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NONLINEAR PROGRAMMING TECHNIQUES FOR OPERATIVE PLANNING
IN LARGE DRINKING WATER NETWORKS

JENS BURGSCHWEIGER, BERND GNÄDIG, AND MARC C. STEINBACH

ABSTRACT. Mathematical decision support for operative planning in water supply sys-
tems is highly desirable but leads to very difficult optimization problems. We propose a
nonlinear programming approach that yields practically satisfactory operating schedules
in acceptable computing time even for large networks. Based on a carefully designed
model supporting gradient-based optimization algorithms, this approach employs a special
initialization strategy for convergence acceleration, special minimum up and down time
constraints together with pump aggregation to handle switching decisions, and several net-
work reduction techniques for further speed-up. Results for selected application scenarios
at Berliner Wasserbetriebe demonstrate the success of the approach.

0. INTRODUCTION

Stringent requirements on cost effectiveness and environmental compatibility generate
an increased demand for model-based decision support tools in designing and operating
municipal water supply systems. This paper is concerned with minimum cost operation
of drinking water networks. Operative planning in water networks is difficult: A sound
mathematical model leads to nonlinear mixed-integer optimization, which is currently im-
practical for large water supply networks as in Berlin. Because of the enormous complexity
of the task, early mathematical approaches typically rely on substantially simplified net-
work hydraulics (by dropping all nonlinearities or addressing the static case, for instance)
[15, 16, 18, 21, 32, 41, 50, 51], which is often unacceptable in practice. Other authors
employ discrete dynamic programming [9, 10, 12, 38, 39, 53], which is mathematically
sound but only applicable to small networks unless specific properties can be exploited
to increase efficiency. Optimization methods based on nonlinear models (mostly for the
pumps only) are reported in [3, 11, 14, 29, 45]. These approaches employ computationally
expensive meta-heuristics or suffer from inefficient coupling of gradient-based optimiza-
tion with non-smooth simulation by existing network hydraulics software, such as EPANET
[44]. Other topics in water management include network design [31, 47, 52], on-line con-
trol [36, 43], state estimation [1], and contamination detection [33]. More loosely related
recent work addresses modeling and optimization for networks of irrigation and sewage
canals or for gas networks, see, e.g., [17, 20, 27, 28, 34, 40, 49]. Previous efforts toward
minimum cost operation at Berliner Wasserbetriebe include:

• experiments with various optimization models and methods [4, 5],
• a first nonlinear programming (NLP) model developed under GAMS [24],
• numerical results for a substantially reduced network graph using (under GAMS)

the SQP codes CONOPT, SNOPT, and the augmented Lagrangian code MINOS.
The main goal of the joint work reported here was the development of a decision sup-
port tool suitable for routine application, to be implemented as an optimization module
within the new operational control system of Berliner Wasserbetriebe. The approach was
restricted to the framework sketched above: a pure NLP model (no integer variables),
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2 J. BURGSCHWEIGER, B. GNÄDIG, AND M. C. STEINBACH

TABLE 1. Notation.

Symbol Explanation Value Unit
Q Volumetric flow rate in arcs m3/s
D Demand flow rate at junctions m3/s
H Pressure potential at nodes (head) m
∆H Pressure increase at pumps, decrease at valves m
L Pipe length m
d Pipe diameter (bore) m
k Pipe roughness m
A Pipe cross-sectional area m2

λ Pipe friction coefficient –
r Pipe hydraulic loss coefficient s2/m5

ρ Water density 1000 kg/m3

g Gravity constant 9.81 m/s2

the GAMS modeling environment, and the listed NLP solvers. Criteria for applicability
are speed (response time), reliability, and practicability. Our mathematical developments
toward these goals are based on two internal studies [25, 26] and can be coarsely catego-
rized into modeling techniques (reported in [6]) and nonlinear programming techniques
(reported here). Basic modeling techniques include, in particular, a globally smooth and
asymptotically correct approximation of the hydraulic pressure loss in pipes, and suitably
aggregated models for collections of pumps that operate in parallel. The NLP techniques
include, among others, a sequential linear programming type initialization procedure for
the nonlinear iteration, special constraints that ensure minimum up and down times in
pump operation, and various network reduction techniques. Together with pump aggre-
gation, the up and down time constraints permit the handling of discrete decisions (pump
switching) without introducing binary variables. Following the NLP-based network-wide
optimization, nonlinear mixed-integer models are solved locally at each waterworks.

We start by summarizing the component models of all network elements in Section 1,
followed by the overall NLP model. In Section 2, the smoothing and SLP initialization are
discussed along with further convergence enhancement techniques. Section 3 is devoted to
combinatorial issues, particularly the prevention of undesired pump switching. Several net-
work reduction strategies are then developed in Section 4 with special emphasis on suitable
smoothing of the hydraulic friction loss. Finally, Section 5 presents selected application
scenarios at Berliner Wasserbetriebe to demonstrate the success of our approach.

1. OPTIMIZATION MODEL

To keep the paper self-contained, we first summarize the basic nonlinear programming
model developed in [6]. This model covers the physical and technical network behavior.
Later on we will add further constraints and develop graph reduction techniques to achieve
desired solution behavior and to enable efficient treatment by the chosen standard NLP
solvers. The basic notation used in our model is given in Table 1.

1.1. Optimization Horizon. We consider a planning period of length T in discrete time,
t = 1, 2, . . . , T , with initial conditions at t = 0. The subinterval (t − 1, t) will be referred
to as period t and has physical length ∆t. At Berliner Wasserbetriebe, the planning period
represents the following day, partitioned into 24 one-hour time-steps.

1.2. Network Topology. The network model is based on a directed graph G = (N, A)
whose node set represents junctions, reservoirs, and tanks,

N = Njc ∪Nrs ∪Ntk,
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FIGURE 1. Main distribution network of Berliner Wasserbetriebe

and whose arc set represents pipes, pumps, and gate valves,

A = Api ∪Apu ∪Avl.

The set of pumps consists of raw water pumps and pure water pumps, Apu = Apr ∪App.
We denote arcs as a ∈ A or, with tail and head i, j ∈ N, as ij ∈ A. A flow from i to j is

positive, from j to i negative. Some arcs (such as pumps) may not admit negative flow.
Figure 1 illustrates the main network of Berliner Wasserbetriebe, with 1481 nodes and

1935 arcs. Earlier investigations were based on a small test configuration with 144 nodes
and 192 arcs; cf. [6].

1.3. Pressure and Flow. Due to the incompressibility of water, pressure p can equiva-
lently be expressed as an elevation difference ∆h,

∆h =
p

gρ
.

We thus measure pressure by the head H, which is the sum of the actual geodetic elevation
and of the elevation difference corresponding to the hydrostatic or hydraulic pressure.

Pressure variables Hjt with upper and lower bounds H±jt are associated with every node
j ∈ N and time period t. Most of the bounds are static, i.e., H±jt = H±j for t = 1, . . . , T .
Network-wide default bounds, H− = 20 m and H+ = 125 m, keep the NLP iterates within
reasonable physical limits. Tighter bounds are specified where appropriate.

