
Zuse Institute Berlin ♦ Freie Universität Berlin

MASTER’S THESIS

Learning to Use Local Cuts

Author: Referees:
Matteo Francobaldi Dr. Timo Berthold

Prof. Dr. Ralf Borndörfer
Prof. Dr. Tim Conrad

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Mathematics

Berlin, 8 October 2021

2

Contents

Acknowledgments 5

Abstract 7

Introduction 9

1 Mathematical Optimization 11
1.1 Mixed-Integer Programs . 11
1.2 Branch-and-Bound . 13
1.3 Cutting Planes . 16

1.3.1 Use of Cutting Planes in B&B . 18
1.4 Practical MIP Solving & FICO Xpress . 20

2 Machine Learning 23
2.1 Supervised Learning . 23

2.1.1 Train/Test Set . 25
2.1.2 Underfitting vs Overfitting . 25
2.1.3 Hyperparameters & K-Fold Cross-Validation 25

2.2 Linear Model . 27
2.3 Random Forest . 28

2.3.1 Decision Tree . 28
2.3.2 Random Forest . 30

2.4 Neural Network . 30

3 A Machine Learning Strategy for the Use of Local Cuts 35
3.1 A Crucial Decision: Cut vs Not Cut . 35
3.2 Machine Learning for Combinatorial Optimization 38
3.3 Learning to Use Local Cuts . 41

4 Methodological Approach 45
4.1 Feature Design . 45
4.2 Label Definition . 48
4.3 Data Collection . 50

4.3.1 Data Split . 51

3

4 CONTENTS

4.4 Training & Testing . 52
4.4.1 Training Methods . 53
4.4.2 Testing Methods . 54

5 Computational Experiments 57
5.1 Computational Setup & Data Preprocessing 57
5.2 Baseline Evaluation . 60
5.3 Evaluation With Different Thresholds . 65
5.4 Classification Experiments . 68
5.5 Feature Selection . 71
5.6 Evaluation With Different Solver Releases 75

Conclusions and Outlook 77

A Ground Problem Sets 79

List of Algorithms 83

Bibliography 85

Acknowledgments

First of all, I would like to thank Dr. Timo Berthold, Prof. Dr. Ralf Borndörfer and
Prof. Dr. Tim Conrad for supervising this thesis.
I wish to express my profound gratitude especially to you, Timo, for introducing me to
this fascinating corner of mathematics, for teaching me so much of it, and for offering
me your guidance. I feel lucky for having you as my mentor!
I would like to thank Dr. Gregor Hendel, for his collaboration and for his precious advices
on my project.
I would like, moreover, to thank the staff of the Zuse Institute Berlin, for the friendly
and welcoming atmosphere that they have guaranteed to me. It was a pleasure to be
part of this institute!
Last, but certainly not least, I am grateful to my parents for their love and encourage-
ment, and for supporting and trusting me in all my choices.

5

6

Abstract

Mixed-Integer Programming is a powerful framework for modeling and solving combina-
torial optimization problems, arising from a wide range of real-world applications. For
taking the non-trivial decisions that occur during the resolution of these hard problems,
state-of-the-art solvers typically rely on a plethora of heuristics, often human-designed
and tuned over time by using experience and data. Machine Learning, in this context,
offers a promising approach to replace these handcrafted techniques with more principled
and adaptive strategies. This is why, in recent years, the combinatorial optimization com-
munity has been witnessing a rapid growth of interest in the integration of data-driven
routines into the existing optimization frameworks.
In this thesis, we propose a machine learning approach to address a specific algorithmic
question that arises during the solving process of a mixed-integer linear programming
problem, namely, whether to use cutting planes only at the root node or also at in-
ternal nodes of the branch-and-bound search tree, or equivalently, whether to run a
cut-and-branch or rather a branch-and-cut algorithm. At least to the best of the au-
thor’s knowledge, indeed, the MIP community is still suffering the lack of a satisfactory
comprehension of this specific question for general MIP problems.
Within a supervised regression framework, we develop three machine learning models,
Linear Model, Random Forest and Neural Network, for predicting the relative perfor-
mance between the two methods, local-cut and no-local-cut. Hence, by conducting an
extensive computational study over a large test bed of problems, we evaluate the pro-
duced strategies, and we show that they are able to provide, upon the existing policies,
a significant improvement to the performance of the solver.

7

8

Introduction

Mixed-Integer Programming (MIP) is a cornerstone of Operations Research, Analytics
and Computer Science, and undoubtedly represents one of the most advanced and power-
ful frameworks in tackling the hard problems that arise from Combinatorial Optimization
(CO). Nowadays, it is used as a versatile decision-making tool in a large variety of appli-
cation domains, ranging from renewable energies [KRBA16] to virtual reality [LNL16],
from cancer detection [LZMW09] to food production [PAMAL15], from logistics [BS07]
to project scheduling [BHL+10], among many others.

Machine Learning (ML), on the other side, consists in a powerful toolbox of tech-
niques to turn massive amounts of data into valuable knowledge, conclusions and actions,
and it has witnessed, during the last decade, such a tremendous development that it has
now become a pervasive and ever-present technology in our society, employed in a broad
range of applications that spans computer vision [GDDM14] and natural language pro-
cessing [WSC+16], robotics [TMD+06] and cloud computing [Dem15], Internet of Things
[MBB+20] and medicine [GM21].

Combined together, the prescriptive properties of Mixed-Integer Programming and
the predictive capabilities of Machine Learning give rise to a powerful and forward-looking
technology that, facilitated by the rapid growth of computing power and data availabil-
ity, is conquering an ever more central role at the cutting edge of Artificial Intelligence.

In particular, one remarkable line of research that, in recent years, has been emerging
from the cross-fertilization of these two fields consists in the investigation of the potential
use of ML techniques for the improvement of CO – especially MIP – algorithms, with the
former being seen as a promising approach for replacing those handcrafted heuristics, on
which the latter heavily rely to take crucial decisions, with more principled and system-
atic strategies [LZ17, TAF20a]. This innovative and prolific area of research, commonly
referred to as Machine Learning for Combinatorial Optimization [BLP21], represents the
domain to which this thesis aims to belong and to contribute.

In this thesis, we present a machine learning approach to take a specific algorithmic
decision while solving a mixed-integer linear program, namely, whether to use cutting
planes only at the root node (no-local-cut), or also at internal nodes of the branch-

9

10 Introduction

and-bound search tree (local-cut), or equivalently, whether to run a cut-and-branch or
a branch-and-cut algorithm [PR91, Mit02, Pad05]. At least to the best of the author’s
knowledge, indeed, the scientific literature is still suffering a lack of publications address-
ing this specific question for general MIP problems.

Precisely, in a supervised regression framework, we represent each problem as a vector
of features describing its combinatorial structure and mathematical formulation (static
features), as well as its computational behavior (dynamic features), and we label it with a
continuous variable specifying the relative performance between the two methods, local-
cut and no-local-cut, while running on it. Hence, over a test bed obtained by joining
several permuted copies of the Benchmark Set from MIPLIB 2017 [GHG+21], we develop
different ML models, such as Linear Model, Random Forest and Neural Network, for pre-
dicting the speedup factor between the two approaches over the input MIP instance.

The ultimate goal of the present work, in particular, is to produce an effective pre-
dictive tool that can be strictly integrated into our reference MIP solver, namely, FICO
Xpress [Xpr], in order to improve its performance. In fact, a variant of the random
forest suggested in the present work has already been implemented by the development
team of FICO Xpress; in particular, thanks to the promising results obtained after the
preliminary testing phase conducted in this thesis, the intelligent agent will represent
one of the main features to be released with the next version of Xpress [Com].

This thesis is structured as follows. We start by describing the fundamental notions
and algorithms that constitute the backbone of Mixed-Integer (Linear) Programming, in
the first chapter, and Machine Learning, in the second chapter, hence we introduce the
two subjects at the background of our study. In the third chapter, we state and motivate
the question that we want to answer, and we observe how natural an ML approach looks
as a candidate to produce an effective and efficient strategy for our decision problem,
given that such a strategy seems to be still missing from the state of the art. Hereto, we
survey the major developments of the interplay between these two disciplines, before pro-
viding a theoretical illustration of the solution that we propose. In the fourth chapter, we
formalize the ML methodology that we adopt to solve our algorithmic problem. Finally,
in the fifth chapter, we present some of the most relevant computational experiments,
conducted on our dataset to evaluate the quality of the produced models. We show, in
particular, that the random forest is able to provide, to the average running time of the
solver, a speedup of roughly 8%, which increases up to the encouraging value of 24% over
those instances of our set that are particularly hard for the solver.

Chapter 1

Mathematical Optimization

In this chapter, we introduce the basic notions of Mathematical Optimization, repre-
senting the background of this thesis. In particular, we start from the definition of
Mixed-Integer Programs, the type of optimization problems that constitute the object
of our study. Then, we describe the two fundamental methods to solve such problems,
namely, the Branch-and-Bound and the Cutting-Plane algorithm. Finally, we conclude
the chapter by illustrating the general workflow of a modern MIP solver, with a special
focus on FICO Xpress, the state-of-the-art software at the basis of our research.

1.1 Mixed-Integer Programs

A Mixed-Integer Program is defined as follows.

Definition 1.1. A Mixed-Integer Program (MIP) is the problem of optimizing a linear
function over a semi-discrete set of points, defined by a finite family of linear constraints.
In canonical form, a MIP is expressed as follows:

minimize c
T
x

subject to Ax ≤ b

x ∈ ZI ×QC
,

(1.1)

where c ∈ Qn
, b ∈ Qm

, A ∈ Qm×n and I ⊆ [n] is the subset of indices specifying the
integer variables, while C = [n] \ I indicates the continuous variables.

The function cTx is called the objective of the program, while the set FMIP = {x ∈
ZI × QC ∣Ax ≤ b} is the feasible space, and its points are called feasible solutions. A
feasible solution x∗ is optimal (or an optimum) if

c
T
x
∗
= min
x∈FMIP

c
T
x.

The restrictions forcing some of the variables to be integer are called integrality con-
straints. Without them, that is, when I = ∅, the program (1.1) is commonly called

11

12 Chapter 1. Mathematical Optimization

Linear Program (LP). On the other hand, if I = [n], then (1.1) is referred to as Integer
Program (IP). Integer variables that are further restricted to the set {0, 1} are called
binary variables, and a program with only this kind of variables is known as Binary
Program (BP). Note that, with a slight abuse of notation, in this thesis we will use
the abbreviation MIP to refer to both "mixed-integer programming" and "mixed-integer
program", and similarly with LP, IP and BP.

The integrality constraints are the ones responsible for the difficulty of solving MIPs,
which are NP-hard problems. As we have seen, a special case of mixed-integer program-
ming is binary programming, and deciding the feasibility of a BP is one of the Karp’s
21 NP-complete problems [Kar72], from which it follows the NP-hardness of MIPs. On
the other hand, LPs are solvable in polynomial time by using the ellipsoid method, as
first shown in 1979 by Khachiyan [Kha79].
This thesis focuses, in particular, on programs that involve integrality restrictions, even
though LPs still have an important role, being them used as auxiliary problems by the
solving algorithms. In fact, state-of-the-art MIP solvers usually attack a MIP with an
LP-based approach, which consists in relaxing the integrality constraints and working
with the so-called Linear Relaxation of the program, whose definition is provided below.

Definition 1.2. Given a MIP as defined in (1.1), its Linear Relaxation is the LP obtained
by dropping the integrality constraints from FMIP. Precisely,

minimize c
T
x

subject to Ax ≤ b
x ∈ Qn

(1.2)

The feasible space of (1.2) is FLP = {x ∈ Qn ∣Ax ≤ b} and its points are called
LP-feasible solutions. Such a solution x̂ is an LP-optimum if

c
T
x̂ = min

x∈FLP
c
T
x.

The idea of working with the linear relaxation of the program is motivated by the fol-
lowing trivial observation: given a MIP as defined in (1.1), we have

FMIP = FLP ∩ ZI
⊆ FLP,

which means that, for an LP-optimum x̂ ∈ FLP,

if x̂i ∈ Z for all i ∈ I, then c
T
x̂ = min

x∈FMIP
c
T
x.

In other words, if the optimal solution of the relaxation satisfies the integrality con-
straints, then the MIP is solved. This fact, although simple, represents a basic idea be-
hind the two strategies at the heart of any modern MIP software, the Branch-and-Bound
and the Cutting-Plane algorithm, which will be described in the following sections.

1.2. Branch-and-Bound 13

Figure 1.1: Geometric representation of a (5×2)-dimensional MIP. The union of the
vertical segments is FMIP, the polyhedron represents FLP, the vector and the point in
red are the direction of the objective and the LP-optimum x̂, respectively, while the green
point represents the optimum x

∗ of the MIP.

1.2 Branch-and-Bound

The Branch-and-Bound algorithm (B&B) is a general method to solve optimization prob-
lems, first proposed in 1960 by Alisa Land and Alison Doig [LD60]. In particular, its
LP-based version, introduced by Dakin [Dak65] and described in this paper, is the funda-
mental procedure in the field of mixed-integer programming, representing the backbone
of any state-of-the-art MIP solver.
Essentially, the algorithm relies on a divide-and-conquer approach: the given problem is
recursively split into two or more subproblems of the same type, until they become easy
enough to be solved directly; then, the best solution found among all the subproblems is
returned as the global optimum. This procedure, which constitutes the branching part
of the algorithm, is augmented with a bounding step: a subproblem is processed only if
it satisfies a certain condition, dictated by two particular bounds, which are maintained
during the whole process. The bounding operation allows to avoid a brute-force enumer-
ation of all potential solutions of the problem, whose number is usually exponential and
would lead to a very long running time.

The input of the algorithm is a MIP instance P , the output is either a solution of P ,
or the conclusion that P is infeasible, that is, its feasible space is empty. Beside these
two possible outputs, a problem P can also be unbounded, meaning that the objective
c
T
x can be arbitrarily decreased without violating any constraint. This case, however, is

easily detected at the first relaxation, this is why we are assuming that P is bounded.

14 Chapter 1. Mathematical Optimization

Algorithm 1: LP-based Branch-&-Bound
Input: an instance P as defined in (1.1). Assumption: P bounded
Output: one of the followings: 1. Infeasible: x∗ = none, u =∞

2. Optimal solution: x∗, u
Initialization: L← {P}, x∗ ← none, u←∞

1. If L = ∅ [Termination]
return x∗, u

2. Select Q ∈ L, update L← L \ {Q} [Node Selection]

3. Qrel ← linear relaxation of Q [Relaxation Solving]
If Qrel infeasible

goto 1
x̂← optimum of Qrel, lQ ← c

T
x̂

4. If lQ ≥ u [Bounding]
goto 1

5. C ← {j ∈ I ∣ x̂j ∉ Z} [Integrality Checking]
If C = ∅

Update x∗ ← x̂, u← lQ
goto 1

6. Select j ∈ C [Variable Selection]

7. Q1 ← Q ∪ {xj ≤ ⌊x̂j⌋}, Q2 ← Q ∪ {xj ≥ ⌈x̂j⌉} [Branching]
Update L← L ∪ {Q1, Q2}
goto 1

The algorithm maintains a list of open problems L, together with a vector x∗ and a
value u, where it stores the best solution found so far, called incumbent, and the corre-
sponding objective value, respectively.
The execution of the algorithm generates a search tree (Figure 1.3), where each node
represents a subproblem or, in another fashion, a branch of the search space. The root
node corresponds to the global problem P , while the leaves are either open subproblems,
or ones already processed.

