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Abs t r ac t . A Hamiltonian system subject to smooth constraints can typi­
cally be viewed as a Hamiltonian system on a manifold. Numerical compu­
tations, however, must be performed in Rn . In this paper, canonical trans­
formations from "Hamiltonian differential-algebraic equations" to ODEs in 
Euclidean space are considered. 

In §2, canonical parameterizations or local charts are developed and it is 
shown how these can be computed in a practical framework. In §3 we con­
sider the construction of unconstrained Hamiltonian ODE systems in the 
space in which the constraint manifold is embedded which preserve the con­
straint manifold as an integral invariant and whose flow reduces to the flow 
of the constrained system along the manifold. It is shown that certain of 
these unconstrained Hamiltonian systems force Lyapunov stability of the 
constraint-invariants, while others lead to an unstable invariant. In §4, we 
compare various projection techniques which might be incorporated to bet­
ter insure preservation of the constraint-invariants in the context of numer­
ical discretization. Numerical experiments illustrate the degree to which the 
constraint and symplectic invariants are maintained under discretization of 
various formulations. 
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1. Introduction 

Consider a simplified Hamiltonian system of the form: 

q = P (i.i) 

P = -VF{q) (1.2) 

where g,p € R n and F : R n —>• R is C2. In places we consider more 
general Hamiltonians, but a gradient system illuminates the basic questions. 
The system (1.1)—(1.2) can be accurately solved over long time intervals by a 
canonical discretization scheme [20] which maintains the symplectic structure 
of the flow. 

A natural question is what happens when (1.1)—(1.2) is constrained by alge­
braic equations on q and/or p. In this paper, we primarily restrict ourselves 
to the case when the constraints are dependent on q only (as in many mechan­
ical systems), in which case, starting from a Lagrangian variational principle, 
one arrives at a system of differential-algebraic equations of the form: 

q = P (1.3) 

P = -VF(q)-G(qy\ (1.4) 

0 = g(q) (1.5) 

where g : R n - • R m and G(q) = g'(q) € Rm X n . This system generates a flow 
on the (2n — 2m)-dimensional m a n i f o l d s = {(q,p) • g(q) = 0, Gp = 0}.1 

Although numerous discretization schemes exist for solving these equations 
directly (see, e.g. [5], [12]), none of the existing methods can be expected to 
maintain the symplectic structure of (1.3)—(1.5) with any degree of accuracy. 

Associated with (1.3)—(1.5) are two important families of ODEs in Euclidean 
space: the underlying and state-space form ODEs. An example of an under­
lying ODE is obtained by first differentiating the constraint g(q) = 0 and 
using (1.3): 

Gq = 0 = Gp 

Then differentiating again yields 

Gp + Gq(P,p) = 0 

(We use the notation Gq{p, w) to denote the derivative of G-the tensor second 
derivative of g- operating on vectors p and w.) Next we substitute (1.4) and 
solve the resulting equations for A in terms of q and p: 

A = A(<z,p) = (G(?)-l{-GVF{q) + Gq{p,p)) 

1For notational convenience we frequently supress arguments when these are readily 
apparent, thus G means G(q), etc. 
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which, upon reintroduction in (1.4) gives 

p = -(I-H)VF(q) - G'iGG^G^p) (1.6) 

where 7i — Gi(GGt)~1G is a projector onto the complement of the null space 
of G. We term the ODE comprising q = p together with (1.6) the standard 
underlying ODE] it has the feature that the flow it generates reduces to the 
flow of (1.3)—(1.5) along the constraint manifold M. On the other hand, 
without enforcing the constraint, (1.3), (1.6) actually defines a flow in R2n . 
Numerical methods applied directly to this underlying ODE typically drift 
from the constraint manifold into R2n during the course of integration, but a 
popular approach to short time interval computations incorporates numerical 
discretization of (1.6) and frequent projection onto the constraint [10], [3]. 

While (1.6) defines one underlying ODE there is a entire family of ODEs 
whose dynamics reduce to those of the constrained system along M.. While 
(1.6) is not a Hamiltonian system away from M., Hamiltonian ODE systems 
can be found in the family of underlying ODEs; such systems are devel­
oped in §3 using the Poisson bracket formalism of Dirac [9] for constrained 
Hamiltonian systems. 