Volumetric flow rates Qat with bounds Q±
at are associated with every arc a ∈ A. Here

we use default values Q± = ±10 m3/s, and again tighter bounds where appropriate.
Further variables are the controlled pressure increase in pumps and decrease in valves,

∆Hat, a ∈ Apu ∪Avl, with bounds ∆H±at. The default values are ∆H−
at = 0 m in pumps,

∆H−
at = −125 m in valves, and ∆H+

at = 125 m in both cases.
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1.4. Junction Model. At the junctions j ∈ Njc, we have flow balance equations involving
the predicted consumption demands Djt,

(1) cflow
jt

4
=

∑

i: ij∈A

Qijt −
∑

k: jk∈A

Qjkt − Djt = 0.

Tightened pressure bounds H±jt are imposed at all waterworks outlets, and at predefined
pressure measurement points where sensors are installed to monitor the network state.

1.5. Reservoir Model. Reservoirs j ∈ Nrs behave like unlimited sources of raw water.
Here the pressure has a known constant value H̄j,

chead
jt

4
= Hjt − H̄j = 0,

and no further constraints need to be satisfied since the amounts of water extracted from
the reservoirs are bounded by limits associated with the raw water pumps; see Section 1.8.

1.6. Tank Model. Flow balance equations at the tanks j ∈ Ntk involve tank inflows Ejt,

(2) cflow
jt

4
=

∑

i: ij∈A

Qijt −
∑

k: jk∈A

Qjkt − Ejt(Hj,t−1, Hjt) = 0.

A conceptual tank usually consists of several hydraulically communicating physical tanks
that may be temporarily unavailable. Using binary variables Yjνt ∈ {0, 1} to represent the
(externally prescribed) availability profiles, the tank inflows can be written

Ejt(Hj,t−1, Hjt) =
1

∆t

Na∑

ν=1

Yjνt∆Vjν(Hj,t−1, Hjt),

where ∆Vjν denotes the change of the filling volume of tank jν during period t,

∆Vjν(Hj,t−1, Hjt) =

∫Hjt

Hj,t−1

Ajν(h − zj) dh.

Here the cross-sectional tank area Ajν depends on the filling height above the tank floor zj.
The pressure variables Hjt represent the tank filling level, with static bounds H±j deter-
mined by dry run and overflow.

1.7. Pipe Model. In every pipe, a = ij ∈ Api, hydraulic friction causes a pressure loss,

(3) closs
at

4
= Hjt − Hit + ∆Ha(Qat) = 0.

The flow dependence of the pressure loss is usually expressed as

(4) ∆Ha(Qat) = ra(Qat)Qat|Qat|,
where the hydraulic loss coefficient ra(Qat) depends on the pipe length and diameter,

(5) ra(Qat) =
La

2gdaA2
a

λa(Qat) =
8La

π2gd5
a

λa(Qat),

and the friction coefficient λa(Qat) depends on the flow rate and on the pipe roughness ka.
A highly accurate model for λa is based on the laws of Hagen–Poiseuille (laminar flow)
and Prandtl–Colebrook (turbulent flow); we call this the HP-PC model. A much simpler,
flow-independent formula is the law of Prandtl–Kármán for rough pipes (PKr model),

(6) λPKr
a =

(
2 log

ka/da

3.71

)−2

, rPKr
a =

8La

π2gd5
a

λPKr
a ,
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FIGURE 2. Efficiency of aggregated pumps under optimal configuration

which provides a valid approximation for highly turbulent flow, that is, large Qat. In [6]
we have proposed a globally smooth, asymptotically correct approximation for ∆Ha,

(7) ∆HPKrs
a (Q) = rPKr

a

(√
Q2 + a2

a + ba +
ca√

Q2 + d2
a

)
Q.

This formula shares the leading coefficient with the PKr model, ∆HPKr
a (Q) = rPKr

a Q|Q|.
We call it the smoothed PKr model (PKrs model); for more details see [6] and Section 2.1.

1.8. Pump Model. Every pump a = ij ∈ Apu increases the pressure by some nonnegative
amount ∆Hat,

(8) cdiff
at

4
= Hjt − Hit − ∆Hat = 0.

As with the tanks, our conceptual pumps generally consist of several physical pumps oper-
ated in parallel. This applies to raw water pumps and to pure water pumps (at the outlets of
waterworks and pumping stations) and leads to a largely simplified modeling based on an
approximation of the combined efficiency; see [6, §2.8]. The quality generally increases
with the number of pumps in the collection, although the approximation can also be applied
to single pumps.

Large collections of pumps can be assumed to run with constant energy demand per m3,
wa, entering the cost model (15). At Berliner Wasserbetriebe this applies to raw water
pumping in all nine waterworks, whose 620 pumps operate in groups of 14 to 170 units.

For small collections of pumps (all pure water outlets at Berliner Wasserbetriebe) the
aggregate efficiency model must respect the flow dependence. Under the assumption that
the optimal configuration of pumps is selected for every flow value, the efficiency can be
approximated as

(9) ηa(Qat) = ηmax
a

(
1

φ−
a (Qat)

−
1

φ+
a (Qat)

)
+ 0.001,

where

φ±a (Q) = 1 + α±a exp
(

β±a
Q − q±a

q±a

)
.

Here the parameters α±a and β±a are fitted to some reference data, and the values q±a are
defined in terms of the flow limits Q±

aν of individual pumps,

q−
a = min

{
Q−

aν

}Na

ν=1
, q+

a =

Na∑

ν=1

Q+
aν.

This model strongly discourages operation in the infeasible ranges 0 < Qa < q−
a and

q+
a < Qa through small values of the efficiency, see Fig. 2.
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FIGURE 3. Typical profile of network-wide hourly demand in Berlin (m3)

We consider three categories of typical further constraints differing among certain sub-
sets of the pumps. In raw water pumps, a ∈ Apr, additional bounds on the gradient of the
flow rate ensure the required quality of the filtering process,

(10) c
grad
at

4
= Qat − Qa,t−1 ∈ [∆Q−

at, ∆Q+
at].

At the waterworks outlets, a ∈ Apo, additional bounds on the total daily discharge may be
used to model contractual limits or the amount of available raw water,

c
day
at

4
= ∆t

T∑

t=1

Qat ∈ [ΣQ−
at, ΣQ+

at].

In each waterworks or pumping station, w ∈ W, finally, a bound on the combined power
consumption of all raw water pumps a ∈ Apr(w) and pure water pumps a ∈ App(w) may
reduce costs under graduated electricity tariffs depending on the peak power,

c
pow
wt

4
=

∑

a∈Apr(w)

wraw,atQat +
∑

a∈App(w)

ρg∆HatQat

ηa(Qat)
≤ P+

w.

1.9. Valve Model. The pressure in a valve a = ij ∈ Avl is decreased by some controlled
amount ∆Hat,

(11) cdiff
at

4
= Hjt − Hit + ∆Hat = 0.

To ensure consistency of the pressure decrease with the generally unknown direction of
flow, we need a sign condition

(12) c
sign
at

4
= ∆HatQat ≥ 0.

The status of a valve may also be prescribed to be permanently closed or open during
period t, which instead of (12) leads to respective constraints of the form

∆Hat = 0 or Qat = 0.

1.10. Demand Model. Our general model allows individual demand profiles Djt to be
specified at all junctions. In practice, the demand forecast often yields predictions of the
cumulative demand only, and the local demand at every junction is modeled as a constant
fraction of the time-dependent cumulative demand. Such is the current situation in Berlin.
An hourly demand profile from late May 2004 is shown in Fig. 3.
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TABLE 2. Notation for the cost function.