As long as the list of open problems is non-empty, the algorithm chooses a node Q
and solves its linear relaxation Qrel, to obtain an LP-optimum x̂ with objective lQ (if
Qrel is feasible).
Now, before keeping processing Q, the algorithm checks the bounding condition lQ ≥ u.
This determines whether the node can be pruned, because the best objective value that
we can achieve in Q is not better than the one provided by the incumbent, or if it deserves

1.2. Branch-and-Bound 15

to be further explored, since it might potentially supply an objective improvement.
Globally, the algorithm maintains a primal bound, given by the upper bound u, and a
dual bound, which is the minimum of the local lower bounds lQ of all the leaf nodes
Q ∈ L. The gap between these two bounds is a typical piece of information used to
monitor the progression of the execution and to quantify the quality of the incumbent;
in particular, it is called primal-dual gap and defined as follows.

Definition 1.3. Let u and l be, respectively, the current primal and dual bound during
a MIP solving process. Then, the primal-dual gap γ ∈ [0, 1] of u and l is

γ(u, l) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if u = l = 0,

1 if u ⋅ l < 0 ∨ u = none,
∣u−l∣

max{∣u∣,∣l∣} otherwise.

Thus, the search aims to close this gap, providing a proof of optimality.
If the bounding test is passed, the algorithm checks the feasibility of x̂. If we are lucky
and x̂ turns out to be feasible, then we have found a new incumbent and we can move
to another branch of the tree.
Otherwise, the node Q enters the last phase of the process: the algorithm chooses one of
the fractional variables, say xj , and splits Q into two subproblems Q1 and Q2, by adding
once the constraint xj ≤ ⌊x̂j⌋ and once xj ≥ ⌈x̂j⌉. It is clear that the best between an
optimum of Q1 and an optimum of Q2 corresponds to an optimum of Q, since the region
{⌊x̂j⌋ < xj < ⌈x̂j⌉} does not contain any feasible solution, as shown in Figure 1.2.

x̂

x̂j

Q

x̂

⌊x̂j⌋ ⌈x̂j⌉

Q1 Q2

Figure 1.2: Branching on the fractional variable xj

It is important to mention that the pseudocode above represents only a shell of
the Branch-and-Bound algorithm, since it leaves a lot of room for freedom. In par-
ticular, two crucial decisions that are left open are the Node Selection and the Vari-
able Selection. They have a huge impact on how quickly the bounds are updated,
hence influencing the overall performance of the algorithm. Many efficient strategies,
most of them for user-specified priorities, have been developed for taking these decisions

16 Chapter 1. Mathematical Optimization

[SSR12, ABCC95, BGG+71, AKM05, AB09, BS13] (for an overview, we refer to the phd
thesis of Tobias Achterberg [Ach07b]). In particular, they are among those topics in the
field on which the research literature has recently seen a large involvement of Machine
Learning [ZJLB20, EAB+20, LZ17].

Finally, we need to clarify that, in practice, the Branch-and-Bound algorithm is not
used by the modern solvers as a standalone. In fact, the B&B skeleton is enriched with
many subroutines, such as heuristics and cutting planes, used to improve the primal or
the dual bound and to speed up the searching process. Cutting planes, in particular,
play a special role in this thesis, and will be described in detail in the following section
(for a comprehensive study of primal heuristics, we refer to the diploma thesis of Timo
Berthold [Ber06]).

P

Q

pruned

solution
found

in
process

solved

root

open

Figure 1.3: Search tree of a Branch-and-Bound execution.

1.3 Cutting Planes

Cutting-Plane methods represent a wide class of algorithms for solving mixed integer
programs, whose use was proposed during the 1950s by Ralph Gomory [Gom58].
The basic idea behind these methods is to iteratively refine the linear relaxation of the
program by adding linear constraints, until a satisfactory solution is found. These con-
straints are called cutting planes (shortly cuts), and the way in which they are constructed
is what distinguishes these methods from each other.

The algorithm takes a MIP instance P as input and returns one of its optimal solutions

1.3. Cutting Planes 17

as output. As in the B&B, we are assuming that P is bounded, since the unboundedness
would be easily detected at step 0. Moreover, in describing the general Cutting-Plane
algorithm, we also assume P feasible, to avoid infinite loops in case of discrete infeasibility,
that is, the relaxation Prel is feasible, but P is not.

Algorithm 2: Generic Cutting-Plane
Input: an instance P as defined in (1.1). Assumption: P bounded and feasible
Output: an optimum x

∗

Initialization: F ← feasible space of Prel,
FMIP ← feasible space of P

0. Solve Prel and obtain LP-optimum x
∗

1. If x∗ ∈ FMIP
return x∗

2. Select inequality αTx ≤ β from set of candidates C, so that
⋄ it is valid for FMIP
⋄ it is violated by x∗

3. Update F ← F ∩ {x ∣αTx ≤ β}
4. Solve new LP and update x∗, goto 1

Thus, a cut is a linear inequality that fulfills two requirements: it is valid for the
feasible space (i.e., satisfied by all feasible solutions of the problem), but violated by the
current fractional optimum. Hence, the role of a cut is to "cut off" (or separate) the
LP-solution, that we want to reject, from the feasible region of the MIP (see Figure 1.4).

The heart of the algorithm is the cutting phase, which consists of two operations:
generating a set of valid cuts and selecting one (or more) from this set. As already men-
tioned, the cut generation is what makes the difference within this class of methods; there
exist, in particular, many types of cuts (for an overview, see [Ach07b]), even though they
can be grouped into two main categories: the one of matrix-based cuts ([Bal71], [CF96]),
that are more generic, and the one of combinatorial cuts ([BZ78], [JP82]), which are,
instead, more problem-specific. Once that, during the iteration, a set of candidates is
available, the algorithm decides which ones should be used, that is, the ones to add to the
formulation of the current problem. Taking this decision is not an easy task; moreover, it
has a significant impact on the performance of the algorithm. This is why this problem,
usually called Cut Selection Problem, has been, and continuous to be, intensively stud-
ied ([ACF07], [BCC96]). Moreover, like Node Selection and Variable Selection discussed
before, also the Cut Selection Problem has been approached, in recent years, by means
of Machine Learning techniques ([TAF20a]).

Theoretically, a cutting-plane method might be used as a standalone; for example,
the Gomory’s method was proved, by Gomory himself, to be able to solve any MIP,
defined by rational data, in finite time, that is, an optimum can be found after adding

18 Chapter 1. Mathematical Optimization

x
∗

x
∗

Figure 1.4: Adding a cut to "cut off" the fractional solution x∗.

a finite sequence of cuts [Gom58], [Gom60]. However, in practice, such methods alone
may be incapable to solve difficult problems efficiently.

1.3.1 Use of Cutting Planes in B&B

Modern MIP solvers integrate cutting planes into the branch-and-bound main frame-
work. The resulting hybrid algorithm, firstly formalized in 1991 by Padberg and Rinaldi
[PR91], is referred to as Branch-and-Cut (B&C).

In this context, cutting planes are usually distinguished into global cuts and local
cuts. We should say, however, that this classification is not uniformly defined through
the MIP community and the research literature is still missing a standard convention in
these regards.
In this thesis, we adopt the following terminology. The set of cutting planes, generated
during a B&C execution, is partitioned into 3 groups:

• global cuts: they are generated at the root node, to separate the global LP-optimum
from the global feasible space;

• globally valid local cuts: they are generated at an internal node, to separate the
local LP-optimum from the local feasible space, but they are also valid globally, so
they can be applied to all nodes;

• locally valid local cuts: they are generated at an internal node, to separate the local
LP-optimum from the local feasible space, and they are only valid locally, that is,
for that node and its descendants, hence they need to be deleted when the search
leaves that branch of the tree.

Global cuts are, clearly, always valid for all subproblems and can be maintained during
the whole search. Instead, the validity of a local cut, across the B&B tree, depends on
whether the generation process takes the branching decisions into account. In particular,

1.3. Cutting Planes 19

there exist classes of cuts whose generation, by definition, never considers the branching
decisions, so they are always valid globally, even if they are generated locally. On the
other side, there are cuts whose generation can not disregard the variable bounds, hence,
when they are generated as local cuts, they are intrinsically valid only locally. In other
words, some cuts can only be classified as globally valid local cuts, some others only
as locally valid local cuts. In the middle, there are classes of cuts that can be locally
generated either as globally valid or as locally valid. In this case, the approach adopted
depends exclusively on the solver or the user. A survey on the different types of cuts is
proposed in [MMWW02], while a study on their validity within the B&B framework is
illustrated in [Pad05].
We note that, sometimes, it is possible to manipulate cutting planes in order to extend
their validity: there are classes of cuts that, even if generated as locally valid during the
search, can be made globally valid. Similarly, it is also possible for some types of cuts,
only valid for a particular branch of the tree, to be transferred to other branches. In
other words, their validity is not extended to the global problem, but simply tailored
to other nodes (an example on the use of this technique can be found in [WB21]). The
choice of whether to adopt such techniques to manipulate and transfer cuts from nodes
to nodes depends, again, on the solver or the user.
We clarify that, for the scope of this thesis, the difference between the two types of local
cuts is not relevant. Hence, to simplify the terminology, for the remainder of this paper
we will refer to any locally generated cut simply as local cut, regardless of its validity,
unless explicitly mentioned otherwise.

The cutting strategy, within the B&C scheme, is determined by several algorithmic
decisions, that should be taken carefully according to the problem structure. Important
issues concern the classes of cuts to use and the aggressiveness of the cutting activity:
which types of cuts should be generated? Should cuts be added at all nodes or only at
some of them? Should the cutting procedure be limited to a certain depth of the search
tree? How many cuts should be added in each cutting phase? This thesis, in particular,
addresses one specific question from this list, which will be extensively discussed in the
following chapters.
As for any other routine involved in the solving process of a MIP, designing an efficient
cutting strategy is a matter of trade-offs: on one side, cutting planes can be very effective
in improving the dual bound, on the other side, their generation does not come for free
and, moreover, their inclusion enlarges the size of the matrix, hence increasing the com-
putational effort necessary to solve the linear relaxations. An important consideration is
that, in general, cutting planes are known to be particularly powerful at the beginning of
the search, while they tend to lose their efficiency when the depth of the tree increases.
In general, it is not a good idea to generate all possible types of cuts, since usually only
some of them are really suitable for the problem to solve, while the others might rather
be time-wasting. For this reason, a hierarchy of generation routines is often adopted
[JRT95].
Moreover, cutting planes are not added at all nodes of the tree but only at some of them,

20 Chapter 1. Mathematical Optimization

depending on the local state or on a certain fixed frequency. The cutting activity is
normally performed more aggressively at superficial levels of the tree, while it is progres-
sively relieved at deeper levels. For example, cuts might be applied to every 2

k-th level
(default of Xpress).
In addition, a maximum depth for the cutting procedure is usually fixed, beyond which
cutting planes are no longer applied. A common strategy consists in using cuts only at
the root node; this version of the algorithm is usually called Cut-and-Branch (C&B), and
sometimes represents the preferred alternative [Mit02].
Moreover, a criterion is adopted to limit the number of cuts during a cutting phase, both
for controlling the size of the matrix and for avoiding the so-called tailing-off [PR91],
which occurs when, at some point during the loop, cutting planes no longer provide any
significant improvement to the dual bound of the current node.
Finally, another technique, used to maintain the size of the matrix reasonable, consists
in removing, from the formulation of the problem, cutting planes that are no longer ef-
fective.
For a more detailed description of the use of cutting planes and the implementation of
the Branch-and-Cut algorithm, we refer to [CMLW97, Mar01, FM05, Ach07b].

The above discussion on the cutting procedure and, especially, the distinction between
global and local cuts, play a crucial role in this thesis; in particular, the benefits provided
by the use of local cuts will be discussed and investigated in the following chapters.

1.4 Practical MIP Solving & FICO Xpress

MIP solving, in practice, consists in a complex combination of sophisticated techniques.
Besides the two algorithmic principles described in the previous sections, Branch-and-
Bound and Cutting-Plane, many other ingredients contribute to the solving process, each
of them playing a crucial role for the effectiveness of the solver. The general workflow,
adopted by all the state-of-the-art MIP solvers, is illustrated in Figure 1.5.

First of all, the input problem is manipulated by several algorithms that identify
and remove redundant rows and columns, in order to reduce the size of the matrix and
simplify the formulation of the problem. The collection of these techniques is usually
referred to as presolve.
The initial presolving step is usually followed by a heavy cutting stage, during which the
feasible region of the linear relaxation is tightened as much as possible before starting
the main B&B loop. However, as explained in Section 1.3.1, cutting planes might also
be applied deeper in the search tree.
Other important components of the solving scheme are primal heuristics, namely, meth-
ods to find a solution in a reasonable amount of time, but without any warranty of
optimality (see [Ber06]). Primal heuristics find place almost everywhere within the solv-
ing process: they might be alternated with cuts during the cutting phase, or executed
between the end of the current node and the selection of a new one. Their role is to
produce good feasible solutions and, consequently, to improve the primal bound.

1.4. Practical MIP Solving & FICO Xpress 21

Input Presolving

Global Cuts
Primal

Heuristics

Node Selection

Local Cuts

Branching

Primal

Heuristics

Primal

Heuristics

Stop

Root Node

Main Loop

Figure 1.5: General workflow of a MIP solver.

We should clarify that the flowchart in Figure 1.5 is not exhaustive about the solving
process of a MIP; there are, indeed, other techniques that are usually employed within
a modern solver, such as domain propagation and conflict analysis, whose description,
however, goes beyond the scope of this thesis. Moreover, we should also say that, usu-
ally, MIP solvers provide access to the single components of the solving process, allowing
advanced users to manipulate them and, eventually, deactivate them completely.
An extensive description of all the components of a MIP solver can be found in [Ach07b];
inspections of the evolution of MIP computation over the years are provided both in
[Lod10] and [Bix12].

The intense usage of mixed-integer programming in a wide range of domains has mo-
tivated the need of developing efficient MIP solvers and raised the commercial interest
around the field. Today, the best software poducts for solving MIPs are developed for
commercial purposes, such as Cplex [Cpl], Gurobi [Gur], Mosek [Mos] and Xpress
[Xpr]. Valid solvers, however, are also available for academic, noncommercial uses, like
Cbc [Cbc], lpsolve [lps], Glpk [GLP], Symphony [Sym] and SCIP [SCI]. A list
of currently available tools for linear and mixed-integer programming, together with a
description of their features, is published every two years by Robert Fourer. The last
survey, at the time of writing this thesis, dates back to 2019 [Fou19].

The technology at the basis of this thesis is FICO Xpress, which represents, for us,

22 Chapter 1. Mathematical Optimization

both the framework of our computational study and the target of our research, whose
final goal, indeed, is to improve the overall performance of the solver itself.
Xpress is a fast, robust and scalable mathematical optimization software, representing
the core component of the Xpress Optimization Suite, developed and distributed by
FICO. Originally released in 1983 exclusively as an LP solver, Xpress is currently able
to solve a broad range of optimization problems, with mixed-integer programs being, of
course, among those. The solver can be interfaced via the command line, via a graphical
interface, as well as through a library that is callable from the major programming
platforms. Xpress offers flexible access to the internal data structures and great control
over the execution of the algorithms, allowing the user to manipulate the problem and
customize the solving process. As we will see, particularly relevant, for this thesis, is
the use of cutting planes with Xpress, where the cutting procedure is implemented as
follows.
While generating cut, the solver always tries to use all local information from the current
node, including the variable bounds. This means that, when possible, it prefers to
generate and add what we defined as locally valid local cuts (see Section 1.3.1). Moreover,
in Xpress, there is no attempt of manipulating the validity of cuts in order to adapt
them to other nodes: local cuts are simply removed from the matrix of the problem when
they are no longer valid. The solver provides a suite of controls to manage the actual
cutting scheme: cutstrategy to control the number of cuts to add in each cutting phase,
cutfreq to determine the levels of the tree where cuts should be generated, cutdepth to
set the maximum depth for the cutting activity, and some other parameters to separately
control the most-known classes of cuts. Finally, for a more advanced customization of
the use of cutting planes, different routines are available in the Cut Manager framework
to directly add cuts at specific nodes, to remove them, or to manipulate the cut pool, the
data structure used to store cutting planes during the search.
For a detailed description of FICO Xpress, we refer to the official documentation [Xpr].