The second family of ODEs associated with the DAE (1.3)—(1.5) is con­
structed via a parameterization of the constraint (1.5). Supposing that there 
is a function <f> : R" -"1 —>• R n with a full rank Jacobian satisfying, for all 
8 e R n - m , 

g(<f>(6)) = 0 

then with £, 0 € R n - m the equations  

q = <j>(8) 

• P = <t>'{8)9 

define an invertible map from M to R2 n _ 2 m . This results in equations in the 
new variables of the form 

#{6)8 = #{8)0 

0(6)6+ y ^ 6 = - V F ( # * ) ) + G*A 

Now multiplying both equations on the left by (<f>nfi)~l<j>n results in 

8 = 9 

6 = -(*V)-V*(VF(#*))-**(M)) 

A state space form constructed along these lines will rarely be Hamiltonian. 
On the other hand, by searching among all parameterization of M (which do 
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not necessarily maintain the relation 8 = 9), one can find a family of canonical 
state space forms for the constrained problem. This is the approach taken in 
§2, and a relatively efficient algorithm for solving the discretized equations 
is presented. 
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2. Hamiltonian State Space Forms 

The following theorem shows that there is a family of canonical state space 
forms based on parameterizations of the constraints. Througout this section 
we are concerned with a Hamiltonian of the form H = F(q) + ptp/2. 

Proposition 2.1 If (f> is a parameterization of g(q) = 0, then the mapping 

q = <f>(8) 

<j)np = e 

defines a canonical map between M. and R 2 n - 2 m . The Hamiltonian in the 
new coordinates is 

H(s,e) = ^e\r<i>rlo + (Fo<f>)(S) 

Proof: This follows from available results in Abraham and Marsden [1] on 
canonical maps between manifolds, ü 

In general such a state-space form is computationally impractical because 
of the need to automatically obtain and then twice differentiate the func­
tion <f> defining the parameterization. Here we show how a careful choice of 
parameterization can lead to a more computable formulation. 

Following [18] we define q = <f>(8) as the solution of the nonlinear system 

Aq = 8 (2.1) 

g(q) = 0 (2.2) 

where A has been chosen so that 

R = 
A 
G 

is a nonsingular matrix. Previous authors have used the induced state space 
form obtained by setting 6' = 0 to solve multibody dynamics problems, but 
instead, we here choose 9 to insure a canonical map, 

p = (/ - «)A*0 (2.3) 

with H = Gt{GGtYlG. Thus 

8' = Aq' = Ap = A(I - H)A0 (2.4) 

and, finally, since A(I — 7i)At is nonsingular, 

- A{I - H)VF{q) = A{I - n)Ale' - A{I - H)Hq(P, A*0) (2.5) 
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gives an equation solvable for 9'. 

The above choice of canonical SSF requires determination of the derivative 
Hq of H. Because H is expressed in terms of G, Hq requires knowledge of Gr 

Although this could be somewhat difficult to compute in general cases, for 
certain practical applications, the second derivatives of the constraint func­
tions can be obtained systematically at the same time the constraints are 
being generated. It is also possible to employ the new automatic differentia­
tion techniques of [11] to compute the derivatives "on the fly." 

A more challenging problem is probably determination of the matrix A. This 
matrix is typically held constant over several steps and must be updated 
from time to time as integration progresses. One possibility is to compute 
the matrix A at the beginning of each step using a technique such as singular 
value decomposition, but this may be relatively expensive, especially for large 
systems. 

In [14], a particular case of the canonical parameterization was defined via a 
coordinate partitioning (in the sense of [19]); here A would be a matrix of l's 
and O's chosen to "pick out" a minimal subset of the coordinates which can 
be used to define a local chart. 

2.1 Computation of the Canonical SSF 

It must be pointed out that although we began this section treating a problem 
with a separable Hamiltonian (i.e. H(q,p) = T(p) + V(q)), the Hamiltonian 
of the canonical state space form ODE is not separable. What this means 
that e.g. the efficient explicit Runge-Kutta Nyström methods of Okunbor 
and Skeel [16] will not be canonical on the Hamiltonian state space form. 
On the other hand, we here show that the mixed set of equations (2.1)-(2.5) 
in q, p, 8 and 9 can be solved relatively efficiently by using implicit (e.g. 
Gauss-Legendre) Runge-Kutta discretization methods, by a scheme based 
on functional iteration. (2.1)-(2.5) can be viewed as defining differential 
equations 8' = f(8,9), 9' = g(8,9) for 8 and 9. Consider the s-stage Runge-
Kutta method which computes an approximation (<5n+i, 9n+i) « (8(to + (n + 
l)h), 9(t0 + (n + l)h)) in terms of (8n, 9n) via 

A,- = 6n + hJ2<*iAj (2-6) 

0,. = 9n + hJ2aiJej (2.7) 

8n+i = 8n + hJ2bÄi (2-8) 
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On+1 = en + h^bjQi (2.9) 

where Aj = f(Aj,Qj), Qj = / ( A j , 0 j ) . For properly chosen at_,- and bj, this 
method generates a canonical map [20]. The computation of (2.6)-(2.9) is a 
little unusual for (2.1)-(2.5) because the state-space form is given implicitly. 
One approach is to lump all of the equations at each step together and solve 
them via a Newton iteration, but this is unnatural for nonstiff problems like 
the ones we would expect to encounter in a Hamiltonian framework [8]. A 
much better approach to computing a step is summarized in Algorithm 2.1. 