Symbol Explanation Unit
K Total daily operating cost e
kel,at Price for electric energy at pump a during period t e/J
kraw,at Specific price for raw water and treatment materials at pump a e/m3

wraw,a Specific work for raw water pumping and treatment at pump a J/m3

1.11. Initial and Terminal Conditions. Relevant initial values are the tank filling levels
and the flow rates of raw water pumps, entering into constraints (2) and (10),

Hj0, j ∈ Ntk,

Qa0, a ∈ Apr.

Tightened lower bounds on the tank filling levels prevent undesired finite horizon effects,

(13) HjT ≥ H−
jT , j ∈ Ntk.

Further initial values will be required for the minimum up and down time constraints de-
veloped in Section 3.2, namely the remaining pump flows

Qa0, a ∈ App.

1.12. Objective Function. The overall goal is to minimize the variable operating costs,

(14) K = ∆t

T∑

t=1

(Kraw,t + Kpure,t),

where the respective contributions from raw and pure water production can be written

Kraw,t =
∑

a∈Apr

(wraw,akel,at + kraw,at)Qat,(15)

Kpure,t =
∑

a∈App

kel,at
ρg∆HatQat

ηa(Qat)
.(16)

Thus raw water production causes material and energy costs, both linear in the flow rate,
while pure water production causes only energy costs that depend nonlinearly on the flow.
The coefficients are listed in Table 2.

1.13. NLP Formulation. The decision vector of time-step t consists of node pressures
Hjt, arc flows Qat, and pressure differences ∆Hat at pumps and valves,

xt =




{Hjt}j∈N

{Qat}a∈A

{∆Hat}a∈Apu∪Avl


 ∈ Rn, n = |N|+ |A|+ |Apu ∪Avl|,

giving the NLP decision vector

x = (x1, . . . , xT ) ∈ RN, N = nT.

Here we do not make a distinction between state and control variables, and fixed initial
values x0 are not included in x.
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The equality constraints in each time-step are comprised of one equation per network
element (node or arc),

cE
t (xt−1, xt) =




{cflow
jt (xt)}j∈Njc

{chead
jt (xt)}j∈Nrs

{cflow
jt (xt−1, xt)}j∈Ntk

{closs
at (xt)}a∈Api

{cdiff
at (xt)}a∈Apu∪Avl



∈ R|N|+|A|,

yielding

cE(x) =




cE
1 (x0, x1)

...
cE

T (xT−1, xT )


 = 0.

The number of variables and constraints per time-step can be reduced by |Nrs| if the con-
stant reservoir pressures are treated as parameters. In any case, there are |Apu∪Avl| degrees
of freedom per time-step corresponding to the number of controlled network elements.

The inequality constraints are comprised of upper and lower range constraints and sim-
ple bounds on all variables,

cR(x) ∈ [c−, c+], x ∈ [x−, x+],

with range constraints

cR(x) =




cR
1 (x)

...
cR

T (x)


 .

The components of cR in each time-step include the nontrivial inequalities from the pumps
and valves,

cR
t (x) =




{c
grad
at (xt−1, xt)}a∈Apr

{c
pow
wt (xt)}w∈W

{c
day
at (x)}a∈Apo

{c
sign
at (xt)}a∈Avl


 ∈ R|Apr|+|W|+|Apo|+|Avl|.

Note that the daily discharge limit in waterworks outlets depends on all decision vectors xt

and that the tank flow balances and the gradient constraints in the raw water pumps depend
on the current and previous decision vectors xt, xt−1; all other constraints depend only on
the current decision vector xt.

Finally, the separable objective can be written

f(x) =

T∑

t=1

ft(xt) =

T∑

t=1

[
fraw
t (xt) + f

pure
t (xt)

]
,

where fraw
t and f

pure
t are given according to (14), (15) and (16) as

fraw
t (xt) =

∑

a∈Apr

fraw
at (Qat) =

∑

a∈Apr

(wraw,akel,at + kraw,at)Qat ∆t,

f
pure
t (xt) =

∑

a∈App

f
pure
at (Qat, ∆Hat) =

∑

a∈App

kel,at
ρg∆HatQat

ηa(Qat)
∆t.

Thus we obtain a highly structured NLP model in standard form:

Minimize
x

f(x) subject to cE(x) = 0, cI(x) ≥ 0,
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where

cI(x) =




cR(x) − c−

c+ − cR(x)
x − x−

x+ − x


 .

2. CONVERGENCE ACCELERATION

One of the primary goals in developing the optimization approach presented here was
to achieve acceptable response times for daily planning. Since we are restricted to work
with general purpose NLP solvers available under GAMS, exploiting the characteristic NLP
structure by special algorithmic developments is not an option. We have to rely on conver-
gence enhancement and other techniques. For convergence acceleration, the most effective
measures turned out to be a suitable model formulation and a special initialization strategy
for the iterative solution.

2.1. Model Smoothness. The objective and constraints in our model are all twice contin-
uously differentiable (C2), except for the pipe friction loss ∆H(Q) = r(Q) Q|Q|. In the
piecewise quadratic PKr model ∆HPKr, the second order derivative has respective constant
values −2rPKr and +2rPKr for Q < 0 and Q > 0, producing a jump discontinuity at Q = 0.
Thus ∆HPKr is C1 only. The more accurate HP-PC model ∆HHP-PC is not even continuous
at the transition from laminar to turbulent flow [6].

Since the available solvers use derivatives up to first order (MINOS) or second order
(CONOPT and SNOPT), numerical difficulties must be expected on a C1 (or even less
smooth) model whenever the flow variables traverse discontinuities between subsequent
NLP iterations. This will typically happen during the initial phase of the iterative solution
(i.e., far from the optimum, where large steps are taken) whereas it is less likely during the
final phase of local convergence.

To avoid such numerical difficulties, we recommend the smoothed PKr model (7) as
global approximation of the pipe friction loss,

∆HPKrs
a (Q) = rPKr

a

(√
Q2 + a2

a + ba +
ca√

Q2 + d2
a

)
Q.

Here the parameters aa > 0 and da > 0 may be chosen to match a desired slope at Q = 0

and to balance the relative contributions of the two square root terms, whereas ba > 0 and
ca < 0 depend on the pipe dimensions. They are determined such that, asymptotically for
|Q| → ∞, the law of Prandtl–Colebrook is approximated up to second order [6],

ba = 2δa, ca = (ln βa + 1)δ2
a −

a2
a

2
,

where

αa =
2.51

4/(πυda)
, βa =

ka/da

3.71
, δa =

2αa

βa ln 10
.

If accuracy requirements are moderate, the PKrs model can easily be simplified by setting
ca = 0 or even ba = ca = 0. This may be appropriate, for instance, to save computational
effort during early NLP iterations.

The numerical effect of the smoothing depends heavily on other circumstances. Com-
putational experiments show that, on the test configuration, the smoothing yields signifi-
cant convergence improvements for CONOPT and SNOPT (the SQP methods) with default
initialization heuristics, whereas MINOS (the augmented Lagrangian method) is hardly af-
fected at all. Moreover, SNOPT is slightly faster than MINOS on average. Interestingly,
the advantage of the C2 PKrs model over the C1 PKr model disappears when we introduce
the SLP-based initialization scheme of Section 2.2; now MINOS performs equally well on
both formulations, and always better than SNOPT. Another change in the picture occurs
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when we switch to the much larger main network model. Here the smoothing is beneficial
for both solvers, with MINOS still outperforming SNOPT on average. (Apparently, due to
rapid convergence within about 20 major iterations, the BFGS updates in SNOPT cannot
build up sufficient curvature information to give an advantage.) In practice, we therefore
use MINOS on the C2 model.