Chapter 2

Machine Learning

Machine Learning is the study of algorithms that use experience, in the form of data, to
attain and improve the ability to perform certain tasks automatically, that is, without
being explicitly programmed. Depending on the learning paradigm and the form of data
used, machine learning is traditionally divided into three broad categories: Supervised
Learning, Unsupervised Learning and Reinforcement Learning.
In the first section of this chapter, we formalize the general supervised learning paradigm,
which represents the approach adopted in this thesis. In the remaining sections, instead,
we illustrate the three specific learning algorithms used in our research, namely, Linear
Model, Random Forest and Neural Network.

2.1 Supervised Learning

Supervised learning is the problem of inferring the relation between two variables, by
experiencing a sample set of observations that partially describes this relation.
Formally, the supervised learning framework consists of the following components.

• An input space X , whose elements are called instances. Each instance in X is
represented by a vector x = (x1, . . . , xn), whose entries are said features.

• An output space Y, whose elements are called labels. The space Y can be either
a finite set of classes or a continuous set; in the former case the problem is called
classification, in the latter it is referred to as regression.

• An unknown relationship between the two spaces, that we model via a joint prob-
ability distribution P = P(x, y) over the space X × Y. Precisely, P can be seen as
composed of two parts: a marginal distribution Px over X , which determines how
likely it is to encounter any input x, and a conditional distribution P((x, y)∣x) over
Y, which specifies the probability that the input x is labeled with the output y.

• A dataset D = {(x(i), y(i))}
i=N

i=1
⊆ X × Y, providing an empirical description of the

23

24 Chapter 2. Machine Learning

input-output relation. The pairs in D are sampled from the distribution P, that
is, (x(i), y(i)) ∼ P for all i ∈ [N].

• A model space M = {M ∶ X ⟶ Y}, defining the form of the model that we want
to use in order to estimate the relation between X and Y. This space, especially in
statistical learning literature, is also known as hypothesis space, while its elements
are also referred to as hypothesis.

• A loss function l ∶ Y × Y ⟶ R+, used as a measure of success for the learning
algorithm, that is, to quantify the ability of the model to correctly estimate the
provided instance: for (x, y) ∼ P, l(M(x), y) measures how "far" the estimation
M(x) is from the correct label y.

The goal of a supervised learning algorithm is to approximate the relation between X
and Y, that is, to produce a model M such that M(x) ≈ y for each pair (x, y) ∼ P.
Precisely, this goal is formalized as the following minimization problem:

min
M∈M

LP(M) = min
M∈M

E(x,y)∼P[l(M(x), y)], (2.1)

where the objective LP(M) is called generalization error.
This goal, however, is not achievable directly, since the distribution P is unknown and
inaccessible. Therefore, it is attained empirically by using the available information D,
that is, by solving the following problem:

min
M∈M

LD(M) = min
M∈M

1

N

i=N

∑
i=1

l (M(x(i)), y(i)) . (2.2)

where LD(M) is said empirical error, while the process of solving (2.2) is called learning.

Now, on one hand, this formulation of the learning paradigm emphasizes the large in-
terplay between the two scientific fields at the background of this thesis, machine learning
and mathematical optimization. The former, in particular, heavily relies on the latter,
given that learning, essentially, means solving an optimization problem.
On the other hand, however, the scheme described above also highlights the element that
separates machine learning from pure optimization, namely, the desire for generalization.
Indeed, rather than performing perfectly on the observed data, the central challenge of
machine learning is to perform well on new, previously unseen data. In machine learning,
we minimize the empirical error with the final goal of reducing, as much as possible, the
generalization error. In another fashion, we try to learn, through the observed data, to
make predictions on future data; for this reason, we also refer to a learning model M as
a predictor, and to the estimated value M(x) as the prediction of M for x ∈ X .

For a more extensive discussion on the general learning theory, we refer the reader to
the popular textbook "Understanding Machine Learning: From Theory to Algorithms"
[SSBD14], which proposes detailed descriptions of the basic notions of statistical learning,
such as Empirical Risk Minimization and PAC Learning.

2.1. Supervised Learning 25

2.1.1 Train/Test Set

In practical development of a machine learning system, the dataset D is split into two
disjoint subsets: one of them is used for training the model, the other for testing its
generalization abilities; accordingly, the two subsets are called train set and test set,
and denoted as Dtrain and Dtest, respectively. Moreover, the error of the model on
Dtrain is called train error, the one on Dtest is said test error ; the former represents the
empirical error, the latter is used to approximate the generalization error. Note that, in
the development of learning algorithms, the way in which the dataset is split represents a
crucial decision, which should be taken carefully according to the nature of the dataset.

2.1.2 Underfitting vs Overfitting

The problem to minimize the train error and, in the same time, to also guarantee a
low test error, leads to two fundamental notions of machine learning, underfitting and
overfitting, hence to one of the major issues faced by any learning procedure, the need
of finding the trade-off between the two.
We say that the model is overfitting the data when it performs well on the train set, but
shows an unsatisfactory performance on the test set, that is, the gap between the train
and the test error is too large. Instead, if both errors are high, then we say that the
model is underfitting, that is, it is not even able to fit the training data accurately.
The risk to underfit or overfit depends on the capacity of the model adopted, where the
capacity of a model is, informally, its ability to fit a wide variety of datasets or, more
briefly, its learning power. When the capacity is too low with respect to the problem
to solve, the model might not be able to learn the recurrent patterns in the data, hence
resulting in underfitting. On the other hand, when the capacity is too high, the model
might risk to capture noise and fluctuations in the data that deviate it from the underly-
ing structure, hence resulting in overfitting. Thus, the challenge consists in choosing the
appropriate capacity for the true complexity of the data, that is, in finding the trade-off
between under- and overfitting.

For a more formal discussion on the notion of capacity, we refer again to the field
of statistical learning [SSBD14], which provides several tools to effectively quantify the
learning capabilities of a given model, such as the well-known Vapnik-Chervonenkis di-
mension (VC dimension), a technique particularly suitable for binary classifiers [VC71].

2.1.3 Hyperparameters & K-Fold Cross-Validation

The behavior of a learning algorithm is usually controlled by a set of values called hy-
perparameters, used to specify the architecture of the adopted model and to govern the
behavior of the training procedure. Just to give an example, a typical hyperparameter of
a deep learning algorithm is the number of hidden layers of the neural network, as well
as the number of hidden units in each hidden layer (see Section 2.4).
Hyperparameters can affect the speed of the training algorithm and, even more impor-

26 Chapter 2. Machine Learning

tantly, the accuracy of the final model. For this reason, in the development of any
learning algorithm, choosing an appropriate hyperparameter configuration represents a
crucial decision, and the problem of taking such a decision is, as the training itself, an
optimization problem, usually referred to as hyperparameter tuning (or model selection).
Clearly, the hyperparameters should be tuned before starting the actual training, that
is: a model is trained and evaluated for each hyperparameter configuration, hence, the
configuration providing the highest performance is selected and used for training a final
model. In the model selection phase, the evaluation of each model can not be done on the
test set Dtest, since this would bias the final predictor. This is why the hyperparameters
of the learning algorithm are commonly tuned over Dtrain by using k-fold cross-validation.

K-fold cross-validation is a general technique for training and evaluating a machine
learning model, commonly used when the ground dataset is not plentiful enough to be
split into two parts, hence allowing the execution of the training/evaluation process over
two disjoint sets. The procedure works as follows. The given dataset is partitioned into
k subsets (folds) of the same size (for simplicity, assume the size of the set is divisible
by k); for each fold, a model is trained on the union of the other folds and tested on this
fold. Thus, the final result of the cross-validation is obtained by averaging the results of
all validations.
In model selection, each hyperparameter setting is evaluated by using cross-validation
over the train set Dtrain, hence the setting minimizing the error is returned as the optimal
one. A pseudocode of this process is provided in Algorithm 3. The procedure takes as
inputs a set Dtrain, a space of possible hyperparameters Θ, an integer k and a learning
algorithm A. In particular, for a training set and a tuple of hyperparameters, A returns
a model trained on that set and with those hyperparameters.

Algorithm 3: Model Selection with K-Fold Cross-Validation
Input: integer k

hyperparameter space Θ
learning algorithm A

train set Dtrain = {(x(1), y(1)), . . . , (x(t), y(t))} with t/k ∈ Z

Output: optimal hyperparameter configuration θ∗ ∈ Θ

1. Split Dtrain into k folds of same size t/k: F1, . . . , Fk

2. For θ ∈ Θ:

For i← 1 to k:

M
i
θ ← A (Dtrain \ Fi; θ)

LFi (M
i
θ)← 1

∣Fi∣ ∑(x,y)∈Fi l (M(x), y)

Err(θ)← 1
k
∑i=k
i=1 LFi (M

i
θ)

3. Return θ∗ such that Err(θ∗) = minθ∈ΘErr(θ)

2.2. Linear Model 27

After that the hyperparameters have been tuned, the configuration selected as opti-
mal is used to train a final model, this time over the whole train set Dtrain. We clarify
that not all learning algorithms have hyperparameters; obviously, in this case, there is no
need for model selection. For a more detailed description of model selection and cross-
validation we refer to [SSBD14].

In the following sections of this chapter, we will describe the three machine learning
models used in this thesis, namely, Linear Model, Random Forest and Neural Network.
In particular, we will treat regression and binary classification: in the former we will
always have Y = R, in the latter Y = {−1, 1}; the input space, instead, will always be
X = Rn.

2.2 Linear Model

A linear model is a function that involves a linear relationship between the input variables
and the output labels. Linear models represent an old class of predictive functions,
developed in the pre-computer age of statistics. They are, however, still widely used in
machine learning, being them intuitive, simple to train and easy to interpret.
Precisely, a linear model LMw,b, between the input space X = Rn and the output space
Y, is defined as

LMw,b(x) = φ (wTx + b) = φ(
n

∑
i=1

wixi + b) ,

where w ∈ Rn and b ∈ R are the parameters of the model, while φ depends on the nature
of the output space: when Y = R (regression), φ is simply the identity function, when
Y = {−1, 1} (binary classification), φ is a function that transforms continuous values into
binary, such as the sign function. In particular, a space of linear models is determined
by specifying φ.
Geometrically, the model Mw,b can be thought as the hyperplane

w1x1 + ⋅ ⋅ ⋅ + wnxn + b = 0,

whose role depends on the nature of the learning task: while, in regression, the hyperplane
is used to directly fit the data, in binary classification, it is meant as a separator of the
two classes (see Figure 2.1).

Being a parametric function, a linear model is trained by estimating its parameters
from the data, that is, by searching for a parameter configuration that minimizes the
train error. Following the scheme proposed in Section 2.1, this involves the following
steps: define a model space (by choosing a suitable φ), decide a proper loss function
to compute the error and design a procedure to solve the corresponding optimization
problem. A large number of machine learning algorithms have been developed to train
linear models. In regression, a typical learning technique is Least Squares [Leg05], while in
classification, common choices are Perceptron [Ros58], Support Vector Machine [BGV92]
and Logistic Regression [M.D44, M.D51]. In the latter, in particular, the learning model is

28 Chapter 2. Machine Learning

x

y

x1

x2

Figure 2.1: On the left, a linear regressor fitting the data; on the right, a linear classifier
separating the two classes. Note: in the regression example, each input instance is
defined by a single feature x and labeled by the continuous label y, in the classification
case, instead, the instances are specified by two features x1 and x2, and classified as green
or red.

a function from the input space Rn to the interval [0, 1], used to predict the probability
that the input instance belongs to one of two possible classes. In other words, the
logistic regression algorithm learns a regression model, which is used, however, as a
binary classifier.

2.3 Random Forest

Firstly introduced in 1995 by Tin Kam Ho [Ho95], random forests are predictive models
commonly used in machine learning, suitable for both regression and classification prob-
lems. They represent a special case of ensemble methods, that is, methods consisting
in gathering different predictors together, in order to give rise to a more powerful one.
Precisely, in the case of random forests, the single predictors in the ensemble are decision
trees.

2.3.1 Decision Tree

A decision tree is a popular support tool for decision analysis; it consists of a set of
decision rules (if-else statements) and can be represented in the form of a tree-like struc-
ture. The first learning algorithm for decision trees was proposed for regression in 1963
by Morgan and Sonquist [MS63], then extended to classification in 1972 by Messenger
and Mandell [MM72]. Precisely, the non-leaf nodes of the tree correspond to conditional
tests over specific features from the input space X , such as xj ≤ α, where α is a certain
threshold, the branches represent the outcomes of these tests, while the leaves correspond
to target values from the output space Y. The labeling process, for a given input x, con-
sists in traversing the graph from the root node to a leaf node, following a path that is
dynamically determined by the tests performed over the features of x, that is, each node

2.3. Random Forest 29

in the succession depends on the decision taken in the preceding node. Hence, the input
is labeled with the value stored in the leaf where the traversal ends up.
More formally, a tree model T ∶X → Y is a piecewise constant function that partitions the
feature space X into axis-aligned rectangular regions, each one associated with a certain
value in Y. With such a geometrical interpretation, the assignment procedure consists
in identifying the region of the partition where the input x falls, hence in returning the
corresponding value as the output T (x). Precisely, each edge of the tree corresponds to
a region of X , while the node receiving the edge represents a split of this region into two
subregions. An example of the assignment process of a decision tree, for a given input
instance, is illustrated in Figure 2.2.

x1 ≤ α

x2 ≤ β x4 ≤ γ

x1 ≤ δ

ye
s no

ye
s no

ye
s no

ye
s no

x1

x2

x
1
=
αx2 = β

x
1
=
γ

x2 = δ

Input

Figure 2.2: On the left, a decision tree for a binary classification problem with two
features, x1 and x2, and two classes, red and green; on the right, the corresponding
partition of the 2-dimensional feature space. Traversing the tree to classify the input
point is equivalent to locating the region which the point belongs to.

Now, as for other machine learning models, the process of "growing" a tree, over a
given train set, can be formulated as an optimization problem, which consists in search-
ing for the tree model that minimizes the train error, defined according to a certain loss
function. It turns out, however, that solving such an optimization problem is compu-
tationally hard in several variants (see for example [HR76, HJLT96]). For this reason,
practical algorithms for training decision trees rather rely on heuristic techniques, such
as the greedy approach, where the tree is gradually grown by taking, at each node, lo-
cally optimal decisions. Clearly, such techniques are not able to guarantee the optimal
tree model for the learning problem, however, they have proved to work quite well in
practice.
Many different algorithms have been developed for efficiently growing decision trees,
both for regression and classification problems, such as ID3 [Qui86] and its extension
C4.5 from Quinlan [Qui93], CART from Breiman et al. [LBS84] and CHAID from Kass
[Kas80]. For a survey on the available techniques in decision tree learning, as well as for

30 Chapter 2. Machine Learning

an overview of the historical developments in the field, we refer to [Loh14].