Algorithm 2.1 

Given 8n, 9n, tolerance e 

1. Predict values for the stage variables A} , 0JO), i = l,...,s. 
2. r epea t for k — 0,1, 
2a. Solve the systems .(k) _ Ari(k) 

forQ\k),i = l,...,s. 
2b. Compute: 

n\k) = n{Q\k)) 

if0 = (/-wfV'ef 
«$ = ^(ifU'ef0) 
#> = -VF(QV) 

for i = l,...,s. 
2c. Solve the equations 

AV-HÜT^A'eW = A{I-H(k))f\k) + A{I-H{k))H{k) 

forA)k) andOr, t = l , . . . , a . 

2d. Compute Af+1) = Sn + h E-=i a^Äf and 0f+ 1 ) =; 8n + h ̂ = 1 ^ef}. 

2e. until ||ASfc+1)-ASfc)|| < e and \\0\k+1^ — 0Jfc)|| < e. 
3. Compute 6n+1 = Sn + h £ ? = 1 hAf+l) and 6n+1 =6n + h E } s l bjöf+1). 

Algorithm 2.1 is really nothing more than functional iteration for the equa­
tions in the reduced variables, so it always converges for sufficiently small h. 
Also, observe that the iterations in steps 2a, 2b, 2c, and 2d could be triv­
ially parallelized by using "parallel do loops" across the stage index i. The 
functional iteration must be iterated to convergence (i.e to within rounding 
error) to insure that it defines a symplectic map. 
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3. Hamiltonian Underlying ODEs 

We now examine the possibility of obtaining Hamiltonian underlying ODEs 
as an alternative to the computation of the state space form. In case the 
constraint is linear, 

Gq = 0 

with G constant, the standard underlying ODE (1.1)—(1.2) reduces to 

q - p 

p = -(I-H)WF(q) 

This ODE system is not Hamiltonian because the projection of V F is not 
necessarily the gradient of any function, however it is easy to construct an 
underlying ODE which is Hamiltonian: we simply note that if q lies on 
Gq — 0, then ( / — 7i)q — q so that 

q = p 

p = ~{I-H)VF{{I~H)q) 

is also an underlying ODE-and this one is a Hamiltonian system. 

For the nonlinearly constrained case, we make use of Dirac's theory of con­
strained Hamiltonian systems [9]. 

3.1 Nonlinearly Constrained Hamiltonians 

For a Hamiltonian function H = H(q,p) and a scalar-valued function <j> = 
<f>(q,p), the condition for <j> to be an invariant under the flow of the Hamil­
tonian system derived from H is just that the Poisson bracket of <f> with H 
vanishes, i.e. 

fridqidpi dpidq( 

Here a distinction must be made between two types of invariants. (j>(q,p) — 0 
is said to be a strong invariant of the flow derived from H in case {<j>, H} 
vanishes identically. A weak invariant is one that satisfies {(/>, H} = 0 only 
when 4>(q,p) = 0. We make use of the following elementary properties of 
Poisson brackets for functions (f>,ip,oj : R2n —> R and real constants 0:1,0:2: 

(i) { ^ } = - { W } 
(ii) {<M} = o 
(iii) • {a1^i + O2^2j0} = ai{^i ,^}+afa{^2»0}; 

{•tl>,a1<f>i + a2<f>2} = cti{ip,<f>i} + <X2{i>,fa} 
(iv) {<f>,i!>u} = {<j>,il>}u + {<I>,ÜJ}I}; 
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For arbitrary H and <f> consider the adjusted (constrained) Hamiltonian func­
tion 

H® = H + H<I> 

Reasoning from physical principles, fi arises as a generalized Lagrange multi­
plier in attempting to minimize a certain functional subject to the constraint 
<f> = 0 [ 9 ] . 

fj. must be chosen to insure <f> = 0 along solutions, which certainly hold if <f> 
is a weak invariant of the flow of H^\ For this to happen, we need that 

= {*, IT}+ {* ,Mi+ {*,/!}* 

Taking <j> = 0 in the above and noting that {<j>, <f>} = 0, we must have {^, H} « 
0. When this does not happen, we treat the equation xf> = {(j>,H} = 0 as a 
new constraint and consider the revised Hamiltonian 

