is defined by the
following procedure. Let C* denote the current CNF, and let γ be the current assignment, and let β be
the current implied assignment. At the beginning, let C* = C, γ = α, β = ∅. The main cycle of the
procedure is started with making all elementary assignments represented in γ. If a clause is equal to 0
under γ, then the procedure reports a conflict, sets β to ∅, and stops. Otherwise, all satisfied clauses
and literals taking the values 0 under γ are removed from the formula, i.e. the latter is transformed to a
new current CNF C*. If there is a unit clause in C*, i.e. a clause containing exactly one literal, say ¬x,
the assignment satisfying the literal is formed and considered as a new current assignment γ (so, we
have γ = {x = 0} for ¬x). The assignment γ is added to β, i.e. β := β ∪ γ. After that the main cycle is
repeated. If there is no unit clause, the procedure stops. In this case, if β ≠ ∅, α is classified to be
implying β, otherwise, α is not conflicting or implying. We call the outlined procedure CNF-BCP.

 6

Below we show that a CNF representing the permission function f of a block B is a model of the
block under CNF-BCP, followed by an example. For subsequent considerations, we use the notation
(α , β) for α ∪ β where α and β are partial assignments and call (α , β) a pattern.

Lemma 1. For any full value assignment α to the input variables of a normal block B there is exactly
one full assignment β to the output variables, such that f(α , β) = 1 where f is the permission function of
the block B.

Proof : All proofs and other Lemmas are presented in Appendix 1. ⊗

Theorem 1. Any implicate of the permission function of a normal block contains at least one output
variable of the block. ⊗

Theorem 2. A CNF representing the permission function f of a block B is a model of the block under
CNF-BCP. ⊗

The following example helps to clarify Theorem 2.

Example 2. Consider an AND gate implementing the Boolean function y =
a ∧ b. The permission function f(a,b,y) of the gate takes value 1 on the
patterns presented in the table of Fig. 2. The CNF C= (a ∨ ¬y) ∧ (b ∨ ¬y) ∧
(¬a ∨ ¬b ∨ y) represents the function f(a,b,y). According to Theorem 2 the
CNF C is a model in our framework. In this case it is the same as the
commonly used model for constructing SAT-instances in the domain of
formal verification [28].⊗

According to Theorem 2 it is easy to show that conventional CNF
representations of gates currently used in EDA domain are models in our
framework.

4 Implicativity

In this section, we introduce the notion of implicativity and show that for each block there is
always a model with maximal implicativity.

Implicativity of a model M for a block is defined as the number of all conflicting and implying
partial assignments to its pin variables. Implicativity can be measured in a straightforward manner by
simulation (i.e. by running the BCP-procedure for all possible partial assignments to pin variables).

Now we consider a model that has maximal implicativity among all possible implementations of a
Boolean vector function Ψ(x).

We say that a clause d2 covers a clause d1, if d1 is a part of d2 (in particular, d1 can be equal to d2).
For example a ∨ ¬b ∨ c covers a ∨ ¬b. It is easy to see that d2 covers a clause d1 iff d1 → d2 = 1, i.e. d1
implies d2. A clause d1 is called a prime implicate of a Boolean function f, if no other implicate d2 of
the function f is covered by d1. It follows from the definition that for any implicate d2 of a function f
some part d1 of d2 is a prime implicate of f. A CNF that consists of all prime implicates of permission
function f is called characteristic CNF of f and is denoted C•. A characteristic CNF is unique for f and
may be considered as normal form for f.

Theorem 3. Given a block B, the characteristic CNF C• of the permission function f of B is a model
with maximal implicativity. ⊗

We say that two clauses c1 and c2 are orthogonal by a variable x, if the clauses contain opposite
literals of the variable (for example c1 contains x, and c2 contains ¬x). Resolution can be defined as an
operation over two clauses c1 and c2 that are orthogonal by exactly one variable x. Let c1 = d1 ∨ x and c2

= d2 ∨ ¬x where d1 and d2 are some nonorthogonal clauses (that can be empty). The result of resolving
the clauses c1 and c2 is the clause d1 ∨ d2 that is called resolvent or product of resolution. For example,
resolution of the clauses a ∨ b ∨ c and ¬a ∨ b ∨ d provides the resolvent b ∨ c ∨ d.

To check whether a CNF C contains all its prime implicates one can test whether there exists a
resolvent of any two clauses of the CNF C that is not already presented in C and does not cover any
clause of C. If there is no such resolvent, then the CNF C contains all its prime implicates.

a b y
0 0 0
0 1 0
1 0 0
1 1 1

Fig. 2: On-set of the
permission function

f(a,b,y) of an AND gate

 7

Example 3. Consider the model of an AND gate discussed in Example 2. It is easy to check that no
pair of clauses can be resolved in the CNF C = (a ∨ ¬y) ∧ (b ∨ ¬y) ∧ (¬a ∨ ¬b ∨ y), because any
two clauses are orthogonal by two variables or by none. Thus, the CNF C is itself the characteristic
CNF C• of the permission function f(a,b,y). Hence, the considered standard model for AND gate has
maximal implicativity. ⊗

It can be shown that commonly used CNF descriptions for the gates implementing elementary
Boolean functions are models with maximal implicativity in our framework. However, this
encouraging picture immediately disappears as soon as one considers a few gates connected within a
combinatorial circuit, as shown in the example below.

Example 4. Consider a circuit of two AND gates having the same input
variables (Fig. 3). The conventional CNF of the circuit is the conjunction
of the gate CNFs: C = (a ∨ ¬y) ∧ (b ∨ ¬y) ∧ (¬a ∨ ¬b ∨ y) ∧ (a ∨
¬z) ∧ (b ∨ ¬z) ∧ (¬a ∨ ¬b ∨ z). Given the assignment y = 0, the
procedure CNF-BCP does not fix a conflict or produces any implicate for
C. At the same time, resolving ¬a ∨ ¬b ∨ y, and a ∨ ¬z, and b ∨ ¬z
results in the resolvent y ∨ ¬z that can be added to C, and that will
provide the implying assignment z = 0 under y = 0. Thus, the
conventional CNF C has not the maximal implicativity.

5 Observable CNF

Implicativity can be considered as an observable characteristic of a model. Suppose we would like
to construct a CNF simulating the model M of a block B. Such a CNF is called observable and is
constructed as follows.

Consider the exhaustive simulation of all possible partial value assignments α to pin variables of
the block B (a more efficient procedure is provided in Section 8.1). At the beginning of the procedure,
the constructed CNF C* is empty. If an assignment α is recognized by the model M to be conflicting,
we add the clause representing α to C*. If an assignment α is classified by the model M to be implying
an assignment β, then for each elementary assignment βi ∈ β we add a clause c representing
elementary implication α ⇒ βi to C*. After finishing the simulation process, clauses covering other
clauses of C* are removed from C* one after another. The resulting CNF C♦ is the observable CNF for
the model M. According to construction an observable CNF C♦ is unique for a model (because the
covering relation on the set C* forms a lattice, and only its minimal elements are kept).

Example 5. Let a block have the CNF C = (a ∨ b ∨ c) ∧ (a ∨ b ∨ ¬c) ∧ (a ∨ ¬b ∨ c) ∧ (a ∨ ¬b ∨ ¬c)
as model. In Fig. 4, the results of exhaustive simulation of the model are presented. The second row
contains the CNF C* after finishing simulation. Each cell in the row lists literals (in a column-wise
manner) of a clause of C* which were obtained under the assignment in the same column of the fist
row. For example under b = 0, c = 0, the value a = 1 is deduced from the first clause of the CNF C. The
clause representing the elementary implication (b = 0, c = 0) ⇒ (a = 1) is a ∨ b ∨ c. Similarly, the
assignment a = 0, c = 0 is conflicting, which is represented by the clause a ∨ c. The observable CNF is
shown in the third row, i.e. C♦ = (a ∨ c) ∧ (a ∨ ¬c) ∧ (a ∨ b) ∧ (a ∨ ¬b). ⊗

a - - - - - - - - - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
b - - - 0 0 0 1 1 1 - - - 0 0 0 1 1 1 - - - 0 0 0 1 1 1
c - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1

 a a a a a a a a a a a a
 b b ¬b ¬b b b b ¬b ¬b ¬b

C*

 c ¬c c ¬c c ¬c c ¬c c ¬c
 a a a a
 b ¬b

C♦

 c ¬c
Fig 4. Constructing an observable CNF

Example 5 also shows that the observable CNF of a model needs not to be equal to its characteristic
CNF, because C♦ = (a ∨ c) ∧ (a ∨ ¬c) ∧ (a ∨ b) ∧ (a ∨ ¬b) but C• = a in the example above.

a
b

y z

Fig.3 Equivalent gates

 8

Now we show that the observable CNF of a model provides an over approximation of its
implicativity.

Let M and M′ be models of the same block B. We say that M and M′ are observably coherent, if for
any partial value assignment α to the block pins they have identical reactions, i.e.:
1. They have no disagreement in classifying α to be conflicting or not, or to be implying.
2. If α is implying, both models deduce the same additional assignment β to the block pins.

Theorem 4. Let CNF C′ contain two clauses c′ and c where c′ covers c. Let C be a CNF obtained from
C′ after removing c′ . If C′ is a model of a block B under CNF-BCP, then C is observably coherent to
C′ under CNF-BCP. ⊗

Let M and M′ be models of the same block B. We say that M observably covers M′, if for any
partial value assignment α to the block pins, observable reaction of both models satisfies the
conditions:
1. If M′ classifies α to be conflicting, M provides the same classification,
2. If α is implying for M′ and M′ deduces an additional assignment β to the block pins under α , then

α is conflicting for M or α is implying and M generates an additional assignment γ under α , such
that β ⊆ γ.

Theorem 5. Let C♦ be the observable CNF for a model M of a block B, then C♦ (under CNF-BCP)
observably covers M. ⊗

Note that we cannot confirm that the observable CNF for a model is observably coherent to the
model. One of the reasons is that the BCP-procedure does not simulate a contraposition law, i.e. if
under assignment x = 0 we deduce y = 0 by using CNF-BCP, we cannot deduce value x = 1 under the
assignment y = 1 in the general case. For example, consider CNF (x ∨ a) ∧ (x ∨ b) ∧ (¬a ∨ ¬b ∨ ¬y).
Making assignment x = 0 and running CNF-BCP(x = 0) we deduce y = 0. But CNF-BCP(y = 1) does
not provide a value for the variable x.

On the other hand, if we learn from the first experiment that has exposed the observable implication
x = 0 ⇒ y = 0, or to put it more precisely, if we add the clause x ∨ ¬y simulating derivation of y = 0
under x = 0 into the model, we immediately provide an ability to deduce backward implication y = 1
⇒ x = 1 by the model under CNF-BCP(y = 1). Therefore, the observable CNF C♦ for a model M is
able to deliver backward implications that are not exposed under BCP in the model M, and we cannot
confirm that the observable CNF C♦ (under CNF-BCP) is observably coherent to the model M.

Note that as soon as we add a clause providing derivation of a backward implication in a model we
increase implicativity of the latter. In our example, the assignment y = 1 will be recognized as
implying, whereas before adding the clause x ∨ ¬y it was not classified as conflicting or implying.

Our brief discussion suggests that the notion of implicativity is of fundamental importance as well
as the idea of increasing implicativity of a model used in SAT-solvers. The next section provides a
theoretical foundation for this point of view.

6 Fundamental Theorem on Hierarchical SAT-Solving

In this section we show that for a normal block with maximal implicativity the considered SAT-
solving problem is trivial (Theorem 6). In the sequel, we consider a CNF also as a set of clauses, where
c ∈ C denotes that a clause c is contained in a CNF C, and C ⊆ C′ denotes that all the clauses of a CNF
C belong to a CNF C′ , and so on.

Theorem 6. Let M be a model of a normal block B, and let M have maximal implicativity. Let y be an
output of the block B. The output y implements a constant Boolean function δ where δ ∈ {0,1} iff the
elementary assignment ¬α = { y = ¬δ } is conflicting or the empty assignment γ = ∅ implies α = { y
= δ } for the model M. ⊗

Note to prove Theorem 6 we use neither Axiom 4 nor Axiom 6. Thus, Theorem 6 is correct in a
more general theory which doesn’t contain these axioms.

It is a well known fact that a CNF containing all prime implicates of the Boolean function realized
by the CNF is easily testable for satisfiability under CNF-BCP. Theorem 6, particularly, shows that in
this case it is also trivial to check whether a CNF representing a permission function is equivalent to a
unit clause. Theorem 6 is of fundamental importance because it holds for any model that satisfies our
axiomatic system and it relates hardness of SAT-solving with the notion of implicativity.

 9

7 Consistent Models

One might want to show that any two models with maximal implicativity for the same block are
observably coherent. However, this is not correct in the general case.

Example 6. Consider again the model of an AND gate (Fig. 2). It is proven (in Example 3) that CNF
(a ∨ ¬y) ∧ (b ∨ ¬y) ∧ (¬a ∨ ¬b ∨ y) is the characteristic CNF C• of the permission function of the
gate. Thus, it is a model with maximal implicativity. Suppose that we perform exhaustive simulation
over all partial assignments to the pin variables of the gate. We record the assignments in a table and
mark each assignment with the reaction of the gate: 1) if the assignment is inconsistent with the gate
functionality, we mark the assignment as conflicting; 2) if the assignment is not conflicting and new
values to the pin variables are deduced, we record the produced assignment. A part of the table is
presented in Fig. 5(a). We can define a table based model for AND gate as follows: given an
assignment, look into the table and deliver the recorded reaction. This “table model” will be
observably coherent to the CNF C• model by construction.

Suppose, we change the first row of the
table as it is shown in Fig. 5 (b). The new
table again is a model of the gate, because:
a) it reproduces the input to output
functionality of the gate, b) it classifies all
the partial assignments exactly as the first
table based model does, and c) it preserves
the monotony of the classification. Indeed,
the only modification is in the first row.
Both models recognize the partial
assignment y = 1 to be implying.
Classification of y = 1 is still monotone in

the second model, as y = 1 ⇒ a = 1 while {b = 0, y = 1} is conflicting and {b = 1, y = 1} is implying.
Thus, both models have maximal implicativity. However, they are not observably coherent, since the
first model produces a = 1, b = 1 under the assignment y = 1, but the second one deduces a = 1 only.

In a sense, the second model is not logically tight. It recognizes b = 0, y = 1 to be conflicting
assignment and y = 1 to be implying assignment, but it does not produce the implication y = 1 ⇒ b = 1
that “logically closes” the considered situation. ⊗

Now we introduce a notion of a consistent model and show that consistent models for the same
normal block are observably coherent and have maximal implicativity.

We call a model M of a block B consistent, if the following conditions hold:

1) For any elementary implication α ⇒ βi for M, the assignment α ∪ ¬βi is conflicting for M.
2) If an assignment α is conflicting for M, then for any elementary assignment βi ∈α the assignment

α′ = α \ βi is conflicting or α′ ⇒ ¬βi for M.

The model from the Table 5.b is not consistent, as the assignment {g = 1, b = 0} is conflicting,
however y = 1 does not imply b =1. As we will see in the sequel many practical models are consistent.

Theorem 7. The characteristic CNF C• of a block B is a consistent model M under CNF-BCP. ⊗

A model M for a block B is called recognizing maximal conflicts, if any complete assignment γ to
the pin variables of B which falsifies the permission function f of B is conflicting for M.

Theorem 8. A consistent model M of a normal block B is recognizing maximal conflicts. ⊗

Theorem 9. Any consistent and recognizing maximal conflicts model M of a block B has maximal
implicativity. ⊗

Theorem 10. Any consistent model M of a normal block B has maximal implicativity. ⊗

Theorem 11. Any two consistent models with maximal implicativity for a block B are observably
coherent. ⊗

Theorem 12. Any two consistent models for a normal block B are observably coherent. ⊗

a b y marks a b y marks
- - 1 a = 1, b = 1 - - 1 a = 1
0 - 1 conflict 0 - 1 conflict
- 0 1 conflict - 0 1 conflict
- - 0 no reaction - - 0 no reaction
- 1 1 a = 1 - 1 1 a = 1
.

 (a) (b)
Fig. 5. Table models for AND gate

 10

It is possible (as in Example 6) that two models of a block provide identical classification of partial
assignments however the same implying assignment can provoke different numbers of elementary
implications in the models. To compare models having close implicativity one can use the following
notion. Strong implicativity is the total number of conflicting assignments and elementary implications
of the model under consideration. Strong implicativity can be measured by simulation similarly to
implicativity as discussed in the next section.

Now we consider relations between notions of implicativity, strong implicativity, model’s
consistency and coherency.

Theorem 13. Any model M with maximal strong implicativity for a block B has maximal
implicativity. ⊗

Theorem 14. Any model M with maximal strong implicativity for a block B is consistent. ⊗

Theorem 15. Any two models with maximal strong implicativity for a block B are observably
coherent. ⊗

Theorem 16. Any consistent model M with maximal implicativity for a block B has maximal strong
implicativity. ⊗

Theorem 17. A model M of a normal block B is consistent iff it has maximal strong implicativity. ⊗

Thus, by constructing a consistent model for a normal block maximal strong implicativity and
maximal implicativity of the model are reached.

In general, strong implicativity is a more refined measure for model comparison than implicativity.
However, implicativity is a simpler notion, as it does not take into account the structure of implications
deduced by the model. In the sequel, we focus our discussion around this notion of implicativity.

8 Estimating the Implicativity of Models

Implicativity of a block can be measured by exhaustively simulating all possible partial value
assignments to pin variables of the block and running the block’s BCP-procedure for each assignment.
Each time the BCP-procedure recognizes an affecting assignment to be conflicting or implying, a
counter of implicativity is incremented by 1 (in the beginning of the simulation the counter is equal to
0).

Regarding the number of possible partial assignments and performance of modern computers, this
trivial method is restricted to blocks having about 16 pin variables. It is useful to have a way of
estimating implicativity for blocks having more pins. On the other hand, it is very important for any
block to have a way of comparing the current implicativity with the maximal one for the block.

In this section, we propose two procedures which help us to estimate both the current and the
maximal implicativity of a block B. The first procedure constructs the observable CNF C♦ for B.
According to Theorem 5 the observable CNF C♦ provides an over approximation of its implicativity.
The second procedure constructs the characteristic CNF C• that has maximal implicativity among all
possible block models (according to Theorem 3). By comparing C♦ and C• the implicativity of the
current block’s model can be estimated. At the same time, investigating the difference between C• and
C♦ one can find a way to increase the implicativity of the model. (In principle, the current model M of
the block B can be replaced with the characteristic CNF C• guaranteeing maximal implicativity.
However, if C• is large, a more concise model than C• has to be used).

We consider only basic algorithms for constructing C♦ and C• and leave implementations,
optimizations, and compacting data structures for further research.

8.1 Constructing the Observable CNF by Experimenting with a Model
In this section, we describe the procedure CONSTRUCT_OBS for constructing the observable CNF

C♦ of the current model M of a block B. The procedure considers the set of all partial assignments to
the pin variables of the block B by constructing a ternary tree and traversing it. In contrast to the
procedure of exhaustive simulation it does not consider conflict assignments containing (covering)
conflict assignments of smaller size.

Let U be a set of pin variables of the block. A variable u ∈ U can take a value from the set {0,1,-,
x}. At the beginning of the procedure, all variables from U have value “x”. The value “x” of u means
that u is “free to branch on” and can take any value 0, 1, or “-“. The value “-” of u is interpreted during

 11

the procedure such that the variable cannot be used to branch on and it is considered as unassignable to
a definite value (0 or 1) under decision making. If variable u has value “-” or “x” and a necessary
assignment 0 or 1 is deduced for u by the BCP-procedure of the block B, then this assignment will be
used until BCP is finished. After that it will be ignored and the indefinite value of u will be recovered.
At each node of the search tree the procedure performs three steps:
1) Decision making: It selects a free variable u to branch on (any free variable can be selected) or

backtracks, if there is no free variable;
2) Branch selection: It selects a value from the set {0,1,-} to be assigned to the variable u. Firstly,

values u = 0 and u = 1 are selected in any order, and then “-”. Values u = 0 and u = 1 are called
definite decision assignments. After the branch “-” has been examined, the procedure makes
assignment u = “x” and backtracks;

3) BCP: It runs the BCP-procedure of the model M under the current assignment α to variables of the
set U (variables having value “-” or “x” are considered as unassigned). There are three cases:
a) BCP classifies the assignment α to be conflicting for M. Then the clause representing α is added

to the constructed observable CNF C♦ (which is empty in the beginning of). The current branch of
the search tree is considered to be finished, and the procedure performs step 2 of selecting the next
branch.

b) BCP classifies the assignment α to be implying an assignment β for M. Then for each elementary
implication α ⇒ βi where βi ∈β the clause representing implication α ⇒ βi is added to the
constructed observable CNF C♦. After that the procedure makes the next decision (step 1). (Recall
that, deduced assignment β is ignored).

c) BCP does not recognize the assignment α as conflicting or implying. Then the procedure
continues with step 1.

After exhausting the decision making, every clause that covers some other clause of the C♦ is removed
from C♦.

Remark: After identifying an assignment α to be implying in step (b) the search is continued in depth
because it is necessary in the general case. Suppose a block with has two inputs a, b and two outputs x,
y. Let a = 1 imply x = 1 and a = 1, b = 0 imply x = 1, y = 0. Suppose the current assignment is a = 1
(and all other variables are free), then the search has to continue in depth to recognize the implication a
= 1, b = 0 ⇒ x = 1, y = 0. ⊗

Theorem 18. The procedure CONSTRUCT_OBS constructs the observable CNF C♦ for the block B. ⊗

8.2 Constructing the Characteristic CNF by Experimenting with a Model
Given the characteristic function f of a block B, all prime implicates of f must be generated to

construct the characteristic CNF C•. Using the procedure CONSTRUCT_OBS, a representation of f
form of the observable CNF C♦ can be found. After that, the characteristic CNF C• can be computed
theoretically by using classical method of Blake-Poretski [29,30]. The method performs resolutions
(see Section 4) over clauses of the current CNF and adds resolvents to this CNF until a resolvent can
be produced that does not cover a clause already presented in the formula. All clauses that cover some
other clauses of the formula are to be removed from the latter. The method is unpractical for large
CNFs, however it is important for our consideration because it delivers the following sufficient
condition for a CNF to be the characteristic one.