Decision trees are appreciated for their interpretability and flexibility: they are in-
tuitive, graphically visualizable and easy to explain, moreover, they can handle both
numerical and categorical data, hence they are suitable for both regression and classifi-
cation problems. On the other hand, however, they might suffer for non-robustness and
over-complexity: small modifications in the data might be reflected into large changes in
the tree, moreover, while growing, they might evolve into too elastic structures, which
are obviously prone to overfitting.
The generalization error can be reduced through the use of different mechanisms, such as
by adopting stopping criterions to prevent an excessive growth of the tree, or by pruning
it after its construction. In particular, one of the most efficient approaches to correct the
overfitting problem is a specific type of ensemble method, namely, random forest

2.3.2 Random Forest

A random forest is an ensemble of decision trees, whose outcomes are derived indepen-
dently of each other and then combined together into a single prediction. Precisely, the
output of the ensemble, for a given input, is obtained by averaging the predictions from
the individual trees (in regression), or by taking the majority vote (in classification).
The trees in the forest are grown by using a combination of two learning techniques:
bagging, short for bootstrap aggregation, and random feature selection. For a description
of these procedures we refer to [Ho95, Bre96, Bre01], while here we simply mention the
benefits provided by their use: the former allows to reduce the overall sensitivity of the
forest to noise in the training data, while the latter prevents the trees in the ensemble
from being highly correlated. Combined together, the two techniques correct the typical
habit of a single decision tree for overfitting.

To control the learning process of a random forest, the most important hyperparam-
eters are the number of trees in the bagging procedure, the number of features which
are randomly selected, and the maximum depth for the growth of each tree. Clearly,
their configuration strongly depends on the problem to solve and the size of the train
set. As for other learning algorithms, the optimal setting is usually found by means of
cross-validation.

2.4 Neural Network

An artificial neural network, or briefly neural network, is a model of computation loosely
inspired by the human brain. The study of these models, and in particular their use in
solving learning problems, delineates an entire subfield of machine learning, called Deep
Learning. The starting point of this research area dates back to 1943, when McCulloch
and Pitts published the first mathematical formulation of a biological neuron [MP43].
The first learning algorithm for this model, called Perceptron, was instead proposed in

2.4. Neural Network 31

1958 by Rosenblatt [Ros58].
Different types of neural networks have been developed for different applications; in par-
ticular, the most common type, which is also the one used in this thesis, is the feedforward
neural network.

A feedforward neural network is defined as a tuple (G, σ,w, b), where G = (V,E)
is a directed acyclic graph (architecture), σ∶R → R is a nonlinear function (activation
function), w∶E → R is a function over the edges (weight function), and b∶V → R is
a function over the nodes (bias function). The graph, whose nodes are called neurons,
is structured as a sequence of layers L1, . . . , Ld, defining a partition of the node set,
V = ⊍dl=1Ll. In particular, L1 is called the input layer and contains as many neurons
as the dimension of the input space X , Ld is said the output layer and its size matches
the dimension of the output space Y, the internal layers are referred to as hidden layers
and consist of an arbitrary number of neurons; finally, the integer d is called the depth
of the network. Each edge (u, v) ∈ E is a connection between two neurons in two con-
secutive layers, that is, u ∈ Ll−1 and v ∈ Ll, for some l = 2 . . . , d. We assume that the
network is fully-connected, that is, each subgraph of the network, induced by any pair
of consecutive layers, is a complete bipartite graph. Note that, if desired, we can always
disconnect two neurons by fixing the weight on the corresponding edge to 0. An example
of the architecture of a feedforward neural network is provided in Figure 2.3.

Input

Hidden

Output

Figure 2.3: A feedforward neural network of depth 4, with 1 input layer of 3 neurons, 1
output layer of 2 neurons, and 2 hidden layers of 4 neurons each.

For a given instance x ∈ X , the assignment process works as follows. The instance

32 Chapter 2. Machine Learning

is fed into the network from the initial layer, where the computational flow starts to
propagate in the forward direction. In particular, each layer receives a vector from the
previous layer, applies a certain transformation to it, and sends it to the next layer.
Hence, the process terminates when the flow reaches the last layer, which returns the
final vector as output. The fact that the information flows without feedbacks is reflected
in the property of the graph to be acyclic, and explains why these networks are referred
to as feedforward. To precisely define the computations executed during the process, we
adopt the following terminology:

• nl is the size of the l-th layer of the network, for l ∈ [d];

• v
l
i is the i-th neuron of the l-th layer, bli is the bias associated to vli, for l ∈ [d] and
i ∈ [nl];

• w
l
i,j is the weigth of the edge directed from v

l
j to v

l+1
i , for j ∈ [nl], i ∈ [nl+1] and

l = 1, . . . , d − 1.

Now, during the computational flow, each neuron vl+1
i receives a vector of values xl, sent

by the previous layer, and a vector of weights wli, carried out by the incoming edges, and
combines the two vectors into the following output:

x
l+1
i = σ

⎛
⎜
⎝

nl

∑
j=1

w
l
i,jx

l
j + b

l+1
i

⎞
⎟
⎠
.

Hence, the nl+1 outputs, produced by the neurons of the (l + 1)-th layer, are sent to
the next layer as components of the vector xl+1. In other words, a neuron is a vector-to-
scalar function and constitutes the basic computational unit of a neural network. It is, in
particular, a linear function, as described in Section 2.2. An example of artificial neuron
is illustrated in Figure 2.4. Overall, the process starts with the vector x0 received by the
first layer, corresponding to the input instance from the space X , and terminates with
the vector xd returned by the last layer, representing the output label from Y assigned
to x. Note that the input layer has no effects on its input, i.e., L(x0) = x1.

By combining together the action of all neurons in the same layer, we can interpret
each layer Ll+1 as a vecto-to-vector function Ll+1∶R

nl → Rnl+1 , defined as follows

x
l+1

= Ll+1(xl) = σ(W l
x
l
+ b

l+1),

where xl is the output of the l-th layer, bl+1
= (bl+1

i)i∈[nl+1] is the bias vector of the
(l + 1)-th layer, W l

= (wli,j)(i,j)∈[nl+1]×[nl] is the weight matrix between the two layers,
and σ is meant here has a vector function that works element-wise. Hence, with the
matrix notation adopted, we can write the neural network as a single function between
the input space X and the output space Y, obtained by sequentially combining the layers.
Precisely, for x ∈ X ,

NN(x) = (Ld ◦ Ld−1 ◦⋯L2 ◦ L1) (x) .

2.4. Neural Network 33

xn

⋮

x2

x1

b

∑ σ σ(∑wjxj + b)

w1

w2

wn

Figure 2.4: An artificial neuron, the basic unit of a neural network.

In other words, a feedforward neural network consists of an alternating sequence of linear
transformations and activation functions. The latter, in particular, are responsible for
injecting nonlinearity into the network, hence they crucially contribute to the potential
of these models: without the action of the these functions, a neural network would simply
be a linear model. Many types of activation functions are available, such as the rectifying
linear unit (ReLU) and its variants, the tanh or the sigmoid ; for a survey on the differ-
ent activation functions, we refer to [Dat20]. Clearly, choosing an activation function,
suitable for the problem to solve, represents an important decision for the success of the
model.

Now, training a neural network is, conceptually, not different from training other types
of machine learning models, that is, we need to apply the learning paradigm described in
Section 2.1: define a model space, choose a loss function to compute the error, design an
optimization procedure to minimize this error over the data. Differently from other mod-
els, however, in deep learning algorithms, the error function is usually non-convex, due to
the nonlinearity of the model, and the solution space is extremely high-dimensional, due
to the complexity of the network. In other words, training a network is a hard problem;
hence, for these models, we usually renounce to optimality, and rather adopt heuristic
methods that simply drive the error to a very low value, by searching for a good, yet
suboptimal, solution.
One of the most popular class of optimizers for neural networks is represented by the
family of gradient descent algorithms, whose description, however, is out of the scope of
this thesis. A detailed explanation of the gradient descent is given in the textbook of
Goodfellow at al. [GBC16], while a very clear overview of the different types of algo-
rithms within this family is provided by Ruder [Rud17].

Important hyperparameters of a deep learning algorithms are the ones defining the
architecture of the network, namely, the number of hidden layers and the number of
hidden units for each layer. The values of these hyperparameters, as for other learning
models, are commonly set by means of cross-validation.

34 Chapter 2. Machine Learning

For a comprehensive study of neural network models and deep learning algorithms, we
refer again to Goodfellow at al. [GBC16].

Chapter 3

A Machine Learning Strategy for
the Use of Local Cuts

In the first section of this chapter we describe and motivate the central challenge of this
thesis, that is, the development of an efficient strategy to decide whether to use local
cutting planes while solving a mixed-integer program. In particular, we observe how
naturally a machine learning approach suits the goal that we want to achieve. Hence,
in the second section, we survey the major developments provided to the young and
exciting field of research to which this thesis aims to contribute, namely, the integration
of machine learning and combinatorial optimization; in particular, we discuss the different
approaches, proposed since the beginning of this research area, to use the former in the
direction of the latter. Finally, in the third section, we provide a theoretical description of
the method that we adopt to leverage machine learning for solving the decision problem
mentioned above.

3.1 A Crucial Decision: Cut vs Not Cut

It is undoubted that the integration of cutting planes into the branch-and-bound main
framework, firstly suggested during the 80s [HCP83, VRW87], then formalized during
the 90s [PR91, BCC96, BCCN96], has represented a breakthrough in MIP computation
and played a central role in the move to the current generation of MIP solving systems.
The great impact that cutting planes have had on the evolution of MIP solvers emerges,
for example, from the experiment conducted by Achterberg and Bixby [AB08], where the
authors compared the MIP-solving performance of all Cplex versions from release 1.2,
the first with MIP capabilities, up to release 11, the newest at that time. Precisely, the
authors reported a speed-up of 22.3 from Cplex 6.0 to Cplex 6.5, the first release with
full cutting plane capability. In particular, the improvement of the software between
these two versions represents the biggest step forward in the version-to-version scale re-
ported in the paper, and was mostly provided by the introduction of cutting planes.

We have seen in Section 1.3.1 , however, that there are many possible ways to use

35

36 Chapter 3. A Machine Learning Strategy for the Use of Local Cuts

cutting planes into the B&B framework, each one determined by a precise combination of
different algorithmic choices. Unsurprisingly, not all combinations give rise to a cutting
strategy that is really effective and efficient for the problem to solve. One of the first
decisions that need to be taken, while implementing the integration of cuts into the B&B,
is whether the cutting activity should be limited to the root node, or performed during
the whole search, that is, whether to apply only global cuts, or to use both global and
local ones (see Section 1.3.1).
In general, the impact that a cutting activity has on the running time of the solver
results in the sum of two opposite weights. On one side, adding cutting planes directly
improves the dual bound, hence, as a side effect, it provides a reduction of the number
of nodes to be processed; on the other side, the use of cuts requires a non-ignorable
computational effort, both for generating them and for re-solving the tightened problem
(see Section 1.3). Now, it is known that cutting planes are particularly powerful at
superficial levels, especially at the root node [AW13], while their effectiveness tends to
deteriorate together with the growth of the tree depth. This means that, while at the
beginning of the search the benefits provided by the use of cutting planes, for the great
majority of problems, outweigh the drawbacks, this trend progressively changes as the
search dives deeper, until a certain point from which it starts to reverse. This would
suggest, as a reasonable criterion, the one of choosing, for the given input instance, a
maximum depth level k, after which the cutting procedure should be stopped. There
is, however, another consideration that should be made: the use of local cuts, which are
valid, in general, only locally [Pad05], is incompatible with conflict analysis, a technique,
widely used in today MIP solvers, that consists in exploiting the information deduced
by the infeasibility of a subproblem, when this is encountered during the B&B search,
in order to produce a new constraint for the global problem [Ach07a, WBH21]. Indeed,
if the reason for the node’s infeasibility comprises some constraints that are valid only
locally, the constraint deduced by analyzing this node will be valid, in general, only
locally as well. In other words, the use of cuts at internal nodes prevents the use of
conflict analysis, and preferring the former routine over the latter is not always the most
convenient choice. For a more detailed discussion on the compatibility between these
two techniques, we refer to the paper of Berthold and Witzig [WB21]. Hence, this last
observation seems to reduce the more general question, asking for the optimal value of
k, to the more specific (binary) one, that is, whether to cut only at k = 0, or to keep
cutting even for k > 0; equivalently, whether local cuts, for the given input problem,
should be used or not: local-cut vs no-local-cut. Studying binary decision problems is, in
particular, a common trend in MIP research, as exemplified by [KLP17, BH21, BLZ18].

Now, up until the time of writing this thesis, no efficient criterion has been developed,
at least to the best of the author’s knowledge, to provide an answer to this question.
In 1997, Cordier et al. conducted a computational experiment to evaluate the relative
performance between the local-cut approach and the no-local-cut one [CMLW97]. Pre-
cisely, the authors run their solver, called bc-opt and based on the XPRESS-MP system
[Xpr], over the instances of the MIPLIB3.0 library [BCMS90] twice, once by disabling the
cutting procedure after the first branching, the other by keeping generating cuts every

3.1. A Crucial Decision: Cut vs Not Cut 37

8 levels of the search tree. From the results reported in the paper, the authors drew
the following conclusion: even though there are few instances, among the ones labeled
as hard for the solver (i.e. the ones solved in more than 5 minutes), on which the local-
cut setting outperforms the no-local-cut one, for most of the instances, the no-local-cut
method is 10 to 20% faster than its competitor.
For more recent solvers, however, the scientific literature and the experience of the author
seem to contradict the conclusion provided in the paper just mentioned [CMLW97]. In-
deed, for more advanced solvers, which are clearly endowed with more complete cutting
plane techniques and, overall, with a more mature algorithmic framework, the local-cut
approach seems to dominate the no-local-cut one.
An example is provided by the experiment, conducted by Achterberg and Wunderling
in 2013 [AW13], to measure the impact of each class of cutting planes in CPLEX 12.5,
over a set of MIP instances coming from a mix of publicly available and commercial
sources. Precisely, the authors of the paper compared the default configuration of the
solver, consisting in the use of different classes of cutting planes both at the root node
and internally, against turning off each cutting plane separator individually and, finally,
against the cut-and-branch setting, which instead makes only use of global cuts. Among
the different conclusions drawn by the authors, the one, interesting for this thesis, is
that the performance of the solver, when local cuts are disabled, degrades by 23%, hence
declaring the local-cut setup, on average, more efficient than the other.
To give a more direct flavor of the relative performance between the local-cut and the
no-local-cut method, we present a study, conducted by the author of this paper, in which
the two approaches are compared on a test bed consisting of 6 permutations of each prob-
lem of the Benchmark Set from MIPLIB 2017 [GHG+21], for a total of 1155 instances 1.
Precisely, the experiment consists in running FICO Xpress 8.9 [Xpr], up to a time limit
of 7200s, on each instance of the set twice, once by cutting only at the root node, the
other by also using a local cutting procedure, as implemented in the default version of
the solver (note that, for this experiment, we use the same computational setup adopted
for the ones presented in Chapter 5, and it is described in detail in Section 5.1).
A first evaluation of the relative performance between the two competitors can be made
by partitioning the dataset into four parts, according to whether an instance is solved
or unsolved (within the time limit) by each of the two methods. Table 3.1 reports the
number of data points across the partition, where the rows refer to the local-cut approach
C, while the columns to the no-local-cut one NC.

As clearly shown by the table, the highest percentage of instances is given by the
ones that are either solved or unsolved by both methods, given that these two sets rep-
resent, together, 88% of the entire test set. Now, of the remaining instances, 4/5 could
be solved by C but not by NC, meaning that, by simply counting the number of solved
instances, local-cut is 4 times better than no-local-cut. As a second evaluation, we count
the number of instances on which one method is at least 10% faster than the other, hence
we exclude all those instances on which the two approaches are roughly equivalent. It

1The Benchmark Set comprises 240 problems; the 1400 instances in our original dataset, however,
are reduced to 1155 by a data cleaning process (see Section 5.1).

