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Abstract

The fare planning problem for public transport is to design a sys-
tem of fares that maximize the revenue. We introduce a nonlinear
optimization model to approach this problem. It is based on a discrete
choice logit model that expresses demand as a function of the fares.
We illustrate our approach by computing and comparing two different
fare systems for the intercity network of the Netherlands.

1 The Fare Planning Problem

The influence of fares on passenger behavior and revenues is traditionally
studied from a macroscopic point of view. Classical topics are the analytic
study of equilibria [7], price elasticities [3], and the prediction of passenger
behavior [1]. The only approaches to fare optimization on a more detailed
level that we are aware of are the work of Hamacher and Schöbel [5] on the
optimal design of fare zones and the work of Kocur and Hendrikson [6] and
De Borger et al. [4] who introduced a model for maximizing the revenue and
the social welfare, respectively. In contrast to these approaches, our model
for fare optimization takes different origins and destinations of travel into
account, i.e., we consider a “network effect”. Our aim in this article is to
show that such a model can be a versatile tool for optimizing fare systems.
While the general model has been introduced in [2], we focus here on the
comparison of two examples.

Consider a traffic network with nodes (stations) V , origin-destination

pairs (OD-pairs) D ⊆ V ×V , and a finite set C of travel choices; for examples
see Section 2.1. Let x ∈ Rn

+ be a vector of fare variables x1, . . . , xn, which we
call fares in the following. Fares can be restricted to a polyhedron P ⊆ Rn

+.
Further, let pi

st : Rn → R+, x 7→ pi
st(x) be the price for traveling from s

to t and travel choice i ∈ C. Similarly, let di
st(x) determine the demand of
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passengers for this combination. In our examples, demand functions and
price functions are differentiable and P = Rn

+. Given fares x, the revenue

r(x) is:

r(x) :=
∑

i∈C

∑

(s,t)∈D

pi
st(x) · di

st(x) .

Our general model for the fare planning problem reads:

(FPP) max r(x)
s.t. x ∈ P .

(FPP) is a nonlinear program that may be quite hard to solve in general.

2 Discrete Choice Demand Functions

We use a discrete choice logit model to obtain realistic demand functions di
st.

Our exposition assumes that the reader is familiar with such a construction.
We refer to Ben-Akiva and Lerman [1] for a thorough exposition.

The model is as follows. A passenger traveling from s to t performs a
random number of trips Xst ∈ Z+ during a time horizon T , i.e., Xst is a
discrete random variable. We assume that Xst ≤ N and that the same travel
alternative is chosen for all trips, i.e., passengers do not mix alternatives. For
these trips, a passenger chooses among a finite set A of alternatives for the
travel mode, e.g., single ticket, monthly ticket, bike, car travel, etc.

Associated with each alternative a ∈ A and OD-pair (s, t) ∈ D is a ran-
dom utility variable Ua

st which may depend on the passenger. Each utility is
the sum of an observable part, the deterministic utility V a

st, and a random
disturbance term νa

st. We consider the utility Ua
st(x, k) = V a

st(x, k) + νa
st,

which depends on the fare system x and the number of trips k. Assum-
ing that each passenger chooses the alternative with the highest utility, the
probability of choosing alternative a ∈ A (for given x and k) is

P a
st(x, k) := P[

V a
st(x, k) + νa

st = max
b∈A

(V b
st(x, k) + νb

st)
]

.

In a logit model, the νa
st are Gumbel distributed and the probability for

choosing alternative a for (s, t) ∈ D can explicitly computed by the formula
(see [1]):

P a
st(x, k) =

eµV a
st

(x,k)

∑

b∈A

eµV b
st

(x,k)
.

Here µ > 0 is a scaling parameter for the disturbance terms νa
st.

We derive demand functions for (FPP) from this discrete choice model
by defining the travel choices as C = A × {1, . . . ,N} and setting

da,k
st (x) = dst · P

a
st(x, k) ·P[Xst = k], (1)
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Figure 1: Left: Probabilities for the discrete random variables Xst representing the
number of trips. Right: Samples for the fare system of NS Reizigers and corresponding
piecewise linear approximation (with three pieces).

where dst is the number of passengers that travel from s to t. The expected

revenue (over the probability spaces for Xst and νa
st) can then be written as:

r(x) =
∑

a∈A′

N
∑

k=1

∑

(s,t)∈D

pa,k
st (x) · da,k

st (x),

where A′ is the set of public transport alternatives and pa,k
st (x) is the price

function. Note that r(x) is differentiable if V a
st and pa,k

st have this property;
compare the examples in the next section.

2.1 Two Examples

We will demonstrate our approach by two examples. In the first example we
work with alternatives “standard ticket” (S), “reduced ticket” (R), and “car”
(C), i.e., A = {S,R,C}. In the second example we work with alternatives
“monthly ticket” (M), “single ticket” (S), and “car” (C), i.e., A = {M,S,C}.

Both examples use a time horizon T of one month. We set the scal-
ing parameter to µ = 0.01. The (discrete) probabilities for the number of
trips Xst are defined using the function 1− 1

1500 · (k − 30)2 and normalizing.
The resulting probabilities are independent of the OD-pair (s, t) ∈ D and
are centered around 30 in an interval from 1 to N := 60, see Figure 1.

Our data for the intercity network of the Netherlands is taken from a pub-
licly available GAMS model by Bussieck (www.gams.com/modlib/libhtml/
lop.htm). It consists of a network containing 23 nodes (stations) and a corre-
sponding upper-triangular origin-destination matrix (d0

st) with 210 nonzero
entries that account for a symmetric bidirectional traffic. We added to this
data the currently valid fares, distances, and travel times taken from the
internet site of the railway company NS Reizigers (www.ns.nl). It turns out
that these fares are determined by a piecewise linear function with three
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Figure 2: Example 1. Left: Total revenue. Right: A contour plot of the total revenue.
The optimum is at xb ≈ 153.31 and xd ≈ 0.13.

pieces depending on distance, see Figure 1. With these data, the total de-
mand is 91,791 and the current total revenue is 860,991e per day.