Theorem 19. A CNF representing a permission function f is the characteristic CNF C•, if for any two
clauses of the CNF that can be resolved their resolvent covers a clause of the CNF. ⊗

Given the observable CNF C♦, the characteristic CNF C• can be constructed by using an advanced
method of generating all prime implicates, for example [31,32]. In this section, we consider a
procedure CONSTRUCT_CH that does not use CNF C♦ and constructs C• directly by experimenting
with the given block B. (When the procedure starts to work, the permission function f of the block is
unknown.)

The procedure CONSTRUCT_CH basically differs from the procedure CONSTRUCT_OBS in its
learning ability. On the one hand, it has to find prime implicates of the permission function f that are
covered by clauses of the observable CNF C♦. On the other hand, it has to find prime implicates that
are not covered by clauses of C♦, if they exist. At last, it has to guarantee that all possible prime
implicates are found. It has the following seven constructive differences from the procedure
CONSTRUCT_OBS.

 12

1. The value “-” of a decision variable or the value “x” of a free variable is to be replaced with a
deduced value 0 or 1 as soon as the deduction occurs. However after finishing examination of the
current branch, indefinite values “-” and “x” are to be restored according to the restore rule described
below.

2. We will distinguish the current path decision assignment α - that contains only all definite decision
assignments of the path leading from the root of the search tree to the current node N, and the
current extended assignment α that contains all decision and deduced assignments of values 0 and 1
to the variables of the set U at the current state of the procedure.

3. The BCP-procedure is run under the current extended assignment α .
4. Now the BCP-procedure is mixed. Let C* be the current CNF constructed by the procedure

CONSTRUCT_CH. In the beginning of the procedure, C* is empty, and C* = C• in the end. In step 3,
the procedure CONSTRUCT_CH runs BCP under current extended assignment repeatedly over the
block B and the current CNF C* until a conflict is encountered or BCP (over the block and the CNF)
produces no new implication. (It is the CNF-BCP procedure described in Section 3 that is run over
the current CNF C*).

5. If the mixed BCP-procedure recognizes the current extended assignment α to be conflicting, then
the clause representing the current path decision assignment α - is to be added to the current CNF
C*.

6. If the mixed BCP-procedure recognizes the current extended assignment α to be implying an
assignment β, then for each elementary implication α - ⇒ βi, where βi ∈β and α - is the current path
decision assignment, the clause representing implication α - ⇒ βi is to be added to the current CNF
C*. The deduced assignment β is temporally valid as described below until the current branch
traversal is finished.
Restore rule: Let the current branch be u = σ (σ ∈ {0,1}), and let the current extended assignment
be α = γ ∪ { u = σ }. Let the mixed BCP-procedure deduce a necessary assignment 0 or 1 to a
variable v that has the value “-” (or “x”) before the branch. As soon as the branch traversal is
finished all such deduced necessary assignments are to be erased and indefinite values “-”
(respectively “x”) are to be restored.

7. Conflict “inheritance”. Let N be the current node of the search tree, and let α be the current
extended assignment. Let the procedure CONSTRUCT_CH branch on a variable u in the node N. Let
u = σ where σ ∈ {0,1}, and let the assignment α ∪ { u = σ } be classified to be conflicting by the
procedure CONSTRUCT_CH. Then the branch u = σ of the node N is marked as conflicting. The
node N is considered to be conflicting, if both its branches u = 0 and u = 1 or the branch u = “-” are
marked as conflicting. Let the procedure backtrack to the parent node N′ . If N is a conflicting node,
then the branch leading from N′ to N is marked as conflicting. In this case, if both branches u = 0
and u = 1 of N are marked as conflicting, the clause representing the path decision assignment α -
(of the path from the root to the node N) is added to the current CNF C*. Thus, the procedure
“inherits” conflicts of branches and reduces represented conflict clauses.

Theorem 20. The procedure CONSTRUCT_CH delivers the characteristic CNF C• for the block B. ⊗

The procedures CONSTRUCT_OBS and CONSTRUCT_CH can be considered as skeletons for
practical algorithms to be developed.

9 A System as a Normal Block

In this section, our goal is to define a model for a system of blocks. We will introduce a SYSTEM-
BCP procedure and prove that the latter satisfies our axioms. As a result, a system can be considered
as a high level block composed of its blocks.

9.1 Axioms 1 and 2
Recall that we only consider systems that can be treated as combinatorial circuits where gates

correspond to blocks. First, consider a system containing normal blocks only. Such a normal system S
corresponds to a directed acyclic graph G. Source and sink nodes of G correspond to primary inputs
and primary outputs of the system S, respectively. The other nodes are set into one to one
correspondence to blocks of the system. Each edge of the graph is marked with a Boolean variable. For
an outgoing (incoming) edge marked with z of some node corresponding to a block B, the variable z
must be the output (input) variable of B. The variables marking outgoing (incoming) edges of primary

 13

inputs (primary outputs) are called input (output) variables of the system. The other variables are
internal variables of the system. Input and output variables of a system are its pin variables. For the
system depicted in Fig. 6, a, b, c are input variables, d, e, f are internal variables, and y1, y2 are output
variables.

Considering the
pin variables of a
system only results in
a “big” block. Thus,
Axiom 1 holds for a
normal system. (To be
more precise, we
restrict our
consideration to finite
systems, i.e. systems
containing a finite
number of blocks.
Since each block has a
finite number of pin
variables, the system

has the same property.)
A normal system corresponds to the Boolean vector function y = Ψ(x) implemented by the system

considered as a combinatorial circuit where x is the vector of input variables of the system and y is the
vector of output variables of the system.

Formally, the vector function implemented by a normal system can be constructed as a
superposition of vector functions implemented by its blocks. The superposition is constructed in
reverse topological order, starting from system’s outputs. For example, for the system in Fig. 6.a, we
have y1(a,b,c) = Ψ3

1(Ψ1
1(a,b), Ψ1

2(a,b), Ψ2
1(b,c)), y2(a,b,c) = Ψ3

2(Ψ1
1(a,b), Ψ1

2(a,b), Ψ2
1(b,c)).

A constrained system (or simply, system) can be obtained from a normal system by adding some
block-constraints as depicted in Fig. 6.b. The normal system is called the normal (or basic) part of the
constrained system. The vector function implemented by a system is defined to be the same as for its
normal part. The permission function of a block-constraint has to satisfy a condition considered in the
next section (called fitting axiom) to be compatible with the system’s functionality.

9.2 Permission Function

Given a system S implementing a Boolean vector function y =Ψ(x), where x and y are vectors of
input and output variables of the system S, respectively, the permission function f(x,y) of the system is
defined just as for a block, i.e. f(x,y) is the characteristic function of the set of permissible complete
assignments γ = (α , Ψ(α)) to pin variables of the system.

Let the normal part of the system S consist of normal blocks B1, B2,…, Bk having permission
functions f1, f2,…, fk , respectively, and let z be a vector of internal variables of S. The extended
permission function f*(x,y,z) of S is defined as conjunction of the functions f1, f2,…, fk, i.e. f*(x,y,z) =
∧ f i (i = 1,…,k).

Now consider an axiom coordinating constraints with a system’s functionality.

Fitting axiom. Let B′ be a block-constraint for the system S, and let f′ be its permission function.
Then f′ must be implied by the extended permission function f*(x,y,z) of the system. ⊗

Due to the fitting axiom the extended permission function of the system is also equal to the
conjunction of the permission functions of all system blocks (both normal and constraints).

In this section, we show that the permission function f(x,y) of a system can be obtained from its
extended permission function f*(x,y,z) by existential quantification of the latter on internal system
variables z.

The operator ∃a for existential quantification of a Boolean function f w.r.t. a variable a is defined
as follows: ∃a f(x0,…,a,…,xn) = f(x0,…,0,…,xn) ∨ f(x0,…,1,…,xn). The operator is commutative and
associative. Thus, given a set of variables, the existential quantification w.r.t. a set of variables can be
performed in any order. We will use a vector notation ∃z f*(x,y,z) denoting quantification on all
variables of the vector z.

Given a Boolean function f*(x,y,z) and a complete assignment γ to the variables of the vector z ,
the function f*(x,y,γ) is called a cofactor of f*(x,y,z) w.r.t. assignment γ and is denoted as f*

z = γ . Let 2z

a) normal

B 1 2

3

a b c

d=Ψ1
1

e=Ψ1
2

f=Ψ2
1

y1=Ψ3
1 y2=Ψ3

2

constraint

b) constrained

B 1 2

3

a b c

d=Ψ1
1

e=Ψ1
2

f=Ψ2
1

y1=Ψ3
1

Fig. 6 A system of 3 normal blocks

y2=Ψ3
2

 14

be the set of all complete assignments to the variables of the vector z. According to the definitions
above we have:

 ∃z f*(x,y,z) = ∨ f*
z = γ (γ ∈ 2z). (1)

Theorem 21. Let f(x,y) be the permission function and let f*(x,y,z) be the extended permission
function of a system S. Then ∃z f*(x,y,z) = f(x,y). ⊗

Thus, a way of constructing the permission function of a system S is to find its extended permission
function f* by formula (1) and then existentially quantify the latter by the internal variables of S.

9.3 SYSTEM-BCP Procedure
In this section, we introduce two BCP-procedures for a system. Henceforth we will prove that the

procedures satisfy Axioms 3 – 6 of a block model. Thus, a system of blocks can be considered as a
model under these procedures.

Let S be a system consisting of blocks Bj each having a model Mj (j = 1,…,k). We define the first
procedure SYSTEM-BCP(α) for the system S under an assignment α to some variables of the system.
Let x, y, z be vectors of input, output and internal variables of the system S, respectively, and let v = (x,
y, z) be the vector of all variables of the system. To define the procedure we take into account the
structure of S. For each variable vi ∈ v let IN(vi) be a set of all blocks Bj having vi as input variable.

Let DEDUCED be a list of elementary value assignments to variables from v. The list is used by
SYSTEM-BCP(α) and has two pointers BOTTOM and TOP. At the beginning of the procedure, the list
DEDUCED is filled with all elementary assignments from α , and after that the pointer BOTTOM
indicates the first element of the list DEDUCED. The pointer TOP indicates the last element of the list.
The semantics of the list at a current state of the procedure is as follows. All elementary assignments
before the BOTTOM assignment have already been substituted into the model. The elementary
assignments starting with BOTTOM and ending with TOP are considered as a queue of candidates to
be substituted later on.

Let REASONS be a list whose elements correspond to the elements of the list DEDUCED. If an
elementary assignment βi belongs to the list DEDUCED, then the corresponding element of the list
REASONS contains a direct reason of βi. A direct reason is an assignment defined below. The direct
reason of any elementary initial assignment from α is the empty assignment ∅.

On its main cycle the procedure substitutes the “BOTTOM assignment”, i.e. the assignment
indicated by the BOTTOM pointer, in one of the following two ways. (After the substitution the
BOTTOM pointer is increased to indicate the next element of the list DEDUCED.)
1) The BOTTOM assignment is the empty one, the empty assignment will be applied to each block of

the system. (We consider this specific case, because the empty assignment is allowed to affect a
block (or a system, if we would like to consider a system as block) in our system of axioms).

2) If the BOTTOM assignment is an elementary one, say vi = σ, the procedure checks whether there
exists the complementary assignment vi = ¬σ before the BOTTOM element in the list DEDUCED. If
there is such an assignment, the procedure classifies α to be conflicting and stops. The pair of
assignments (vi = σ, vi = ¬σ) is considered to be the direct reason of the conflict. Otherwise, the
substituton operation for the assignment vi = σ is performed separately for each block of the set
IN(vi). Suppose Bj ∈ IN(vi), and γ j is a set of all elementary assignments to the pin variables of the
block Bj that are stored before the BOTTOM assignment in the list DEDUCED. We run the
procedure BCP(γ j, vi = σ) for the block Bj . Now there are three cases:
A) The assignment (γ j, vi = σ) is classified to be conflicting for the block Bj . Then the procedure

SYSTEM-BCP(α) stops and reports that the initial assignment α applied to the pin variables of the
system S is conflicting. The assignment (γ j, vi = σ) is called the direct reason of the conflict.

B) The assignment (γ j, vi = σ) is classified to be implying an additional assignment β j to the pin
variables of the block Bj . Then all elementary assignments from β j are pushed into the list
DEDUCED and after that the pointer TOP indicates the last elementary assignment from β j
which was pushed into the list. For each elementary assignments β j

i from β j the assignment (γ j,
vi = σ) is considered to be the direct reason of β j

i and is stored in the list REASONS at the
position corresponding to β j

i.
C) The assignment (γ j, vi = σ) is not recognized as conflicting or implying for the block Bj .

The procedure stops when BOTTOM pointer exceeds TOP, i.e. all assignments stored in the list
DEDUCED have been already substituted. If there are additional elementary assignments to the pin

 15

variables of the system S in the list DEDUCED which are not contained in the initial assignment α ,
then the assignment α is classified to be implyi ng the assignment β consisting of these additional
elementary assignments.

Note that the considered procedure SYSTEM-BCP(α) is conservative in the sense that it “sees”
substituted assignments only, i.e. assignments stored in the list DEDUCED before the BOTTOM
element. As a consequence it recognizes conflicts and makes implications with a delay as is in the next
example.
Example 7. Consider a system S that has the structure depicted in Fig. 6a). Suppose the initial
assignment α is b = 0, y1 = 0. The chronology of running the procedure SYSTEM-BCP(α) is presented

B T B T B T

DEDUCED b = 0 y1 = 0 b = 0 y1 = 0 d =1 f =1 b = 0 y1 = 0 d =1 f =1

REASONS ∅ ∅ ∅ ∅ b = 0 b = 0 ∅ ∅ b = 0 b = 0

 a) b) c)

 conflict

 B T B T
DEDUCED b = 0 y1 = 0 d =1 f =1 f =0 b = 0 y1 = 0 d =1 f =1 f =0

REASONS ∅ ∅ b = 0 b = 0 y1 = 0 ∅ ∅ b = 0 b = 0 y1 = 0

 d =1 d =1

 d) e)

 Fig. 7. SYSTEM-BCP(b = 0, y1 = 0)
 a) before substituting b = 0; b) before substituting y1 = 0; c) before substituting d = 1;
 d) before substituting f = 1; e) before substituting f = 0;

in Fig. 7. Here, the BOTTOM and the TOP pointers are marked with letters B and T. The procedure is
started with representing the initial assignment b = 0, y1 = 0 in the list DEDUCED (Fig. 7a). Suppose
that substituting b = 0 resulted in deduction of the assignment d =1 from block 1 and the assignment f
=1 from block 2 (Fig. 6 and Fig. 7b). Given b = 0, let substituting y1 = 0 produce no new implications
(Fig. 7c). Given b = 0 and y1 = 0, suppose that substituting d =1 produces the assignment f =0 which is
implied by block 3 under the partial assignment y1 = 0, d =1 (Fig. 7d). Now suppose that substituting f
=1 produces no new implication. At the next step the procedure recognizes a conflict, because before
the BOTOM element f = 0 there is the complementary assignment f = 1 (Fig. 7e). The pair f = 0, f = 1
is treated as the direct reason of the conflict. ⊗

Now we consider a modification of this procedure called FORCED-SYSTEM-BCP(α) that
eliminates the drawback mentioned above. The first change is as follows. When the procedure adds a
new elementary assignment β j

i to the list DEDUCED, it immediately checks whether there is the
opposite assignment ¬β j

i in the list. If the opposite assignment is contained in the list DEDUCED, the
procedure stops and reports that the initial assignment α is conflicting. In this case, the pair of
assignments β j

i, ¬β j
i is treated as the direct reason of the conflict.

The idea of checking a pair of opposite assignments in the list DEDUCED is known as early
conflict detection in the domain of CNF SAT-solving and was firstly implemented in the SAT-solver
Limmat [33].

The second change can be called making early implications. Suppose we substitute the assignment
vi = σ for a block Bj ∈ IN(vi). Instead of assignments stored before the BOTTOM assignment in the list
DEDUCED we take into account all assignments contained in the list. So, let γ j be a set of elementary
assignments to the pin variables of the block Bj except of vi = σ that are stored in the list DEDUCED,
we run the procedure BCP(γ j, vi = σ) for the block Bj.

Example 8. Consider the same system S as in Example 7. The chronology of running the procedure
FORCED-SYSTEM-BCP(α) is presented in Fig. 8. We see that now the procedure detects a conflict
when substituting the assignment y1 = 0. ⊗

 16

Note that a direct reason for a conflict under the both procedures can be of two types. First, it can
be a pair of opposite elementary assignments represented in the list DEDUCED. Second, it can be a
conflicting partial assignment for a block of the system under consideration.

One can find drawbacks in both procedures. For example the first detects conflicts with a delay,
while the second one can make attempts to substitute a value which was substituted earlier when the
procedure passed through the list DEDUCED before the current element (i.e. the procedure can run
BCP for a block twice for the same value assignment to the block’s pin variables). The two procedures
implement opposite approaches between which others can be formulated. For example one can
consider a procedure that uses early conflict detection, but not early implications. We will show that

DEDUCED b = 0 y = 01

REASONS

b = 0 y = 01 d = 1 f = 1

b = 0 b = 0

B BT T

a) b)

b = 0 d = 1 f = 1

b = 0 b = 0

c)

f = 0y = 01y = 0

y = 01y = 0
d = 1

b = 0 f = 1

b = 0 b = 0

B T
f = 0y = 0

y = 01y = 0
d = 1

conflict

 Fig. 8. FORCED-SYSTEM-BCP(b = 0, y1 = 0)

 a) before substituting b = 0; b) before substituting y1 = 0; c) after substituting y1 = 0;

both procedures satisfy our system of axioms. As a consequence the same will be valid for any
intermediate version.

9.4 REVERSE-BCP Procedure
For discussion in Sections 9.4 and 9.5, we need to extend the notion of assignment allowing it to

contain opposite value assignments to the same variable. For example γ = {f = 0, f = 1}. The clause
representing γ is f ∨¬f = 1.

From now on, SBCP(α) refers to either SYSTEM-BCP(α) or FORCED-SYSTEM-BCP(α). The
procedure REVERSE-BCP(γ) described in this section is meant to find an “indirect reason” of the
partial assignment γ assigned to some variables of a system S by the procedure SBCP(α). The
assignment γ can be any subset of the set of elementary assignments contained in the list DEDUCED
after running the procedure SBCP(α). Procedures of this kind are commonly used for conflict analysis
in modern state-of-the-art SAT-solvers since the SAT-solver Grasp [12]. We need the procedure to
prove some statements in the subsequent consideration. In Section 10, we will also use the procedure
for conflict analysis.

Let α be a partial assignment to the pin variables of the system S, and let an assignment γ be
deduced by SBCP(α). Let the procedure REVERSE-BCP(γ) has the special goal, to deliver a partial
assignment α′ to pin variables of the system S such that α′ ⊆ α and α′ can be treated as a reason of γ,
i.e. γ can be deduced under SBCP(α′).

The procedure REVERSE-BCP(γ) takes as input the assignment γ, as well as both lists DEDUCED
and REASONS constructed during SBCP(α). At the beginning all elementary assignments from γ are
marked in DEDUCED and the resulting assignment α′ is empty. Then the procedure passes through
the list DEDUCED from its end to the beginning. At each step it considers the current element
(elementary assignment) βi of the list. If the assignment βi is marked, the procedure considers the
element corresponding βi in the list REASONS . If this direct reason of βi is the empty assignment ∅,
then the elementary assignment βi is added to the resulting assignment α′ . Otherwise, all assignments
of this direct reason are marked in the list DEDUCED. After that the procedure starts the next step.
Example 9. Consider the lists DEDUCED and REASONS generated by the procedure FORCED-
SYSTEM-BCP(α) in Example 8 where α = {b = 0, y1 = 0}. We would like to find an indirect reason α′
⊆ α of the conflict in this case, namely a reason of the assignment f = 1, f = 0. The chronology of
running the procedure REVERSE-BCP(f = 1, f = 0) is represented in Fig. 9. The marks of the element
of the list DEDUCED are denoted by the symbol *. At the beginning the elementary assignments f = 1,
f = 0 are to be marked (Fig. 9a). When processing the assignment f = 0 and considering the list
REASONS it is obvious that the direct reason of the assignment is y1 = 0, d = 1. Both elementary
assignments are marked in the list DEDUCED (Fig. 9b). When processing the assignment f = 1 we

 17

have to mark the elementary assignment b = 0 that is the direct reason of f = 1 (Fig. 9b,c). Considering
d = 1 provides no new marks because the direct reason b = 0 of d = 1 is already marked. After that, the

DEDUCED

REASONS

b = 0

d)

y = 01y = 0b = 0
*

y = 0b = 0 d = 1 f = 1

b = 0 b = 0

a)

f = 0y = 01y = 0

y = 01y = 0
d = 1

b = 0 f = 1

b = 0 b = 0

*
f = 0y = 0

y = 01y = 0
d = 1

* *
b = 0 d = 1 f = 1

b = 0 b = 0

b)

y = 01y = 0b = 0 f = 1

b = 0 b = 0

*
y = 0

**
b = 0 d = 1

b = 0

c)

y = 01y = 0b = 0

b = 0

*
y = 0

**

 Fig. 9. REVERSE-BCP(f = 1, f = 0)
 a) before processing f = 0; b) before processing f = 1;
 c) before processing d = 1; d) before processing y1 = 0;

list contains two marked assignments b = 0 and y1 = 0, that have the empty direct reason (Fig. 9d).
Hence the assignment α′ = {b = 0, y1 = 0} will be generated by the procedure as the indirect reason of
the conflict. In this example, we have α′ = α , however in general we will get α′ ⊆ α . ⊗

The REVERSE-BCP procedure has the following useful property.

Theorem 22. Let f*(x,y,z) be the extended permission function of a system S, and let an assignment γ
be derived by the procedure SBCP(α) for S. Let the procedure REVERSE-BCP(γ) provide the indirect
reason β of the assignment γ where β ⊆ α .

 1. If γ is an elementary assignment, then the clause representing the elementary implication β ⇒ γ
is an implicate of the extended permission function f*(x,y,z).

 2. If the clause representing the assignment γ is an implicate of the extended permission function
f*(x,y,z), then the clause representing the assignment β is also an implicate of f*(x,y,z). ⊗

9.5 A System as a Block
By showing that a system S satisfies Axiom 3 through Axiom 6 (see Appendix 1), we prove that S

can be considered as a normal block under both SYSTEM-BCP and FORCED-SYSTEM-BCP.

Theorem 23. A system of blocks is a normal block under both SYSTEM-BCP and FORCED-SYSTEM
BCP. ⊗

When using the procedures SYSTEM-BCP and FORCED-SYSTEM-BCP, blocks of any complexity
can be constructed. After finishing block construction, the question of how hierarchical SAT-solving
should be organized can no longer be put off. This question is considered next.