38 Chapter 3. A Machine Learning Strategy for the Use of Local Cuts

C
NC

Solved Unsolved

Solved 747 107

Unsolved 28 273

Table 3.1: Number of instances according to whether they are solved by each of the two
methods.

turns out that C outperforms NC on 477 of these instances, representing 41.3% of the
entire dataset, while the opposite holds for 258 instances, constituting 22.3% of the same
set; on the remaining 36.4% of the test set, instead, the two methods perform similarly.
Finally, we compute the average running time (precisely the shifted geometric mean, de-
fined in (4.3)) of the two approaches over the entire dataset. It results that C can solve a
problem, on average, in 462 seconds, in contrast with 634 seconds of NC, meaning that
the former is 27% faster than the latter.
Hence, the results obtained by our study seem to confirm the conclusion drawn by Achter-
berg and Wunderling in the paper mentioned above [AW13]. In other words, if we had to
decide, between the two methods, which one to use in FICO Xpress by default, then we
would definitely choose the local-cut one. The interesting observation, however, is that
the instances that could be solved within the time limit only by NC, as well as the ones
on which NC is faster than C, represent a relevant percentage of the dataset. That is, if
we had an efficient strategy to detect whether the input problem is one of those problems
on which NC works better than C, hence to solve this problem by using the no-local-cut
method instead of the other, then we could solve 2.4% of instances more within the time
limit, and decrease the average running time, over the considered dataset, to 410 seconds,
hence improving the performance of the solver by 11%.

In conclusion, the entire discussion provided above leads to the following question:
given a MIP instance P , should we use local cuts while solving P?
Developing an efficient strategy to make this choice represents the central challenge of
this thesis. This is, in particular, where machine learning comes into play: given that, as
far as the author knows, a deep mathematical comprehension of this decision problem is
still missing, machine learning looks like a natural candidate to fill this gap of knowledge,
hence to take such a choice in a principled and structured way.

3.2 Machine Learning for Combinatorial Optimization

Machine Learning (ML) and Mathematical Optimization (MO) have had a long and fruit-
ful relationship. On one side, indeed, MO has always lied at the heart of ML and strongly
contributed to its success: optimization techniques are employed in ML not only in the

3.2. Machine Learning for Combinatorial Optimization 39

training process, which is formulated, in most of the cases, as an optimization problem
(see Chapter 2), but also in many other phases of the entire learning cycle, such as data
preprocessing [TGH11], hyperparameter tuning [BB12] or architecture design in deep
learning [FJ18]. A survey of common optimization techniques from a machine learning
perspective can be found in [GGNS21, SCZZ20]. On the other side, the interplay between
the two disciplines has been fertile, especially in recent years, also in the other direction,
with ML tools being used in different MO applications [DHS11, MK11, CdAMJ17]. The
Combinatorial Optimization (CO) community, in particular, has witnessed, during the
last decade, a rapid growth of interest in the use of learning techniques to improve and
complement the existing algorithms. This innovative and prolific area of research is com-
monly referred to as Machine Learning for Combinatorial Optimization, and represents
the domain to which this thesis aims to belong and to contribute.

The general idea behind this line of research consists in employing ML tools to en-
hance, or replace, all those hand-crafted heuristics on which state-of-the-art algorithms
heavily rely to make crucial decisions. In particular, in this context, two reasons essen-
tially motivate the efforts for integrating ML routines into optimization frameworks. One
case is when the available solving strategies for the decision problem are effective, but
inefficient, that is, they provide acceptable solutions but require a prohibitive computa-
tional cost. ML, in this case, can help in replacing the heavy computations with a fast
approximation. The other case is when the problem is still missing a rigorous character-
ization, that is, no mathematical knowledge of the problem is available yet. ML, in this
second case, can be exploited to produce valid policies for driving the decision process.
Now, in their paper from 2021, "Machine Learning for Combinatorial Optimization: a
Methodological Tour d’Horizon" [BLP21], Bengio, Lodi and Prouvost identify three gen-
eral paradigms to integrate ML into CO algorithms.
The first of them consists in completely bypassing the entire optimization algorithm
(Figure 3.1). Precisely, the idea is to learn an ML model directly from the instance
space to the solution space, this is why this approach is referred to as End-to-End Learn-
ing. Notable contributions, all employing deep learning techniques, have been given
to this class of methods in the context of stochastic optimization [LLB+21], semidefi-
nite programming [BLBMT18] and, especially, the Traveling Salesperson Problem (TSP)
[VFJ17, BPL+17, ER18, NVBB18, KvHW19]. In mixed-integer programming, in partic-
ular, a remarkable advancement in the use of the End-to-End Learning has been provided
recently in [NBG+20], where the authors use this paradigm to develop an ML solver ca-
pable of handling not only specific classes of MIPs, but a more diverse range of real-world
problems, such as the ones contained in MIPLIB2017 [GHG+21] and the ones coming
from several Google’s internal datasets.

A more involving integration of ML into CO frameworks consists in the so-called
Learning Properties, where the ML model is used to select, before starting the actual
solve of the input problem, a suitable configuration of the solving process, hence improv-
ing the CO algorithm rather than replacing it (Figure 3.2). The execution of complex
optimization algorithms, indeed, is controlled by a (usually very large) set of parameters

40 Chapter 3. A Machine Learning Strategy for the Use of Local Cuts

Input ML Output

Figure 3.1: The ML model completely replaces the CO algorithm.

(the ones called hyperparameters in ML), whose setup needs to be chosen carefully ac-
cording to the given problem, being it crucially responsible for the success of the solve.
For many of these parameters, however, the dependencies between the space of possi-
ble values that they can take and the space of MIP problems are not clear yet. ML,
in this context, looks like a natural candidate to fill this gap of knowledge, that is, to
detect patterns within the instance space and discover new policies to provide a better
parametrization of the solver. For example, in mixed-integer programming, ML ca be
used to estimate, beforehand, whether a Dantzig-Wolf decomposition, for a linear pro-
gram, would be able to make the solver faster [KLP17], to predict which scaling method,
again for the linear case, is the most reliable one [BH21], as well as to decide, for a
quadratic program, if the linearization procedure would be convenient [BLZ18]. Other
applications of this paradigm comprises the automatic generation of a metaheuristic in
Bipartite Boolean Quadratic Programming [KPP17], or the automatic configuration of
the search for the best algorithm in Genetic Programming [MLIDLS14]. We observe that,
in the Learning Properties paradigm, the information that the ML agent uses to take its
decision is not limited to the "static" features of the problem, such as its combinatorial
structure, but might comprise also some "dynamic" features, that is, statistics provided
by the solver itself while running on the problem, for example the decomposition statistics
used in [KLP17], or the LP information in [BLZ18].

Input ML Decision CO Output

Figure 3.2: The ML model provides a valuable piece of information to the CO algorithm.

Finally, the third paradigm to combine ML and CO can be referred to as Learning
Repeated Decisions, and consists in a full integration of the learned model into the opti-
mization framework (Figure 3.3). Precisely, in this case, the high-level optimization algo-
rithm, while running, repeatedly queries the same ML subroutine to make the same type
of decision. The ML model, in other words, is embedded into the optimization framework
to assist it along the entire process. The repetitive interaction between ML and CO makes
this paradigm particularly suitable for solving all those decision problems that usually
recur during the execution of CO algorithms, such as variable selection [LZ17, GGK+20],
cut selection [TAF20b, HWL+21], or heuristic selection [Hen18, HMW19]. The input
received by the ML agent, in this case, consists of some description of the algorithm

3.3. Learning to Use Local Cuts 41

state, which might also include the definition of the problem.

Input State

CO

Decision

ML

Output

CO
+
ML

Figure 3.3: The ML model assists the CO algorithm along the entire process.

Now, the Learning Properties paradigm, among the three described above, looks like
the most natural candidate for the goal that we aim to achieve in this thesis, that is,
developing an efficient policy to decide whether to use local cuts while solving mixed
integer programs. The idea, indeed, is to learn the mathematical relationship between
the space of MIP instances and the space of possible answers to our question, i.e., local-
cut or no-local-cut, in the hope of remedying the lack of comprehension that, to the best
of the author’s knowledge, the CO community is still suffering around this question. In
the following section, in particular, we provide a theoretical explanation of our solution
to the problem, while in the next chapter we describe the adopted methodology in detail.
To conclude this section, we clarify that the three paradigms described here represent
only general methodologies to make ML and CO work together, and they are neither
meant to be exhaustive nor disjoint, but just a natural way to look at the literature.

3.3 Learning to Use Local Cuts

The central challenge of this thesis, as discussed in Section 3.1, is to develop a policy to
decide whether, for each input MIP problem, local cuts should be used or not, hence to
employ this policy within the solving process to speed up the running time of the solver.
The software at the basis of our research and methodology is the state-of-the-art solver
FICO Xpress [Xpr].
The approach that we use to achieve our goal consists in considering generic optimiza-
tion problems as data points, hence in using machine learning techniques to inquire the
relevant distribution of problems to use for learning on our binary classification task.
In particular, a MIP instance is represented by a n-dimensional vector of features, each

42 Chapter 3. A Machine Learning Strategy for the Use of Local Cuts

one describing a particular property, or characteristic, of the problem. The domain of
possible answers to our question is S = {C,NC}, with C and NC representing, as in
Section 3.1, the local-cut method and the no-local-cut one, respectively. Our ultimate
goal is to produce a binary classifier M ∶Rn → S that, hopefully, is able to predict, for
each given problem, whether C is faster than NC or vice versa, hence to use this clas-
sifier as a subroutine of the solver. In other words, we are, evidently, in the context of
the Learning Properties paradigm (Figure 3.2), that is, we want to use an ML agent to
configure, before the actual solve, the parameter that allows to activate or deactivate the
local cutting procedure.
In particular, the ML subroutine is inserted into the workflow of the solver after the pre-
solving process and the global cutting loop, but before the first branching, as illustrated
by the flowchart in Figure 3.4. Our decision, indeed, does not need to be taken right at
the beginning of the solve, but can wait until the moment in which the search leaves the
root node and starts to explore the tree internally. This allows us to use, for our choice,
not only the problem itself, such as its combinatorial structure, but also the information
produced by the solver during all the process preceding the first branching.

Input
Presolving

&
Global Cuts

ML

Decision:
Local Cuts?

Branch
&

Bound

Branch
&

Cut

Output

No

Yes

Root Node

Figure 3.4: The ML agent is responsible for deciding, at the end of the root node, whether
the cut generator should be deactivated or not.

Hence, right before leaving the root node, the ML agent looks at the state of the
problem and makes its prediction, according to which the parameter for the local cut-
ting procedure is configured. Precisely, if the model predicts that C will be faster than

3.3. Learning to Use Local Cuts 43

NC, the solve proceeds with the branch-and-cut scheme, while in the other case, the
solve continues with the branch-and-bound one. We clarify, however, that we are only
interested in deciding whether cutting planes should be used locally or not, hence in
impacting the behavior of the solve only for this specific aspect. We rely instead on the
default configuration of Xpress for all other decisions required by the solve, hence for
the implementation of the usual subroutines that take part in the solving process, such
as presolving techniques, primal heuristics, conflict analysis, the global cutting loop as
well as the local cutting procedure, when C is chosen to be the solving method. In other
words, both the methods NC and C consist in the default run of Xpress, they only differ
from each other in the fact that, in the former, cutting planes are deactivated before the
first branching, while in the latter, the cut generator is kept activated also at internal
nodes. Precisely, all the parameters that control the local cutting procedure executed in
the C method, such as the maximum tree depth at which the cutting activity is stopped,
the types of cuts that are generated, the frequency at which cuts are added during the
search and, in general, the aggressiveness of the cutting routine (see Section 1.3.1), are
left, again, in their default configuration.

In a supervised learning framework, we train and test 3 ML models, a Linear Model
(LM), a Random Forest (RF) and a Neural Network (NN), each one providing a different
policy for our decision. The rigorous formulation of the learning problem, as well as the
methodology adopted in our approach, are described, in detail, in the following chapter.

44

Chapter 4

Methodological Approach

In this chapter, we provide a detailed description of the methodological approach that
we adopt to answer the question stated in Chapter 3. In particular, we subdivide our
approach into 4 steps. In the first two phases, we design the features and define the
labels, hence we frame our decision problem as a supervised learning task (see Chapter
2). In the following two steps, instead, we describe the process that we run to construct a
suitable dataset for our ML application, hence we explain how, on this set, we develop and
evaluate our solution to the problem. The proposed methodology can be implemented
for any MIP solver S (assuming that it supports both the C and the NC configuration)
and any problem set P ⊆ P, where P denotes the space of all MIP problems. Note
that, although in this thesis we make use of different solvers and problem sets, most of
our computational study is developed by using the Benchmark Set from MIPLIB 2017
[GHG+21], denoted as Miplib17, and FICO Xpress 8.9, denoted as Xpr8.9, hence we
consider this setting as our default one.

4.1 Feature Design

Features, in machine learning, are independent variables providing a representation of
the input instance that is fed into the ML model. In other words, they constitute the
information which the model looks at to make its prediction (see Section 2.1).

The objects that we need to represent, in our case, are mixed-integer programs. To
this aim, for the given solver S, we describe a problem p ∈ P, both in its mathematical
formulation and in its computational behavior, by means of 32 features x1, . . . , x32, that
should condense the relevant pieces of information leading to an algorithmic discrimina-
tion between C and NC. The resulting feature space is denoted by FS ⊆ R32, and the
feature vector of p by xpS ∈ FS.
A comprehensive description of our feature space FS, together with the definition of each
individual feature, is provided in Table 4.1, where we adopt the following notation. Given
a MIP problem p ∈ P, we denote by m the number of its rows and by n the number of its
columns, hence by A ∈ Rm×n, b ∈ Rm and c ∈ Rn its constraint matrix, right-hand side

45

46 Chapter 4. Methodological Approach

vector and objective vector, respectively. Moreover, we denote by A′ the set of absolute
values of the non-zero entries of the matrix A, and similarly for the vectors b and c.
Precisely,

A
′
= {∣Ai,j∣ s.t. Ai,j ≠ 0}(i,j)∈[m]×[n],

b
′
= {∣bi∣ s.t. bi ≠ 0}i∈[m],

c
′
= {∣cj∣ s.t. cj ≠ 0}j∈[n].

The number of remaining rows and columns after the presolving process, instead, are
denoted by m̃ and ñ, respectively. Finally, we consider the following objective values at
the root node: the objective value at the initial relaxation (Initial Bound), at the end of
the cutting loop (Dual Bound) and at the incumbent (Primal Bound), if already avail-
able, and we indicate them as α, β, and γ, respectively. In particular, to better describe
FS, we define a double categorization of the features adopted. Firstly, we classify each of
them as either Static or Dynamic: the former represent the problem in its mathematical
formulation and combinatorial structure, hence they are completely solver-independent,
the latter, instead, describe the computational properties of the problem, hence they are
clearly solver-dependent. Moreover, we divide the static features into 4 groups, corre-
sponding to different components of the problem formulation, such as Basic, Variables,
Constraints and Numerics. More precisely, the first group provides some basic statistics
about the problem, such as the size and the sparsity of its matrix, as well as the pres-
ence of eventual symmetries. The second and third group, instead, describe the variable
composition and the constraint composition of the problem, respectively, hence provide
a representation of its combinatorial structure. For the definition of each constraint class
listed in Table 4.1, we refer to the MIPLIB 2017 website [Mip]. Finally, the last group
of static features describes the order of magnitude of the problem data in the constraint
matrix, right-hand side vector and objective vector. The dynamic features, instead, are
split into 2 groups, corresponding to the different stages of the problem solve, that is,
Preprocessing and Global_Cuts, in which the solve is not yet affected by our decision.
Precisely, the former group describes the effect of the presolver on the problem, by pro-
viding some basic information about the presolved matrix, while the latter quantifies the
impact of the global cutting loop, by measuring the gaps at the root node among the
different objective values, as well as the gap closure, a commonly used metric to evaluate
the effectiveness of cutting planes.