If we now attempt to insure that both i^RiO and if) « 0 for the flow of H^\ 
we find that the key issue concerns the invertibility of the matrix of Poisson 
brackets 

" {*,+} {*,*} 
{*,*} {+,*} 

R = 

When R is nonsingülar, we can solve for (^1,^2) so that both <f> and i/> are 
invariant for H^2\ 

We now turn to the case of a vector-valued constraint function. The main 
thing to bear in mind here is that, in the end, the constraints must be 
treated all at once, not one at' a time. Given a vector of constraints <f> = 0, 
one must first augment these constraints by all of the "hidden" constraints 
which arise by taking Poisson brackets with the augmented Hamiltonians, 
i.e. through the recursive differentiation of the constraints and substitution 
of the differential equations derived from the Hamiltonian. This approach 
is taken in [14] in deriving control laws for constrained systems, where it is 
shown that two steps of the reduction process are sufficient if the constraints 
are independent and holonomic, i.e. essentially only dependent on q. 

As an example, if we follow the reduction for independent constraints of the 
form g(q) = 0, we obtain the hidden constraints G(q)p = 0. The next step is 
construction of the constrained Hamiltonian HT from H and the constraints, 
thus we set 

HT{q,p) ••= H(q,p) + p(q,pYg(q) + r]{q,p)tG{q)p 



Equations for (i and n can be derived directly by insuring that g(q) = 0 and 
G(q)p = 0 are either weak or strong invariants of the flow derived from HT. 
A slight generalization of the Poisson bracket notation to handle multiple 
constraints makes this straightforward. 

Definition 3.1 Given vector valued functions <f>: R2 n —> R' and xj> : R2 n —• 
R m , the Poisson bracket of<j> and iß is the Ixm matrix whose (i, j)-component 
is defined by 

The following proposition shows how the generalized Poisson bracket can be 
evaluated in terms of the Jacobians of the vector functions. 

Proposition 3.1 Given vector valued functions <f> : R2 n —• R ' and ip : 
R2 n -> R m

; let <j)q,4>p € R /Xn , ^ „ 0 p 6 R m x n , and denote the Jacobian ma­
trices of the indicated function with respect to the indicated variables. Then 

Using Proposition 3.1, it is easy to see that {<f>, ip} — —{ip,<j>y. Proposition 
3.2 is also useful in calculations: 

Proposition 3.2 If <f> and if) are as in Proposition 3.1, and A : R2 n -> R m , 
then 

Proof: 

{*,Aty} = um, - (̂AV)j 
= ^ ( ^ A + ^ A P ) - ^ ( ^ A + ^ A , ) 

= { ^ } A + { M N > 

The generalized Poisson bracket described here is purely a computational 
device and not technically a Poisson bracket in the classical sense (see e.g. 
[17]). In particular, the Poisson bracket of a vector function with itself is 
a skew symmetric matrix; moreover, the development of a Jacobi identity 
for this new bracket would require that the concept be further generalized 
to allow one to take the Poisson bracket of a matrix-valued function with a 
vector-valued function. 
To get an invariant, we require 

{g, HT} = {g, H} + {g, /i'flf} + {<?, v'Gp} = 0 
{Gp,HT} = {Gp,H} + {Gp,fitg} + {Gp,t1

tGp} = 0 
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Working out the Poisson brackets in the first equation, we get 

-{g,H} = {g,g}li + {g,p.}g + {<?, Gp}r} + {g, r,}Gp (3.1) 

If we do not take the constraints to be satisfied and seek p. and 77 so that e.g. 
{g, HT} = 0, then we need to solve a system of partial differential equations 
which actually becomes singular along the constraints, thus it seems to be 
too much to ask for strong invariance of the constraints. 
On the other hand, for a weak invariant, we may assume that g = Gp = 0. 
Next, note that {g,g} vanishes because g is a function of q only. Moreover, 
{g,Gp}=GGt, thus 

-{<?,#} = GGS7 

This can be solved for 77 provided G has full rank. 

The second equation can be reduced to 

-{Gp,H} = -GG'ix + {Gp,p}g + [{Gp)q<? -G{Gp)\]r, - {Gp,r,}Gp 

Again, for weak invariance, the terms multiplied by g and Gp drop out and 
we are left with equations which uniquely determine p.. Once p and 77 are 
known, the Hamiltonian function H? is determined and the unconstrained 
equations of motion can be found by differentiating H?: 

q = VpH + iit
pg + r}

t
pGp + Gtri (3.2) 

p = -vqH-ixi
qg-Gtr-r,tqGp-{Gp)t

qri (3.3) 

From a computational point of view, it may be quite involved to formu­
late the system in this manner. In particular, we now need to to compute 
third derivatives of g and second derivatives of H. Below we will consider 
some simplifications in the hopes of improving the computational efficacy of 
Hamiltonian formulation. 