10 Hierarchical SAT-Solving

In this paper, we try to avoid formulating unnecessary algorithms and heuristics, because we
consider them to be an objective of fruitful research in the future. In this section, we firstly show that
the top level organization of hierarchical SAT-solving in our framework is similar to CNF-oriented
SAT-solving. This substantiates a “natural” transfer of well known ideas of that domain into our
framework. So, we propose a brief overview of practical techniques and ideas efficiently applied for
the best state-of-the-art CNF-based SAT-solvers. All these ideas can be efficiently used for organizing
hierarchical SAT-solving. At the same time, hierarchical SAT-solving has some specific features that
will be discussed.

10.1 Proving by Contradiction

Let yδ where δ∈{0, 1} denote a literal of the variable y, precisely, y1 = y and y0 = ¬y. Then the unit
clause yδ represents the assignment y = ¬δ.

A system S with an output y tested to be constantly δ (δ ∈{0,1}) is called SAT-instance. Let S
implement a function ψ(x) at the output y. An assignment α ∪ { y = ¬δ} is called a counterexample, if
ψ(α) = ¬δ. We will consider procedures of hierarchical SAT-solving which try to find a
counterexample for S or to prove that a counterexample does not exist. These procedures assign y to
¬δ at a first step. If a procedure proves that there is no counterexample, then the system implements
the constant δ. Hence, the unit clause yδ is proven to be implicate of the permission function of the

 18

system. Alternatively a procedure can prove that yδ is an implicate of the permission function of the
system, then a counterexample does not exist.

10.2 Completeness of the system of axioms
Now we show that our proposed system of axioms is complete, i.e. there exists an algorithm which

can correctly solve all possible SAT-instances in our theory.
Let an output y of a system S be tested to be constantly δ. Consider the algorithm A, running the

procedure SBCP(γ) where γ = α ∪ {y = ¬δ} for all full assignments α to the input variables of S. If
there is an assignment γ classified as not conflicting, then the algorithm A delivers γ as
counterexample. Otherwise, A reports that y is constantly equal to δ.

Theorem 24. The algorithm A is correct. ⊗

10.3 Reducing Hierarchical SAT-Solving to Testing Satisfiability of a CNF
Now we consider a way in which hierarchical SAT-solving can be reduced to testing satisfiability

of a CNF.
Given a system S, the conjunction CS of observable CNFs of all the system’s blocks is called

structurally observable CNF of S.

Theorem 25. Let an output y of a system S be tested to be constantly equal to δ, and let CS be the
structurally observable CNF of S. Then the CNF CS ∧ y¬δ is unsatisfiable iff y(x) = δ where x is the
vector of the system’s input variables. ⊗

According to Theorem 25 a way of solving a SAT-instance S is to construct its structurally
observable CNF CS and then check the CNF CS ∧ y¬δ for satisfiability. This way, methods developed
for CNF satisfiability testing can be applied directly to hierarchical SAT-solving. This way is currently
used at practice for systems consisting of blocks which correspond to gates implementing elementary
Boolean functions. In this case, the observable CNFs are identical to the characteristic CNFs of the
same blocks, and the CNF CS ∧ y¬δ (or CS) is called conventional CNF. However, if blocks are big or
complex, extracting complete observable CNFs will lead to blowing up the size of CS.

At the same time it is known that resolution proofs of unsatisfiability very often only use a portion
of clauses from CS, and this portion can be very small (up to a few per cent) especially in the case of
instances formulated for property checking [49,50]. The basic idea of hierarchical SAT-solving is “to
hide” the observable CNFs inside of block models in a compact form and then extract only their
necessary clauses on demand. This idea can be naturally implemented, because block models are used
for the same activity as clauses during CNF-oriented SAT-solving w.r.t. modern practical techniques
[12, 13, 9, 35]. We discuss a way of extending these techniques in Section 10.5

10.4 Testing Satisfiability of a CNF as a Case of Hierarchical SAT-Solving
A clause can be considered as a block of a special type. Namely, a clause can be viewed as an

(virtual) OR-gate whose output is assigned to the fixed constant value 1. So, a CNF can be viewed as a
system consisting of blocks of the same specific type.

To put it more precisely, a CNF C can be considered as a two-level combinatorial circuit S that has
OR-gates in its first level (some inputs of OR-gates can be inverted), and each OR-gate implements a
clause of the CNF. On the second level, the circuit has an AND-gate realizing the conjunction of the
CNF’s clauses. The task of checking the CNF C for unsatisfiability is reduced to testing whether the
circuit S implements the constant Boolean function 0 or not. According to Section 10.1 the output of
the circuit is to be assigned to 1 at the first step of hierarchical SAT-solving. Assigning the value 1 to
the output of AND-gate necessary implies assigning values 1 to all inputs of the gate. Thus, the two
level circuit S is reduced to the set of OR-gates whose outputs are assigned to 1, where each OR-gate
of this set corresponds to a clause of the CNF C.

Let us consider for example the OR-gate corresponding to a clause ¬a ∨ b. The conventional CNF
for the gate is (¬a ∨ b ∨ ¬y) ∧ (a ∨ y) ∧ (¬b ∨ y) where y is the output variable of the gate. Under the
assignment y = 1 to the output of the gate its CNF is reduced to the same clause ¬a ∨ b which is
implemented by the gate. Thus, hierarchical SAT-solving for the considered two-level combinatorial
circuit S is reduced to testing satisfiability of the original CNF C. Therefore, testing satisfiability of a
CNF is a case of hierarchical SAT-solving.

 19

10.5 Basic Ideas of CNF-Oriented SAT-Solving and Their Relation to
Hierarchical SAT-Solving

From the point of view of CNF-oriented SAT-solving, a clause is an elementary object that can
deliver useful information. A clause is used to produce an implication (when under a current
assignment the clause becomes unit) or to recognize a conflict (when under a current assignment the
clause becomes empty (or falsified)). Blocks are used for the same activity in our framework, because
they produce implications and identify conflicts. This opens a way of extending basic ideas of CNF-
oriented SAT-solving into the general framework of hierarchical SAT-solving. To organize a
procedure of hierarchical SAT-solving one can use ideas and techniques listed below.

10.5.1 Search Tree Traversal

Most contemporary state-of-the-art SAT-solvers [8,9,12,34,35,36] are based on the classical DPPL
algorithm [37]. Given a CNF C, a DPLL-algorithm based SAT-solver looks for an assignment
satisfying the CNF. Search is organized as a binary tree by branching on variables of the CNF C. If no
satisfying assignment is found after a complete examination of the search tree, then C is unsatisfiable.
A hierarchical SAT-solving can be organized in the same way by branching on the variables of the
system under consideration (recall that the output of the system is assigned according to Section 10.1).

10.5.2 Restarts

Modern SAT-solvers [8,9,35] efficiently use the idea of restarts that was proposed in [38]. A restart
means that a SAT-solver abandons a current search tree and starts a new one. Back leaps proposed in
[39] can be considered as variety of the restart idea. A back leap leads to erasing the current path of the
search tree up to a node n, and to continuing the search starting with n. Intuitively, restarts give the
search procedure a chance to withdraw from bad regions where it got stuck.

Restarts can be used for hierarchical SAT-solving as well. Moreover our theory sheds light on the
nature of “bad regions”. Suppose a model M of a block of a system S does not recognize a conflict
assignment α to its pin variables. Given a current assignment γ to variables of the system S where α
⊆ γ . Since a branching procedure cannot “feel” the conflict, it has to continue SAT-solving by making
additional assignments to the variables of the system. The worst time loss can be exponential in
number of variables of the system, if restarts are not used.

The reason for a bad region is that the model M has not maximal implicativity (the assignment α is
not recognizable as conflicting). Note that a subsystem of a system can be viewed virtually as a block,
resulting in the same effect of a “bad region”. Based on an estimation of implicativity and revealing the
bad regions indicated above, one can develop “clever” heuristics for restarts. That opens a domain for
future research.

At each node of the search tree a CNF oriented SAT-solver performs the following three
procedures: a) chooses the next variable to split on and selects the value, 0 or 1, to be first assigned to
the chosen variable; b) runs the Boolean Constraint Propagation (BCP) procedure; c) performs
conflict analysis and backtracking, if a conflict is encountered (during BCP run). All the three
procedures can be performed in a similar way for hierarchical SAT-solving as it is discussed below.

10.5.3 Decision Strategies

Decision strategies of modern SAT-solvers are based on a phenomenon revealed by Chaff’s team
[8], namely, variables of recently deduced conflict clauses are most preferable to be branch on.
BerkMin’s [9] and Siege’s [10] heuristics take this phenomenon into account more accurately.
Decision heuristics should be closely related to classes of SAT-instances to be solved. Research in the
field of hierarchical SAT-solving can inspire new heuristics. As example we refer to the paper [11] in
which an idea of using signal correlation is proposed for decision making in circuit oriented SAT-
solvers (meant for equivalence checking). One more useful idea is using topological levels of variables
[40]. All these ideas can be used for hierarchical SAT-solving because of its ability to learn conflict
clauses in a similar way as CNF-oriented SAT-solving do this as shown below. The idea of using a
justification queue consisting of some gates implementing elementary Boolean functions [14] is
inspired by automatic test pattern generation technique [47] and can reduce the number of conflicts
[48]. This idea can be extended as well into the general case of blocks implementing complex Boolean
functions.

 20

10.5.4 BCP

One can use the procedure SYSTEM-BCP or FORCED-SYSTEM-BCP described in the previous
section as a prototype of a BCP-procedure for a hierarchical SAT-solver.

An important feature of BCP for modern SAT-solvers is watching two literals per clause. Firstly,
the idea was proposed in SATO [34], but under their implementation, watched literals were
recalculated during backtracks. In Chaff’s implementation of the idea [8], this drawback was
eliminated, speeding up BCP.

A motivation of this technique is to reduce the “blank” processing of a clause. A processing is
blank, if it provides no new implication or conflict. As the cost of blank processing for a block can be
much higher, a similar idea is necessary for hierarchical SAT-solving. We propose to use accessing
functions to get access to the BCP-procedure of a block. In the case of a clause, the accessing function
is “at most two literals of a clause are unassigned”, and a clause is processed only, if this is the case.

In general, an accessing function τ for a model M of a block is defined on the set θ of all possible
partial assignments to the pin variables of the block as follows. Let θ+ be the subset of θ that consists
of all partial assignments recognizable by the model M to be conflicting or implying, and θ - = θ \ θ+ be
the set of the assignments not classified to be conflicting or implying by the model M. An accessing
function is any function that satisfies the following two conditions: 1) τ : θ → {0,1}, 2) τ--1 ⊇ θ+. In
other words, the accessing function τ specifies an over approximation of the set θ+. Given a partial
assignment α to the pin variables of the block, if τ(α) = 1, then model M can recognize the assignment
to be conflicting or implying, if τ(α) = 0, then the assignment is not conflicting or implying for the
model M, i.e. α ∈ θ -.

For practical use, an accessing function should be represented in a fast checkable form and should
provide most close over approximation of the set θ+. We hope the idea of accessing functions can be
implemented efficiently or even implicitly as it is done for clauses in modern SAT-solvers. In the
simplest case, the accessing function is the constant 1, i.e. the access is always allowed.

10.5.5 Conflict Analysis and Non-Chronological Backtracking

A decision level of a node of a search tree is equal to the length of the path leading to the node from
the tree’s root. A level of an elementary assignment α (let α be v = σ) is the decision level of the node
in which v was assigned to σ. Conflict analysis starts in a conflicting situation in which a variable
exists that is to be assigned with two opposite values or an unsatisfied clause exists that has not any
unassigned variable. A goal of conflict analysis is to find a reason of the conflict, i.e. an assignment
under which the BCP-procedure leads to the conflict. In modern SAT-solvers a reason is constructed
by running BCP in backward direction and the goal reason is the first assignment β that contains
exactly one elementary assignment done on the current level of the decision tree [12, 13].

The goal assignment β of the same type can be constructed by the REVERS-BCP-procedure
described in the previous section (after “tuning” the procedure on the goal). Effectively, this procedure
behaves identical to the procedures used in modern SAT-solvers.

The constructed assignment β is used in two ways. Firstly, a clause c representing the assignment is
added to the considered CNF, preventing a SAT-solver from visiting already investigated parts of the
search space [12]. In hierarchical SAT-solving, the clause c also can be added to a database as (real or
virtual) block-constraint having permission function c. (It can be proven in the same way as for
Theorem 22 that c is an implicate of the extended permission function of the system under
consideration. Thus, such a block-constraint satisfies the fitting axiom.) The clause c is called conflict
clause. Conflict clauses can be processed during hierarchical SAT-solving exactly as in CNF oriented
SAT-solvers. At the same time a set of conflict clauses can be encapsulated into one bigger block-
constraint (for example one can use BDDs for representation of sets of clauses [41] (BDD-based
models are considered in Section 11.2)). A complex block-constraint can be processed during
hierarchical SAT-solving as any other block.

Secondly, the assignment β is used to perform backtracking. In general, backtracking is
nonchronological [12]. Let for example the current decision level be 100, and let the next maximal
level of an elementary assignment contained in β be 50. Then one can perform backtracking to level 50
on which the conflict clause becomes a unit, and hence can be used by a BCP-procedure. A
hierarchical SAT-solver can perform non-chronological backtracking in the same way.

 21

10.5.6 Reason Reduction

Let an assignment α be a reason of a conflict, i.e. it leads to a conflict under a BCP-procedure.
Suppose an assignment α′ ⊂ α is the reason of the same conflict. Then representing α′ instead of α as
the conflict clause is more beneficial, since the clause c′ representing α′ is a part of the clause c
representing α . The idea of reason reduction is used in modern SAT-solvers when constructing conflict

clauses (see, [53, 54]
as example). It is
desirable to have a
procedure of this type
inside of a block
model. The following
example demonstrates
this concept.
Example 10. Suppose
the circuit represented
in Fig. 10 is a block
model. The
assignment a = 1, c =
1, d = 1, y = 0 is not
conflicting or

implying (Fig. 10a). After assigning b = 1 it becomes conflicting (Fig. 10b), however after removing a
= 1 from it the resulting assignment is still conflicting (Fig. 10c). ⊗

We add an additional axiom to our system of axioms.

Axiom 7. A model M of a block B has the REDUCE-REASON procedure that satisfies the following
conditions: 1) given a conflicting assignment α for the model, the procedure delivers a conflicting
assignment α′ for the model where α′ ⊆ α ; 2) given an elementary implication α ⇒ β for the model,
the procedure delivers an assignment α ′ such that α′ ⊆ α and α′ ⇒ β is an elementary implication for
the model.

Note, that REDUCE-REASON can be trivial, providing no reason reductions, i.e. α ′ = α for each α.
So, axiom 7 can be considered as desirable however unnecessary. If a block is a system, then the
procedure REVERSE-BCP can serve as the REDUCE-REASON procedure.

10.5.7 Data Base Management

Keeping all conflict clauses in a data base is expensive because, on the one hand, it can lead to
blowing up the data base, and on the other hand, earlier conflict clauses can become irrelevant at the
current stage of the search. Thus, clauses are removed from the data base depending on their size [8,
12], age, and activity in the conflict making process [9]. Furthermore, all unit conflict clauses and unit
clauses of the initial CNF as well as literals set to 0 under the BCP-procedures triggered by these unit
clauses are removed. We refer to this technique as literal erasing. All these ideas can be used in
hierarchical SAT-solving. Besides, new ideas could be proposed relating to managing complex block-
constraints after subsequent research.

10.6 Learning in Hierarchical SAT-Solving
Given a system S, we understand learning as extending S with a block-constraint satisfying the

fitting axiom (Section 9.2). As an example of learning consider Fig. 6. Learning is of fundamental
importance due to the theorems 26, 27, and 28 considered in this section.

Theorem 26. Learning does not reduce the implicativity of a system S. ⊗

Theorem 27. Given a system S not having maximal implicativity, there exists a block-constraint whose
addition would make S a system with maximal implicativity. ⊗

Theorems 26 and 27 show that learning for a system cannot reduce its implicativity and always can
increase implicativity up to the maximal possible. In practice, learning should aim to strongly increase
the system's implicativity.

Now we discuss a difference between static and dynamic learning. By dynamic learning for a
system S we mean on-the-fly learning during a SAT-solving process in which an output of the system

b) a=1, b=1, c=1, d=1, y=0
(conflicting)

a=1

a) a=1, c=1, d=1, y=0
(not conflicting/implying)

c) a=1, c=1, d=1, y=0
(conflicting)

b=1 c=1

d=1

y=0

Fig.10 Reason reduction

c=1

d=1

y=0

a=1 c=1

d=1

y=0

b=1

 22

S is tested to be implementing a constant Boolean function. Dynamic learning results in the
construction of specific block-constraints.

Let B′ be a block-constraint of a system S and f′ be the permission function of the block. Let y be
an output of the system S. We call the block B′ restricted to the output y, if f′ = lit(y) ∨ ϕ (w) where
lit(y) is a literal of the variable y and ϕ (w) is a Boolean function depending on variables of the block
B′ except of y. If lit(y) = y, B′ is positively restricted to the output y, otherwise it is negatively
restricted to the output y.

Now suppose a SAT-instance is considered in which the output y is tested to be constantly 0. Then
during SAT-solving y is assigned to 1 and all produced implicates of the extended permission function
f* of the system S have to be negatively restricted to y. For example, suppose a conflict clause a ∨ ¬b
∨ c is deduced based on the technique outlined in the previous section. Then we can only affirm that
¬y ∨ a ∨ ¬b ∨ c is an implicate of the extended permission function f*, because using the literal
erasing technique (Section 10.5.7) the literal ¬y is to be erased due to initial assignment y = 1. Using
the clause a ∨ ¬b ∨ c during the SAT-solving instead of ¬y ∨ a ∨ ¬b ∨ c is correct while the SAT-
solving is not finished.

Assume that dynamic learning was used only with the aim to increase implicativity of the system S
being considered to be a “big” block of another system. In this case, a block-constraint B′ with the
permission function ¬y ∨ a ∨ ¬b ∨ c can be added to the system S.

In principle, it is possible to track whether a deduced clause really depends on the output variable y
tested to be a constant. We leave this as subject of research for practical algorithms.

It is important to underline that, if the empty clause is deduced, then it depends on the tested output
variable y, and ¬y is real implicate of the permission function of the system under consideration (if y is
tested to be the constant 0). Indeed, due to Theorem 23 the system is a normal block and due to
Theorem 1 any implicate of the permission function of a normal block contains at least one output
variable of the block. At the same time, adding a block-constraint with permission function ¬y to the
system, immediately increases implicativity of the system up to maximal possible due to Theorem 3 (if
the system contains only output y), because ¬y is the characteristic CNF of the permission function of
the Boolean constant function y = 0. Thus, as soon as hierarchical SAT-solving is finished by proving
that the considered system’s output implements the tested constant, the system reaches maximal
implicativity (when being restricted to that output). This observation can be formulated as the
following theorem.

Theorem 27. Let a system S have one output only, and let hierarchical SAT-solving with dynamic
learning be used to check whether S implements a given constant function. If there is no counter-
example, hierarchical SAT-solving results in reaching maximal implicativity for S. ⊗

By static learning we mean any learning technique except of dynamic learning. Static learning
provides no restriction to permission functions of block-constraints except of the fitting axiom.

11 Cases of Hierarchical SAT-Solving

In the previous sections, we have shown that having compact block models with high implicativity
is an essential prerequisite for hierarchical SAT-solving. In this section, we study different improved
SAT-solving methods and show that they are either cases of hierarchical SAT-solving or that they can
be fitted into our framework. In particular we consider circuit oriented SAT-solving, and combinations
of SAT with binary decision diagrams (BDDs), which use block models with maximal implicativity.

11.1 Circuit-Oriented SAT-Solving
In circuit-oriented SAT-solving [11,15] combinatorial circuits consisting of gates implementing

elementary Boolean functions are considered. To organize SAT-solving they use gate descriptions in
the form of look up tables as in the equivalence checking domain [14]. We show that look up tables
satisfy our system of axioms. Thus, current circuit-oriented SAT-solving can be viewed as a case of
hierarchical SAT-solving in which the complexity of considered blocks is (very) small.

The circuit-oriented SAT-solvers [11,15] use a circuit representation based on AND and OR gate
vertices, with INVERTERs either as separate vertices, or attributes on the gate inputs. The lookup table
for 2-input AND is represented in Fig. 11. The idea of lookup tables is to support fast implication
propagation. It is just what we need in our framework. Given a lookup table for a gate and an
assignment α to the pin variables of the gate, the table classifies the assignment as conflicting, or

 23

implying an assignment, or not conflicting or
implying. Thus, a lookup table specifies a
BCP-procedure w.r.t. our terminology.
To prove that the lookup table for a gate is a
model in our framework, one should check
whether the BCP-procedure described by the
table satisfies Axioms 4, 5, 6. Intuitively, it
should be correct. The trivial way to prove it
is to perform the exhaustive simulation on the
lookup table under all possible partial
assignments to the pin variables of the gate
and to check directly for each assignment
whether Axioms 4, 5, 6 are satisfied. The other
way is to compare the result of the simulation
with the result of the same procedure over a
model of the gate. If the results are identical,
then the models are observably coherent.

As an example we compare the 2-input
AND lookup table represented in Fig. 11 with
the CNF-based model considered in Example

2. The reactions of the models under the exhaustive simulation are represented in Fig. 12. Note that
semantics of symbol “-“ is the same as “x” in the Fig. 11 and Fig. 12, and denoting that the
corresponding variable is unassigned. The symbol “c” denotes conflict. Since the models are
observably coherent, the 2-input AND lookup table satisfies Axioms 4, 5, and 6. Moreover, since the
considered CNF-based model has maximal implicativity (according to Example 3), then the 2-input
AND lookup table has maximal implicativity.