To conclude this section, we observe that all features defined in Table 4.1 are contin-
uous variables, except the one that describes the symmetries of the problem, x23, which
is instead a binary variable. Moreover, we clarify that, for our learning experiments,
we might not use the precise feature values as they are defined in Table 4.1, since we
might need to rescale and normalize them across the particular dataset adopted. This is
a common practice and a necessary step in every machine learning application, generally
performed during the data preprocessing phase. A description of the transformations
that we use to preprocess our data is provided in Section 5.1.

4.1. Feature Design 47

Fe
at
u
re

D
efi

n
it
io
n

F
ea
tu
re

D
efi

n
it
io
n

∼
B
as
ic
∼

x
1

Ro
ws

ln
(m

)
x

3
No

nZ
er

os
ra
ti
o
of

no
n-
ze
ro
s,

ov
er

m
at
ri
x
si
ze
m
×
n

x
2

Co
lu

mn
s

ln
(n

)
x

4
Sy

mm
et

ri
es

1
if
an

y
si
m
m
et
ry
,0

ot
he
rw

is
e

∼
V
ar
ia
bl
es
∼

x
5

Bi
na

ri
es

ra
ti
o
of

bi
na

ry
va
ri
ab

le
s,

ov
er
n

x
6

In
te

ge
rs

ra
ti
o
of

in
te
ge
r
va
ri
ab

le
s,

ov
er
n

∼
C
on

st
ra
in
ts
∼

x
7

Le
ss

Th
an

_C
on

st

R
at
io

of
co
ns
tr
ai
nt
s
pe

r
co
ns
tr
ai
nt

ty
pe

,o
ve
r
m

x
1
5

Kn
ap

sa
ck

_C
on

st

R
at
io

of
co
ns
tr
ai
nt
s
pe

r
co
ns
tr
ai
nt

ty
pe

,o
ve
r
m

x
8

Gr
ea

te
rT

ha
n_

Co
ns

t
x

1
6

Kn
ap

sa
ck

In
te

ge
r_

Co
ns

t

x
9

Eq
ua

li
ty

_C
on

st
x

1
7

Bi
na

ry
Pa

ck
in

g_
Co

ns
t

x
1
0

Se
tP

ar
ti

ti
on

in
g_

Co
ns

t
x

1
8

Va
ri

ab
le

Lo
we

rB
ou

nd
_C

on
st

x
1
1

Se
tP

ac
ki

ng
_C

on
st

x
1
9

Va
ri

ab
le

Up
pe

rB
ou

nd
_C

on
st

x
1
2

Se
tC

ov
er

in
g_

Co
ns

t
x

2
0

Mi
xe

dB
in

ar
y_

Co
ns

t

x
1
3

Ca
rd

in
al

it
y_

Co
ns

t
x

2
1

Mi
xe

dI
nt

eg
er

_C
on

st

x
1
4

Kn
ap

sa
ck

Eq
ua

li
ty

_C
on

st
x

2
2

Co
nt

in
uo

us
_C

on
st

∼
N
um

er
ic
s
∼

x
2
3

Co
ef

fi
ci

en
t_

Oo
m

ln
(m

ax
A
′ /

m
in
A
′)

x
2
5

Ob
je

ct
iv

e_
Oo

m
ln
(m

a
x
c′
/m

in
c′
)

Static

x
2
4

Ri
gh

tH
an

dS
id

e_
Oo

m
ln
(m

ax
b′
/m

in
b′
)

∼
P
re
so
lv
in
g
∼

x
2
6

Pr
es

ol
Ro

ws
ln
(m̃

)
x

2
8

Pr
es

ol
In

te
ge

rs
ra
ti
o
of

pr
es
ol
ve
d
in
te
ge
r
va
ri
ab

le
s,

ov
er
n

x
2
7

Pr
es

ol
Co

lu
mn

s
ln
(ñ

)
∼

G
lo
ba
lC
ut
s
∼

x
2
9

Du
al

In
it

ia
l_

Ga
p

∣β
−
α
∣/

m
ax

(∣
β
∣,
∣α

∣,
∣β
−
α
∣)

x
3
1

Pr
im

al
In

it
ia

l_
Ga

p
∣γ
−
α
∣/

m
a
x
(∣
γ
∣,
∣α

∣,
∣γ
−
α
∣)

Dynamic

x
3
0

Pr
im

al
Du

al
_G

ap
∣γ
−
β
∣/

m
ax

(∣
γ
∣,
∣β

∣,
∣γ
−
β
∣)

x
3
2

Ga
p_

Cl
os

ur
e

1
−
x

2
9
/x

3
1

T
ab

le
4.
1:

A
pr
os
pe

ct
of

th
e
fe
at
ur
e
sp
ac
e
F
S

48 Chapter 4. Methodological Approach

4.2 Label Definition

Labels, in supervised machine learning, are the target values that the ML model, by
looking at the features of the input problems, tries to predict. They provide, during the
training phase, the pieces of information necessary to supervise the learning model, hence
to correct its behavior and to drive it towards an acceptable performance (see Chapter 2).

In our case, the labels should communicate to the learner which one of the two
methods, between C and NC, is the more efficient one, for all MIP instances in our
dataset. Now, even though our final model should work as a binary classifier, we actually
train it as a regressor, hence we design our output space as a continuous set, rather than
a binary one.
For a MIP problem p ∈ P and a MIP solver S, there are different pieces of information
that we could use to quantify the performance of S in solving p with the two configurations
C and NC, such as the number of tree nodes explored or the peak amount of memory
consumed, the time to optimality or the primal-dual integral [Ber13]. However, through
our model, we are mostly interested in improving the solver in terms of running time; this
is why, in defining the labels that supervise the training process, we take into account
solely the time to optimality, while we use the other measurements in the testing phase,
in order to compare the produced models in terms of different metrics, hence to evaluate
them more exhaustively. Precisely, we define the labels as follows.

Definition 4.1. Given a solver S and a problem p ∈ P, let Timeφ(p) be the running
time of S while solving p with configuration φ ∈ {C,NC}.
We define the label of p, and we denote it by ypS, as the speedup factor between TimeC(p)
and TimeNC(p), rescaled by means of the logarithmic function log2. Precisely,

y
p
S = Speedup(p) = log2 (

TimeC(p) + 1

TimeNC(p) + 1
) ∈ R.

Note that the runtimes of the two methods are both augmented by 1, to mitigate the impact
of very small numbers, as well as to prevent the division by zero. We observe that the
speedup is negative when C is faster than NC, that is, when TC < TNC, it is positive
otherwise; when the speedup is 0 (or close to 0), then the two methods are equivalent (or
roughly equivalent).

Figure 4.1 depicts the distribution of the speedup factors, for our default solver Xpr8.9
1, over our default problem set Miplib17∗ (that will be defined in Section 4.3). The two-
color gradient scale, used to fill the histogram, reflects the continuous speedup values
over the instances of our dataset, with the nuances of red and blue indicating C and NC,
respectively. In other words, the colors of the bins varies continuously, from left to right,
between plain red, representing those instances where C is substantially better than NC,
to plain blue, corresponding to the opposite situation. Around 0, instead, the bins are

1Each solve is executed up to a time limit T = 7200s, within the computational environment described
in Section 5.1

4.2. Label Definition 49

filled with the tone of green that derives from the interpolation between the C- and the
NC-color, hence indicating that, on those instances, the competition between the two
methods results in a tie.

0

50

100

150

200

250

300

350

400

450

500

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
Speedup Factor

In

st
an

ce
s

Cut

Tie

Not Cut

Figure 4.1: distribution of the speedup factors over Miplib17∗, computed with Xpr8.9
and colored continuously according to the speedup value.

Figure 4.2, instead, displays the runtime of C and NC plotted against each other. In
other words, the points of the scatter plot correspond to the pairs (TimeC(ps),TimeNC(ps)),
obtained by running Xpr8.9 1 over each instance ps ∈ Miplib17∗ (that will be defined
in Section 4.3). Again, the color of the points reflects the relative performance of the
two methods, hence it varies continuously, from the upper-left corner of the plot to the
lower-right one, between plain red, representing those instances on which C and NC reach
their minimum and maximum runtime, respectively, and plain blue, corresponding to the
opposite situation. Along the diagonal y = x, instead, the color of the points results from
the interpolation of the two colors at the extremes, indicating that, on these points, the
two methods perform similarly.

Now, with the features designed in Section 4.1, and the labels defined in this section,
we can formulate our decision problem as a regression problem, where the task is to
produce, for a solver S, a model

MS∶FS⟶ R, (4.1)

that for each input vector xpS approximates the speedup factor ypS between the two runs,

50 Chapter 4. Methodological Approach

0

900

1800

2700

3600

4500

5400

6300

7200

0 900 1800 2700 3600 4500 5400 6300 7200
Time Cut

T
im

e
N

ot
 C

ut

Cut

Tie

Not Cut

Figure 4.2: instance-by-instance comparison between the runtimes of the two methods
overMiplib17∗, computed with Xpr8.9 and colored continuously according to the speedup
value.

C and NC, of the solver S over p ∈ P, that is,

M(xpS) ≈ y
p
S.

In conclusion of this section, we observe that, in preliminary phases of our study,
we also considered different ML formulations for our decision problem, other than the
one described here. In particular, we substituted the speedup factor of the running time
with the speedup factor of the primal-dual integral, as well as we learned the classes C
and NC directly, hence switching from a regression framework to a classification one. In
particular, the results obtained from the latter approach turned out to be particularly
relevant, this is why we decided to report them in Section 5.4. However, the best results
could be observed by using the labels and the problem formulation illustrated in this
section; this is why, in this thesis, we consider this methodology as the default one.

4.3 Data Collection

Data represents the foundation of machine learning and the primary resource consumed
by any learning algorithm. This is why data collection, i.e., the process of gathering
meaningful information for the learning goals, represents a building block of any ML ap-
plication. In what follows, we illustrate the procedure that we use to gather the raw data,

4.3. Data Collection 51

on which applying our methodology and conducting our computational experiments.

Precisely, for the given solver S and problem set P, the procedure of gathering such
data can be described as follows. Firstly, we apply 6 random permutations to the el-
ements of P, each one associated to a seed s = 0, . . . , 5 (with 0 corresponding to the
identity permutation), in order to enlarge and diversify our ground set of problems. We
denote the expanded set by P∗, and each of its elements by ps, which we refer to as an
instance of our problem set, where p ∈ P and s = 0, . . . , 5. Note that the 6 instances pro-
duced from p, p0, . . . , p5, although mathematically equivalent, can have a very different
computational behavior, as shown in [LT14]. Then, from each instance ps, we extract all
necessary data that we need to conduct our research. In particular, we start by collect-
ing, from ps, the solver-independent information that we use to describe the formulation
of the problem and its mathematical properties, necessary for computing the static fea-
tures. Then, we run the solver S over ps twice, once with the local-cut configuration
C, the other with the no-local-cut one NC. From these runs, in particular, we retain
the relevant data, this time solver-dependent, that we use to describe the computational
behavior of the problem at the root node, where the solve is not yet influenced by our
choice, necessary for the dynamic features, as well as to describe the amount of resources
consumed by each of the two approaches C and NC, that we need for computing the
labels and evaluating the learners .

Now, from the collected raw information, we compute the features and the labels for
each instance ps in our test bed P∗, as described in Sections 4.1 and 4.2, respectively,
hence we construct the set of features-label observations:

D (S,P) = {(xpsS , y
ps
S) ∶ ps ∈ P∗} ⊆ FS× R,

that we use as the ground dataset for the development of our data-driven approach. Note
that, to simplify the notation, in the remaining of this chapter we refer to the dataset
D (S,P) simply as D, and to the individual instances (xpsS , y

ps
S) simply as (xps , xps).

4.3.1 Data Split

As usual in machine learning, we do not use the entire dataset D for the training process,
but from it, we detach a subset of data that we use, in the testing phase, to evaluate
the generalization capabilities of the learned models (see Chapter 2). In our case, in
designing a valid split criterion for D, we take into account the particular structure of
our ground problem set P∗. In particular, we use the permuted problems of P (seeds
s = 1, . . . , 5) for the train set, while for the test set we use the original ones (seed s = 0).
Precisely, let

P∗train = {ps ∈ P∗ ∶ s = 1, . . . , 5} and P∗test = {ps ∈ P∗ ∶ s = 0}

be the set of train instances and test instances, respectively. Then, we define

Dtrain = {(xps , yps) ∶ ps ∈ P∗train} and Dtest = {(xps , yps) ∶ ps ∈ P∗test},

52 Chapter 4. Methodological Approach

as our train set and test set, corresponding to roughly 83% and 17% of the dataset D,
respectively. Figure 4.3 represents, again, the scatter plot of the pairs of runtimes of the
two competitors, computed with Xpr8.9 2 over Miplib17∗; this time, however, the points
are colored by membership: in yellow the instances in Dtest, in green the ones in Dtrain.
We observe that, in preliminary experiments, we considered also different criteria for
splitting our dataset; among the others, however, we found out that the data split de-
scribed here is the one that guarantees the best results.

0

900

1800

2700

3600

4500

5400

6300

7200

0 900 1800 2700 3600 4500 5400 6300 7200
Time Cut

T
im

e
N

ot
 C

ut

Test

Train

Figure 4.3: an instance-by-instance comparison between the runtimes of the two methods
over Miplib17∗, computed with Xpr8.9 and colored categorically according to the set
membership.

4.4 Training & Testing

Model training is the core step of any machine learning application, and corresponds to
the phase in which the actual model is built up from the available data. Model testing,
instead, is the stage that immediately follows the training, and consists in evaluating the
learned model on previously unknown data, in order to assess its generalization abilities,
hence to check if it is ready to perform the desired task.

2 Each solve is executed up to a time limit T = 7200s, within the computational environment described
in Section 5.1

4.4. Training & Testing 53

The model that we want to build is the predictor defined in (4.1). To this aim, we
consider 3 machine learning models, a linear model (LM), a random forest (RF) and a
neural network (NN), hence we train and test them over our dataset D as follows.

4.4.1 Training Methods

We perform the training of our models in the R programming language [R C13], where
we encode our train set into an R data frame, with rows given by the entries of the set,
while columns corresponding to the feature and label variables x1, . . . , x32, y. Within the
R environment, in particular, we call this set train.set, and we specify the role of the
variables, in the learning process, by defining a formula f through the following line of
code:

f← y ∼ x1+ . . . +x32.

Hence, we train our models as follows.

Linear Model: to train LM, we use the function train, provided by the add-on package
caret [Kuh20], called with the parameter method set to "lm". Precisely, we perform the
training by running the following code snippet:

LM← train(f, data = train.set, method = "lm").

Random Forest: similarly, we train RF by means of the caret function train, this time
by setting the parameter method to "rf". In this case, however, we also run a model
validation process, in order to select a suitable number of decision trees to employ within
the ensemble (see Section 2.3.2). Precisely, to tune this model’s hyperparameter, we use
the trainControl tool, again provided by caret, with method set to "cv" and number
to 5, in order to perform, over the train set, a 5-fold cross-validation with randomly
generated folds (see Section 2.1.3). In other words, we learn RF by executing the following
code snippet:

train.control← trainControl(method = "cv", number = 5)

RF← train(f, data = train.set, method = "rf",

trControl = train.control).

The code above produces a random forest with 500 decision trees, which is the value
selected by the model validation process for this hyperparameter.
Neural Network: for training NN, instead, we use the neuralnet function from the
add-on package neuralnet [FGW19]. In particular, we train a neural network with a
single hidden layer and 10 hidden units (see 2.4), and as stopping criteria for its training
process, we set the function parameters stepmax to 1e7 and threshold to 0.2, where
stepmax represents the maximum number of iterations of the learning algorithm, while
threshold provides a threshold for the partial derivatives of the error function. Precisely,
we train NN by running the following code:

NN← neuralnet(f, data = train.set, hidden = c(10),

stepmax = 1e7, threshold = 0.2).