3.2 Calculation of the Wedge Produc t 

The standard we take for judging the methods presented for the numerical 
integration of (1.3)—(1.5) is invariance of the wedge product dq A dp of dif­
ferentials along the numerical solution. The procedure for computing these 
products is worth setting out. Consider the ODE 

w = h(w) (3.4) 

If (3.4) is first discretized by an s-stage one-step (Runge-Kutta) method: 

Wi = wn + hYtaiih(Wj) (3.5) 

u>n+i = wn + hJ2bjh(Wj) (3.6) 
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then the differentials satisfy equation« 

dWi = dwn + hYtaijh'(Wj)dWj 

. 7 = 1 

dwn+1 = dwn + hY,bih'(Wj)dWj 

i=\ 

Hence we can compute the behavior of differentials under the discrete ver­
sion of the flow in tandem with the computation of each time step. (The 
differentials should be computed after the stage values Wj are known). If we 
are interested in solutions of (3.4) that lie on an invariant manifold M, it is 
important that we choose our initial values and differentials for computations 
to be in the cotangent bundle T*M. However, for computational purposes, 
the differentials can just be identified with vectors in the tangent space. For 
(1.3)—(1.5), this means that {qo,pa,dq0,dp0) should satisfy the consistency 
conditions 

0 = g(qQ) 

0 = G{<h))p„ 

0 = <7( </„)</<,.. 

0 = G(i{p{Udq{i) + Gdp0 

where Gq in the latter equation is to he evaluated at q•— q0. Now to see how 
the wedge product fares under discretization, we first select {qo,Po) € M. 
and two independent vectors {dql,dpi) and {dqQ,dpl) for which the tangency 
conditions are satisfied at (<7o>P<>)- We compute a step of the numerical 
solution starting from (<fa5Po) and calculate the corresqonding change in the 
differentials. This process is iterated to obtain differentials at every step. The 
wedge product at the nth step is calculated as the value of the quadratic form 

dql' 
.dpi 

t 0 7 ' 
/ 0 

'dql' 
.dpi 

Although the wedge product as defined will be maintained in the symplectic 
discretization of Hamiltonian underlying ODEs, this does not mean that the 
solution and the differentials stay in the tangent bundle TM. at each step. 
In Figure 3.1, a numerical experiment with the Hamiltonian underlying 
ODE for the pendulum in cartesian coordinates is summarized. Here we 
start with the Hamiltonian i/(f/,/>) - [p\ + p\)l^ + ?2% so that gravity 
and mass are normalized to one. We introduce the position constraint 
#(91? 92) = q\ + <?! — 1 = 0 and the associated constraint on p: q\p\ + <hP2 — 0. 
We computed p. and 77 as described above. Starting from the initial configura­
tion (gi,<Z25Pi>P2) = (1,0,0, —2), the resulting Hamiltonian underlying ODE 



(3.2)-(3.3) was solved using the implicit, midpoint method. Sample differen­
tials of the solution and the wedge product were simultaneously computed 
using the approach discussed above. The leftmost figures in 3.1 show the ex­
tent to which the constraint residuals are maintained during integration; the 
right figure demonstrates that the wedge product is indeed invariant under 
the discrete version of the flow. 

2 3 4 3 S 7 J 9 10 0 1 2 3 4 S 6 7 8 9 10 

Figure 3.1: The Hamiltonian underlying ODE of Dirac for the pendulum; 
constraints and wedge product: 

3.3 Weakly Hamiltonian Underlying ODE 

Dirac's process requires the differentiation of the constraint multipliers /z and 
77; since \i and rj depend on second derivatives of g and first derivatives of 
H, construction of a Hamiltonian underlying ODE along the lines of Dirac's 
theory in general requires third derivatives of g and second derivatives of H. 
However, along the constraint manifold M, which is an invariant under the 
flow of (3.2)-(3.3), the terms multiplying the partial derivatives of /x and 77 
vanish, and we are left with a simplified system: 

q = Vptf + G'r? 

p = -VqH - &n - (Gp)}i7 

(3.7) 

(3.8) 
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This system (referred to below as l,he "Weakly Hamiltonian Dirac formu­
lation") behaves like a Hamiltonian system for initial values chosen on the 
constraint manifold; in fact, any underlying ODE is a Hamiltonian system 
along the constraint manifold. But under numerical discretization we cannot 
in general expect the constraints to be maintained exactly, so that a canon­
ical ODE discretization scheme applied t,o (3.7)—(3.8) would not result in a 
canonical step-to-step map. On the other hand, (3.7)-(3.8) requires only the 
computation of second derivatives of g and first derivatives of H, hence it 
may be much more easily computed for certain problems. This formulation 
has been treated in the literature regarding Lagrangian formulations of the 
equations of motion (see e.g. [10]). Its behavior with respect to the wedge 
product will be discussed in more detail in §4. 