One can check in the same way that lookup tables for the other types of gates under consideration
are also models with maximal implicativity in our framework.

a - - - - - - - - - 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
b - - - 0 0 0 1 1 1 - - - 0 0 0 1 1 1 - - - 0 0 0 1 1 1
y - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1 - 0 1

a) affecting assignments

a - - 1 - - - 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
b - - 1 0 0 c 1 1 1 - - c 0 0 c 1 1 c - 0 1 0 0 c 1 c 1
y - 0 1 0 0 - 0 1 0 0 0 0 0 0 - 0 1 0 0 1 1

b) reactions of the CNF-based model

a - - 1 - - - 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1
b - - 1 0 0 c 1 1 1 - - c 0 0 c 1 1 c - 0 1 0 0 c 1 c 1
y - 0 1 0 0 - 0 1 0 0 0 0 0 0 - 0 1 0 0 1 1

 c) reactions of the lookup table

Fig 12. Exhaustive simulation of AND gate y = a ∧ b models

11.2 BDD Based Models
Reduced ordered binary decision diagrams [42] (BDDs) are commonly used as canonical

representations of Boolean functions. Until now, BDDs are indispensable in the EDA domain.
However, impressive recent advances in SAT resulted in SAT-tools undermining that position. At the
same time, BDD models can be considered to be very good candidates for organizing hierarchical
SAT-solving within our framework, as BDDs contain complete information about Boolean functions
in a compact form. For implementing a BDD-BCP-procedure certain aspects of this information must
be extracted quickly.

Initial attempts to combine BDDs and SAT-solvers were made by “topological division of spheres
of influence”, namely by describing the output or input part of the circuit under consideration using
BDDs (see [18, 19] as examples). There, BDDs were intended for recognizing conflicts only. In a
recent paper [16], the authors consider SAT-instances in the form of conjunctions of BDDs. After
constructing BDDs for groups of clauses of a given CNF as preprocessing step, they use them during

Fig.11. 2-input AND lookup table

1
x x 1

x x

0
x 1

0
x

x

1 0

0
x 1

x 1 x

x 0 x
x 0 x

0
x 0

1 1 1

1
0 0

Current Next Action

 ∅

conflicting

∅

 implying

implying

.
x

implying

 24

SAT solving both for detecting conflicts and for producing implications. Their approach is very close
to ours, as this procedure can be viewed as a BDD-BCP procedure for blocks represented by such
BDDs. The difference is that in our framework, firstly, any mathematical model (not only BDDs) can
be used as block model, and secondly, we follow a top-down approach in constructing models for
typical design blocks. In contrast, they, in some sense, heuristically reverse engineer blocks in a
bottom-up fashion (which can be done in our framework as well, when beneficial, such as for irregular
control logic). Finally, we introduce the fundamental notion of implicativity, used for constructing the
strict theory proposed above.

In this section, we consider reduced ordered BDDs with complemented edges [43]. This model is
widely used in the EDA domain and provides a more compact representation for many Boolean
functions than those of [16]. We outline the BDD-BCP-procedure and prove that the resulting BDD
based block models have maximal implicativity.

11.2.1 BDD as a model

In the following we refer to reduced ordered BDDs with complemented edges simply as BDDs. A
BDD, as shown in Fig. 13, is a directed acyclic graph with one source node denoting the represented
function f, and one sink node (labeled 1). Each internal (not source or sink) node carries a variable
symbol and has two outdoing edges labeled with 0 and 1, respectively. Dotted edges are
complemented. To find the value of the Boolean function for a variable assignment α to the variables
of f, the graph is traversed from the root to the sink node, while calculating the number of
complemented edges on the path. If this number is odd, then f(α) = 0, otherwise f(α) = 1. For example,
on the path f,y,0,a,1,b,0,z,1,c,0,1 there are two complemented edges: the second and the last. Hence,

the value of f represented by this BDD
is equal to 1 for the assignment y = 0, a
= 1, b = 0, z = 1, c = 0.

For a given block B implementing a
vector function y = ψ(x), where x =
(x1,…,xn) and y = (y1,…,ym) are the
vectors of input and output variables,
and ψ = (ψ1,…,ψm), we use a BDD D
of its permission function f as model.
The permission function f can be
calculated as conjunction of y1 = ψ1
(x),…, ym = ψm(x). For example, the
BDD of Fig. 13 represents the
permission function of the two-output
block of 1-Bit-Adder (Fig.1).

Let α be a partial assignment to the
pin variables of the block B. The BCP-
BDD-procedure must correctly classify
the assignments α to be conflicting or
implying. It can be implemented on the
basis of the following property of a
BDD (Theorem 29) by considering a
labeled graph Dα, which is constructed
from D as follows: For each elementary
assignment from α , we remove from D

all edges corresponding to the opposite value. (For example, if α contains b = 1, we mark all edges for
b = 0 as removed). Let Cube(α) be the set of all complete assignments containing α .

Theorem 29. Given a BDD D and a partial assignment α to the variables of D, each complete
assignment of Cube(α) dissatisfies the function f represented by D iff any path leading from the source
node f to the sink node 1 in Dα contains an odd number of complemented edges. ⊗

Let the BDD-BCP(α) procedure classify an assignment α:
a) To be conflicting, if any path leading from the source node f to the sink node 1 in Dα contains an
odd number of complemented edges.
b) To imply an elementary assignment β, if α is not conflicting and any path leading from the source
node f to the sink node 1 in Dα∪ ¬β contains an odd number of complemented edges.

1

1

1

1

1 1

1 1

1

1

0 0

0 0

0 0 0

0 0

•

••

•

•

•

•

y

a a

b b b b

z z z

c

1

0

Fig 13. BDD for the permission function of 1-Bit-Adder

f

1

0

 25

Theorem 30. BDD is a consistent model with maximal implicativity and maximal strong implicativity
under the BDD-BCP-procedure. ⊗

 We see that the BDD model has nice properties: It is consistent, provides maximal implicativity and
maximal strong implicativity, and hence is observably coherent to any other consistent model with
maximal implicativity for the same block (due to Theorem 15).

11.2.2 Detailed BDD-BCP-Procedure

The BDD-BCP-procedure can be implemented in different ways. A possible way is to develop a
procedure for testing whether an assignment α is conflicting, and, if α is not conflicting, to apply the
procedure for all assignments α ∪ ¬βi to check the implication α ⇒ βi (where ¬βi is an elementary
assignment to a variable not contained in α).

In this section, we scratch a method that needs only three traversals of the graph under
consideration to deduce all implications α ⇒ βi. Consider a partial assignment α and graph Dα. A level
of a node v of the graph Dα is defined as the length of the longest path leading from the source node f
to this node. Let an edge g connect nodes of levels i and j where i < j - 1, then g is called passing
through each level k where i < k < j.

1. The BDD-BCP-procedure traverses the graph Dα in topological order (i.e. the source node is
passed first (level 0), and nodes with smaller level (closer to the source) are passed before nodes of
higher level). During the traversal, two Boolean values t_odd and t_even are recalculated for each node
v. In the beginning, let t_odd = t_even = 0 for all the nodes. In the end of the traversal t_odd = 1
(t_even = 1) for a node v iff there is a path from the source node f to v that contains an odd (even)
number of complemented edges. If the counter t_even for the sink node 1 is equal to 0 in the end of the
traversal, then α is classified to be conflicting, and the procedure resets all the counters to 0 and stops.

2. The BDD-BCP-procedure traverses the graph Dα in reverse topological order. During the
traversal, two Boolean values r_odd and r_even are recalculated for each edge g. In the beginning, let
r_odd = r_even = 0 for all the edges. In the end we have r_odd = 1 (r_even = 1) for an edge g iff there
is a path starting with g to the sink node 1 such that it contains an odd (even) number of complemented
edges.

3. The procedure visits all the nodes of the graph Dα, and for each node v and each outgoing edge g
the procedure decides, based on t_odd, t_even, r_odd, r_even, whether there is a path from the source
node of the graph to its sink passing through both node v and edge g, and has an even number of
complemented edges. If there is no such a path for all the nodes corresponding to a variable z and for
all the edges labeled with z = 0, as well as for all edges passing through the level of the variable z, then
the assignment α is classified to be implying the elementary assignment z = 1. (Analogous, for
implying z = 0). In the end of visiting a node v, t_odd, t_even, r_odd, r_even are to be reset to 0 of the
node v and its outgoing edges.

11.3 CNF-Based Models for Tree-Like System
A system of normal blocks is called tree-like, if each of its variables feeds not more than one block

input in the system, each block has one output, and the system is connected (each of its inputs is
connected by a path with the output of the system).

In the recent papers [4,21-23], the author proposes a technique of constructing a CNF-based model
for a group of gates. The technique is based on a description of a gate by a set of implications, and on
substituting the implications of some gates into implications of other gates to eliminate the internal
variables of the group. The proposed technique leads to impressive speed-ups for verification of
microprocessors especially when being applied to tree-like groups of gates containing chains of
multiplexers (if-then-else gates). We will refer to the technique as gate merging. In another recent
paper [44] the authors report about successful use of their prepossessing engine NiVER that can be
considered as a version of classical resolution based procedure VER [45]. In this section, we show that
both techniques lead to the same CNF-based model when being applied to the same tree-like system S
in which all blocks have CNF-based models with maximal implicativity. We also show that the same
result can be obtained by using a procedure of existential quantification. The procedure constructs the
permission function f of the system S as CNF by means of existential quantification of the extended
permission function f* of the system on the internal variables of S. Finally, we show that the resulting
CNF-based model generated for the system S by each of the three procedures has maximal
implicativity.

 26

11.3.1 Gate Merging

In this section, we consider the gate merging technique for constructing the CNF model of a tree-
like system.

As first step, CNFs for gates are transformed into sets of implications, and we consider this
transformation. Let C be a CNF depending on a variable y. Let Cy (respectively, C¬y , C-y) denote the
CNF that consists of all clauses, where each of them is obtained from a clause of C containing the
literal y (respectively, the literal ¬y , or no literal of y) by removing the literal. For example, if C = (a
∨ ¬y) ∧ (b ∨ ¬y) ∧ (¬a ∨ ¬b ∨ y), then Cy = (¬a ∨ ¬b), C¬y = a ∧ b . However, C- y = 1 because all
clauses depend on the variable y in C. By the definitions above

 C = (Cy ∨ y) ∧ (C¬y ∨ ¬y) ∧ C-y. (3)

 Consider a tree-like system consisting of two blocks B1 and B2 (Fig. 14).
Let the permission function of block B1 (block B2) be

represented by CNF C1 (CNF C2 accordingly). Due to Theorem 1,
all clauses of C1 must contain the variable y that is the output
variable of the block B1. Thus, C1

-y = 1 and C1 = (C1
y ∨ y) ∧ (C1

¬y
∨ ¬y). A clause containing literal y (¬y) is called positive
(accordingly negative) w. r. t. the variable y. All positive clauses
w. r. t. the variable y of the set C1 can be obtained by performing
the operation of logical addition (i.e. disjunction “∨”) of the CNF
C1

y and literal y. A clause c ∨ y which is positive w.r.t. the variable
y can be represented as implication ¬c ⇒ y because c ∨ y = ¬c ⇒
y. The negation of the clause ¬c can be rewritten as elementary
conjunction (for example, ¬ (¬a ∨ ¬b) = a ∧ b)). Hence, instead
of considering the CNF C1, a set of positive implications of the
form conjunction ⇒ y and a set of negative implications of the

form conjunction ⇒ ¬y can be considered. In a positive (respectively, negative) implication,
conjunction is the negation of a clause from the set C1

y (respectively, C1
¬y). The CNF C2 of the block

B2 can also be represented as union of the sets of positive and negative implications w.r.t. the output z
of B2.

Remind, xε where ε ∈{0, 1} denote a literal of the variable x, precisely, x1 = x and x0 = ¬x. The
method of gate merging being applied to the system depicted in Fig. 14 produces the implication
conjunction1 ∧ conjunction2 ⇒ zε for each pair of implications conjunction1 ⇒ yδ and conjunction2 ∧
yδ ⇒ zε in which the first implication is substituted into the second one (instead of the literal yδ). After
that, the

 a ∨ ¬y ¬a ⇒ ¬y ¬y ∨ z y ⇒ z c ⇒ z ¬c ∨ z
 b ∨ ¬y ¬b ⇒ ¬y ¬c ∨ z c ⇒ z a ∧ b ⇒ z ¬ a ∨ ¬b ∨ z

¬a ∨ ¬b ∨ y a ∧ b ⇒ y y ∨ c ∨ ¬z ¬y ∧ ¬c ⇒ ¬z ¬a ∧ ¬c ⇒ ¬z a ∨ c ∨ ¬z
 ¬b ∧ ¬c ⇒ ¬z b ∨ c ∨ ¬z

a) CNF model
 for AND gate

 b) implication
 model for AND gate

 c) CNF model
 for OR gate

 d) implication
 model for OR gate

e)implication model
 for the system

 f) CNF model
 for the system

Fig. 15 Gate merging

system of blocks is replaced with one block having the set of produced implicates as model. The
resulting set of implicates can be represented in a CNF form.
Example 11. Let the block B1 be a two-input AND-gate and the block B2 be the two-input OR-gate.
The method of gate merging is illustrated by Fig. 15. ⊗

For tree-like systems containing more than two blocks, gate merging is performed for two-block
tree-like subsystems until the system is reduced to one block. Thus, the method of [4] results in
constructing a CNF-based model for a normal block which is equivalent to a tree-like system [4].
Moreover, we show in Section 11.3.4 that the constructed CNF is the characteristic CNF for the system
considered as big block, if all system’s blocks have characteristic CNFs as their models.

z

y vm v1

uk u1

 B1

 B2

 • • •

 • • •

Fig. 14 A tree-like system
 of two blocks

 27

11.3.2 Resolution Based Method

Now we show that the same model as in the previous section can be constructed by applying the
resolution based method of [44].

According to [45], to remove a variable y from a CNF C one can resolve each pair of clauses that
can be resolved by the variable y (see Section 4 for the definition of resolution used in the paper). All
resolvents are added to C and all clauses containing y are removed from C. The resulting CNF C′ is
satisfiable iff the original CNF C is satisfiable. The resolution based method is illustrated by Fig. 16 for
eliminating the variable y form the CNF that describes the system considered in Example 11. We see
that the resulting CNF is the same as for gate merging.

Theorem 31. Let S be a tree-like system of two blocks B1 and B2. Let the characteristic CNFs C1 and
C2 of block B1 and B2 be used as their models, respectively. Then the gate merging and the resolution
based methods produce the same resulting CNF C. ⊗

 a ∨ ¬y ¬y ∨ z ¬a ∨ ¬b ∨ y, ¬y ∨ z ¬ a ∨ ¬b ∨ z ¬ a ∨ ¬b ∨ z
 b ∨ ¬y ¬c ∨ z a ∨ ¬y, y ∨ c ∨ ¬z a ∨ c ∨ ¬z a ∨ c ∨ ¬z
 ¬a ∨ ¬b ∨ y y ∨ c ∨ ¬z b ∨ ¬y, y ∨ c ∨ ¬z b ∨ c ∨ ¬z b ∨ c ∨ ¬z
 ¬c ∨ z

 a) CNF model
 for AND gate

 b) CNF model
 for OR gate

 c) resolved pairs of clauses d) resolvents e) resulting CNF
 for the system

Fig. 16 Resolution based method

The resolution based method can be applied for elimination of the internal variables of a tree-like
system. If all blocks of the system have the characteristic CNFs as models, the method is equivalent to
gate merging of the system due to Theorem 31.

11.3.3 Existential Quantification of a Tree-Like System

In this section, we introduce two-block quantification procedure and show that it is equivalent to
the procedures given in Sections 11.3.1 and 11.3.2.

Let B be a normal block, let y be the single output variable of B, and let C* be the characteristic
CNF of the block. Then C*-y = 1, because by Theorem 1 any implicate of the permission function of
the block must contain the output variable y.

Theorem 32. Let S be a system of two normal blocks B1 and B2. Let B1 have one output y and let y
feed block B2. Let C1 and C2 be the characteristic CNFs of block B1 and B2 respectively, let C1 = (C1

y ∨
y) ∧ (C1

¬y ∨ ¬y), and let C2 = (C2
y ∨ y) ∧ (C2

¬y ∨ ¬y) ∧ C2
-y. Then the permission function f of the

system S is equal to (C1
y ∨ C2

¬y) ∧ (C1
¬y ∨ C2

y) ∧ C2
-y. ⊗

Given a tree-like system S consisting of two blocks B1 and B2 in which the output y of B1 feeds an
input of B2, we specify the procedure of existential quantification of the system S. We call the
procedure two-block quantification. Let C1 and C2 be the characteristic CNFs of blocks B1 and B2

respectively. Due to Theorem 32 the permission function f of the system S is equal to (C1
y ∨ C2

¬y) ∧
(C1

¬y ∨ C2
y) ∧ C2

-y. The procedure first constructs the permission function f in this form (i.e. as the
result of existential quantification of the extended permission function of the system on the variable y
due to proof of Theorem 32). After that, it performs logical addition (the operation “∨”) over pairs of
CNFs C1

y and C2
¬y , and C1

¬y and C2
y, under which each pair is transformed into a CNF. The resulting

CNFs are united with the CNF C2
-y into the final CNF denoted by C(B1, B2).

Theorem 33. Let S be a tree-like system of two blocks B1 and B2. Let C1 and C2 be the characteristic
CNFs of blocks B1 and B2 respectively which are used as their models. Then the two-block
quantification, and the resolution based method, as well as the gate merging produce the same CNF. ⊗

11.3.4 Maximal Implicativity of the Resulting CNF

Firstly, we show that C(B1, B2) is the characteristic CNF of f. Thus, due to Theorems 33 and 3 all
three procedures considered in Sections 11.3.1, 11.3.2, and 11.3.3 construct the same model with
maximal implicativity for any two-block tree-like system in which each block has the characteristic
CNF as the model. Finally, we show that the existential quantification procedure for any multi-block
tree-like system produces the characteristic CNF of the system.

 28

Theorem 34. Let S be a tree-like system consisting of two blocks B1 and B2 in which the output y of B1
feeds an input of B2. Then the CNF C(B1, B2) is the characteristic CNF of the permission function f of
S. ⊗

Now we specify the existential quantification procedure for a tree-like system S. Until there is a
two-block tree-like subsystem S′ = {B1, B2} in the current system S* (in the beginning of the
procedure S* = S), the procedure applies the two-block quantification procedure for S′ and replaces the
subsystem S′ of S* with the block having the CNF C(B1, B2) model. Due to Theorem 33 the procedure
is equivalent to the gate merging and the resolution based method, if all the blocks of the system have
the characteristic CNFs as models.

Theorem 35. The procedure of existential quantification of a tree-like system S constructs the
characteristic CNF C* for the permission function of the system. ⊗

Note, Theorem 35 holds for tree-like systems containing blocks of any complexity and not only
gates implementing elementary Boolean functions.

11.4 Other Techniques
Now we consider briefly some other recent techniques that can be fitted into our framework of

hierarchical SAT-solving providing block-models with maximal or increased implicativity.

11.4.1. Using State Machines for Representation of Boolean Functions

In the paper [25], the authors propose to use a special kind of state machine for representing
Boolean functions (SMURF). An example of the model is given for ite(a, b ∧ (c⊕d), d∧(a⊕b)) in Fig.
17 [25]. SMURF is an acyclic Mealy machine where transitions produce value assignments to
variables, i.e. implicates in our terminology. SMURF has a source node (state) that corresponds to the
Boolean function f represented by the model and a sink node marked with 1 (the source is marked with
f) (Fig.17). Edges are marked with pairs of assignments denoting the input and output of the SMURF
on a transition. In Fig. 17 one of the edges leaving the root node (top left) is marked with ¬a; d
meaning that reading the elementary assignment a = 0 the SMURF produces the elementary
assignment d = 1 on the transition to the state b ⊕ c corresponding to the cofactor f a = 0, d = 1. Note,
that nodes corresponding to the same cofactors are merged. Thus, under the assignment a = 1

(implying b =1, c = 0) and under the
assignment b = 1 (implying c = 0) the
model switches from the state ite(a,
b∧¬c, b⊕c) to the state 1.

The method of constructing SMURFs
is described in [25]. It can be shown that
this model is consistent and provides
maximal implicativity and maximal
strong implicativity.

It is interesting to compare SMURFs
with BDDs. The SMURF model
implements a faster BCP than BDD-
BCP. In the worst case, one has to pass
along the longest path of a SMURF to
extract relevant information from it. At
the same time, one has to traverse a
BDD three times completely (see
Section 11.2.2). However, a SMURF can
take much more space than the BDD for
the same function. Firstly, the number of
nodes of a SMURF is equal to the
number of equivalence classes on the set
of all possible cofactors of the Boolean
function f under consideration (i.e. O(3n)
in the worst case, where n is the number
of variables of f). At the same time, the
number of nodes of the BDD for f is
equal to the number of equivalence

b; ¬c
¬b; c
c; ¬b
¬c; b

 ite(a, b ∧ (c⊕d), d ∧ (b⊕c))

 ite(a, c⊕d, d∧¬c)

 ite(a, b∧¬c, b⊕c)

 ite(a, b∧¬d, d∧¬b)

 c ⊕ d b ⊕ c

 1

Fig. 17 SMURF for ite(a, b∧(c⊕d), d∧(a⊕b))

¬a; d

a; b

b d

c

a ¬a

c; ¬d
¬c; d
d; ¬c
¬d; c

¬b; ¬a,c,d
¬c; b,d
¬d; a,b,c

¬a; ¬c,d
 c; a,¬d
¬c; d
 d; ¬c
¬d; a,c

 a; b,¬c
 b; ¬c
¬b; ¬a, c
 c;¬a,¬b
¬c; b

 a; b,¬d
¬a; ¬b, d
 b; a, ¬d
¬b; ¬a, d
 d;¬a,¬b
¬d; a, b

 29

classes on the set of cofactors that can be obtained by performing Shannon expansion of f under a
given variable ordering (i.e. O(2n) in the worst case). Secondly, each node of a SMURF can have up to
2k outgoing edges where k is the number of variables a cofactor corresponding to the node depends on.
BDD nodes have exactly 2 outgoing edges (except for the source and the sink). As a consequence of
their bigger sizes SMURFs advantage in speed of BCP might be reduced due to the “cache
architecture” of modern processors.

Our brief discussion illustrates how different mathematical models can be used according to the
kind of block under consideration.

11.4.2. Using Pseudo-Boolean Constraints

In [24], the authors propose to use pseudo-Boolean constraints (PBC) as additional constraints to a
SAT-solver and report about considerable speed-up for FPGA routing benchmarks. A PBC can be
represented in the form

 a1yy1 + a2y2 + … +anyn ≤ b (3)

where ai, b ∈ Ζ+ and yi denotes either xi or ¬ xi. The PBC in (3) corresponds to a threshold function
which is unate (monotone) in each of its variables. PBCs can be used for implication deduction and
fixing conflicts. For example, consider the constraint a + b + c + d ≤ 2. If a = b = 1, then the only
possibility to satisfy the constraint is to set c = d = 0. If a = b = c = 1, the constraint cannot be
satisfied, thus we have conflict.