54 Chapter 4. Methodological Approach

4.4.2 Testing Methods

Once that our models are trained from the data, they are ready to be tested, so that
their quality can be evaluated. Now, from a machine learning perspective, one way
to assess the performance of a learner, over a given observation (x, y), is to measure
the squared error between the observed label y and the predicted label M(x), that is,
(M(x)− y)2. The performance of the model can be then averaged over a certain test set
T by computing the Mean Squared Error (MSE), in order to test the model on multiple
instances, hence to obtain a more robust evaluation of its quality.

Definition 4.2. Given a ML model M and a test set of observations T , we define the
Mean Squared Error of M over T as

MSE(M) = 1

∣T ∣ ∑
(x,y)∈T

(M(x) − y)2
.

From an optimization point of view, however, we are mostly interested in quantifying
the effectiveness of our model when this is deployed in practical MIP solving. This is
why, in the testing phase, other than considering the standard ML metrics, we also,
and especially, rely on those metrics that are commonly used to evaluate optimization
algorithms, such as the running time (Time) and the primal-dual integral (PDI) [Ber13],
the peak memory usage (Memory) and the number of explored nodes (Nodes), In order
to capture the quality of the learner from the solver perspective, however, we firstly need
to involve it, as a heuristic, in the solving process. To this aim, we need to convert
the trained regressor, which predicts the relative performance between C and NC, into
a binary classifier, in order to make it able to directly discriminate between the two
methods. Hence, we fix a threshold τ ∈ R for the predicted speedup factor, and we
use it as a switch between the two methods. Precisely, given a problem p ∈ P, the
method for solving p is chosen, according to the predicted speedup factor M(xp), as
follows: if M(xp) ≤ τ , we solve p with the local-cut configuration C, otherwise, we use
the no-local-cut one NC, where xp is the feature vector representing p (Figure 4.4).

x M

C

NC

M(x) ≤ τ

M(x) > τ

Figure 4.4: The decision process for the feature vector x.

Now, let Prφ(p) be the performance of the solver while running over the problem p
with strategy φ ∈ {C,NC}, where Pr is any of the optimization metrics mentioned above,
i.e., Pr ∈ {Time,PDI ,Memory ,Nodes}. Then, the performance of the ML strategy M
over the problem p is

PrM(p) = {PrC(p), if M(xp) ≤ τ
PrNC(p), if M(xp) > τ,

4.4. Training & Testing 55

where xp is the feature vector representing p, while τ is the threshold chosen for discrim-
inating the two methods.
When the model is evaluated in terms of optimization metrics, we average its performance
over multiple instances by using the Shifted Geometric Mean (Shm).

Definition 4.3. Given a strategy φ, a test set of MIP problems T ⊂ P and a performance
metric Pr ∈ {Time,PDI ,Nodes,Memory}, we define the Shifted Geometric Mean of φ
over T , with metric Pr, as

ShmPr(φ) =
⎛
⎜
⎝
∏
p∈T

(Prφ(p) + S)
⎞
⎟
⎠

1
∣T ∣

− S,

while S is a hyperparameter called shift, whose value is set according to the chosen metric
Pr.

Within the optimization community, in particular, the Shm is a widely used evalu-
ation method to assess the performance of any optimization solver over a collection of
problems. The reason that motivates the use of the Shm consists in its insensitivity to
both very large and very small outliers, which turns out to be particularly advantageous
when averaging widely spread-out values, as the performance measurements of an opti-
mization solver over a given test set usually are.

We conclude this section by observing that all the metrics defined above will be used,
in various places, while reporting the results of our computational experiments. However,
since the central goal of this thesis is to improve the running time of the solver, we will
evaluate our strategies mostly in terms of running time over the individual instances, and
in terms of shifted geometric mean of the running times over multiple instances. Hence,
we consider this evaluation method as our default one.

56

Chapter 5

Computational Experiments

In this chapter, we present the most significant experiments conducted during our com-
putational study. In particular, in Section 5.1, we specify the computational environment
in which we run our data collection process (see Section 4.3), hence we describe the pre-
processing steps that we execute to obtain a suitable dataset for our experiments. Then,
we start the presentation of our study by discussing, in Section 5.2, the quality of the
learned models in terms of several heterogeneous metrics, both from a machine learning
and from an optimization perspective, hence we illustrate a first, general and compre-
hensive evaluation of our approach. In Section 5.3, instead, we focus on the runtime of
the solver, by providing a closer assessment of the impact that our decision has on the
solving process. In Section 5.4, we describe and evaluate the most significant one among
the alternative methodologies that we attempted, during the preliminary phases of our
research, to formulate and solve our decision problem, namely, classification. In partic-
ular, we show of the superiority of the regression formulation over the classification one,
hence we justify our choice of using the former as our default approach. In Section 5.5,
instead, we describe our feature selection process, in which we investigate the predicting
power of our features with respect to the output variable. Finally, in Section 5.6, we test
the robustness of our method with respect to the underlying solver, that is, we repeat
the evaluation of our heuristic solution by using different releases of the FICO Xpress
software.

5.1 Computational Setup & Data Preprocessing

In Section 4.3, we show how to generate, for a given MIP solver S and MIP problem set
P, a dataset D (S,P) of features-label observations (xpsS , y

ps
S), with ps ∈ P∗, while in

Section 4.4, we describe how to apply, on this set, our training and testing methods for
the development and the evaluation of our heuristics.
In particular, for the offline computational study presented in this chapter, we use two
datasets, D (Xpr8.9,Miplib17) and D (Xpr8.11,Miplib17), constructed from the Bench-
mark Set from MIPLIB 2017 [GHG+21], denoted as Miplib17, using two different releases
of FICO Xpress: our default one Xpress 8.9, denoted as Xpr8.9, and the more recent

57

58 Chapter 5. Computational Experiments

one Xpress 8.11, denoted as Xpr8.11. During the data collection process, in particular,
each run is executed, for both solvers, on a 2x Intel E5-2640 v4 CPU @ 2.4Ghz with 20
cores, equipped with 32 GB RAM and running a Red Hat Linux 9 as operating system,
and with a fixed time limit of two hours, T = 7200s, after that the run is stopped and
the best solution found so far is returned.
Now, before splitting the two sets as described in Section 4.3.1, hence conducting the
experiments presented in this chapter, we perform a data preprocessing phase, in order
to prepare the two datasets for our computational study. Precisely, our data preprocess
consists of the following steps.

Sanity Check. First of all, we check the correctness and consistency of our data,
hence we generate, for each of the two datasets, two different versions, according to
the two different criteria adopted for designing the features in the groups Variables and
Constraints (see Table 4.1). Precisely, in one case, we compute these features by using, in
terms of comparable statistics, an inclusive criterion: each binary variable is also counted
as an integer one, i.e. Binaries ≤ Integers, any set partitioning constraint is also
counted as a cardinality one, i.e. SetPartitioning_Const ≤ Cardinality_Const, any
set packing constraint is also counted as a binary packing one, i.e. SetPacking_Const ≤
BinaryPacking_Const, and so on and so forth. Vice versa, in the other case we use a
disjunctive criterion, which instead produces an exclusive relation between comparable
classes of statistics. The experiments presented in this chapter are conducted on the
inclusive version of our datasets; note that, however, the obtained results are nearly
invariant under switches between the two versions, that is, the same conclusions can be
drawn if our experiments are conducted by using the other version.
Data Cleaning. In the second phase of our preprocess, we execute a data cleaning
procedure, during which we filter out all the observations that do not provide relevant
information to our study. Precisely, from each of the two datasets, we exclude the record
(xpsS , y

ps
S) of ps ∈ Miplib17∗ if:

• the solver S, in at least one of the two configurations, C or NC, runs out of memory
while solving ps;

• the solver S, regardless of the two configurations, C and NC, solves ps already at
the root node, before entering the search tree;

• the optimal objective value of the first relaxation of ps, due to numerical inaccuracy,
differs between the two runs of S, C and NC.

Feature Scaling. In Section 4.1, we describe the 32 features used to represent each
MIP problem. Before starting our learning experiments, however, we need to re-scale,
for each solver S, some of these features, in order to normalize, across each of the two
datasets, the magnitudes and ranges of values of all independent variables, hence to
make sure that none of them intrinsically dominates over the others. This is a common
practice in machine learning and, in our case, it is particularly necessary for the success
of the training algorithms of the linear model and the neural network. Precisely, for each

5.1. Computational Setup & Data Preprocessing 59

feature

f ∈ {Rows, Columns, PresolRows, PresolColumns,
Coefficient_Oom, RightHandSide_Oom, Objective_Oom},

and for each instance ps ∈ Miplib17∗, we replace fpsS , in the feature vector xpsS , with the
transformed value

Transform(fpsS) =
f
ps
S −minFS

maxFS−minF S
,

where FS = {f qtS ∣ qt ∈ Miplib17∗}. Note that, in this way, we have all features ranging
within the interval [0, 1], except the feature Symmetries, which is instead a binary one
(see Table 4.1).

Now, Xpr8.9 is the only solver that we use for the first 4 experiments of this chap-
ter (Sections 5.2 to 5.5), while Xpr8.9 and Xpr8.11 are used, together, only in the last
experiment (Section 5.6), in which we compare the quality of our approach between the
two solvers. Consequently, we denote as D the dataset on which we conduct the first 4
experiments, and as D8.9 and D8.11 the datasets on which we conduct the last experi-
ment. More precisely, D consists of the preprocessed observations of D (Xpr8.9,Miplib17)
corresponding to the instances that survived solely the data cleaning process of Xpr8.9,
while D8.9 and D8.11 consist of the preprocessed observations of D (Xpr8.9,Miplib17)
and D (Xpr8.11,Miplib17), respectively, that survived the data cleaning processes of
both Xpr8.9 and Xpr8.11. In this experiment indeed, in order to obtain correct and
non-misleading results, we need to make sure that the ground set of instances is con-
sistent between the two datasets. Precisely, the instances in the test bed of D and the
ones in the test bed of both D8.9 and D8.11 are listed in Table A.1 and Table A.2 in the
appendix, respectively.

To conclude this section, we list few further details to complete the introduction of
the computational study presented in this chapter:

• in order to mitigate the impact of the randomness affecting the algorithms that
we use for training RF and NN (the training process of LM is deterministic) and
to produce more accurate results, we repeat each of the experiments presented in
this chapter for 10 random seeds, hence we aggregate the results over the different
repetitions;

• as competitors against the learned models, we consider the following two strategies:
Always_Cut, which chooses the method C for all input problems, and Never_Cut,
which, conversely, always chooses the method NC. Moreover, we also take into
account the best possible strategy, denoted by Oracle and corresponding to the
one that always selects the optimal method between C and NC, hence representing
the best that we can achieve.

60 Chapter 5. Computational Experiments

5.2 Baseline Evaluation

In this section we present some baseline learning experiments, designed to provide a gen-
eral and extensive evaluation of our approach. More precisely, we train our three models,
LM, RF and NN, on the train set Dtrain, hence we evaluate them, by means of different
evaluation methods, on both the test set Dtest, to obtain an unbiased estimation of their
generalization capabilities, and on the train set Dtrain, to check any occurrence of over-
fitting.

First of all, we assess the quality of our approach from a machine learning perspective,
hence we evaluate the learned models in terms of a commonly used "machine learning
metric", namely, the mean squared error (MSE) (Definition 4.2). The results of this
evaluation are displayed in the bar plot in Figure 5.1.

2.09

0.69 0.74

2.11

0.98

1.34

0.0

0.5

1.0

1.5

2.0

LM RF NN

Train Test

MSE

Figure 5.1: the mean squared error of our learners, computed over both the train set
Dtrain and the test set Dtest.

A first consideration that we can make is that, among the three models, RF is clearly
the most performant one, being it better than NN and LM by roughly 7% and 67% on the
train set, and by roughly 27% and 53% on the test set, respectively. Moreover, in all
models, we can observe a performance degradation from Dtrain to Dtest. As we know,
however, this is a typical and expected ML phenomenon, and depends on the fact that
the instances in Dtest are completely unknown to the learners, unlike the ones in Dtrain

which, instead, have already been seen during the training phase. More precisely, the
gap between the train and test error is more evident in the random forest and, especially,
in the neural network, for which it can be interpreted as an indication for overfitting.
In the linear model, conversely, the rise in the prediction error, from Dtrain to Dtest, is
almost irrelevant; we note however that, for this model, the MSE is particularly high,
in comparison with the other two models, on both evaluation sets, meaning that, rather
than overfitting, LM is clearly underfitting the training data, that is, the linear model is
neither able to fit the test set nor the train set.

5.2. Baseline Evaluation 61

Now, as discussed in Section 4.4.2, other than measuring the average error that our
models make when predicting the speedup factor, we are particularly interested in assess-
ing their efficiency when they are directly employed in practical MIP solving, that is, in
quantifying the contribution that they provide to the average performance of the solver.
To this aim, we now test the learned strategies in terms of some common "optimization
metrics", such as the running time (in seconds, up to T = 7200s) and the primal-dual
integral [Ber13], the number of branch-and-bound nodes and the peak memory usage (in
kilobytes), namely, Time, PDI, Nodes and Memory, respectively. In Table 5.1 we re-
port the results achieved by our models, our competitors and the best possible strategy,
for each metric and on each set. Precisely, in the cases of Time and PDI, we compute
the Shm with shift set at 10 over the entire train and test set; in the cases of Nodes
and Memory, instead, we compute the Shm with shift set at 1000, and only over those
instances that are solved within the time limit by all competing strategies, in order to
avoid incorrect and misleading results 1. Finally, in the last two columns of the table,
we report the improvement provided by the best of our models to the performance of
the solver (Imp), in comparison with the better of the two competitors, as well as the
reduction provided by this model to the performance gap between this competitor and
the perfect oracle (Gap). For each row, in particular, the numerical results, shown for
the improvement and for the gap reduction, are highlighted in green or red, according
to whether the better between our competitors, in red, is beated by the best among our
strategies, in green.

By looking at Table 5.1, we can immediately observe that Always_Cut, between our
two competitors, is certainly the more performant one, being it, on both sets, better than
the other by roughly 27% in Time and 15% in PDI, and by almost 47% in Nodes and
7% in Memory, hence confirming the results obtained with CPLEX 12.5 by Achterberg
and Wunderling ([AW13]), as well as the ones obtained with Xpress 8.9 by the author
of this thesis, both discussed in Section 3.1 and both leading to the same conclusion: at
least for modern solvers, the local-cut method C, on average, dominates the no-local-cut
one NC. In other words, if Always_Cut and Never_Cut were the only available strategies
to take the C/NC decision, then we would definitely choose the former. However, by
looking at the results scored by our models, and in particular at the ones achieved by RF
and NN, we can immediately realize that a better choice is actually possible.

In terms of Time, when compared against Always_Cut, the random forest provides a
speedup of roughly 8.5% on the train set and of 3.3% on the test set, hence reducing the
gap, between the runtime of our main competitor and the best achievable one, by 3/4 and
1/3 on the two sets, respectively. A similar behavior can be observed in NN, although this
model is slightly less performant than RF. In contrast, LM can not provide a significant
contribution to the running time of the solver; it shows, indeed, results very similar to

1Let nA and nB, with nB < nA, be the number of nodes explored by solvers A and B while running
over a certain problem P , respectively. Now, suppose that, on this problem, A could achieve optimality
while B ran out of time; then, in this case, comparing the two solvers over P , in terms of Nodes, would
be misleading, since B would be declared the winner, even though A, over P , actually performed better.