3.4 A Simplification 

The process outlined above for obtaining a weak invariant is not completely 
well-defined. For example, the determination of /z from 

-{g, 11} ^GG^ 

can be done in any number of ways if we are allowed to freely use the relation 
g = 0 or Gp = 0. For example, taking 

-{gjn^og^GG'r] 

does not cause g = 0 to cease to be an invariant of the flow ultimately 
obtained, but it may change characteristics of that flow for points near M. 
where g ^ 0. We may also note that if H(q,p) = F(q) + ̂  and g = g(q), 
then {g, H} = Gp which is weakly zero when we are constraining with respect 
to both g(q) = 0 and Gp = 0. This means that we have the obvious choice of 
taking {g, H} = 0 which leads to r] = 0, or to follow the derivation as outlined 
above which would lead to TJ ^ 0 away from M. There is no obvious, a priori 
reason to favor one of these formulations over the other. 

If we take r\ = 0, we get 
Hr^H + ̂ g 

so that, after insuring that M is invariant, we arrive at 

q = p+iilfj (3.9) 

p = -VF-^g-G*» (3.10) 

where fi = {GGt)~1{GVF -Gq{p, ;>)), This system requires the computation 
of third derivatives of g and second derivatives of H as before. 
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Besides providing a simplified H ami I Ionian formulation, (3.9)-(3.10) has the 
immediate and natural consequence of showing that along the constraint (g = 
0), the standard underlying ODE generates a Hamiltonian flow. However, 
the formulation (3.9)-(3.10) contains a somewhat surprising instability which 
can be observed in computations whenever numerical discretization induces 
a perturbation of the constraint. In Figure 3.2, the implicit midpoint method 
(a canonical discretization scheme) lias been applied to solve (3.9)-(3.10) for 
the cartesian pendulum discussed above with fixed stepsize h = .01 from 
t — 0 to t = 1 with the same initial conditions as for Figure 3.1. Although 
the wedge product is maintained in t.liis case, the constraint residuals are 
very rapidly growing in time. 

Figure 3.2 appears to contradict a rowili. in Cooper [6] that says that quadratic 
integral invariants are precisely maintained by one step methods (like the im­
plicit midpoint method) which are "marginally algebraically stable." How­
ever, the integral invariants in [6] are always taken to be strong invariants 
which implies that the invariant manifold is in a certain sense locally stable; 
as we see below, this is not the case for a weak invariant. 

Figure 3.2: Constraint residuals and wedge product for the simplified gradi­
ent system formulation. 
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3.5 Stability of the Constraint-Invariants 

Let us begin with the case of a linearly constrained quadratic Hamiltonian 
with constraint <f> = Gq with G constant. Here we find that the simplified 
Hamiltonian system based on HT = H + \ilGq is 

4 = P 
p = -(I-H)VF + D2FHq 

where D2F is the Hessian matrix of F. Multiplying both equations by the 
(here constant) projector "H, we obtain 

Hq = Up 

Hp = HD2FHq 

Since H = H2, we can change to variables r = Tiq, s = Tip and write 

r = » (3.11) 

s = Br (3.12) 

where B — 7iD2FH. Invariance of the constraints translates to r = s = 0. If 
the Hessian is constant and positive definite, as is often the case, B is positive 
semidefinite, and the equilibrium position in (3.11)—(3.12) will be a saddle 
point. In this situation, one can expect an instability under perturbation of 
the constraint-invariants introduced via discretization. 

If we perform a similar analysis starting from the Hamiltonian HT = ^ + 
F(q) + tfGq + tfGp of Dirac, we arrive at equations: 

q = (I-2H)p 

p = -{I-H)VF + D2FHq 

Multiplying the equations by H, we get 

Hq = H{! -2H)p = -Hp 

Up = W^FHq 

Hence the corresponding system of differential equations for the constraint 
residuals is 

r = -s (3.13) 

i = Br (3.14) 

Now the equilibrium position r — s = 0 has become a stable center under 
the assumption that D2F is positive definite. 
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It is interesting in this context to compare also the restricted formulations 
(3.7)—(3.8) and the standard underlying ODE. In the case of linear con­
straints, (3.7)-(3.8) leads to: 

q = (l-H)p 

p = _ ( / -H)VF 

and hence to 

f = 0 
i = 0 

for the projections r = Hq, s = Hp. The standard underlying ODE, on the 
other hand, is nothing other than 

r = s 

s = 0 

(This case is well studied, see, e.g., [15].) 