The authors also describe a procedure for deducing value assignments and fixing conflicts based on
the PBC in (3). In our terminology this procedure corresponds to the BCP-procedure of a block-
constraint with the permission function presented in (3). It can be shown that this model has maximal
implicativity, maximal strong implicativity and is consistent.

11.4.3. Using Multiple Exclusive ORs

A multiple exclusive OR has the form

 xx1 ⊕ x2 ⊕ … ⊕ xn ⊕ δ (4)

where xi (i = 1,...,n) are Boolean variables and δ ∈ {0,1}. An expression in (4) represents a linear
Boolean function. The expression can be easily used to deduce implications and recognize conflicts.

Consider the expression a ⊕ b ⊕ c ⊕ d. Let a = b = c = 1, then a ⊕ b ⊕ c =
1. The only way to satisfy the expression under consideration is to set d to 0.
However, if a = b = c = d = 1, we have a conflict. One can define a BCP-
procedure for an expression in (4) based on counting the number of variable
values assigned to 1 and checking whether the number is odd or even. It can
be shown that such a BCP provides maximal implicativity and maximal
strong implicativity and the model is consistent.

Consider the EX-OR chain depicted in Fig. 18. It implements the
function a ⊕ b ⊕ c = y. Thus, the permission function of the chain can be
represented as a ⊕ b ⊕ c ↔ y or a ⊕ b ⊕ c ⊕ y ⊕ 1. Using multiple
exclusive ORs for representation of EX-OR chains was proposed recently in
[46].

11.4.4. Arithmetic Reasoning

Multipliers are known to be hard objects for SAT-solving. The main part of a multiplier is an
addition network which calculates the sum of partial products. In a recent paper [26], the authors
propose a technique called arithmetic reasoning that is based on column-wise calculation of the sum of
partial products during SAT-solving. As a result “global” forward implications not delivered by CNF-
BCP can be deduced. For example, multiplying 0 1 X 1 on 0 1 0 1 (where X denotes the undetermined
value) by this technique delivers the value 0 for the two most significant product bits of a 4∗4-
multiplier (Fig. 19). At the same time, it is possible that a circuit implementing the multiplier cannot
produce the same values under BCP. To deduce an implication by the considered scheme it suffices to
count only numbers of carry bits cij set to 1 and set to 0 in each column, not calculating the values of cij
exactly [26]. Thus, the arithmetic reasoning procedure can be considered as a model of a block-
constraint, which has pin variables aij (bits of addends) and bi (bits of the product) as well as internal
multi-valued variables for counting numbers of carries set to 1 or 0 in each column. The block

a b

⊕

⊕

c

y

Fig.18 EX-OR chain

 30

8 7 6 5 4 3 2 1

1 a14 = 0 a13 = 1 a12 = 0 a11 = 1
X a24 = 0 a23 = X a22 = 0 a21 = X
1 a34 = 0 a33 = 1 a32 = 0 a31 = 1
0 a44 = 0 a43 = 0 a42 = 0 q41 = 0
 c17 = 0 c16 = 0 c15 = 0 c14 = 0 c13 = 1 c12 = 0
 c26 = 0 c25 = 0 c24 = 0 c23 = 0
 c35 = X c34 = X
 b8 = 0 b7 = 0 b6 = X b5 = X b4 = X b3 = 0 b2 = X b1 = 1

Fig. 19 Arithmetic reasoning for 4*4-multiplier
aij – bits of addends, cij – carry bits, bi – bits of the product

increases the implicativity of a system under consideration. However, it has not the maximal
implicativity, at least because it does not provide backward implications.

11.4.5. Managing Don’t Cares

In the recent paper [27], the authors propose a technique for using controllability and observability
don’t cares to improve performance of SAT-solvers. In this section, their technique of managing
controllability is fitted into our framework.

A partial assignment α to the variables of a system S is called controllability don’t care condition
(CDC), if there is no full assignment β to the inputs of the system such
that after running SYSTEM-BCP(β) the variables of the system take
assignment γ containing α . The technique [27] is meant for finding
CDCs for a system given on the low (gate) level. CDCs revealed are
represented by clauses which are added into the conventional CNF of
the system.

Preliminary in [27], a system is partitioned into fan-out free circuits
referred to as cones, and CDCs are considered on inputs of cones. To
find CDCs a subsystem feeding the variables under consideration is
extracted. As CDCs may be time consuming to prove, the size of
circuitry extracted is limited. Instead of extracting logic up to the
primary inputs of the system they specify a number of cone levels to
extract. In our framework, an extracted subsystem can be viewed as a
virtual block having the conventional CNF model that is a part of the
system CNF. By adding clauses representing CDCs into this part, the
technique of [27] corresponds to increasing the implicativity of the
block model.

Consider for example a part of a system (Fig. 20) in which a cone
has inputs y and z. The assignment α = {y = 1, z = 1} is a controllability don’t care because no
assignment to the inputs a, b, and c can cause α . Thus, the clause ¬y ∨ ¬z representing α is to be
added to the conventional CNF of the system. On the other hand, the three-gate subsystem surrounded
the dashed line in Fig. 20 can be considered as a block having the CNF C = (a ∨ ¬x) ∧ (c ∨ ¬x) ∧ (¬a
∨ ¬c ∨ x) ∧(x ∨ ¬y) ∧ (b ∨ ¬y) ∧ (¬x ∨ ¬b ∨ y) ∧ (b ∨ z) ∧ (c ∨ z) ∧ (¬b ∨ ¬c ∨ ¬z) as model. The
clause ¬y ∨ ¬z is an implicate of C (because it is the resolvent of x ∨ ¬y, ¬x ∨ c, ¬b ∨ ¬c ∨ ¬z, b ∨
¬y). The CNF C does not provide the implication z = 1 ⇒ y = 0 under CNF-BCP, but after adding the
clause ¬y ∨ ¬z into C the implication can be deduced. Thus, adding the clause y ∨ z increases
implicativity of the block.

11.4.6. A Matrix Model

We have discussed a representative subset of models currently used in practical SAT-solving. For
further progress in hierarchical SAT-solving, efficient models should be developed for typical blocks
and structures of different application domains. Certainly, the models listed above could be considered
as first candidates. However new specific models could be created. Developing SAT-models is an
interesting topic of research, and the list of attractive models can be substantially extended. To
illustrate this claim we consider a matrix model in this section.

a b c

y = 1 z = 1

Fig.20 Controllability
 don’t care

x

 31

In the simplest case of this model, information is stored in the form of a Boolean matrix T which
represents the ON-set of a permission function under consideration. As example, consider the matrix T
(Fig. 21,a) for the permission function f of 1-bit adder (Fig. 1,b).

A partial assignment to the pin variables of a block under consideration can be represented by the
ternary vector. For example, the assignment b = 1, z = 0, y = 0 to the odered set of variables {a,b,c,z,y}
can be represented by the vector – 1 – 0 0. Two ternary vectors of the same size are orthogonal by the
i-th component, if they take opposite definite values in this component, i.e. one vector takes the values
0 and another takes the value 1. Thus, 0 0 0 0 0 and – 1 – 0 0 are orthogonal by the second component.
Two ternary vectors are called orthogonal, if they are orthogonal by some component. A ternary vector
is called orthogonal to a ternary (particularly, Boolean) matrix, if it is orthogonal to all its rows.

Given a matrix T
representing the ON-set
of a permission function f,
an assignment α
represented by a ternary
vector t can be correctly
classified as conflicting
iff t is orthogonal to T
(because only in this case
α can not be extended to
an assignment from the
ON-set of f). In our
example, t is orthogonal
to T (Fig. 21.a). Thus, the
assignment b = 1, z = 0, y

= 0 is conflicting.
Now we consider conditions for recognizing implications. Let t = 1 1 - - -, as example. Let us

remove from T all rows orthogonal to t and all columns in which the vector t has definite values (i.e. 1
or 0). The removed elements of T are shown in bold in Fig. 21,b. Let T(t) be the resulting matrix. As
T(t) contains the unate column y consisting of ones (Fig. 21,c), the vector 1 1 - - 0 with the opposite
value 0 for y is orthogonal to T. Thus, the assignment a = 1, b = 1, y = 0 represented by this vector is
conflicting. Hence, we can deduce the implication a = 1, b = 1 ⇒ y = 1.

Given a matrix T and the vector t representing an assignment α , by passing through T and
performing bit-wise logical operations over t and rows of T, it is possible to check whether α is
conflicting or not and deduce all elementary implications α ⇒ βi (by identifying the unate columns in
T(t)). It can be show that such a model is consistent and has maximal implicativity and maximal strong
implicativity. This model is faster than BDD, as it needs only one traversal of its data base (i.e. the
matrix T), and sometimes it can be more concise than BDD. As example, one can compare the BDD-
model (Fig. 13) and the matrix model (Fig 21, a) for 1-bit adder. The BDD-model has 13 nodes and 23
edges, while the matrix model has 8 rows only.

An advanced version of this model is the representation of the ON-set N1 of a permission function f
by a ternary matrix T in which each row represents a cube of N1. In this case, T is a representation of a
disjunctive normal form (DNF) D of f. A minimized DNF D for f can be found by using Boolean
minimization procedures, for example ESPRESSO [51], BOOM [52].

12. Discussion and Further Research
12.1 Summary

In this paper, we have proposed a theoretical foundation for hierarchical SAT-solving. We have
introduced 6 axioms, which a block must satisfy, as well as a fundamental notion of implicativity.
Normal blocks and block-constraints are distinguished in the proposed theory. We have proven that
testing whether a normal block’s output implements a constant Boolean function is trivial, if the block
has maximal implicativity. It has been also shown that constructing a consistent model for a normal
block results in reaching maximal implicativity and maximal strong implicativity. We have proven that
a system of blocks is a normal block thus providing a way of constructing blocks of any complexity.
Basic procedures of hierarchical SAT-solving operating on blocks similarly to clauses during CNF-
based satisfiability testing have been outlined. We have shown that these procedures lead to increased
implicativity of a system by adding block-constraints, resulting in reaching maximal implicativity, if

 a b c z y
 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 T = 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

 t = - 1 - 0 0

 a b c z y
 0 0 0 0 0
 0 0 1 1 0
 0 1 0 1 0
 T = 0 1 1 0 1
 1 0 0 1 0
 1 0 1 0 1
 1 1 0 0 1
 1 1 1 1 1

 t = 1 1 - - -

c z y
0 0 1
1 1 1

T (t) =

a) t is orthogonal to T b) removing elements c) matrix T (t)

 Fig. 21 Matrix model for 1-bit adder

 32

the system implements the tested constant Boolean function. Basic methods for measuring and
estimating implicativity have been also proposed.
 The main conclusion of this theoretical work is that hierarchical SAT-solving is reduced to
increasing implicativity of a system.

We have proven the relevance and the potential of our theory by identifying many new and
promising research topics as cases of hierarchical SAT-solving. As for experimental confirmation of
the usefulness of the theory we simply refer to recent papers of many researchers [4,11,15,16,18,19,20,
24,25,26,27] reporting substantial progress. Almost all of these techniques increase the level of
abstraction of SAT-solving by constructing blocks with maximal implicativity.

12.2 Why Could Hierarchical SAT-solving Be an Interesting Topic of Research?

We have shown that the proposed theory can be considered as a generalization of existing
experience in practical SAT-solving. At the same time, there is one more reason to attract attention of
researchers to the topic of hierarchical SAT-solving. Based on the supposition that the computing
facilities of humanity for enumerating Boolean functions are very restricted, we have to focus on some
interesting classes of Boolean functions. This supposition is based on the following analysis:

Suppose that Moore’s Law is continuing for the next 1000 years, i.e. every 2 years the performance
of computers doubles. Currently, we have computers with a frequency of 4 GHZ, i.e. performing 4*109
< 238 clock circles per second. Suppose that the performance of computers will increase due to increase
of their clock frequency. Thus, we will have computers with 238 * 2500 = 2538 clock circles per second
in 1000 years (however, currently we even haven’t a physical model supporting this fantastic
performance). Further suppose that we already have A such computers working in parallel where A is
the number of atoms in the universe. In other words, each atom of the universe is used as such a
computer. Currently A is estimated as less than 10100 < 16100 = 2400. Let each computer consider one
new function at each clock circle and let all computers together never consider the same function.
Thus, our super universe-computer will be able to enumerate m functions during 1000 years (or less
than in 235 seconds) where

m < (2400) * (2538) * (235) = 2973 < 21024 =
1022

Note that m is less than the number of all Boolean functions in 10 variables, whereas we are faced
with real life Boolean functions of n = 1000000 variables (and this n still grows). Dividing

1022 by
100000022 results in a number 0.0………0d having at least 2249999 zeros succeeding the decimal point.

Thus, m is “infinitely small” in comparison with the number of Boolean functions of 1000000
variables, and we have to focus on some specific classes of Boolean functions which could be
interesting for humanity.

Our next supposition is that really interesting (for needs of humanity) functions come from real
world systems. But how could realistic functions be classified to provide a way for developing
methods for them specially? To answer this question a natural way is to go to the current sources of
real world functions and work with them trying to understand their general features. It is clear that real
world systems are hierarchical. Thus, one can try to take into account hierarchy of real world SAT-
instances.

12.3 Current Limitations

In this paper, we advisedly introduce some limitations. First of all, we restrict the systems
considered to only two levels of hierarchy: we have some blocks on the low level and a system of
blocks on the high level. Secondly, the SAT-solving process is sequential. At the same time realistic
systems can have many levels of hierarchy and their components can behave and interact (or
communicate) concurrently. However we believe that a rational way of research is to develop a
particular theory for the beginning and substantially exploit it in practice before considering a more
general theory. Note, even in the proposed framework, one can consider complex realistic hierarchical
systems, as a system of blocks is again a block in our theory (thus, one can use more and more
complex blocks).

In our theory, blocks are used only for storing and extracting useful information and they can
“discover” neither new (not stored) conflicts nor implications. As soon as block models with the ability
to discover new conflicts or implications are used or a way of running block models concurrently is
described, a more general situation is considered. Thus, a more general theory generalizing the one
proposed here could be developed. In this sense, our theory can be viewed as a generalization of many
advanced techniques proposed in practical SAT-solving.

 33

12.4 Further Research

Our theory opens a rich domain for future research. Since hierarchical SAT-solving comes down to
increasing implicativity of a system, one can try to reach this goal by increasing implicativity of its
blocks at a preprocessing step. Until now, preprocessing was considered as a stage of SAT-solving for
each particular SAT-instance. Our theory opens a new direction of research: constructing block
models. Block models can be developed for typical blocks of the design and for typical or regular
structures. These models can be reused for different SAT-instances.

A constructed block model should have three properties: 1) increased implicativity (compared to
conventional CNF-based models); 2) fast BCP-procedure (to quickly extract information stored in the
model); 3) be compact (for practical use). Ideally, implicativity should be maximal. Note that
providing maximal implicativity for a block can be unnecessary for a particular instance, because
SAT-solving can be successfully finished without using some implicates or conflicts stored in the
block model. However, since it is impossible to predict what part of the stored information will be
really used for a tested SAT-instance and because the model is to be used repeatedly for many
instances, implicativity should be as high as possible. At the same time for big or complex blocks,
even models with increased implicativity can be useful, because they will provide global implicates
and conflicts which can be reproduced under SAT-solving after appropriate branching only. As
example, we refer to arithmetic reasoning for multipliers [26] discussed in Section 11.4.4.

According to our theory, a way for increasing implicativity of a subsystem (considered as a big
block) is to use learning techniques based on adding block-constraints to the subsystem. However, this
increases the size of the subsystem. Another way is to develop a special compact model with a specific
BCP. We show in the paper that quite different mathematical constructions can be used for block
models (and they have been already proven to be efficient). After further research, new mathematical
models can be involved into practical SAT-solving.

Our concept allows gradually increasing the level of abstraction of practical SAT-solvers based on
advances of block model designers and makes it possible to use different improved techniques in
cooperation. For example, in a system one can use one kind of model for multipliers, another kind of
model for arbiters, different models for typical structures of control logic, or simultaneously, various
techniques inside of one block model. Intuition leads us to postulate the third principle of hierarchical
SAT-solving: using different models for different kinds of blocks. This principle is well adjusted with a
tendency of modern commercial tools to use different techniques in cooperation.

Another important and more challenging direction of research is dynamic learning. Adding block-
constraints is a way of increasing implicativity of a system under considerations. The problem is to
find optimal (in time) strategies for increasing implicativity up to the maximum for instances of a
given application domain. Hierarchical SAT-solving inherits an analogical problem from CNF-based
satisfiability testing (that is the lowest level of hierarchical SAT-solving). Currently, the problem is
tackled by heuristics. In the theory of hierarchical SAT solving, additional information can be used,
such as structural properties of the system and the notion of implicativity.

In the formal verification domain, very often SAT instances globally consist of two subcircuits
describing some designs compared. In this case, according to theoretical results [7] and modern
experience, most efficient dynamic learning strategies should lead to constructing block-constraints
relating both designs. For example, in equivalence checking of two similar combinatorial circuits,
block-constraints should describe equivalence relations between internal variables of the circuits. In
this case, when hiding variables inside of block models, some important constraints could be lost and
SAT-solving could be complicated. Thus, an important topic of research related to developing efficient
dynamic learning strategies is finding a rational granularity of sizes of normal blocks used for solving
practical SAT-instances.

At the same time we would like to underline the flexibility of hierarchical SAT-solving. A normal
block can be considered as a block-constraint. Thus, instead of replacing a combinatorial subcircuit
with a normal block, one can use the latter as a block-constraint to support SAT-solving process.

The main contribution of this paper is the creation of a strict axiomatic theory covering many
advanced techniques in practical SAT-solving and the introduction of the new important notion of
implicativity which is shown to be the core notion of SAT-solving. We believe that our theory will
attract the attention of researchers resulting in substantial progress in practical SAT-solving.

 34

Acknowledgements
We whish to acknowledge the helpful suggestions and comments of Wolfgang Günther, Angela

Matrosova, Sean Safarpour, Peter Warkentin, and Klaus Winkelmann. We also like to thank Rolf
Drechsler and Bernd Steinbach for their support.

References
[1] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using SAT

procedures instead of BDDs. In Proc. Design Automation Conference, pp. 317-320, 1999.
[2] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking without BBDs. In Proc.

of TACAS’99, pp. 193—207, 1999.
[3] Solidify: Static Functional Verification for HDL Designers, http://www.averant.com, 2004.
[4] M.N. Velev. Efficient Translation of Boolean Formulas to CNF in Formal Verification of

Microprocessors. In Proc. Asia and South Pacific Design Automation Conference (ASP-DAC '04),
pp. 310-315, 2004.

[5] K. Winkelmann, H.-J. Trylus, D. Stoffel, G. Fey. Cost-Efficient Block Verification for a UMTS
Up-Link Chip-Rate Coprocessor. In Proc. European Design and Test Conference, pp. 162-167,
2004.

[6] D. Jackson. An intermediate design language and its analysis. In Proc. ACM SIGSOFT
Foundations of Software Engineering, Orlando, Florida, pp. 121-130, 1998.

[7] E. Goldberg and Ya. Novikov. How good can a resolution based SAT-solver be? Lecture Notes in
Computer Science. Publisher: Springer-Verlag ,Vol. 2919 Theory and Applications of Satisfiability
Testing: 6th International Conference, SAT 2003, Santa Margherita Ligure, Italy, May 5-8, 2003,
Selected and Revised Papers, Editors: Enrico Giunchiglia, Armando Tacchella, 2004, pp. 37-52.

[8] M. Moskewicz, C. Madrigan, Y. Zhao, L. Zhang, and S. Malik, Chaff: Engineering an efficient
SAT solver. In Proc. ACM/IEEE Design Automation Conference, pp. 530 - 535, 2001.

[9] E. Goldberg, Y. Novikov. BerkMin: A fast and robust SAT-Solver. In Proc. European Design and
Test Conference, pp. 142-149, 2002.

[10] L. Ryan. Efficient Algorithms for Clause-Learning SAT Solvers. http://www.satlive.org/index.jsp,
2004.

[11] F. Lu, L.-C. Wang, K.-T. Cheng, and R. Huang. A circuit SAT solver with signal correlation
guided learning. In Proc. European Design and Test Conference 2003.
http://cadlab.ece.ucsb.edu/downloads/UCSB_Circuit_SAT/09d_3_496.pdf

[12] J.P. Marques-Silva and K.A. Sakallah. GRASP: A Search Algorithm for Propositional
Satisfiability. IEEE Transactions on Computers, vol. 48, pp. 506-521, 1999.

[13] L. Zhang, C. Madgigan, M. Moskewicz, and S. Malik. Efficient conflict driven learning in a
Boolean satisfiability solver. In Proc. Intl. Conf. On Computer-Aided Design, pp. 279 – 285, 2001.

[14] A. Kühlmann, M. Ganai, and V. Paruthi. Circuit-based Boolean Reasoning. In Proc. ACM/IEEE
Design Automation Conference, pp. 232-237, 2001.

[15] M.K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Malik. Combining strengths of circuit-based
and CNF-based algorithms for a high-performance SAT solver. In Proc. ACM/IEEE Design
Automation Conference, pp. 747-750, 2002.

[16] R. Damiano and J. Kukula. Checking satisfiability of a conjunction of BDDs. In. Proc.
ACM/IEEE Design Automation Conference, pp. 818-823, 2003.

[17] J.R. Burch and V. Singhal. Tight integration of combinatorial verification methods. In. Proc. Intl.
Conf. On Computer-Aided Design, pp. 570-576, 1998.

[18] A. Gupta and P. Ashar. Integrating a Boolean satisfiability checker and BDDs for combinatorial
equivalence checking. In. Proc. Int’l Conf. on VLSI Design, pp. 222-225, 1997.

[19] S. Reda and A. Salem. Combinatorial equivalence checking using Boolean satisfiability and
binary decision diagrams. In Proc. Design Automation and Test in Europe, pp. 122-126, 2001.

[20] A. Gupta, M. Ganai, C. Wang, Z. Yang, and P. Ashar. Learning from BDDs in SAT-based
Bounded Model Checking. In. Proc. ACM/IEEE Design Automation Conference, pp. 824-829,
2003.

[21] M.N. Velev. Exploiting Signal Unobservability for Efficient Translation to CNF in Formal
Verification of Microprocessors. In. Proc. Design, Automation and Test in Europe, pp. 266-271,
2004.

[22] M.N. Velev. Using Positive Equality to Prove Liveness for Pipelined Microprocessors. In Proc.
Asia and South Pacific Design Automation Conference, pp. 316-321, 2004.