2.2. Initial Estimates. Computational experiments with artificially perturbed optimal so-
lutions (we added 10% white noise) confirm the expectation that rapid convergence can
be achieved when the initial iterate is close to a solution. To exploit this fact, we devised
an automatic initialization scheme based on LP approximations of the NLP model. Such
approximations are rather crude but quickly solvable with standard LP software (we use
CPLEX), so that physically meaningful initial estimates are generated with little effort. Re-
peating the LP approximation several times yields an initialization scheme of SLP type
(sequential linear programming).

The basic idea of SLP approaches in the literature (cf. [7, 13, 22]) is to replace the
expensive QP in SQP methods (sequential quadratic programming) by a simpler LP sub-
problem, obtaining an estimate of the active set at little cost even for very large problems:

Minimize
s

g∗ks(17)

subject to JE
ks + cE

k = 0,(18)

JI
ks + cI

k ≥ 0,(19)

‖s‖∞ ≤ δ.(20)

Here the trust region constraint is introduced to ensure global convergence and to prevent
unboundedness, and the LP data are generated as standard linearization of the problem
functions. Thus gk is the gradient of the objective, cE

k , cI
k are the respective residuals of

equality and inequality constraints, and JE
k , JI

k are the associated Jacobians:

gk = ∇f(xk), cE
k = cE(xk), JE

k = ∇cE(xk)∗,

cI
k = cI(xk), JI

k = ∇cI(xk)∗.

The LP solution sk serves to determine a working set of currently active constraints, based
on which a better second order step is usually calculated. Only if this fails is sk taken as
step direction for the SLP.

Since the LP (17)–(20) may be infeasible even if the NLP is feasible, it is appropriate
to minimize the `1 penalty function instead, subject only to the trust region constraint,

(21) Minimize
s

`1(s, ρ) subject to ‖s‖∞ ≤ δ,

where

`1(s, ρ)
4
= g∗ks + ρ‖JE

ks + cE
k‖1 + ρ‖min(JI

ks + cI
k, 0)‖1

= g∗ks + ρ
∑

i∈E

|Ji
ks + ci

k|+ ρ
∑

i∈I

|min(Ji
ks + ci

k, 0)|.

For the numerical solution, the nonsmooth `1 problem is finally converted to LP form by
standard techniques (see, e.g., [8]), yielding the problem

Minimize
s,sE

+,sE
−,sI

−

g∗ks + ρe∗(sE
+ + sE

−) + ρe∗sI
−(22)

subject to JE
ks + cE

k − sE
+ + sE

− = 0, sE
+, sE

− ≥ 0,(23)

JI
ks + cI

k + sI
− ≥ 0, sI

− ≥ 0,(24)

‖s‖∞ ≤ δ.(25)

Here the nonnegative slack variables sE
+, sE

−, sI
− represent positive and negative violations

of equality and inequality constraints, respectively, and e denotes the vector of ones in
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appropriate dimensions. It is easily seen that the modified LP (22)–(25) is always feasible.
Moreover, if the penalty parameter ρ is sufficiently large, the slacks of an optimal solution
vanish if and only if the original LP is feasible, in which case both problems yield the same
optimal value for the step s.

Our problem-specific scheme deviates from the general approach in several respects:

2.2.1. Linearization. Observe first that nonlinearities arise only in the pressure loss equa-
tions closs

at , in the valve constraints c
sign
at , and in the objective. These nonlinearities are

handled as follows.

(1) The PKr friction model is used, and the absolute volumetric flow rates |Qat| are
replaced with constant parameters Q̄at > 0. The pressure loss (4) then reads

Hjt − Hit − rPKr
a Q̄atQat = 0.

For the parameter Q̄at we use a heuristic initial estimate defined as a constant
multiple of the pipe diameter, Q̄0

at = c̄da. (In practice, a reasonable value may be
available from optimal solutions of the past.) In iteration k, the flow components
Qk

at of the LP solution are then used to update the parameter values,

Q̄k+1
at = αQ̄k

at + (1 − α)|Qk
at|,

where we choose α = 0.6 as weighting factor in the convex combination.
(2) Assuming temporarily that the direction of flow is known in all valves, the sign

condition is replaced by two simple bounds,

Qat ≥ 0, ∆Hat ≥ 0 or Qat ≤ 0, ∆Hat ≤ 0.

The dual LP solution then yields directional information for the next LP iteration:
if any of the simplified constraints are binding, the sign of both constraints can be
switched on the assumption that the chosen direction of flow was not optimal.

(3) The nonlinear term ∆HatQat/η(Qat) in the pump efficiency model entering
the cost function is handled as follows. The pressure difference ∆Hat is re-
placed with a constant parameter that is iteratively updated like Q̄at. The quo-
tient Qat/η(Qat) is approximated by a strictly increasing convex piecewise linear
function of Qat that consists of three segments and starts at the origin.

Thus our LP is a local approximation of the NLP yielding the iterate xk, rather than a local
linearization yielding a step direction sk at the given iterate. Moreover, we do not use any
second order information.

2.2.2. Trust Region. We do not impose a trust region constraint in addition to the bounds
on all variables, since we are not interested in global or local convergence properties of
the SLP method but only in getting a cheap initial estimate for the NLP iteration. In
practical computations we usually perform three SLP-type steps before switching to the
fully nonlinear model. According to our experience (based on a large number of numerical
experiments), this yields the best performance for the network of Berliner Wasserbetriebe.

2.2.3. Penalty. The `1 penalty approach ensuring feasibility is only applied to selected
constraints, namely to the pressure limits at pressure measurement points and at the outlets
of waterworks and pumping stations. These constraints are relaxed in the LP as well as in
the NLP model.

A relaxation of all inequality constraints is applied in a second version of our operative
planning model. This version is used after physical modifications of the network to detect
potential infeasibilities caused by errors in the mathematical formulation or input data.



12 J. BURGSCHWEIGER, B. GNÄDIG, AND M. C. STEINBACH

2.2.4. Remarks. A pure SLP approach has also been tested. The performance was gener-
ally inferior to the combined LP/NLP approach; often the iteration did not even converge.

Finally we tried to catch the combinatorial aspects of the problem explicitly during
the SLP initialization procedure, by replacing the LP approximations with similar mixed-
integer linear programs (MIP). Even with SOS Type 2 formulations of the piece-wise linear
approximation of the pressure loss equations (cf. [30, 35, 37]), solving the MIP subprob-
lems took so long that no benefit could be achieved.

2.3. Further Attempts. Several additional convergence acceleration methods have been
tested, but none of them led to significant improvements. We give some brief comments
on these attempts.

2.3.1. Scaling. We have compared four scaling strategies: manual scaling and the three
automatic scaling options that GAMS offers,

(0) ”no” scaling (all scale factors are equal to one);
(1) automatic scaling of linear variables and constraints (the default);
(2) automatic scaling of all variables and constraints.

As expected, manual scaling led to the best results after some empirical adjustments of
the scaling factors. The default scaling performed almost equally well whereas the per-
formance with ”no” scaling or with automatic scaling of all variables and constraints was
rather poor. Since the manual scaling usually requires some parameter tuning to adjust for
the input data (demand profile, initial state of network, availability of technical equipment),
the default scaling was retained as most reasonable choice for routine operation.