3.6 Nonlinear Constraints 

We begin the discussion by writing the equations of motion for both formu­
lations in case {4>,<f>} — 0. Beginning with the constraint <j> — 0, we derive 
a constraint of the form ip = {</>, / / } . Assuming {<f>, iß} is nonsingular, we 
arrive at the Hamiltonian Hj = H + / ' '^ + rfij). The conditions on \i and r\ 
reduce to 

{<j>,HT} « 0 =» {<j>,H} + {<f>,^}r, = 0 

{rj>,HT} » 0 =» {i>,H} + {xl>,<f>}ti + {xl>,xl>}V = 0 

Assuming {V>, 4>} is an invertible matrix, and using {<f>, H} = V>, we have 

Next, we write differential equations for the constraint residuals, thus 

i = {^#T} = V' + {<A,-{<M^ , \{4\H}-{i>^}{ci>^}-^]}4> 

+{<!>, -{+, V*}-1 W + {<t>, V'} [-{*, V>}"V] 

+{^^}[-{0^}"1(W',/O-{0.^H^^}"10)] 
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This simplifies to the system 

-{«M^V-KW (3.15) 
4 = -R{V-^}-1{V',//}}^+{''A,{V'^}-1{V',V'}{^^}-1W 

- f t M ^ } ~ W (3.16) 

For determining the local stability of the constraints, we would like to expand 
the right-hand sides here and then eliminate all second-order terms in the 
constraint residuals. Unfortunately, this is slightly complicated since Propo­
sition 3.2, for example, only applies l,o products of two vector quantities, and, 
generally speaking, we haven't yel, defined the Poisson bracket of a vector 
quantity with a matrix-valued quantity like {<j>, iß}'1. On the other hand, 
by looking at Definition 3.1, it is straightforward to see that, for example, if 
hihifz a r e vector functions in q and p, and A is a matrix valued function 
of q and p, then 

{/i,A72}/3 = {/.,/,}A + g ( / 2 , / 3 ) 

where Q is some tensor evaluated at / 2 , /3 ; importantly, Q{f2-,h) is a 
quadratic term in / 2 and / 3 . With this observation, we can neglect the 
second order terms in (3.15)—(3.16) to obtain 

4 = - ^ - { f l U M } - 1 ^ } } * (3-17) 

On the other hand, if we start with //•/• = H + f^<f> then we obtain via the 
same sort of calculations 

i> = -{^{^^y'i^HW (3.20) 

Note that the only difference between (3.17)-(3.18) and (3.19)-(3.20) is the 
sign that appears with i/> in the first, equation of each system. 
Lets turn to an example. For the cartesian pendulum, if we neglect the 
potential entirely and take H(q,p) = plp/2 and a single constraint, (q*q — 
l ) /2 = 0, then the Dirac Hamiltonian becomes 

IT (n n\
 ptpM{ptv(J„ U ^ V ) 2 

17 



Differentiating gives 

Wq)2 ' '/V V«'9, 

Now setting p = (<?'<7 — l ) /2 , <r = g'p, we can write equations for p and &: 

t i r. t fll<l — 1 t ^ P 

P = 9 9 = 9 P ~ 2fl P H J 9 P = ~a + r/'7 * ' p + 1/2 

9*9 9*9 9*9 

= 2p> 
p + 1/2 p+\/2 

The term p'p is a nuisance. If we Ileal. it as a time dependent coefficient, 
linearizing at p = a = 0, we get 

p = -<r 

which makes the origin a center. Under these conditions, we would expect be­
havior as in part (a) of Figure 3.3; tins agrees with the numerical experiment 
shown in Figure 3.1 

By contrast, if we had only made use of constraints on q in formulating the 
system, we would have had after following the above analysis and linearizing, 

p = a 

ö — \plpp 

meaning that the origin has become a saddle point and the behavior over 
time would be as indicated in part (b) of Figure 3.3; this is exactly what we 
have seen in Figure 3.2. 

Although it appears that the general nonlinear case can be quite complicated, 
some generalization of the comparative analysis for linear systems of the first 
part of this section is possible via linearization of nonlinear constraints if we 
bear in mind that a potential energy function always has a positive definite 
Hessian at least in the neighborhood of a dynamic equilibrium [7]. 
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p=0 

(a) 

S^P=0 

Figure 3.3: Stability of Constraints (a) for Dirac formulation, and (b) for 
reduced formulation 
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4. Projection Methods 
Since linear constraint-invariants arc locally stable for (3.7)-(3.8) and only 
mildly unstable for the standard underlying ODE, and since each of those 
systems is the restriction of a Hamillonian system to the constraint manifold, 
it is natural to ask whether we could not get away with solving one of these 
two simplified systems using a canonical integration method over moderate 
time intervals without too much Variation in the wedge product. Numerical 
experiments with, respectively, the .standard underlying ODE and (3.7)-(3.8) 
formulations are summarized in Figures '1.1 and 4.2. Note that nonlinearities 
in the equations and discretization have made the constraint residuals oscil­
late in the case of the underlying ODF, and introduced some growth in the 
case of the weakly Hamiltonian Dirac formulation. Perhaps more curious is 
the apparent periodic oscillation of the wedge product in the latter case. 