 35

[23] M.N. Velev. Using Automatic Case Splits and Efficient CNF Translation to Guide a SAT-Solver
When Formally Verifying Out-of-Order Processors. In Proc. Artificial Intelligence and
Mathematics, pp. 242-254, 2004.

[24] F.A. Aloul, A. Ramani, I.L. Markov, K.A. Sakallah. Generic ILP versus Specialized 0-1 ILP: An
Update. In. Proc. Intl. Conf. On Computer-Aided Design, pp. 450-457, 2002.

[25] Franco et al. Function-Complete Lookahead in Support of Efficient SAT Search Heuristics.
Journal of Universal Computer Science (to appear).

[26] M. Wedler, D. Stoffel, and W. Kunz. Arithmetic reasoning in DPLL-based SAT solving. In. Proc.
Design, Automation and Test in Europe, pp. 30-35, 2004.

[27] S. Safarpour, A. Veneris, R. Drechsler, J. Lee. Managing Don’t Cares in Boolean Satisfiability. In
Proc. Design, Automation and Test in Europe, pp. 260-265, 2004.

[28] G.C. Tseitin. On the Complexity of Derivation in Propositional Calculus. In Studies in
Constructive Mathematics and Mathematical Logic, Part 2, 1968, pp. 115-125. Reprinted in J.
Siekmann, and G. Wrightson, eds., Automation of Reasoning, Vol.2, Springer-Verlag, pp. 466-483,
1983.

[29] A. Blake. Canonical Expression in Boolean Algebra. Dissertation, Chicago, 1937.
[30] P.S. Poretski. On the method of solving logical equations and on the inverse method for

mathematical logic (in Russian). Sobranie protokolov zasedanit fis. Mat. Kasan 2, pp. 161-330,
1884.

[31] O. Coudert, J.C. Madre. Implicit and Incremental Computation of Primes and Essential Primes of
Boolean functions. In. Proc. Design Automation Conference, pp. 36-39, 1992.

[32] O. Coudert, J.C. Madre. Fault Tree Analysis: 1020 Prime Implications and Beyond. In Proc.
Annual Reliability and Maintainability Symp, pp.240-245, 1993.

[33] A. Biere. Limmat Satisfiability Solver. http://www2.inf.ethz.ch/personal/biere/projects/limmat/,
2004.

[34] H. Zhang. SATO: An Efficient Propositional Prover. In Proc. of International conference on
Automated Deduction, Vol 1249, LNAI, pp. 272-275, 1997.

[35] L. Ryan. Siege SAT Solver v.4 http.//www.cs.sfu.ca/~loryan/personal/, 2004.
[36] R.J.Bayardo, R.C.Schrag. Using CSP Look-Back Techniques to Solve Real-World SAT Instances.

In. Proc. of 14th National Conference on Artificial Intelligence, pp. 203-208, 1997.
[37] M. Davis, G. Longemann, D. Loveland. A Machine program for theorem proving.

Communications of the ACM. Vol 5, pp. 394-397, 1962.
[38] C. P. Gomes, B. Selman, H. Kautz. Boosting combinatorial search through randomization. In

Proc. of the Fifteenth National Conference on Artificial Intelligence (AAAI'98), pp. 431-437, 1998.
[39] S. Pilarski and G. Hu. SAT with Partial Clauses and Back-Leaps. In Proc. ACM/IEEE Design

Automation Conference, pp. 743-746, 2002.
[40] E. Goldberg, Y. Novikov. Equivalence Checking of Dissimilar Circuits. In. Proc. International

Workshop on Logic and Synthesis. Laguna Beach, California, USA, pp. 244-251, 2003.
[41] F. Aloul, M. Mneimneh, and K. Sakallah. Search-Based SAT Using Zero-Suppressed BDDs. In

Proc. Design, Automation, and Test in Europe, pp. 1082, 2002.
[42] R.E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp.,

35 (8), pp. 677-691, 1986.
[43] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient implementation of a BDD package. In Proc.

Design Automation Conf, pp. 40-45, 1990.
[44] S. Subbarayan, D.K. Pradhan. NiVER: Non Increasing Variable Elimination Resolution for

Preprocessing SAT instances. In Proc. of Seventh International Conference on Theory and
Applications of Satisfiability Testing, 2004. http://www.satlive.org/index.jsp

[45] M. Davis, H. Putnam. A Computing procedure for quantification theory. Journal of the ACM, v.7
n.3, p.201-215, July, 1960.

[46] J.A. Roy, I.L. Markov, V. Bertacco. Restoring Circuit Structure from SAT Instances. In. Proc.
International Workshop on Logic and Synthesis. Temecula Greek CA. June, 2004.
http://www.eecs.umich.edu/~imarkov/pubs/misc/iwls04-sat2circ.pdf

[47] M.Abramovici, M.A.Breuer, and A.D.Friedman. Digital Systems Testing and Testable Design,
W.H.Freeman, 1990.

[48] F. Lu, L.-C. Wang, K.-T. Cheng, J. Moondanos, and Z. Hanna. A Signal Correlation Guided
ATPG Solver and its Application for Solving Difficult Industrial Cases. In . Proc. ACM/IEEE
Design Automation Conference, pp. 436-441, 2003.

[49] E. Goldberg, Ya. Novikov. Verification of proofs of Unsatisfiability for CNF Formulars. In. Proc.
Design, Automation, and Test in Europe, 2003.

 36

[50] L. Zhang, S. Malik. Validating SAT Solvers Using an Independent Resolution-Based Checker:
Practical Implementations and Other Applications. In. Proc. Design, Automation, and Test in
Europe, 2003.

[51] R.K. Brayton et al. Logic Minimization Algorithms for VLSI Synthesis. Boston, MA, Kluwer
Academic Publishers, 1984, 192 pp.

[52] J. Hlavicka, P. Fiser. BOOM – A Heuristic Boolean Minimizer. Computers and Information, Vol.
22, No. 1, pp. 19-51, 2003.

[53] N. Sörensson, N. Een. MiniSat v1.13 A SAT Solver with Conflict-Clause Minimization.
http://www.lri.fr/~simon/contest/results/descriptions/solvers/minisat_static.pdf

[54] R. Gershman. HaifaSat – a new robust SAT solver.
http://www.lri.fr/~simon/contest/results/descriptions/solvers/HaifaSat.pdf.

Appendix 1

Proof of Lemma 1: Follows from the definition of the permission function. ⊗

Proof of Theorem 1: First, note that the permission function of a normal block cannot be idle because
it must determine values of block output variables. Suppose the theorem does not hold, i.e. a nonempty
implicate c exists that does not contain any output variable. Let α be a full value assignment α to the
input variables of the block such that c(α) = 0. According to Lemma 1 there exist a pattern (α , β) that
satisfies f. On the other hand, since c is an implicate and c(α , β) = 0, f(α , β) = 0. ⊗

Lemma 2. CNF-BCP provides monotone classification of partial assignments.

Proof: Follows from the “monotone nature” of the procedure. Let CNF-BCP classify an assignment α
as conflicting. Assigning some additional variables can only extend the total set of unit clauses derived
by the procedure or provoke an earlier conflict. Thus, any assignment α ∪ γ is classified to be
conflicting. Analogically, extending an implying assignment α can lead to a conflict or the same
elementary implications (and may be some additional ones) as for α .

Now we show that for any elementary implication α ⇒ βi the assignment α ∪ βi is not conflicting.
Let α ⇒ β and βi ∈ β. According to the procedure if α ⇒ β , then α ∪ β is not conflicting (as the
procedure is finished in a situation when the variables are assigned to α ∪ β and there is no conflict).
Then α ∪ βi can not be conflicting, as otherwise α ∪ β must be conflicting due to proven above
monotone classification of conflicting assignments. ⊗

Lemma 3. Let a Boolean function f(x) take value 1 for only one full value assignment α to its
arguments, precisely α = {x1 = δ1,…,xn = δn}. Then any CNF C representing f must contain for each
argument xi a unit clause ui that is satisfied by the elementary assignment xi = δi from α .

Proof: CNF C representing the f(x) must contain at least one clause. Let xi = ¬δi then C must take
value 0. It can be done only, if C contains the unit clause ui described in the lemma. ⊗

Lemma 4. Let C(x,y) be a CNF representing the permission function f(x,y) of a normal block B and α
be a full value assignment to inputs of the block. Then the CNF-BCP procedure provides a correct
assignment β to outputs of the block under α , i.e. β = BCP(α) and β = Ψ (α).

Proof: Make the assignment α to all input variables of the block. Since there is no clause containing
input variables only (according to Theorem 1), there is no clause equal to 0 under α in C(x,y).

Remove all satisfied clauses and literals. The resulting CNF C* must implement a Boolean function
that takes value 1 for only one full value assignment to its arguments. Indeed, due to Lemma 1 there is
exactly one pattern (α , β) that satisfies f(x,y). Hence, CNF C* takes value 1 for the pattern β only.
According to Lemma 3, CNF C* contains unit clauses from which CNF-BCP must deduce the full
assignment β to the outputs of the block. ⊗

Let α be a partial value assignment to Boolean variables from a vector z, we define Cube(α) as the
set of all possible full assignments β to variables from z, where α ⊆ β.

Lemma 5. Let C(x,y) be a CNF representing the permission function f(x,y) of a block B, and let α be
an assignment classified by CNF-BCP(α) as conflicting for C(x,y). Then the clause representing α is
an implicate of the permission function f.

 37

Proof: CNF-BCP(α) procedure classifies α as conflicting assignment, if the Cube(α) of the Boolean
space of variables (x,y) doesn’t contain a pattern satisfying the CNF C(x,y). ⊗

Lemma 6. Let C(x,y) be a CNF representing the permission function f(x,y) of a block B, and let α
imply β under CNF-BCP(α) procedure for C(x,y). Then for each elementary assignment βi ∈ β the
clause representing the elementary implication α ⇒ βi is an implicate of the permission function f.

Proof: CNF-BCP(α) procedure classifies α as implying βi, if the Cube(α ,¬βi) of the Boolean space of
variables (x,y) doesn’t contain a pattern satisfying the CNF C(x,y). ⊗

Proof of Theorem 2: Follows from Lemmas 2,4,5,6. ⊗

Proof of Theorem 3: According to Theorem 2 the CNF C• is a model under CNF-BCP.
Let M be an arbitrary model of B and α be an assignment recognizable by M as conflicting. Since

α is a conflicting assignment, the clause c representing α is an implicate of the permission function f.
Consider any prime implicate c′ of f that is a part of c. As far as c′(α) = 0 CNF-BCP(α) classifies the
assignment α as conflicting for C•.

Now, let M produce an implication α ⇒ β. Then for any elementary implication α ⇒ βi of α ⇒ β,
the clause c representing the elementary implication is an implicate of the permission function f.
Consider any prime implicate c′ of f that is a part of c. If c′ does not contain a variable assigned in βi,
then c′(α) = 0 and CNF-BCP(α) classifies the assignment α to be conflicting for C•. If c′ contains a
variable assigned in βi, then under assignment α the clause c′ becomes a unit satisfied by βi.
Consequently, CNF-BCP(α) will deduce β i, and α implies β i in C•.

So for any model M and any assignment α to pin variables we have: If α is classified as conflicting
or implying by the model, it is also classified as conflicting or implying for the CNF C•. Hence, the
characteristic CNF C• of the permission function f has maximal implicativity. ⊗

Proof of Theorem 4: Consider an arbitrary partial value assignment α to the pins of the block B, such
that CNF-BCP(α) classifies α to be conflicting or implying for the CNF C′. The clause c′ can have an
influence during the CNF-BCP(α) procedure in two cases:
1. Under a current assignment γ, the clause c′ becomes empty in CNF C′, and the procedure reports a

conflict under α . In this case, the clause c is empty under the same assignment. Hence, if c′ is
removed from C′, the procedure also classifies α to be conflicting.

2. Under a current assignment γ, the clause c′ becomes a unit u. If the unit u is not a part of the clause
c, the clause c is empty under γ, and the procedure must report a conflict on c in both cases whether
c′ is removed or not. If the unit u is a part of the clause c, then under the current assignment γ the
clause c becomes the same unit u, and the procedure must deduce a value (from the unit u) in both
cases, no matter whether c′ is removed or not. ⊗

Proof of Theorem 5: Consider the CNF C* obtained by the procedure of exhaustive simulation of M
(just before removing any clauses). The CNF C* must simulate under CNF-BCP the same vector
function y =Ψ(x) as M does. Indeed, for each full value assignment α to the inputs x the model M
produces a full assignment β to outputs y where β =Ψ(α). At the same time, for each elementary
assignment βi ∈ β the CNF C* contains the clause representing elementary implication α ⇒ βi.
Hence, the C* simulates y =Ψ(x) under CNF-BCP.
 By construction, C* observably covers M: Each conflicting assignment α is represented by a clause
in C*. Thus, CNF-BCP classifies α as conflicting for C*. Each elementary implication α ⇒ βi is
represented by a clause in C*. Thus, CNF-BCP can deduce the same implication or fix conflict as a
result of unit clause propagation in C*.

Since removing covering clauses from a CNF one after another keeps obtained CNFs observably
coherent to each other (due to Theorem 4), the observable CNF C♦ is a model of the block B and
C♦observably covers M. ⊗

Lemma 7. Let C♦ be the observable CNF for a model M.
1. If a partial assignment α is conflicting for M, then C♦ contains a clause c♦, such that c♦ (α) = 0.
2. If a partial assignment α implies an assignment β for M, then for each elementary assignment βi ∈ β

there is a clause in C♦ that represents an assignment γ or an elementary implication γ ⇒ βi where γ
⊆ α and βi ∉ α .

3. If c♦ ∈ C♦, then there exists a partial assignment α , such that there are two possibilities:

 38

a) α is conflicting for M and c♦represents α , b) α is implying an elementary assignment βi for M and
c♦ represents the elementary implication α ⇒ βi.

Proof:
1. Let α be conflicting for M. Let a clause c represents α in C*. By definition of C♦ there is c♦ ∈ C♦

such that c covers c♦. Thus, c♦(α) = 0.
2. Let α imply an elementary assignment βi for M, and let c be the clause representing the implication

α ⇒ βi, then by definition of C♦ there is c♦ ∈ C♦ such that c covers c♦. There are two cases:

a) c♦contains the variable assigned by βi. Then c♦represents the implication γ ⇒ βi where γ ⊆ α
and βi ∉ α .

b) c♦does not contain the variable assigned by βi. Then c♦(γ) = 0 where γ ⊆ α and βi ∉ α .

3. Follows by construction of C♦. ⊗

Lemma 8. Given a model M and its observable and characteristic CNFs C♦ and C•, respectively. For
any clause c♦ ∈ C♦ there is a clause c• ∈ C•, such that c♦ covers c•.

Proof: According to Lemma 7, for any clause c♦ ∈ C♦ there exists a partial assignment α , such that α
is conflicting for M and c♦ represents α , or α is implying an elementary assignment βi for M and c♦

represents the elementary implication α ⇒ βi. In both cases, c♦ is an implicate of the permission
function of the model M by Axiom 5. ⊗

Lemma 9. Let M be a model with maximal implicativity and C•
 be the characteristic CNF of the model

M. If α is an implying assignment for C• (under CNF-BCP), then α is an implying assignment for M.
If α is a conflicting assignment for C• (under CNF-BCP), then α is a conflicting or an implying
assignment for M.

Proof: Let α be a conflicting assignment for M. According to the second paragraph of the proof of
Theorem 3, α is a conflicting assignment for C• (under CNF-BCP). Let α be an implying assignment
for M. The third paragraph of the proof of Theorem 3 delivers that α is a conflicting or an implying
assignment for C• (under CNF-BCP). Due to Theorem 3, C• (under CNF-BCP) has the same
(maximal) implicativity as the model M. So, for any conflicting or implying assignment α for C•

(under CNF-BCP) M already provides the classification of α , as Lemma 9 states. ⊗

Lemma 10. Let M be a model with maximal implicativity. Let c• ∈C• where C• is the characteristic
CNF of the model M. Then the assignment α represented by the clause c• is conflicting for the model
M.

Proof: Denote α as α0 (we use indexing because later on we will consider a sequence of assignments
starting with α). We have c• (α0) = 0. Suppose that α0 is not conflicting for M.

Since c•(α0) = 0, α0 is conflicting for C• (under CNF-BCP), by Lemma 9, α0 must be implying for
M (because it is not conflicting for M). Let M produce an implication α0 ⇒ β and β0 ∈ β (we use the
bottom index for β0 because it is an elementary assignment, and the top index for α0 as it can be non
elementary). Let β0 = {x0 = 1} (the case β0 = {x0 = 0} is considered similarly).

R: Consider the observable CNF C♦ of the model M. We show that there exists a clause c♦∈ C♦,
such that c♦(α0) = 0 or c♦(α0) = x0: Due to Lemma 7, there is a clause c♦∈ C♦ such that c♦(γ) = 0 or c♦
represents an elementary implication γ ⇒ β0 where γ ⊆ α0 and β0 ∉ α0. If c♦(γ) = 0, then c♦(α0) = 0. If
c♦ represents γ ⇒ β0, the clause c♦ represents the assignment (γ , ¬β0). Then c♦(γ) = x0. Since γ ⊆ α0
and β0 ∉ α0, we have c♦(α0) = x0.

Consider the assignment (α0, β0). Since c•(α0) = 0, (α0, β0) is conflicting for C• (under CNF-
BCP). Due to Lemma 9 (α0, β0) must be conflicting or implying for M.

First, we give evidence that (α0, β0) cannot be conflicting for M. Suppose, the inverse statement is
true, that (α0, β0) is conflicting for M. By Lemma 7, C♦ must contain a clause c, such that c(α0, β0) = 0.
Recall that that β0 assigns a value to a variable x0. There are two cases: 1) c contains the variable x0, 2)
c does not contain the variable x0.
1. If c♦(α0) = 0, then α0 is conflicting for C♦ under CNF-BCP.

 39

 Let c♦(α0) = x0, then C♦ contains two clauses c♦ and c, which under assignment α0, are turned into
complementary unit clauses x0 and ¬x0. Hence, the assignment α0 must be classified as conflicting
under CNF-BCP(α0) for the observable CNF C♦.

 However, α0 was proven to be implying for C♦.
2. We have c(α0) = 0, hence again α0 must be classified as conflicting under CNF-BCP(α) for C♦,

which is impossible.
So, the assignment (α0, β0) must be implying for M.

Let the assignment (α0, β0) imply an elementary assignment β1 for M. Now we would like to prove
that (α0, β0 , β1) is implying for M. Take into account that c•(α0, β0) = 0, since c•(α0) = 0. Now we can
repeat the previous proof for (α0, β0) (starting at the paragraph labeled with R) by replacing α0 with
α1 = (α0, β0), and β0 with β1, and the variable x0 assigned by β0 with a variable x1 assigned by β1.

Going on in such a way we will construct an infinite sequence of implying assignments of the sort
(α0, β0 , β1 , …, βk). This is impossible, since the number of variables is finite by Axiom 1. ⊗

Lemma 11. Let M be a model with maximal implicativity. Then the observable CNF C♦ and the
characteristic CNF C• of the model are identical.

Proof:
1. Suppose, there exists a clause c♦ ∈ C♦ \ C•. Due to Lemma 8, there exists a clause c• ∈ C•, such

that c♦ covers c•. Thus, there must be a literal in c♦ (say a literal x) that is not contained in c•. Let (γ,
β0) be the assignment represented by clause c♦, where β0 = {x = 0}. By this construction c•(γ) = 0.
Let’s give evidence first that the assignment γ cannot be conflicting for M. Otherwise, Lemma 7
delivers a clause c ∈ C♦, such that c(γ) = 0. Hence, there exists a clause in C♦ (namely, the clause c)
that is covered by c♦(which is not equal to c♦). This is impossible for an observable CNF by its
definition. Thus, γ is not conflicting for M.
Now consider the assignment α represented by c•. By Lemma 10, α is conflicting for the model M.
Since c•(γ) = 0, α ⊆ γ. As long as α ⊆ γ , the assignment γ is also conflicting for M, which is
impossible. Thus, C♦ ⊆ C•.

2. Suppose there exists a clause c• ∈ C• \ C♦. Due to Lemma 10, the assignment α represented by the
clause c• is conflicting for M. Thus by Lemma 7, C♦ contains a clause c, such that c(α) = 0. Then c•
covers c. The only possibility is c• = c, since both c and c• are implicates of the permission function
of the model M, but c• is a prime one. Hence c• is contained in C♦ that contradicts to the supposition.
Thus, C♦ and C• are identical. ⊗

Proof of Theorem 6:
⇒: Consider the characteristic CNF C• of the block B. Let y implement the constant function δ . Then a

unit clause c that represents assignment ¬α = { y = ¬δ } is an implicate of the permission function f
of the block B. According to Theorem 1, any implicate of the permission function f must contain at
least one output variable of the block B. Since the clause c contains only one variable, it is a prime
implicate of f. Hence c is contained in the characteristic CNF C•. Since C• is identical to the
observable CNF C♦ of the model M (due to Lemma 10), c ∈ C♦.
There are only two possible reasons why the unit clause c is contained in the observable CNF C♦: 1)
The assignment ¬α = { y = ¬δ } is conflicting for the model M or 2) the empty assignment γ implies
α.

⇐: Let y not implement the constant function δ . Suppose the theorem does not hold, i.e. the
elementary assignment ¬α = { y = ¬δ } is conflicting or the empty assignment γ implies α = { y =
δ } for the model M. In both cases the unit clause c representing assignment ¬α = { y = ¬δ } is an
implicate of the permission function f. According to Theorem 1, any implicate of the permission
function f must contain at least one output variable of the block B. Thus, the unit clause c is a prime
implicate of f. At the same time by Lemma 1, for any full assignment β to the input variables of the
block B there is exactly one full assignment to the output variables of the block, such that f(α , β) =
1. Hence, the block B must implement the constant Boolean function δ on the output y. This
contradicts to the supposition. ⊗

Proof of Theorem 7: Consider an elementary implication α ⇒ βi for M. According to Axiom 5 the
clause c representing the assignment α ∪ ¬βi is an implicate of the permission function of the block B.
Thus, c covers a prime implicate c• contained in C•. The assignment α ∪ ¬βi falsifies c• and hence it is
conflicting for M.