2.3.2. Spatial Decomposition. The topographical situation of Berlin suggests a network
decomposition into three natural pressure zones: the southern uptown (Teltowhochfläche),
the downtown valley of river Spree (Urstromtal), and the northeastern uptown (Barnim-
hochfläche). After the SLP initialization, we tried to improve the initial estimates through
local NLP solutions for each of the three pressure zones, with prescribed pressure and flow
values at their boundaries taken from the last LP solution. As it turned out, no reduction in
the total computation time could be achieved. When no deviations or small deviations from
the boundary values were permitted, the local NLP subproblems were often infeasible or
convergence was slow. When larger deviations were permitted, convergence was slow on
the recombined network. In any case, the total computation time exceeded the computation
time on the undecomposed model.

2.3.3. Initialization from Database. Berliner Wasserbetriebe maintains a database of ac-
tual network operation over several years. This database records the hourly profiles of all
relevant quantities, such as the raw water and pure water production, outlet pressures, valve
positions, tank filling levels, etc. It does not include flow and pressure profiles for the en-
tire network, however. To generate a good initial estimate for the current planning period
from the recorded data of a similar previous day, we calculated the missing data from an
(overdetermined) least-squares problem. Again it turned out that no savings in total com-
putation time could be achieved; sometimes the initialization procedure just described took
already longer than solving the full operative planning problem from scratch.

3. COMBINATORIAL ISSUES

Combinatorial aspects addressed here include the direction of flow across valves and the
switching of speed-controlled pumps. Further aspects that may occur in water networks in-
clude the switching of fixed-speed pumps [6] and the choice among alternative waterworks
outlets. The latter issues involve purely integral decisions that can to date not be treated
satisfactorily in an NLP setting, although nonlinear programs with certain combinatorial
structures (complementarity constraints and equilibrium constraints) have recently been
studied and successfully solved by suitably extended NLP methods [2, 23, 42, 46, 48].
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3.1. Flow Direction across Valves. The valve sign condition (12) has some undesirable
properties at the origin, where the gradient vanishes and no constraint qualification holds.
This reflects the geometry of the feasible set: consisting of two opposite closed quadrants,
it has disconnected interior and becomes itself disconnected if the origin is removed. One
might think that the direction of flow should therefore be introduced as a binary decision
variable, but a detailed analysis reveals that no numerical difficulties are to be expected
as long as the gradient of the Lagrangian (projected into the relevant subspace) does not
vanish at the origin. Since the latter condition is generically satisfied, we do not need to
reformulate the model.

3.2. Pump Switching. Computational experience shows that optimal solutions frequently
exhibit undesirable pump switching at the waterworks outlets:

• short-term activation of a pump for just one or two periods;
• short-term deactivation of a pump for just one or two periods;
• alternating discharge: a certain flow rate is produced by two or more waterworks

outlets alternating in time.

Operating schedules like these reduce the pump lifetime and require increased activity of
the operators.

Specifying minimum up and down times is straightforward in a mixed-integer model.
Let Yat ∈ {0, 1} designate the activity status of pump a ∈ App; cf. [6]. Then the following
linear inequality constraints, specified at t = 0, . . . , T − K, freeze the status for at least K

periods after a switch:

K(Ya,t+1 − Yat) ≤ Ya,t+1 + · · ·+ Ya,t+K ≤ 2K(Ya,t+1 − Yat) + K.

In a pure NLP setting it is unclear how to obtain a similar effect.
To avoid unnecessary pump switching, several mathematical and heuristic techniques

have therefore been devised and tested. They can be categorized into three major groups:

(1) penalty approach;
(2) linear, piece-wise linear, and nonlinear constraints (C0 or C2);
(3) heuristics.

In summary, most of the techniques proved either little successful or rather slow. However,
we did find computationally cheap smooth constraints (group 2) that suppress the undesired
behavior, either with certainty (pump activation) or with high reliability (deactivation).

3.2.1. Avoiding Short-Term Pump Activation. As it turns out, activation of pumps for one
or two periods can be prevented with certainty by suitable linear inter-temporal constraints.
Formally, we wish to inhibit flow sequences of the types

(1) (Qt, Qt+1, Qt+2) = (0,Qt+1, 0) with Qt+1 > 0, or
(2) (Qt, Qt+1, Qt+2, Qt+3) = (0,Qt+1, Qt+2, 0) with Qt+1, Qt+2 > 0.

The basic idea is to prevent excessive concavity of the piece-wise constant flow rate profiles
(1) and (2) by placing appropriate lower bounds on their discrete curvatures. In case (1),
such a condition may be formulated as

(26) Qt − 2Qt+1 + Qt+2 ≥ −c1(Qt + Qt+1 + Qt+2), t = 0, . . . , T − 2,

where c1 > 0 is a constant parameter. The flow-dependent right-hand side allows for
larger values of the concavity with increasing total flow. A suitable range for the value
of the parameter c1 is determined as follows. In the case of interest, Qt = Qt+2 = 0,
condition (26) yields

−2Qt+1 ≥ −c1Qt+1,

so that one must choose c1 < 2 to force Qt+1 to zero, as desired. On the other hand, we do
not wish to rule out otherwise feasible pump operation: if c1 is chosen unreasonably small,
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then condition (26) will become too restrictive. This is immediately seen in the equivalent
form

(27) Qt+1 ≤ 1 + c1

2 − c1
(Qt + Qt+2),

which implies, for instance, Qt+1 ≤ 1
2 (Qt + Qt+2) if c1 = 0, and Qt+1 = 0 for all t if

c1 ≤ −1. To find a lower bound on c1, we rewrite (26) as

(1 + c1)(Qt + Qt+2) − (2 − c1)Qt+1 ≥ 0

and determine the minimum of the left-hand expression over the nontrivial feasible flow
sequences, {Qt, Qt+1, Qt+2 ∈ {0} ∪ [Q−, Q+] : Qt 6= 0 or Qt+2 6= 0}. This yields

(1 + c1)Q− − (2 − c1)Q+ ≥ 0,

which is realized by the extremal flow sequences

(0,Q+, Q−) and (Q−, Q+, 0).

Letting

α =
Q+

Q−
> 1 and β1 =

2α − 1

α + 1
∈ (1

2 , 2),

the minimal left-hand expression above is finally seen to be nonnegative if and only if

c1 ∈ [β1, 2) where [β1, 2) 6= ∅.
Similar reasoning for the two-period case (2) yields the restriction

Qt − Qt+1 − Qt+2 + Qt+3 ≥ −c2(Qt + Qt+1 + Qt+2 + Qt+3), t = 0, . . . , T − 3.

Here one must require c2 < 1 to prevent undesired pump activation, and a lower bound β2

is obtained with the reformulation

(1 + c2)(Qt + Qt+3) − (1 − c2)(Qt+1 + Qt+2) ≥ 0.

Minimizing the left-hand expression yields extremal flow sequences

(0,Q+, Q+, Q−) and (Q−, Q+, Q+, 0),

and the condition

(1 + c2)Q− − (1 − c2)(2Q+) ≥ 0.

Thus we finally get

c2 ∈ [β2, 1) where β2 =
2α − 1

2α + 1
∈ (1

3 , 1), and [β2, 1) 6= ∅.