Distances and travel times for alternative “car” were obtained from the
routing planer Map24 (www.map24.com); we used the quickest route between
the corresponding train stations. The price for alternative “car” is the sum
of a fixed cost Q and distance dependent operating costs q, i.e., pC,k

st (x) =
Q + q · ℓc

st · k, which is constant; here, ℓc
st denotes the distance between s

and t in kilometers for a car. We set Q = 100e and q = 0.1e.
We extrapolated the OD-matrix (d0

st) in order to also include car traffic
as follows. Using alternatives “car” as above and alternative “NS Reizigers”
(with the current fares and travel times), we estimated for each OD-pair the
percentage qst of passengers using public transport applying (1) with k = 30.
The total number of travelers between s and t is then dst = 100 · d0

st/qst.
The total number of passengers in (dst) is 184,016.

2.1.1 Example 1: Standard Ticket, Reduced Ticket, and Car

We consider two fares xd and xb (hence n = 2). Namely, xd is a distance
fare per kilometer for standard tickets, and xb is a basic fare that has to
be paid once a month in order to buy reduced tickets that provide a 50%
discount in comparison to standard tickets. We write x = (xb, xd) and set

the prices for alternatives standard and reduced ticket to pS,k
st (x) = xd ·ℓst ·k

and pR,k
st (x) = xb + 1

2 xd · ℓst · k, respectively, where ℓst denotes the shortest
distance in the public transport network between s and t in kilometers.

We assume that the utilities are affine functions of prices and travel
times tast between s to t with alternative a. The utilities depend on the
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Figure 3: Example 2. Left: Total revenue. Right: A contour plot of the total revenue.
The optimum is at xS ≈ 10.54 and xM ≈ 368.85.

number of trips k. More precisely, we set:

US
st(xb, xd, k) = −δ1 · xd · ℓst · k − δ2 · t

S
st · k + νS

st “standard ticket”

UR
st(xb, xd, k) = −δ1 (xb + 1

2 xd · ℓst · k) − δ2 · t
R
st · k + νR

st “reduced ticket”

UC
st(xb, xd, k) = −δ1 (Q + q · ℓc

st · k) − δ2 · t
C
st · k + νC

st “car” .

Here, δ1 and δ2 are weight parameters; we use δ1 = 1 and δ2 = 0.1, i.e., 10
minutes of travel time are worth 1e.

Altogether, the fare planning problem we want to consider has the form:

max
N

∑

k=1

∑

(s,t)∈D

dst ·
P[Xst = k]

∑

b∈A

eµV b
st

(x,k)
·
[

(xd · ℓst · k) · eµV S
st

(x,k)+

(xb + 1
2 xd · ℓst · k) · eµV R

st
(x,k)

]

s.t. x ≥ 0.

(2)

Note that the revenue function is differentiable.

2.1.2 Example 2: Single Ticket, Monthly Ticket, and Car

We consider the fares xM (for the monthly ticket) and xS (for the single
ticket) and write x = (xM , xS). We set the cost for alternative “monthly

ticket” and “single ticket” to pM,k
st (x) = xM and pS,k

st (x) = xS ·k, respectively.
Analogously to the previous example we set the utility function as follows:

UM
st (xM , xS , k) = −δ1 · xM − δ2 · t

M
st · k + νM

st “monthly ticket”

US
st(xM , xS , k) = −δ1 (xS · k) − δ2 · t

S
st · k + νS

st “single ticket”

UC
st(xM , xS , k) = −δ1 (Q + q · ℓc

st · k) − δ2 · t
C
st · k + νC

st “car” .

Here again, we use δ1 = 1 and δ2 = 0.1.
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Table 1: Comparison of the results of Example 1 (“standard ticket, reduced ticket, and
car”) and Example 2 (“single ticket, monthly ticket, and car”).

revenue demand modal split

Status quo 25,829,730.0 91,791 50.1%
Example 1 34,201,767.8 126,786 68.9% standard: 37.1% reduced: 31.8%
Example 2 31,813,156.4 110,999 60.3% single: 35.4% monthly: 24.9%

Altogether the fare planning program for this example is

max

N
∑

k=1

∑

(s,t)∈D

dst ·
xM · eµV M

st
(x,k) + xS · k · eµV S

st
(x,k)

∑

b∈A

eµV b
st

(x,k)
·P[Xst = k]

s.t. x ≥ 0.

(3)

2.1.3 Results

We solved models (2) and (3) using a Newton-type method in Matlab 7 and
confirmed the results by the Nelder-Mead method. The optimal fares for
Example 1 are xb ≈ 153.31e and xd ≈ 0.13e; see also Figure 2. The optimal
fares for Example 2 are xS ≈ 10.54e for the single ticket and xM ≈ 368.85e
for the monthly ticket; see also Figure 3. Table 1 compares revenue (per
month), demand (per day), and modal split (percentage of passengers using
public transport and the corresponding alternatives, respectively).

In Example 1, alternatives “standard” and “reduced ticket” attract more
passengers for every OD-pair than the current fare system. The “reduced
ticket”, in particular, is used by passengers who often travel long distances.
Similarly, in Example 2, passengers traveling long distances buy a “single
ticket” if the number of trips is small and a “monthly ticket” if the number
is high. In both examples, under the assumptions of this paper, optimized
fares result in a higher revenue and larger demand than in the status quo,
that is, we have managed to attract additional passengers to public transport
and at the same time improved revenue.
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