 40

Let an assignment α be conflicting for M, and let α′ = α \ βi where βi is an elementary assignment
from α . If α′ is conflicting for M, then condition 2 of consistency holds. Let α′ be not conflicting for
M. Then there is the prime implicate c•∈ C• representing the assignment α = α′ ∪ β . Thus, α′ ⇒ ¬βi
for M. ⊗

Lemma 12. Let M be a consistent model of a block B, and let α′ and α′′ be some conflicting
assignments for M such that the clauses c′ and c′′ representing α′ and α′′ accordingly can be resolved.
Then the resolvent c represents a conflicting assignment for M.

Proof: Let α′ = γ′ ∪ βi and α′′ = γ′′ ∪ ¬βi where βi is an elementary assignment assigning a value to
a variable by which c′ and c′′ are resolved. Then their resolvent c represents the assignment γ′ ∪ γ′′.
As α′ and α′′ are conflicting and M is consistent, γ′ ⇒ ¬βi and γ′′ ⇒ βi. Due to Axiom 4 (on
monotony), as γ′ ⇒ ¬βi, γ′ ∪ γ′′ is conflicting or γ′ ∪ γ′′ ⇒ ¬βi. Analogically, as γ′′ ⇒ βi, γ′ ∪ γ′′
is conflicting or γ′ ∪ γ′′ ⇒ βi. If γ′ ∪ γ′′ is not conflicting, then we have γ′ ∪ γ′′ ⇒ ¬βi and γ′ ∪ γ′′
⇒ βi for M simultaneously that contradicts to Axiom 3. Thus, γ′ ∪ γ′′ is conflicting. ⊗

Proof of Theorem 8: Let γ be a complete assignment to the pin variables of B which falsifies the
permission function f of B. Let α be a full assignment to the inputs of B where α ⊆ γ. Due to Axiom 6
the assignment α implies a full assignment β to the outputs of B. By lemma 1 the assignment γ must
contain at least one elementary assignment ¬βi such that βi is contained in β. Hence α ∪ ¬βi ⊆ γ . As
α ⇒ βi for M and M is consistent, α ∪ ¬βi is conflicting for M. Due to Axiom 4 (on monotony) γ is
conflicting for M. ⊗

Lemma 13. Let M be a consistent and recognizing maximal conflicts model of a block B. Let a clause
c be an implicate of the permission function f of B. Then the assignment α represented by c is
conflicting for M.

Proof: As the clause c is an implicate of f, it can be constructed by resolving some clauses representing
complete assignments falsifying f. At the same time all these assignments are conflicting, as M is
recognizing maximal conflicts. Hence, by Lemma 12 the assignment α represented by c is conflicting
for M. ⊗

Proof of Theorem 9: Let an assignment α be classified as conflicting by some model of B. Then the
clause c representing α is an implicate of the permission function f of B (by Axiom 5). Then the
assignment α is conflicting for M due to Lemma 13.

Let there exist an elementary implication α ⇒ βi in some model of B. Then the clause c
representing the assignment α ∪ ¬βi is an implicate of the permission function f of B (by Axiom 5).
Thus, α ∪ ¬βi is conflicting for M due to Lemma 13. As the model M is consistent, α ⇒ βi or α is
conflicting for M. Thus, M does not have a lower implicativity than any other model of B. ⊗

Proof of Theorem 10: Follows from Theorem 8 and Theorem 9. ⊗

Lemma 14. Let M be a model with maximal implicativity of a block B, and let C♦ be the observable
CNF of the model M. Both M and C♦ (under CNF-BCP) provide the same classification of any
assignment α to the pin variables of B.

Proof: By lemma 11 C♦ is identical to the characteristic CNF C• of M. Due to lemma 9, an implying
assignment α for C♦ is implying for M. Let us consider a conflicting assignment α for C♦. By lemma
9 α can be conflicting or implying for M.

Suppose α is implying for M. As α is conflicting for C•, there is a prime implicate c• ∈ C• such
that c•(α) = 0. Let α′ ⊆ α be the assignment represented by the clause c•. As c•(α′) = 0, α′ is
conflicting for C• under CNF-BCP. By Lemma 10 α′ is conflicting for M. As α′ ⊆ α , α must be
conflicting for M by Axiom 4 (on monotony), that contradicts to the supposition. ⊗

Lemma 15. Let a consistent model M have maximal implicativity. Then M is observably coherent to
its observable CNF C♦.

Proof: By Lemma 14 M and C♦ provide identical classification of all assignments. We need to prove
that γ = γ′ , if α ⇒ γ for M and α ⇒ γ′ for C♦. Suppose γ ≠ γ′ . There are two cases:
1. There is an elementary assignment βi such that βi ∈ γ \ γ′.
2. There is an elementary assignment βi such that βi ∈ γ′ \ γ.

 41

1. As α ⇒ βi for M, α ∪ ¬βi is conflicting for M due to consistency of M. Then α ∪ ¬βi is
conflicting for C♦ by Lemma 14. By lemma 11 C♦ is identical to the characteristic CNF C• of M.
Thus, C♦ is a consistent model due to Theorem 7. Hence, as α ∪ ¬βi is conflicting and α is
implying for C♦, α ⇒ βi for C♦. Hence βi ∈ γ′ and βi ∉ γ \ γ′.

2. Analogically to case 1. ⊗

Lemma 16. If models M1 and M2 of a block B have maximal implicativity, their observable CNFs C1
♦

and C2

♦ are observably coherent (under CNF-BCP).

Proof: By Lemma 11, C1
♦

 and C2
♦ are identical. ⊗

Proof of Theorem 11: Follows from Lemmas 15 and 16. ⊗

Proof of Theorem 12: Follows from Theorems 10 and 11. ⊗

Proof of Theorem 13: By Lemmas 14 and 16 any two models with maximal implicativity provide the
same classification of partial assignments. Suppose the model M has not maximal implicativity. Thus,
there is an assignment α which is neither conflicting nor implying for M but is conflicting or implying
for any model M′ with maximal implicativity for the block B.

Let α be conflicting for M′ (but not conflicting or implying for M). Consider the set of all partial
assignments covering α and select and assignment α′ from this set such that α′ is not conflicting for M
while any assignment covering α′ is conflicting for M. Such an assignment α′ must exist as the
number of the pin variables of the block B is finite (Axiom 1). Now we can extend the model M by
providing possibility to classify α ′ as conflicting (this is consistent with Axiom 4 on monotony).
However this is impossible as the model M has maximal strong implicativity.

The case when α is implying for M′ is considered analogically. ⊗

Proof of Theorem 14: Let (α ,βi) be conflicting for M where βi is an elementary assignment. Suppose
that α is not conflicting for M. First we show that α must imply ¬βi for M. This is indeed the case,
otherwise, due to the finite number of the pin variables of the block B, there would be an assignment
α′ covering α (α ⊆ α′) such that any assignment γ covering α′ and containing neither βi nor ¬βI,
which is conflicting or implying ¬βi. In this case, we could extend the model M by providing the
ability to produce the implication γ ⇒ ¬βi. But this contradicts to the maximum of strong implicativity
for M. Thus, α is conflicting or α ⇒ ¬βi.

Let α ⇒ βi for M. If (α ,¬βi) is not conflicting for M, then, due to the finite number of the pin
variables of the block B, there is an assignment α ′ covering (α ,¬βi) such that α′ is not conflicting for
M′ while any assignment covering α′ is conflicting for M′. In this case, we can extend the model M by
providing possibility to classify α ′ as conflicting. However, this is impossible as the model M has
maximal strong implicativity. Thus, (α ,¬βi) is conflicting for M.

Thus, the model M is consistent. ⊗

Proof of Theorem 15: Follows from Theorems 11, 13, and 14. ⊗

Proof of Theorem 16: Let M′ be a consistent model with maximal strong implicativity for the block B.
By Theorem 13, M′ has maximal implicativity. By Theorem 11 M and M′ are observably coherent. ⊗

Proof of Theorem 17: Follows from Theorem 14, Theorem 10 and Theorem 16. ⊗

Proof of Theorem 18: The procedure differs from the procedure of the exhaustive simulation used for
definition of the observable CNF in Section 5 only in that some partial assignments are not affecting
the block B (as a consequence of conflicts and backtracks). However for each such assignment α there
is an assignment α′ ⊂ α that is classified as conflicting during the procedure CONSTRUCT_OBS.
Hence α is also conflicting, and the clause c representing it is to be added to the observable CNF that is
constructed by the procedure of exhaustive simulation. However after that, due to the definition of the
observable CNF in Section 5 the clause c will be removed from the CNF, since it covers the clause c′
representing the assignment α′. Thus, both procedures construct identical CNFs. ⊗

Proof of Theorem 19: Follows from the method of Blake-Poretski [29,30]. ⊗

Proof of Theorem 20: By construction, the resulting CNF C• represents the permission function f of
the block B.

 42

Let c′ and c″ be two arbitrary clauses of the resulting CNF C•, such that c′ and c″ can be resolved
producing the resolvent c. Due to Theorem 19, it suffices to prove that c covers a clause from C•.

Let c′ and c″ be resolved by a variable u, and let the resolvent c represent an assignment α . Let c′
contain u and c″ contain ¬u. Consider the assignment α ∪ { u = 0 } (that unsatisfies c′ and c). Since
the branches “-” are always examined by the procedure after the branches “0” and “1”, the procedure
must pass along a path on which all definite decision assignments belong to the assignment α ∪ { u =
0}. We say the path to be corresponding to the assignment α ∪ { u = 0 }.

Now, we show that, on this path, the procedure must deduce a clause c* representing an assignment
α* ⊆ α ∪ { u = 0 }. If the procedure encounters a conflict on the path, then it must add such clause c*
to the current CNF C*. Let the procedure has passed through the path and continues the search in depth
by constructing the child node for the last node N of the path. Take into account that c* is an implicate
of the permission function f in the case that α* = α ∪ { u = 0 }, because c* covers c′ and c′ is an
implicate of f . Hence, due to conflict inheritance, the procedure must mark the node N to be
conflicting and must add the clause c* (for α* = α ∪ { u = 0 }) to the current CNF C*.

In the same way, one can prove that on a path corresponding to the assignment α ∪ { u = 1 } the
procedure must deduce a clause c** representing an assignment α** ⊆ α ∪ { u = 1 }.

If the clause c* or c** does not contain the variable u, the clause is covered by the resolvent c. Thus,
the resulting CNF C• contains the clause covered by the resolvent c. Let both c* or c** contain the
variable u (in this case, c* contains the literal u and c** contains the literal ¬u). Since the branches “-”
are examined in the last turn, the procedure will pass along a path corresponding to the assignment α
after c* and c** have been already added to the current CNF C*. Hence, the procedure will inevitably
encounter a conflict on this path (due to clauses c* and c**) and add a clause that is covered by the
resolvent c to the current CNF C*. ⊗

Proof of Theorem 21: First, we give evidence that f(x,y) implies ∃z f*(x,y,z):
Let α be a complete assignment to the input variables x, and let y = Ψ(x) be the function

implemented by the system S. Consider the complete assignment β to the output variables y of S that is
the reaction of S under α , i.e. β = Ψ(α). The assignment (α , β) satisfies the permission function f(x,y).

Under the assignment α to the inputs, the internal variables z of S take the assignment γ which can
be calculated in accordance to functions Ψi implemented by the normal blocks Bi of the system. (The
calculation of γ follows the topological order of the blocks Bi, where block-constraints being activated
cannot constrain the signal propagation due to the fitting axiom). Thus, the assignment (α , β, γ) must
satisfy the extended permission function f*(x,y,z). Hence, the assignment (α , β) satisfies the cofactor
f*

z = γ . Due to formula (1), the assignment (α , β) satisfies ∃z f*(x,y,z). Thus, for any assignment (α , β)
satisfying f(x,y) we have proven that the same assignment satisfies ∃z f*(x,y,z), i.e. f(x,y) implies ∃z
f*(x,y,z).

Now, we show that any assignment (α , β′) unsatisfying f(x,y) does not satisfy ∃z f*(x,y,z): If (α , β′)
does not satisfy f(x,y), then β′ ≠ β where β is the correct reaction of the system under α , i.e. β = Ψ(α).
Then for any assignment γ to the internal variables z of the system S, the permission function f i of at
least one normal block B i must be unsatisfied, and the extended permission function f*(x,y,z) takes the
value 0 under the assignment (α , β′, γ). Hence the cofactor f*

z = γ takes the same value under the
assignment (α , β′). Since all cofactors f*

z = γ take value 0 under (α , β′), formula (1) delivers that ∃z
f*(x,y,z) is equal to 0 under (α , β′). ⊗

Proof of Theorem 22: Consider all elements of the list DEDUCED which were marked during the
procedure REVERSE-BCP(γ) and whose direct reasons are not the empty assignment. A sequence of
these elements, ordered in the direction from the end of the list DEDUCED to its beginning, is called
marked sequence. (In Example 9, the marked sequence is f = 0, f = 1, d = 1)

Let Q = χ1 , χ2 ,…, χp be a marked sequence. Let εi be a direct reason for χi (i = 1,…,p) that is
saved in the list REASONS. Consider an elementary assignment γ j ∈ γ . Let Q(γ j) be the subsequence
χj1

 , χj2
 ,…, χjp of Q that starts with χj1

 = γj and which consists of all elements χjk
 (j1< jk) of Q such that

χjk
 is contained in the reason ε jl

 of some previous element χ jl
 (jl < jk) of the subsequence.

Conceptually, the subsequence Q(γ j) describes an implication chain for deriving γ j, and it is called
reasoning subsequence for γ j. (In Example 9, the reasoning subsequence Q(f = 0) is f = 0, d = 1).

For each element χjk
 of the reasoning subsequence Q(γ j) consider the clause c(χjk

) representing the
elementary implication ε jk

 ⇒ χjk
 where εjk

 is the direct reason for χjk
 saved in the list REASONS. The

 43

clause c(χjk
) is an implicate of the permission function f jk

 of the block B jk
 which was used to produce

the implication ε jk
 ⇒ χjk. Consequently, c(χjk

) is an implicate of the extended permission function

f*(x,y,γ).
Given a subsequence Q(γ j) = χj1

 , χj2 ,…, χjp
 consider the sequence of clauses c(χj1

), c(χj2
),…,

c(χjp
). (In Example 9, for Q(f = 0) the sequence is ¬d ∨ y1 ∨ ¬f, ¬b ∨ d.) By construction the

sequence is “resolvable” in a sense that that the first clause c(χj1
) can be resolved with the second

c(χj2
), after that the product of resolution can be resolved with the next clause c(χj3

) , and so on. Let
c(Q(γ j)) be a product of resolution of the considered sequence of clauses. Since all clauses c(χjk

) of the

sequence are implicates of f*(x,y,γ), the product c(Q(γ j)) is also implicate of f*(x,y,γ). (In Example 9,
c(Q(f = 0)) = ¬b ∨ y1 ∨ ¬f).

On the other hand, according to construction the resolvent c(Q(γ j)) represents an elementary
implication β ⇒ γ j where the partial assignment β consists of elementary assignments which belong to
direct reasons of an assignment from Q(γ j) and at the same time are contained in α .

If γ is an elementary assignment, then the marked sequence Q is the same as its reasoning
subsequence Q(γ), and the clause representing β ⇒ γ is an implicate of f*(x,y,γ) because it is exactly
the resolvent c(Q(γ)). Thus, the case 1 of the theorem is proven.

Suppose now that the clause c(γ) representing the assignment γ is an implicate of f*(x,y,γ). For each
γj ∈ γ the resolvent c(Q(γ j)) is also implicate of f*(x,y,γ), in addition the clause c(Q(γ j)) represents the
implication β′ ⇒ γj where β′ ⊆ α. Now the clauses c(γ) and c(Q(γj)) can de resolved, and by
construction of the reasoning subsequences Q(γ j) the resolvent c represents the assignment β delivered
by the procedure REVERSE-BCP(γ). Since the resolved clauses are implicates of f*(x,y,γ), the resolvent
c is an implicate of f*(x,y,γ). Thus, the case 2 of the theorem is proven. ⊗

Lemma 17. Let a Boolean function ϕ(x,z) imply a Boolean function ϕ′(x,z), i.e. (ϕ(x,z) → ϕ′(x,z)) = 1.
Then ∃z ϕ(x,z) → ∃z ϕ′(x,z) = 1.

Proof: Since ϕ(x,z) → ϕ′(x,z) = 1, for each assignment γ ∈ 2z the cofactors ϕz=γ and ϕ′ z=γ have to satisfy
to the same relation, i.e. ϕz=γ → ϕ′ z=γ = 1. Hence formula (1) (given in the Section 9.2) delivers ∃z
ϕ(x,z) → ∃z ϕ′(x,z) = 1. ⊗

Lemma 18. Let the procedure SBCP(α) classify the assignment α to be conflicting for a system S
having the permission function f(x,y). Then the clause representing α is an implicate of f(x,y).

Proof: The direct reason of the conflict can be of two types. First, it is a pair γ = β
i, ¬β

i of opposite
elementary assignments. Second, it is a conflicting assignment γ for a block of the system S. In any
case, the clause c* representing the direct reason γ of the conflict is an implicate of the extended
permission function f*(x,y,z) of the system S where z is a vector of internal variables of the system. (In
the first case, the representing clause c* is equivalent to the constant Boolean function 1. In the second
case, the clause c* is an implicate of the permission function fj of the block for which the assignment γ
is conflicting.) Consider the indirect reason α′ of the conflict that is produced by the procedure
REVERSE-BCP(γ). According to the procedure α′ ⊆ α and by Theorem 22 the clause c′ representing
α′ is an implicate of f*(x,y,z). Since α′ ⊆ α, the clause c representing α is also implicate of f*(x,y,z).
By Lemma 17, ∃z f*(x,y,z) → ∃z c = 1 (i.e. after existential quantification on z the clause ∃z c is still
implicate of ∃z f*(x,y,z)) . As the clause c does not depend on internal variables z, ∃z c = c. On the
other hand, by Theorem 13 ∃z f*(x,y,z) = f(x,y). Finally, we have f(x,y) → c = 1. ⊗

Lemma 19. Let the procedure SBCP(α) classify the assignment α to be implying an assignment β for
a system S having the permission function f(x,y). Then for each elementary assignment βj ∈ β the
clause representing the elementary implication α ⇒ βj is an implicate of f(x,y).

Proof: Similar to that of Lemma 18, however, instead of Theorem 22.1 one has to refer to Theorem
22.2. ⊗

Lemma 20. The procedure SBCP(α) satisfies Axiom 5 of a model.

Proof: Follows from Lemmas 18 and 19. ⊗

 44

Lemma 21. Let S be a system implementing a Boolean vector function y = Ψ(x). For each value
assignment α to all input variables of the system, the procedure SBCP(α) deduces a value assignment
β to all output variables of the system, such that β = Ψ(α).

Proof: Note, that under the full assignment α to input variables of the system the procedure SBCP(α)
cannot encounter a conflict. Otherwise, due to Lemma 18, the clause c representing α would have to be
an implicate of the permission function f(x,y) of the system. This is impossible, since according to
Theorem 1 any implicate of the permission function must contain at least one output variable of the
system. (Note, Theorem 1 was proven for a normal block, however the proof was based only on
Lemma 1 which is correct for a system, hence Theorem 1 is correct for a system too.)

According to the topology of the system as combinatorial circuit and due to Axiom 6 for system
normal blocks, all variables of the system take values as a result of the procedure SBCP(α). Let x = α,
y = β, z = γ under the procedure (z is the vector of internal variables of the system). The assignment (α ,
β, z) must satisfy the extended permission function f*(x,y,z) of the model, because, due to Axiom 5 it
satisfies the permission function of each normal block of the system and by the fitting axiom it satisfies
the permission function of each block-constraint of the system. Thus, the assignment (α , β) satisfies
the permission function f(x,y) of the system (because ∃z f*(x,y,z) = f(x,y) by Theorem 13). This is
possible iff β = Ψ(α). ⊗

Lemma 22. The procedure SBCP(α) satisfies Axiom 4 on monotone classification of a model.
Proof: Let α is classified by SBCP to be conflicting. Let α′ be a partial assignment extending α to the
pin variables of the block under consideration. Note, that SBCP accumulate assignments to variables in
the list DEDUCED. Starting SBCP with α′ instead of α can only lead to adding additional assignments
to the list DEDUCED at each step of the procedure. Due to Axiom 4 for system blocks this can lead to
an earlier conflict or to encountering the same conflict as for SBCP(α). Thus, α′ is classified by SBCP
as conflicting. The monotone classification of implying assignments (as it is needed for Axiom 4) is
proven analogically.

Now we show that for any elementary implication α ⇒ βi the assignment α ∪ βi is not conflicting.
Let α ⇒ β and βi ∈ β. As α ⇒ β , then α ∪ β is not conflicting, because the procedure SBCP(α) is
finished in a situation when the pin variables of the system under consideration are assigned to α ∪ β
and there is no conflict. Then α ∪ βi can not be conflicting, as otherwise α ∪ β must be conflicting
due to monotone classification of conflicting assignments proven above. ⊗

Proof of Theorem 23: Follows from Lemma 19 through 22. ⊗

Proof of Theorem 24: By Theorem 23 and S is a normal block.
Let A deliver a counterexample γ = α ∪ {y = ¬δ}. Let us show that y(α) = ¬δ. Suppose, that y(α) =

δ. Let ψ be the vector function implemented by S. As α is a full assignment to the inputs of the system
S, α ⇒ β due to Axiom 6 where β is the full assignment to the outputs of S such that β = ψ(α). Thus,
{y = δ}∈ β and α ⇒ {y = δ}. Hence SBCP(α) adds the assignment {y = δ} in the list DEDUCED.
Then SBCP(α ∪ {y = ¬δ}) as well has to add the assignment {y = δ} in the list DEDUCED. Indeed,
on the one hand, this procedure can not remove elements from the list DEDUCED. On the other hand,
running the procedure with the input γ = α ∪ {y = ¬δ} instead of α can only lead to earlier conflicts or
adding additional elements into the list DEDUCED due to monotony (Axiom 4) of block models.
However, conflicts are impossible as γ is classified by SBCP to be not conflicting. At the same time,
since the list DEDUCED contains {y = ¬δ} and {y = δ} simultaneously as the result of SBCP(γ), the
procedure must classify γ to be conflicting. Thus, our supposition is not true and y(α) = ¬δ.

Let all assignments γ = α ∪ {y = ¬δ} be classified by A as conflicting. Let us show that y must be
constantly equal to δ. Suppose, there exists a full assignment α to the inputs of S such that y(α) = ¬δ.
Then we can show that α ⇒ {y = ¬δ} in the same way as in the beginning of the previous paragraph.
As α ⇒ {y = ¬δ}, due to Axiom 4 (on monotony) α ∪ {y = ¬δ} can not be classified as conflicting.
Hence, y is constantly equal to δ. ⊗

Lemma 23. Let M be a model of a normal block B. The observable CNF C♦ of the model M is a model
recognizing maximal conflicts under CNF-BCP.