In summary, the following linear inequalities prevent undesired pump activation for one
or two periods with certainty without being too restrictive:

(c1 + 1)Qt + (c1 − 2)Qt+1 + (c1 + 1)Qt+2 ≥ 0, c1 ∈ (1
2 , 2),

(c2 + 1)Qt + (c2 − 1)Qt+1 + (c2 − 1)Qt+2 + (c2 + 1)Qt+3 ≥ 0, c2 ∈ (1
3 , 1).

These restrictions are specified for each pump in almost all time-steps, yielding the large
number of O(|Apu|T) extra conditions. Despite this, no adverse effect on the computation
time was observed on our problem instances.
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3.2.2. Avoiding Short-Term Deactivation of Pumps. Linear restrictions in the spirit of (26)
are unfortunately not useful in avoiding short-term deactivation. To see this, assume that
(Qt, 0, 0) and (0, 0, Qt+2) are feasible and all feasible sequences satisfy the constraint

aQt + bQt+1 + cQt+2 + d ≥ 0.

Now, the sum (Qt, 0,Qt+2) is forbidden but satisfies the same constraint. The asymmetry
arises from the fact that during activation the initial and final flow rates are both exactly
known and identical, Qt = Qt+2 = 0, whereas only Qt+1 = 0 is known during deactiva-
tion. In general, Qt and Qt+2 are neither known nor identical in the latter case.

To inhibit short-term deactivation, we suggest to specify a certain fraction of the mini-
mum of the enclosing values as lower bound on the intermediate flow rate, thus arriving at
the piecewise linear constraint

Qt+1 ≥ c min(Qt, Qt+2), t = 0, . . . , T − 2,

with an appropriate parameter range of c ∈ (0, 1]. This formulation does the job but slows
down convergence dramatically, which is not surprising since the minimum function is not
differentiable but only continuous (C0). Using the standard reformulation in terms of the
absolute value function,

Qt+1 ≥ c

2
(Qt + Qt+2 − |Qt − Qt+2|),

one can now apply the smoothing |x| =
√

x2 ≈
√

x2 + α2 to obtain the C2 formulation

Qt+1 ≥ c

2

(
Qt + Qt+2 −

√
(Qt − Qt+2)2 + α2

)
.

Finally we redefine c to arrive at the nonlinear inequality

(28) Qt+1 − c
(
Qt + Qt+2 −

√
(Qt − Qt+2)2 + α2

)
≥ 0, c ∈ (0, 1

2 ].

The two-period version consists of two similar inequalities with identical parameters,

Qt+i ≥ c min(Qt, Qt+3), i = 1, 2, t = 0, . . . , T − 3,

yielding the smooth reformulation

(29) Qt+i − c
(
Qt + Qt+3 −

√
(Qt − Qt+3)2 + α2

)
≥ 0, c ∈ (0, 1

2 ], i = 1, 2.

Note that the constraints (28), (29) are always compatible with the flow bounds and flow
gradient bounds.

4. MODEL REDUCTION

Due to excessive computation times with the main network (even in the case of rapid
convergence) the need for a systematic reduction of the size of the network graph arose.
Such a reduction is performed as preprocessing before the optimization; it is based solely
on static network data, so that a single reduced graph is used over the entire horizon.

The reduction leads to simplified models for the pipe friction loss, where we calculate
the leading coefficient from the PKr model to ensure asymptotically correct friction loss
for large flow values |Q|. Appropriate smoothing is then introduced for small flow values.

4.1. Parallel Pipes. It is not uncommon for municipal water networks to contain pairs
of nodes that are connected by several “parallel” pipes. In the network model, such pipe
ensembles can be replaced by a single pipe (see Fig. 4), which is hydraulically equivalent
if the loss coefficients rν are flow-independent (PKr model). Consider a collection of n

parallel pipes with total flow rate

(30) Q = Q1 + · · ·+ Qn.
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FIGURE 4. Collapsing parallel pipes
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FIGURE 5. Collapsing pipe sequences

Then all the flows Q and Qν have the same direction and a common pressure difference,

(31) ∆H = rQ|Q| = rνQν|Qν|, ν = 1, . . . , n.

The fictitious loss coefficient r of the hydraulically equivalent pipe is readily calculated
from (30) and (31). Assuming positive flows with no loss of generality, one obtains

√
∆H

r
= Q =

n∑

ν=1

Qν =

n∑

ν=1

√
∆H

rν
,

and hence

1√
r

=

n∑

ν=1

1√
rν

⇐⇒ r =

(
n∑

ν=1

1√
rν

)−2

.

Conversely, with (31) the individual flows Qν are recovered from the total flow as

Qν =

√
r

rν
Q.

This is similar to parallel resistors in an electric circuit, except that the flow dependence
here is quadratic rather than linear.

To derive the parameters of the smooth approximation (7), the replacement pipe also
needs fictitious geometric dimensions. We define the length as the average length of the
original pipes, and the diameter such that the total pipe volumes agree,

L =
1

n

n∑

ν=1

Lν, d =

√√√√1

L

n∑

ν=1

Lνd2
ν.

The roughness is finally chosen such that r is consistent with all dimensions according to
(5) and (6),

r =
8L

π2gd5

(
2 log

k/d

3.71

)−2

,

yielding

k = 3.71d× 10
√

2L/(π2gd5r).

From these values we readily obtain the required parameters b, c for the PKrs model.

4.2. Pipe Sequences. A sequence of n pipes traversing junction nodes 0, . . . , n can be
collapsed if no other arcs are connected to the interior nodes 1, . . . , n − 1. In this case
the interior nodes are eliminated, their demands Dν are distributed over the two boundary
nodes, and the n pipes are replaced by a fictitious single pipe; see Fig. 5.
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4.2.1. Zero Interior Demands. In the case of vanishing demands, pipes 1, . . . , n have
identical flow rates, Qν = Q, and a hydraulically equivalent model is obtained if and
only if the loss coefficient r of the fictitious pipe is defined as the sum of the individual
loss coefficients,

H0 − Hn =

n∑

ν=1

Hν−1 − Hν =

n∑

ν=1

rνQν|Qν| =
n∑

ν=1

rνQ|Q| = rQ|Q|.

This is similar to serial resistors in an electric circuit, and it does not matter whether the
coefficients rν are assumed to be flow-independent or not.

4.2.2. Nonzero Interior Demands. For arbitrary consumption demands it is impossible to
construct a hydraulically equivalent reduced model. This is because of three reasons:

(1) the symmetry with respect to the direction of flow is broken in general: inflows of
identical magnitudes at nodes 0 and n yield different absolute pressure differences;

(2) the inflow may enter from both sides, adding up to the total interior demand;
(3) the pressure difference does not depend quadratically on any linear combination

of the flow rates Qν, even with quadratic segment losses rνQν|Qν| (PKr model).
As it turns out, the best fictitious replacement pipe in this case is obtained as follows.

With the notation rk:l
4
=

∑l
ν=k rν, let r = r1:n (as above), let L = L1:n, and split each

interior demand Dν into fictitious demands (rν+1:n/r)Dν at node 0 and (r1:ν/r)Dν at
node n, according to the relation of friction losses to each endpoint:

(32) Dint
0

4
=

n−1∑

ν=1

rν+1:n

r
Dν, Dint

n
4
=

n−1∑

ν=1

r1:ν

r
Dν.