Figure 4.1: Standard underlying ODF formulation of the Pendulum. 

Popular approaches to overcoming drill, that have been used in multibody 
simulation are Baumgarte stabilization [4] and projection of the numerical 
solution onto the constraint manifold. Baumgarte's method corresponds to 
adding a term to the underlying ODF, l.o cause the constraint to become 
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Figure 4.2: The weakly Hamiltonian Dirac formulation for the pendulum. 

asymptotically stable. A simple variant in the case of a linearly constrained 
gradient system would be to solve 

q = p - Hq 
p = - ( / -H)VF-Hp 

Then the ODE system for the residuals becomes 

,s — r 
—,s 

which makes 0 asymptotically stable. Although these sorts of stabilizations 
certainly have a place in short Linie interval integrations, they destroy the 
Hamiltonian structure, and we do not consider them further here. 
Among projection methods we consider the orthogonal projections which 
have been used by a number of authors (see e.g. [13], [10], [21]). We posed 
the following question: what happens to the wedge product if we project 
the numerical solution (obtained via a canonical discretization scheme) of a 
Hamiltonian system onto an invariant, at. each step? It is enough to describe 
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various approaches in terms of the general ODE with invariant 

w = h{w) 

q(w) = 0 

There are numerous constraint projections one might consider for this pur­
pose. Here we restrict ourselves to two schemes. One idea is to take a step 
using some numerical discretization of w = h(w) and then to project the 
resulting value back onto the constraint manifold. For example, we might 
compute 

Wi = Wn + hj^OiXWi) (4.1) 
i=i 

Wn+l = Wn + li&iHWj) (4.2) 
3=1 

and then solve 

wn+i = w„ 11 - </'(«Vt-i)'An+i 

0 = </(«»„+1) 

dwn+i can be obtained by differentiation of (4.1)-(4.2). Differentiating the 
projection step, we get 

dwn+1 = dwn+1-q'(wn+iyd\n+1-q"(wn+iy(dwn+1,\n+1) 

0 = q'(wn+i)dwn+i 

assuming q' has full rank, we will be able to solve for dwn+i and d\n+i at 
each step. We term this approach rndpoint projection. Another approach is 
based on projection of the intermediate (stage) values: we solve 

Wi = Wn + hJ2<^-q,(wi)
tAi 

0 = q(Wi) 

for i = 1 , . . . , 5, then compute 

wn+1 = w„ -I- //. ]T bjh(Wj) 
3 = 1 

Here, too, one obtains equations for the differentials in a straightforward 
way. In the case of the implicit midpoint method, we refer to this scheme as 
midpoint projection. 

22 



The stability of these projection schemes has been analyzed by Ascher and 
Petzold [3]. The first scheme is numerically stable while the second is known 
to have an instability. On the other hand, the discussion of [3] was not di­
rectly concerned with Hamiltonian systems, so it is interesting to ask whether 
the additional structure present in Hamiltonian systems might not enable the 
use of midpoint projection. 

In Figures 4.3 and 4.4, we show the effects of, respectively, endpoint and 
midpoint projection on the numerical solution of the true Hamiltonian for­
mulation, of Dirac for the cartesian pendulum. 

Figure 4.3: Endpoint projection for the Hamiltonian formulation of Dirac. 

Although the evident instability of the midpoint projection method makes 
it appear to be unsuitable for long term computations, it should be pointed 
out that both projection schemes would probably only be employed occasion­
ally during the integration time interval. In a final experiment, the weakly 
Hamiltonian Dirac formulation was solved on [0,10] with infrequent endpoint 
projection every 20 steps; the results are summarized in Figure 4.5. 
Figure 4.5 points out a side effect of infrequent projection: in the likely event 
that the solution exhibits periodic or quasiperiodic regularity, the projections 
are unlikely to be performed in phase with the dynamical behavior and this 
leads to a loss of regular structure in the solutions that result. 
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Figure 4.4: Midpoint projection for the Hamiltonian formulation of Dirac. 
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Figure 4.5: Infrequent endpoint projection of the weakly Hamiltonian Dirac 
formulation. 
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