Proof: Let γ be a complete assignment to the pin variables of B which falsifies the permission function
f of B. Let α be a full assignment to the inputs of B where α ⊆ γ. Due to Axiom 6 the assignment α
implies a full assignment β to the outputs of B. By lemma 1 the assignment γ must contain at least one

 45

elementary assignment ¬βi such that βi is contained in β. Hence, α ∪ ¬βi ⊆ γ . As α ⇒ βi for M, there
is a clause c♦ ∈ C♦ which represents the assignment α ∪ ¬βi or is covered by such a clause. Any case
α♦ ⊆ α ∪ ¬βi ⊆ γ and α♦ is conflicting for C♦ under CNF-BCP where α♦ is represented by c♦. Due to
Axiom 4 (on monotony) γ is conflicting for C♦ under CNF-BCP. ⊗

Lemma 24. The observable CNF C♦ of the model M represents its permission function f.

Proof: As each clause of C♦ is an implicate of f, (f → C♦) = 1. As C♦ is a model recognizing maximal
conflicts (by Lemma 23), (C♦ → f) = 1. Thus, C♦ = f . ⊗

Lemma 25. Let an output y of a system S be tested to be constantly equal to δ, and let f*(x,y,z) be its
extended permission function where x, z, and y are the vectors of input, internal, and output variables
of S accordingly. Then y(x) = δ iff f*

y=¬δ (x,y,z) = 0.

Proof: Let f(x,y) be the permission function of S. Firstly, we show that y(x) = δ iff fy=¬δ (x,y) = 0.
⇐: Let fy=¬δ (x,y) = 0. Suppose there exists an assignment α to the variables x such that y(α) = ¬δ.

Let y(α) = β where β is an assignment to the variables y. We have {y = ¬δ} ∈ β and f(α ,β) = 1.
Hence, fy=¬δ (x,y) = 1.

⇒: Let y(x) = δ. Suppose there exists an assignment (α ,β) to the variables (x,y) such that fy=¬δ (α ,β) =
1. As {y = ¬δ} ∈ β, y(α) = ¬δ. Thus, we have proven that y(x) = δ iff f*

y=¬δ (x,y) = 0.

Due to Theorem 21 ∃z f*(x,y,z) = f(x,y). As y∉ z, ∃z f*
y=¬δ (x,y,z) = fy=¬δ (x,y). Thus, y(x) = δ iff

∃zf*
y=¬δ (x,y,z) = 0. Now, we show ∃zf*

y=¬δ (x,y,z) = 0 iff f*
y=¬δ (x,y,z) = 0.

⇐: Let f*
y=¬δ (x,y,z) = 0. Then f*

y=¬δ, z=γ (x,y) = 0 for all γ ∈ 2z. As ∃z f*(x,y,z) = ∨ f*
z = γ (γ ∈ 2z) by

formula (1) and y∉ z,
 ∃z f*

 y=¬δ (x,y,z) = ∨ f*
 y=¬δ, z = γ (γ ∈ 2z) (2)

Thus ∃z f*
 y=¬δ (x,y,z) = 0.

⇒: Let ∃zf*
y=¬δ (x,y,z) = 0. Suppose there exists a complete assignment η to the variables (x,z,y) such

that {y = ¬δ} ∈ η and f*
y=¬δ (η) = 1. Let η = (α,β,γ) where x=α , y = β, z = γ. Then f*

 y=¬δ, z = γ
(α ,β) = 1. Now, due to (2) ∃z f*

 y=¬δ (α,β,γ) = 1. ⊗

Lemma 26. Let g(x) be a Boolean function and let y ∈ x. Then gy=δ (x) = 0 iff g(x) ∧ yδ = 0.

Proof:
⇒: Let gy=δ (x) = 0. Then g(x) takes the value 0, if y = δ. On the other hand, yδ takes the value 0, if

y = ¬δ. Thus, any case g(x) ∧ yδ = 0.
⇐: Let g(x) ∧ yδ = 0. Then g(x) = 0, if yδ = 1 (i.e. y = δ). Thus, gy=δ (x) = 0. ⊗

Proof of Theorem 25: Due to lemmas 25 and 26 y(x) = δ iff f*(x,y,z) ∧ y¬δ = 0. Now, we show that
f*(x,y,z) = CS. According to its definition, f*(x,y,z) is equal to the conjunction of permission functions
of the normal blocks of S, as adding block-constraints does not change f*(x,y,z) due to the fitting
axiom. By Lemma 24 the observable CNF of a normal block represents its permission function. Thus,
f*(x,y,z) is equal to the conjunction CO of the observable CNFs of the system’s normal blocks. Now,
we show that adding conjunctively the observable CNF C♦ of a block-constraint B of S into CO does
not functionally change the latter, i.e. CO ∧ C♦ = CO. Indeed, by definition of C♦, (f → C♦) = 1 where f
is the permission function of B. At the same time (f* → f) = 1 by the fitting axiom. As f*(x,y,z) = CO,
we finally have (CO → C♦) = 1 and CO ∧ C♦ = CO. ⊗

Proof of Theorem 26: Adding a block-constraint B to a system S can have an influence on running
SYSTEM-BCP as well as FORCED-SYSTEM-BCP. However, if B produces a value for a variable of S,
no value from the assignment affecting B at that moment can be changed due to Axiom 3. Note, that
SYSTEM-BCP and FORCED-SYSTEM-BCP accumulate assignments to variables in the list
DEDUCED. On the one hand, the block B can not change assignments from this list but can only add
some additional assignments or produce additional conflicts. On the other hand, when being affected
by an assignment from the list DEDUCED, any block B′ of S can produce only additional implications
or fix additional conflicts after adding the block B, as the model of B′ satisfies Axiom 4 (on
monotony). Thus, an assignment classified by S as conflicting or implying before adding B will be
classified as conflicting or implying afterwards. (Note, an implying assignment can be classified as
conflicting after adding B, however this does not decrease the value of implicativity) ⊗.

 46

Proof of Theorem 27: Let C• be the characteristic CNF of the permission function f of the system S.
Adding to S a block-constraint with model C• under CNF-BCP increases its implicativity up to
maximum, because C• under CNF-BCP is itself a model with maximal implicativity for any block with
the permission function f (due to Theorem 3). ⊗.

Proof of Theorem 29: Follows from definitions. ⊗

Lemma 27. The BDD-BCP-procedure satisfies Axiom 5 (of our axiomatic system).

Proof: It follows from Theorem 29 that a partial assignment α is represented by an implicate c of the
function f represented by a BDD D iff any path leading from the source node f to the sink node 1 in Dα
contains an odd number of complemented edges. Thus, if the BDD-BCP-procedure classifies an
assignment a to be conflicting, then a is represented by an implicate c of f, and if the BDD-BCP-
procedure classifies an assignment α to imply an assignment β, then for each elementary assignment βi
∈ β, the clause representing the elementary implication α ⇒ βi is an implicate of the function f
represented by D. ⊗

Lemma 28. The BDD-BCP-procedure correctly simulates the Boolean vector function ψ(x)
implemented by the block B using BDD D as a model (Axiom 6).

Proof: Let the block B produce the complete assignment β to its output variables under a complete
assignment α to its input variables. Then for any elementary assignment βi ∈ β the clause
representing the assignment α ∪ ¬βi is an implicate of the permission function f of the block. Due to
Theorem 29 the BDD-BCP-procedure recognizes the assignment α to imply βi . ⊗

Lemma 29. The BDD-BCP-procedure satisfies Axiom 4 (on monotony).

Proof: Let α be classified by BDD-BCP as conflicting. Let α ⊂ α′. As Dα′ is a subgraph of Dα and the
set of paths leading from the source node f of Dα′ to its sink node 1 is a subset of analogical set in Dα ,
α′ is classified by BDD-BCP as conflicting. The monotone classification of implying assignments (as
it is needed for Axiom 4) is proven analogically. ⊗

Lemma 30. BDD is a consistent model under the BDD-BCP-procedure.

Proof: Follows from the definition of BDD-BCP. ⊗

Lemma 31. BDD is recognizing maximal conflicts under the BDD-BCP-procedure.

Proof: Follows from the definition of BDD-BCP. ⊗

Proof of Theorem 30: As BDD-BCP(α) does not change any elementary assignment to a variable
presented in α , it satisfies Axiom 3. Due to Lemma 27 through 29, BDD is a model under the BDD-
BCP-procedure. According to Lemmas 30, 31, and Theorem 9, BDD has maximal implicativity under
BDD-BCP. Thus, due to Lemma 31 and Theorem 16, BDD has maximal strong implicativity under
BDD-BCP. ⊗

Proof of theorem 31: Let output y of the block B1 feed the block B2. Since the C1 and C2 contain all
prime implicates of the permission functions of blocks B1 and B2, the only possibility for two clauses
of the CNF C1 ∧ C2 to be resolved is that one of the clauses belongs to the CNF C1 (let it be c1) and the
other to C2 (let it be c2). For the sake of distinctness, let c1 = d1 ∨ y, c2 = d2 ∨ ¬y. Their resolvent is
equal to d1 ∨ d2. On the other hand, d2 must contain a literal zε of the output variable z of the block B2
(due to Theorem 1). So, c2 = d2′ ∨ ¬y ∨ zε . Considering these clauses as implicates and performing
substitution of the implicate ¬d1 ⇒ y into the implicate ¬d2′ ∧ y ⇒ zε we obtain the implicate ¬d2′ ∧
¬d1 ⇒ zε that represents the same clause d1 ∨ d2 as the resolvent above. Because both methods resolve
or substitute the same pairs of clauses or implications representing the clauses, we come to the
correctness of the theorem. ⊗
Proof of Theorem 32: By Theorem 21 the permission function f of the system S is equal to the
extended permission function f* = C1 ∧ C2 existentially quantified by the variable y: f = ∃y (C1 ∧ C2).
By formula (1)

 ∃y (C1 ∧ C2) = (C1 (y = 1) ∧ C2(y = 1)) ∨ (C1 (y = 0) ∧ C2(y = 0)) .

Take into account:
 C1 (y = 1) = C1

¬y,

 47

 C1 (y = 0) = C1
y,

 C2(y = 1) = C2
¬y ∧ C2

-y,
 C2(y = 0) = C2

y ∧ C2
-y,

Thus,
 f = (C1

¬y ∧ C2
¬y ∧ C2

-y) ∨ (C1
y ∧ C2

y ∧ C2
-y)

 = ((C1
¬y ∧ C2

¬y) ∨ (C1
y ∧ C2

y)) ∧ C2
-y

 = (C1
¬y ∨ C1

y) ∧ (C1
¬y ∨ C2

y) ∧ (C2
¬y ∨ C1

y) ∧ (C2
¬y ∨ C2

y) ∧ C2
-y.

 Now we show that C1
¬y ∨ C1

y = 1. Suppose, there exists an assignment α such that C1
¬y (α) ∨

C1
y (α) = 0. Then there are clauses c1 ∈ C1

¬y and c2 ∈ C1
y such that the clauses c1 ∨ ¬y and c2 ∨ y can

be resolved and their resolvent c = c1 ∨ c2 is an implicate of the permission function f1 of the normal
block B1. However, this is impossible due to Theorem 1 as c does not contain the output variable y of
the block.

Now we show that C2
-y ⇒ (C2

¬y ∨ C2
y). Consider an assignment α such that C2

¬y (α) ∨ C2
y (α) = 0.

Then there are clauses c1 ∈ C2
¬y and c2 ∈ C2

y such that the clauses c1 ∨ ¬y and c2 ∨ y can be resolved
and their resolvent c = c1 ∨ c2 is an implicate of the permission function f2 of the block B2. Since the set
C2

-y contains all such prime implicates of the function f2 that do not contain the variable y, there is a
prime implicate c′ covered by c in C2

-y. Thus, c′ (α) = 0. Hence, C2
-y (α) = 0. ⊗

Proof of Theorem 33: Due to Theorem 31 it suffices to consider the first two procedures. Let the
output y of B1 feed B2. Then and C1 = (C1

y ∨ y) ∧ (C1
¬y ∨ ¬y) and C2 = (C2

y ∨ y) ∧ (C2
¬y ∨ ¬y) ∧ C2

-y
by formula (3) and Theorem 1. The resolution based method resolves all clauses represented by the
formula (C1

y ∨ y) with all the clauses represented by the formula (C2
¬y ∨ ¬y), and the resolvents are

represented by the formula (C1
y ∨ C2

¬y). The method also resolves all the clauses represented by the
formula (C1

¬y ∨ ¬y) with all the clauses represented by the formula (C2
y ∨ y), and the resolvents are

represented by the formula (C1
¬y ∨ C2

y). No other clauses can be resolved in C1 ∧ C2 because y is the
only common variable of B1, and B2, and because C1 and C2 consist of all prime implicates for the
permission functions of the blocks B1 and B2. Thus, the resulting CNF of the resolvent based method
can be obtained from the formula (C1

y ∨ C2
¬y) ∧ (C1

¬y ∨ C2
y) ∧ C2

-y after performing logical addition
(the operations “∨”) over pairs of CNFs C1

y and C2
¬y , and C1

¬y and C2
y. By Theorem 32 this CNF is

the same as the one produced by the two-block quantification. ⊗

Lemma 32. Let f(x) be a Boolean function where x = (x1,…, xi,…, xn) and c be a clause depending on
some variables from x\{ xi }. If c is an implicate of the function ∃ xi f(x), then c is an implicate of the
function f(x).

Proof. Let α be the partial assignment represented by c. Since c is an implicate of ∃ xi f(x), ∃ xi f(α) =
0. As ∃ xi f(x) = f (x1,…, xi = 0,…, xn) ∨ f (x1,…, xi = 1,…, xn), f(α , xi = 0) = 0 and f(α , xi = 1) = 0. Thus,
the clause c representing α is an implicate of f(x). ⊗

Lemma 33. Let f(x) be a Boolean function, and let f(x) = g(u,y) ∧ h(v,y), where x = (u,v,y), u ∩ v = ∅,
and where y is a Boolean variable not contained in u ∪ v . Let c1(u′) ∨ c2(v′) be an implicate of f(x),
where u′ ⊆ u and v′ ⊆ v. Then c1(u′) is an implicate of g(u,y), or c2(v′) is an implicate of h(v,y), or
there exists a literal yδ of y such that c1(u′) ∨ yδ is an implicate of g(u,y) and c2(v′) ∨ y¬δ is an implicate
of h(v,y).

Proof. Let α′ ∪ β ′ be the assignment represented by the clause c1(u′) ∨ c2(v′), and c1(u′) represents α′,
and c2(v′) represents β ′ . If each complete assignment α , containing α′ , to the variables of the function
g(u,y) dissatisfies the latter, then c1(u′) is an implicate of g(u,y). If each complete assignment β,
containing β ′ , to the variables of the function h(v,y) dissatisfies the latter, then c2(v′) is an implicate of
h(v,y).

Now we consider the case when there is an assignment α* to the variables of the vector (u,y) such
that α′ ⊆ α* and g(α*) = 1, and there is an assignment β* to the variables of the vector (v,y) such that
β ′ ⊆ β* and h(β*) = 1. Since c1(α′) = 0, c2(β ′) = 0, and c1(u′) ∨ c2(v′) is an implicate of f(x) = g(u,y)
∧ h(v,y), any complete assignment γ, containing α′ ∪ β ′, to variables of f(x) dissatisfies the latter.
Thus, g(γ) = 0 or h(γ) = 0.

Let y = δ be in α* (δ ∈ {0,1}). Consider a complete assignment γ , containing α*, to variables of
f(x). Since g(α*) = 1, g(γ) = 1. Thus h(γ) = 0. Hence, h(β ′ , y = δ) = 0, because h depends only of
variables (v,y) assigned in (β ′ , y = δ). Thus, c2(v′) ∨ y¬δ is an implicate of h(v,y). As a consequence we
have that the assignment β*, dissatisfying h, must contain the elementary assignment y = ¬δ (recall that

 48

β* contains β ′ which represents c2(v′)). Now by considering a complete assignment γ, containing β*,
to variables of f(x), we can deduce that c1(u′) ∨ yδ is an implicate of g(u,y) (in the same way as for α*
we have proven that c2(v′) ∨ y¬δ is an implicate of h(v,y)). ⊗

Lemma 34. Let f(x) be a Boolean function, and let f(x) = g(u,y) ∧ h(v,y), where x = (u,v,y), u ∩ v = ∅,
and where y is a Boolean variable not contained in u ∪ v . Let c1(u′) ∨ c2(v′) be an implicate of ∃y f(x),
where u′ ⊆ u and v′ ⊆ v. Then c1(u′) is an implicate of g(u,y), or c2(v′) is an implicate of h(v,y), or
their exists a literal yδ of y such that c1(u′) ∨ yδ is an implicate of g(u,y) and c2(v′) ∨ y¬δ is an implicate
of h(v,y).

Proof: follows from Lemmas 32, 33. ⊗

Proof of Theorem 34: Let g(u,y) and h(v,y) be the characteristic CNFs of blocks B1 and B2
respectively. Suppose there exists a prime implicate c1(u′) ∨ c2(v′) of f (where u′ ⊆ u and v′ ⊆ v) that
is not contained in C(B1, B2). Due to Lemma 34 there are three alternatives: 1) c1(u′) is an implicate of
g(u,y), or 2) c2(v′) is an implicate of h(v,y), or 3) their exists a literal yδ of y such that c1(u′) ∨ yδ is an
implicate of g(u,y) and c2(v′) ∨ y¬δ is an implicate of h(v,y). Let's consider them one after another.
1. This is impossible, because by Theorem 1 c1(u′) must contain the output variable y of the block B1.
2. Since c2(v′) is an implicate of h(v,y), it covers a prime implicate c already contained in C2

-y. As c ∈
C2

-y, c is contained in C(B1, B2). The only remaining case is that c2(v′) is equal to c.
3. In this case, (let δ = 1, for distinctness) c1(u′) covers a clause contained in C1

y and c2(v′) covers a
clause contained in C2

¬y. The only remaining case is that c1(u′) ∨ c2(v′) is equal to a clause contained
in C(B1, B2). ⊗

Proof of Theorem 35: At each step, the existential quantification procedure replaces a two-block
subsystem {B1, B2} with one block B having the CNF C(B1, B2) model. Due to Theorem 34 C(B1, B2)
is the characteristic CNF of the block B. Finally, the system will be replaced with one block, and the
characteristic CNF of the block will be C*. ⊗

Appendix 2: Basic Notions
We list sections in which basic notions used in the paper are introduced.

Notion Section

Assignment 2
 conflicting 2
 implying 2
 elementary 2
 opposite elementary 2
 containing opposite elementary assignments 9.4
 represented by a clause 2
Axioms 1, 2, 3, 4, 5, 6 2
 Fitting axiom 9.2
 Axiom 7 10.5.6
BCP (Boolean constraint propagation) 2
 CNF-BCP 3
 SYSTEM-BCP 9.3
 FORCED-SYSTEM-BCP 9.3
 SBCP 9.4
 REVERSE-BCP 9.4
 BDD-BCP 11.2.1
 detailed BDD-BCP 11.2.2
Block 2
 normal 2
 constraint 2
Clause 2
 a clause c2 covers a clause c1 4
 orthogonal by a variable 4
CNF 3
 characteristic CNF (denotation C•) 4
 observable CNF (denotation C♦) 5
 conventional 4

 49

 representing elementary implication 2
 structurally observable 10.3
Implicativity 4
 strong 7
 maximal 4
 maximal strong 7
Implicate 2
 prime implicate 4
Implication 2
 elementary implication 2
Literal 2
Model 2
 consistent 7
 recognizing maximal conflicts 7
Permission function 2
 extended permission function 9.2
Reason reduction 10.5.6
Resolution 4
Resolvent 4

Appendix 3

The basic changes to the version of the paper presented at 6th International Workshop on "Boolean
Problems" 2004 (Freiberg University of Mining and Technology, Institute of Computer Science,
September 23-24, pp. 103-142, 2004) are as follows.

1. We have removed Axiom 6. This axiom was necessary in the previous version, as one of the BCP
procedures for a system (namely SYSTEM_BCP) was not able to fix conflicts itself but only with help
of block models. Now this procedure can fix conflicts. It is not restrictive for practical SAT-solving,
instead our theory can now be applied to the domain of simulation in which models are used for signal
propagation (i.e. making implications) but not for fixing conflicts.

2. We had to add Axiom 4 on monotone classification of assignments. This axiom is naturally satisfied
by realistic models. We need this axiom to prove the fundamental theorem (Theorem 26) that learning
can not reduce implicativity. The proof of the theorem was omitted in the previous version, and it is
not clear how to prove the theorem without this axiom.

3. We have added Section 7 in which consistent models are considered. Practical models like
characteristic CNFs, BDDs, SMURFs and others are consistent. We have shown that a consistent
model has maximal implicativity as well as so called maximal strong implicativity. (New Axiom 4 on
monotony has been substantially used). The strong implicativity is a more refined measure for model
comparison which can be used when two models have close implicativity. Thus, while constructing a
good model, one can think only about its consistency, and maximal implicativity and maximal strong
implicativity will be guaranteed.

4. We have proven the completeness of our system of axioms in Section 10.2 and have shown a way of
reducing hierarchical SAT-solving to testing satisfiability of a CNF in Section 10.3.

Correction of Theorem 20:

Theorem 20. Let a block B has a model recognizing maximal conflicts, then procedure
CONSTRUCT_CH delivers the characteristic CNF C• for B. ⊗

Proof of Theorem 20. Change the last sentence of the forth paragraph as follows: Hence, due to
Lemma *, the procedure must mark the node N to be conflicting and must add the clause c* (for α* = α
∪ { u = 0 }) to the current CNF C*.

 50

Lemma *. Let the procedure CONSTRUCT_CH be applied to a block B having a model recognizing
maximal conflicts, and let f be the permission function of B. Let α* be a set of decision assignments
corresponding to a path P constructed by CONSTRUCT_CH for B, and let α* be represented by an
implicate of f. Let the path P lead to a node N. Then CONSTRUCT_CH marks N as conflicting node.

Proof: As α* is represented by an implicate of f , each complete assignment α ∈ Cube(α) is
potentially conflicting and must be classified by B as conflicting, because B is recognizing maximal
conflicts. Hence, each path issued from N leads to a conflict. Due to conflict inheritance the procedure
CONSTRUCT_CH must mark the node N as conflicting. ⊗