The actual inflow from node 0 and outflow to node n, Q1 and Qn, are thus replaced with
a common fictitious flow value, Q1 − Dint

0 = Qn + Dint
n .

As with parallel pipes (see Section 4.1), the diameter d and roughness k of the fictitious
pipe are determined such that its loss coefficient r is consistent with the PKr model.

We will now see that one can do better than with such a single pipe replacement model.
To investigate this in detail, consider the exact pressure loss in the pipe sequence according
to the quadratic PKr model. Since the flow rates in successive pipes are related by

Qν+1 = Qν − Dν, ν = 1, . . . , n − 1,

we get inductively
Qν = Q1 − Dν, ν = 1, . . . , n,

where Q1 is the inflow from node 0 and Dν denotes the cumulative interior demand up to
and including node ν − 1,

Dν = D1:ν−1, ν = 1, . . . , n.

(Note that D1 = 0, giving total interior demand Dn = D1 + · · ·+Dn−1.) Thus we obtain

H0 − Hn =

n∑

ν=1

rνQν|Qν| =
n∑

ν=1

rν(Q1 − Dν)|Q1 − Dν|.

Left-Sided Inflow. Consider first the case where Q1 ≥ Dn (that is, all flow directions
in the pipe sequence are positive) and observe that the coefficients rν/r formally satisfy
the properties of a probability distribution. Defining the spatial flow distribution vectors
Q = (Q1, . . . , Qn) and similarly D = (D1, . . . , Dn) etc., one obtains

H0 − Hn = r

n∑

ν=1

rν

r
Q2

ν = rE(Q2)(33)

= r
[
E(Q)2 +

(
E(Q2) − E(Q)2

)]
= rE(Q)2 + rVar(Q).
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Here the first term can be interpreted as the pressure loss of a weighted average flow rate
with respect to the “probabilities” rν/r,

n∑

ν=1

rν

r
Qν = E(Q) = E(Q1 − D) = Q1 − E(D).

The second term can be interpreted as an additional pressure loss due to the variance of
the individual flow rates, which equals the flow-independent variance of the accumulated
demands,

E(Q2) − E(Q)2 = Var(Q) = Var(Q1 − D) = Var(D).

Since D1 = 0, this variance vanishes if and only if all interior demands vanish.
Right-Sided Inflow. Consider next the situation for Q1 ≤ 0, which is similar to Q1 ≥ Dn

except that the flow now goes in the opposite direction, and we have a pressure loss from
node n to node 0,

H0 − Hn = −rE(Q)2 − rVar(Q) = −rE(Q)2 − rVar(D).

With the demand redistribution defined in (32), the fictitious pipe’s flow rate is E(Q),

Q1 − Dint
0 = Q1 −

∑

0<ν<µ≤n

rµ

r
Dν = Q1 − E(D) = E(Q),

thus giving precisely the first term of the pressure loss (33) according to the PKr model.
The constant variance term, however, cannot be obtained in this pipe model—a qualitative
defect of the single pipe replacement (reason 3).

By symmetry, the relevant quantities above can also be expressed in terms of Qn rather
than Q1. Defining

Dν = Dν:n−1, ν = 1, . . . , n,

so that Qν = Qn +Dν with Dn = 0 and D1 = Dn, this yields alternative representations
for the actual in- and outflow,

Q1 = Q1 − D1 = Qn + D1,

Q1 − Dn = Qn + Dn = Qn,

and for the (identical) fictitious in- and outflow,

Q1 − Dint
0 = Q1 − E(D) = E(Q) = Qn + E(D) = Qn + Dint

n .

Two-Sided Inflow. A second, more serious qualitative defect arises in the situation where
Q1 ∈ (0, Dn), or −E(D) < E(Q) < E(D): then we have inflows from both sides, and the
total pressure difference H0 − Hn depends on the location where the inflows meet in the
pipe sequence. This location has minimal pressure within the sequence and occurs either at
a unique node whose inflows are both smaller than the local demand, or possibly at a unique
pair of nodes whose (one-sided) inflows equal the respective demands, yielding stagnant
flow in between. Clearly, this situation cannot be modeled by a single replacement pipe
with just one flow direction (reason 2). Without simplifications, the PKr friction model
yields a piecewise quadratic dependence where the curvature has jump discontinuities at
Q1 = Dν (or Qn = Dν), ν = 1, . . . , n.

Denoting the fictitious flow E(Q) as Q and the values −E(D), +E(D) as D−, D+,
respectively, we suggest to use a global smoothing for the entire sequence by approximat-
ing the pressure difference for Q ∈ (D−, D+) with the unique polynomial of degree five
having C2 junctions with the outer pieces at Q = D− and Q = D+:

φ(Q) =

5∑

k=0

ckQk,

where the coefficients ck are obtained from a linear equation system representing the
matching conditions.
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FIGURE 6. Three-piece C2 model of pressure loss in a pipe sequence
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FIGURE 7. Collapsing short pipes and subnetworks

The resulting replacement model (“generalized pipe”) has three benefits: the constant
variance term is included, inflows from both sides are suitably modeled, and all disconti-
nuities disappear. Letting V = Var(D) = Var(D), one thus gets a global C2 representation
consisting of three pieces; see Fig. 6:

H0 − Hn = ∆H(Q) =





−rQ2 − rV, Q ≤ D−,

rφ(Q), Q ∈ (D−, D+),

+rQ2 + rV, Q ≥ D+.

4.3. Short Pipes. The pressure loss along a short pipe is often negligible so that the pipe
can be collapsed into a single node; see Fig. 7. Such collapsing may even be possible
for entire subnetworks (consisting of junctions and sufficiently short pipes only), which is
typical for residential or industrial areas.

The following algorithm is used for collapsing subnetworks.
(0) Input: a subset of pipes that must not be removed from the graph, A0 ⊂ Api, and

the maximal length of a “short” pipe, Lmax.
(1) Determine the set of short pipes eligible for removal,

Ashort = {a ∈ Api \ A0 : La ≤ Lmax}.

(2) Determine the network subgraph induced by Ashort, with connected components
Gl = (Nl,Al).

(3) Collapse each connected component Gl to a single junction l having demand Dl:

Dl =
∑

j∈Nl

Dj.

For the network of Berliner Wasserbetriebe, the maximal length of a “short” pipe was
empirically set to 500 m after some experiments, since this value gave the best compromise
of model accuracy and computation time. The reduced main network then has 413 nodes
and 608 links. With increasing computing power, the threshold length may be gradually
decreased in the future.

5. RESULTS

We consider the municipal drinking water network of Berliner Wasserbetriebe, which
has nine waterworks and eight additional pumping stations, five of which are equipped with
tanks. The total length of all pipes is 7800 km. There are 256000 household connections,
serving a yearly consumption demand over 200 million m3 with daily demands ranging
between roughly half a million and one million m3.
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FIGURE 8. Optimal raw water production at BEE and TIE, and tank
inflows at COL and MAR (m3/h). Scenarios 1 (top left), 2 (top right),
3 (bottom left), and 4 (bottom right).

In the waterworks, raw water is extracted via groundwater wells from reservoirs. After
treatment, the pure water is stored in tanks and then pumped into the pressurized distri-
bution network. Control actions to be planned include raw water pumping, pure water
pumping, filling and emptying the tanks, and setting the control valves.

To investigate how optimal solutions change with the operating conditions, we consider
four scenarios with different combinations of

• the demand: normal and high;
• electricity prices: constant and variable;
• groundwater extraction fees: current and previous.

The normal daily demand is 585000 m3, the fictitious high demand is one million m3.
Electricity prices differ between the providers in Berlin and in the federal state of Bran-

denburg where the waterworks Stolpe is located. In the scenario with variable electricity
prices, a reduction of about 13% has been applied at the waterworks Stolpe during night-
time (18:00-08:00).

The groundwater extraction fees (GEG, Grundwasserentnahmeentgelt in German) also
differ between the waterworks of Berlin and Brandenburg. They are about six times higher
in Berlin compared to the fees in the federal state of Brandenburg. Within Berlin, the
current groundwater extraction fees are identical all over the city whereas previous fees
were reduced at the waterworks Spandau and Tegel.

In what follows, every figure compares for some quantity of interest the time histories
of the following four scenarios:

(1) fixed electricity price, current GEG, normal demand (top left, reference);
(2) fixed electricity price, current GEG, high demand (top right);
(3) fixed electricity price, previous GEG, normal demand (bottom left);
(4) variable electricity price, current GEG, high demand (bottom right).
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FIGURE 9. Optimal discharge flows into the southern uptown at BEE,
TIE, COL, MAR, and KLE (m3/h). Scenarios 1 (top left), 2 (top right),
3 (bottom left), and 4 (bottom right).

Since the behavior of the entire network is much too complex to visualize, we focus on a
selected area in the southern uptown. This area is mainly served by the two waterworks
Beelitzhof (BEE) and Tiefwerder (TIE), and it contains three pumping stations: Columbia-
damm and Marienfelde (COL and MAR, with tanks), and Kleistpark (KLE, without tank).
Note that the GEG differences (at Spandau and Tegel) and the nighttime reduction of the
electricity price (at Stolpe) occur far from the area of interest; nevertheless we will see
effects on the optimal operation schedules.

Figure 8 displays the raw water production at waterworks BEE and TIE, and the tank
inflows at pumping stations COL and MAR. We observe that the raw water production is
quite steady, as desired. Production is low during nighttime and high during daytime at
almost constant levels. The slopes in between are also constant, showing that the gradient
constraint (10) is binding. In scenarios 1 and 3 (normal demand) we have brief transitions
between long periods with constant levels, and in scenarios 2 and 4 (high demand) we have
a long nighttime transition and a brief constant daytime period. The two waterworks are
always active in either case. Under normal demand, only one pumping station (COL) fills
its tank during a brief period (either before midnight or in the early morning, depending
on the GEG), whereas heavier nightly tank inflow and an additional late-afternoon inflow
occur at both COL and MAR under high demand. With reduced GEG, both BEE and
TIE produce significantly less water than in the reference case. Reducing the nighttime
electricity price at the distant waterworks Stolpe has no visible effect here.

Figure 9 displays the outlet flow rates to the southern uptown at waterworks BEE and
TIE, and at pumping stations COL, MAR, and KLE. In the reference case (normal de-
mand), the outflow at TIE varies only slightly whereas BEE roughly follows the demand
profile and KLE is under heavy load during the morning and evening peaks. Pumping sta-
tion COL contributes a small share between the peak times. In scenario 2 (high demand)
the behavior is totally different. Both BEE and TIE are under heavy load during daytime
and still active at nighttime, while both COL and MAR feed the network only during the
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FIGURE 10. Optimal outlet pressures into the southern uptown at BEE,
TIE, COL, MAR, and KLE (bar). Scenarios 1 (top left), 2 (top right),
3 (bottom left), and 4 (bottom right).

morning peak. Pumping station KLE works continuously during day and night, supplying
a substantial share of water from a neighboring pressure zone where plants with high ca-
pacity and high efficiency are located. This effect is even more pronounced with reduced
GEG at Spandau and Tegel (scenario 3), where KLE becomes the main source in compen-
sating for the reduced production at BEE and TIE. Variable electricity costs result in lower
nighttime supply from KLE and increased supply from TIE.

Figure 10 displays the outlet pressures at waterworks BEE and TIE, and at pumping
stations COL, MAR, KLE. Under normal demand we observe only slight pressure varia-
tions, as desired. Note that pumping stations COL and MAR reach their maximal pressures
during nighttime, although they are not pumping. The reason is that consumption is low,
and hence there is very little pressure loss from the waterworks outlets to the customers.
Under high demand there are substantial variations, especially before and during the morn-
ing peak, when the pressures reach their maximal values. Reducing the GEG or electricity
price does not result in significant differences, except for higher nighttime pressure at TIE
and lower pressure at KLE in scenario 4, corresponding to altered pump operation.

Figure 11 displays the tank filling levels at waterworks BEE and TIE, and at pumping
stations COL and MAR. Under normal demand, the filling level at TIE is almost constant,
and the tank is deflated very slightly during daytime. The tank at BEE is filled during
peak times and deflated in between. In the reference case the tank at COL is full most of
the time and is deflated during the evening peak, while the filling level at MAR remains
constant. With reduced GEG (scenario 3) the level at COL remains constant while the tank
at MAR shows a insignificant deflation during nighttime. The slight variations are partly
caused by the constant electricity prices. Another reason is that the potential energy of the
water is greater when the tanks are full, which reduces the power consumption of the outlet
pumps. Under high demand, the tanks at BEE and TIE are operated as in scenario 1 but
with somewhat greater deflation, while the tanks at COL and MAR are both substantially
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FIGURE 11. Optimal tank filling levels at BEE, TIE, COL, MAR (m).
Scenarios 1 (top left), 2 (top right), 3 (bottom left), and 4 (bottom right).

deflated during daytime. This holds irrespective of the reduced nighttime electricity price
which, however, causes permanently lower filling levels at TIE.

6. SUMMARY

We have presented a method for network-wide operative planning in pressurized water
distribution networks that is practically applicable to large networks and under a wide range
of operating conditions. An optimization module implementing our approach is integrated
into the operational control system at Berliner Wasserbetriebe where it is used for the daily
planning. Such an integration is emphasized in [51] as the “hook” that interests the city
water managers in trusting and, ultimately, using the system. Notwithstanding this correct
assessment, carefully dovetailed optimization models and numerical methods are essential
in obtaining meaningful results, given the enormous complexity of the planning problem.
Apart from sub-model approximations, convergence acceleration techniques, and the like,
our approach features a network reduction strategy whose tradeoff between accuracy and
numerical effort can be adjusted via a scalar parameter. It also features smooth minimum
up and down time constraints which, in combination with pump aggregation, enable us to
handle pump switching without introducing integral decision variables. Individual pump
schedules are obtained in a post-processing step by solving separate mixed-integer NLP
models (MINLP) locally at each outlet, with flows and pressures given by the network-wide
NLP solution. The degree of detail for optimization in Berlin is mainly limited by what can
be achieved in reasonable response time (up to 30 minutes) on affordable hardware (a PC
workstation). From the modeling side, direct extensions to network-wide mixed-integer
optimization as well as detailed component models are already available [6]. This allows
for more accurate optimization as soon as faster hardware or improved algorithms become
available. Using the current NLP model, further gains in efficiency may likely be obtained
by developing custom sparse solvers based on similar techniques as in [19, 49], to exploit
the rich sparse structure induced by the network model and time discretization.
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