62 Chapter 5. Computational Experiments

Set Metric LM RF NN Always_Cut Never_Cut Oracle Imp (%) Gap (%)

Time 464.51 427.91 433.38 467.92 642.56 414.75 -8.55 -75.25

PDI 84.67 79.50 80.87 84.39 99.62 76.21 -5.79 -59.78

Nodes 23150 22363 23148 22694 43554 20363 -1.46 -14.2

∼
T
ra
in

Se
t
∼

Memory 1131764 1103129 1092546 1152738 1246085 1008815 -5.22 -41.82

Time 442.42 420.09 420.83 434.61 593.21 384.72 -3.34 -29.10

PDI 81.44 78.13 78.72 79.26 93.66 72.03 -1.43 -15.63

Nodes 20685 21243 21303 19903 37813 17920 +3.93 +39.44

∼
T
es
t
Se

t
∼

Memory 1081879 1037462 1057593 1086532 1157677 943191 -4.52 -34.23

Table 5.1: the performance of the competing strategies, measured in terms of different
optimization metrics and aggregated by means of the Shm over both sets, together with
the contribution provided to the solver by our models.

the Always_Cut’s ones, meaning that this model is not really able to distinguish those
instances on which the NC approach might work better than the other, but rather it is
very prone to select C in the majority of cases.
Similar considerations can be made by looking at the PDI, even though, in this case, the
contribution provided to the solver is less significant than the one observed in Time.
In contrast, the results obtained in terms of Nodes seem to contradict the ones observed
in the two metrics previously discussed. Indeed, with an improvement of less than 1.5%
and a gap reduction of less 15%, the Nodes performance of our solver is, on Dtrain, al-
most unaffected by the use of our models, while it is even weakened by them on Dtest,
where we can observe a 4% degradation and a 40% gap increment in the average node
consumption. This tendency, however, is explainable by the following fact: the use of
cutting planes, as discussed in Section 3.1, has the main advantage of improving the dual
bound, hence to increase the chances of pruning, consequently to reduce the number of
explored nodes. This is why, when measured in terms of Nodes, the Always_Cut strat-
egy, which always chooses, by definition, the local-cut approach C, tends to dominate
its competitors. Moreover, this explains also why, in terms of Nodes, the weakest of our
models, LM, is very close to the other two on the train set, while it is even better than
them on the test set. As already mentioned, indeed, the linear model tends to imitate
Always_Cut, hence, as a consequence, it shows a more competitive performance when
evaluated in terms of Nodes.
Nevertheless, the degradation in the average Nodes performance of the solver, caused
by the introduction of our models, is not reflected in the average amount of memory
consumed during the solve. If we compare the competing strategies in terms of Memory,
indeed, we can confirm the trend that emerged for Time and PDI, that is, the learned
policies evidently contribute to the quality of the solver, with RF, in particular, providing
an improvement of around 5% and a gap reduction of more than 1/3 on both sets.

5.2. Baseline Evaluation 63

A last, yet very interesting consideration, can be made by looking at the change in the
performance of the learned models from the train set to the test set. Indeed, we can
clearly observe that, if our strategies are tested directly in the context of practical MIP
solving, they score better results on Dtest rather than on Dtrain, in evident contrast to
what shown by the MSE evaluation and, more in general, to what is the typical ten-
dency in machine learning. The contradiction here, however, is only apparent, and can
be resolved by the following argumentation: our solver tends to lose performance from
Dtest to Dtrain, given that, according to the adopted split criterion (Section 4.3.1), the
former only contains the original instances of our dataset D (seed 0), while the latter
consists of the remaining randomly permuted ones (seeds 1 to 5). In short, Dtest is easier
to solve, if compared with Dtrain. This behavior, in particular, mainly depends on two
reasons: the use, in Xpress, of structure-detection algorithms that assume a "natural"
input sequence of the problem, and the increase, during the solving procedure, in the
number of cache-misses when the problem is permuted. In other words, the observed
phenomenon does not have any machine learning nature, but rather an optimization
and, more in general, computational one. This is confirmed by the results scored by our
competitors and by the best possible strategy. As we can see, indeed, the advance in
the solver performance, from Dtrain to Dtest, can be observed also in Always_Cut and
Never_Cut, as well as in Oracle, even though these strategies are not machine-learned,
but rather human-designed. If we ignore the absolute performances, and we look only
at the improvement and the gap reduction, we can again recognize the usual, expected
behavior of any machine learning application. Indeed, the contribution provided to the
solver evidently decreases from Dtrain to Dtest, that is, our models tend to lose efficiency
on previously unobserved instances.

Now, to provide a more detailed prospect of the contribution given by our approach,
we compare the most competitive among our models, RF, against our main competitor,
Always_Cut, on the entire dataset D and on different brackets of this set, as well as on
the subset of the affected instances. Precisely, for two given solvers, a bracket of a set of
problems is defined as follows.

Definition 5.1. Given two solvers A and B, a set of problems T and a fixed time limit
T , the bracket [t1, t2] is defined as the subset of T consisting of the instances satisfying
the followings:

• they are solved (within the time limit T) by either A or B;

• the runtime of the slower between the two solvers is, on them, between t1 and t2.

for t1 ≤ t2 ≤ T .

Usually, the right-hand side of each bracket is fixed at the time limit, i.e., t2 = T ,
while the left-hand one is increased progressively, so to define a hierarchy of subsets
of T of increasing difficulty. In our case, we consider the brackets of our dataset D
obtained by fixing t2 at our time limit 7200, hence by assigning to t1 the following

64 Chapter 5. Computational Experiments

values: 0, 1, 10, 100, 1000, 2000. The subset of the affected instances, instead, consists
of the ones that are solved by at least one of the two competitors, and for which these
competitors make opposite choices, i.e., the ones on which RF decides to not cut. In other
words, these are the instances on which the behavior of the solver, working with the C
configuration by default (Always_Cut), is directly modified by the use of the learned
heuristic (RF).
On each of the considered sets, we compute, for both RF and Always_Cut, the number
of solved instances and the Shm of the running times, hence the improvement provided
to the solver by the former, when compared against the latter. The results of this
comparison are reported in Table 5.2, where "All" and "Affected" denote the entire D
and the subset of affected instances, respectively. Note that "Affected" is, by definition, a
subset of [0, 7200], and that the difference between "All" and [0, 7200] is that the former
includes all the available instances, while the latter includes only those instances which
are solved by at least one of the two strategies. In particular, the number of instances
that, out of the entire D, are solved (within the time limit) by both RF and Always_Cut,
by none of them, and by one of them but not the other, are 852, 281, 22, respectively;
these numbers, of course, sum up to 1155 = ∣D∣ (see Table A.1).

RF Always_Cut

Bracket Instances Solved Time Solved Time Imp. (%)

All 1155 872 426.59 854 462.16 -7.70

[0, 7200] 874 872 167.22 854 186.55 -10.36

[1, 7200] 865 863 172.53 845 192.65 -10.44

[10, 7200] 753 751 257.15 733 290.20 -11.39

[100, 7200] 470 468 750.73 450 874.37 -14.14

[1000, 7200] 226 224 2198.42 206 2703.86 -18.69

[2000, 7200] 150 148 2893.07 130 3805.64 -23.98

Affected 310 308 132.45 290 180.63 -26.67

Table 5.2: comparison between RF and Always_Cut , on different brackets of D.

As we can see from Table 5.2, RF is able to solve 18 instances more than Always_Cut.
Moreover, on the entire dataset D, RF provides to the average runtime of the solver a
7.7% speedup, which, however, increases to more than 10% on the instances that are
solved by at least one of the two competitors ([0, 7200]), showing that the number ob-
tained on the whole D is dampened by the fact that almost 25% of the instances of this
set can not be solved, within the time limit, by any of the two strategies. The percentage
of improvement keeps increasing together with the hardness of the evaluation set, until
reaching an encouraging value of 24% on the most difficult among our problems. Finally,

5.3. Evaluation With Different Thresholds 65

by restricting the test bed of the comparison to the affected instances, that is, the ones
for which RF chooses NC rather than C, hence the ones on which we are, in effect, modify-
ing the solver’s behavior, we can observe a very promising improvement of more than 26%.

Conclusions

The results shown in this section suggest the following encouraging conclusions. While
the linear model is not really able to discriminate, instance by instance, between the two
methods C and NC, evidently due to the fact that our decision problem is too complex to
be solved by a linear regression, the neural network, and in particular the random forest,
prove to be valid policies for the algorithmic decision that we want to take. The random
forest, in particular in terms of running time, is effectively able to provide significant
benefits to the average performance of FICO Xpress, especially over those instances
that are particularly hard for the solver.

5.3 Evaluation With Different Thresholds

This section is meant to provide a closer and visual assessment of the impact that our
learned solution has on the performance of the solver, in particular on its average running
time, whose speedup represents, as we know, the primary objective of our research. Pre-
cisely, the experiment that we propose consists in manipulating a crucial hyperparameter
of our decision process, namely, the threshold used to mark the separation between the
two choices, local-cut and no-local-cut, hence in observing the changes in the performance
of the solver, in order to realize how influential our decision is able to be.

As described in Chapter 4, the method selection problem has been modeled as a
regression problem, where the ML models predict the speedup factors between the run-
times of the two methods C and NC, instead of predicting directly one of them. Hence,
to take the final choice, we fix a threshold for the predicted speedup, representing the
switch between the two methods. In other words, this threshold is what we use to turn
the regression into a classification.
Precisely, given a feature vector x, the modelM predicts the speedup factorM(x), which
is then compared with the threshold τ ; hence, according to this comparison, the final
choice for x is taken (see Figure 4.4).
The value of τ indicates how much we are inclined to discriminate one method in favor
of the other. By definition (see 4.1), the speedup factor is negative when C is faster than
NC, positive otherwise; if it is zero, or near zero, then the two methods are equivalent,
or roughly equivalent. Hence, the tuned value for the threshold is τ = 0; by untuning it,
instead, we introduce some skew in our decision.
By observing the change in the performance of the learned strategies, produced by mov-
ing the threshold towards the negatives or the positives, we can evaluate the impact of

66 Chapter 5. Computational Experiments

our decision on the efficiency of the solver.

In this experiment, we run Algorithm 4 twice for each of our three models, LM, RF
and NN. In particular, the models are trained on the train set Dtrain and evaluated, in the
terms of runtime, on the entire dataset D. Finally, the array chosen for the thresholds is

V = [i/10, for integer i ∈ [−40, 40]],

that is, the sequence of values between −4 and 4 with a step of 0.1. Note that, although
the speedup factors over D span across a much larger range, the interval [−4, 4] contains
more than 90% of them.

Algorithm 4: Evaluation With Different Thresholds
Input: ML model M ,

array of threshold values V ,
sets Dtrain, D

Output: array S ∶ S[i] = (Shm of M over D with threshold V [i])
Initialization: TC ← [runtime of C over x, for x ∈ D],

TNC ← [runtime of NC over x, for x ∈ D],
P, S ← [], []

1. Train M on Dtrain [Training]

2. For x ∈ D: P [x]← predicted speedup M(x) [Predicting]

3. For i← 1 to len(V) [Threshold Tuning]

3.1. TM ← []
3.2. For x ∈ D [Classification]

If P [x] ≤ V [i]: TM[x]← TC[x]
Else: TM[x]← TNC[x]

3.3. S[i]← Shm over TM [Evaluation]

4. Return S

Figure 5.2 shows the results of the experiment. The y-axis represents the output
S (Shm of Time), while the x-axis refers to the input V (threshold). The continuous
curves are the Shm of the learned strategies; precisely, the three tones of green, from the
darkest to the lightest, refer to RF, NN and LM, respectively. The dashed lines in the three
shades of blue, again from the darkest to the lightest, are instead the perfect Oracle and
our two competitors, Always_Cut and Never_Cut .

We can immediately observe how the Shm of our models converge to Never_Cut,
on the left, and to Always_Cut, on the right. As already mentioned, by moving the
threshold to the negatives, we bias the decision towards the method NC. For example, if

5.3. Evaluation With Different Thresholds 67

the threshold is fixed at τ = −2, then we choose NC not only when the predicted speedup
is larger than 0, but also when it falls between −2 and 0, even though, in this case, we
should have chosen C. The smaller the value of τ , the more prone we are to choose NC,
that is, we tend to imitate the behavior of Never_Cut, and this explains why the curves
convergence to this strategy on the negative side. A similar argument holds for the other
side, where the curves converge to Always_Cut.

400

420

440

460

480

500

520

540

560

580

600

620

640

−4.0 −3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Threshold

T
im

e

LM RF NN Never_Cut Always_Cut Oracle

Figure 5.2: threshold tuning over D

It is by looking at the behavior of the curves around zero, however, that we can grasp
how influential our decision can be on the performance of FICO Xpress.
In particular, the linear model remains quite close to Always_Cut, hence confirming
the trend observed in Section 5.2, that is, LM is not really able to distinguish the C
instances from the NC one, but it can simply recognize that the former works better in
the majority of cases, hence it is prone to always chose this one. The other two curves,
instead, reach their minimal values below the line of Always_Cut, showing that RF and
NN are effectively able to contribute to the solver and to reduce the gap between the best
of our competitors and the best that we can achieve. More precisely, RF provides a 7.7%
speedup and a 67.6% gap reduction to the runtime of the solver.

Conclusions

The bar plot displayed above suggests the following encouraging conclusion: if we had
to choose between always cutting and never cutting, then we would certainly choose the
former, being it evidently the better of the two solutions; an even better one, however, is

68 Chapter 5. Computational Experiments

to decide, instance by instance, whether to cut or not by means of our learned policies,
that is, to let the neural network and, especially, the random forest make their choices,
since they have shown, on the considered dataset, to be definitely able to speedup the
running time of the solver.

5.4 Classification Experiments

During the preliminary phase of our project, we implemented and tested different ap-
proaches for the algorithmic decision that we want to take. In particular, among the
various alternatives that we considered, the problem formulation described in Chapter
4 proved to be the most successful one, this is why, in the end, we adopted this as our
default methodology. Not every one of the rejected approaches, however, could be as-
serted as completely ineffective, with few of them being indeed able to achieve acceptable
results. In this section, we describe one of these alternative methodologies that we be-
lieve to be particularly worth discussing, i.e., the classification approach, hence we test
and compare it against the regression one, whose evaluation is illustrated in Section 5.2,
in order to show the superiority of our default methodology, hence to motivate our choice.

Undoubtedly, the most natural way to approach our problem is to formulate it as
a classification learning task, given that, as described in Section 3.1, the problem itself
consists, precisely, in taking a binary algorithmic decision. Indeed, instead of learning
to predict the speedup factor between the runtimes of the local-cut and the no-local-cut
method, then converting the learned regressor into a binary classifier by means of our a
threshold t, that works as a switch between the two methods, we could learn to directly
predict one of the two classes, C and NC.
Precisely, for this experiment, we substitute, in each observation of our default dataset
D, the speedup factor defined in (4.1) with either one of the two classes −1 and 1, with
the former representing C while the latter NC, according to which of the two methods
is the faster one on the corresponding problem. More formally, we define the class of a
given problem p as

c
p
S = {−1 if TimeC(p) ≤ TimeNC(p),

1 otherwise.

Then, on Dtrain, we train again the three machine learning models, linear model (LM),
random forest (RF) and neural network (NN), this time, however, in their classification
version. Precisely, in the R programming language, we perform the trainings of LM and
RF by means of the train function provided by the caret package [Kuh20], with method
"lda" ("linear discriminant analysis") and "rf", respectively, while for NN, we use the
neuralnet function provided by the neuralnet package [FGW19], similarly to what
described in Section 4.4.1.
As evaluation method, we compute the performance of a learned classifier M over a

5.4. Classification Experiments 69

problem p, in terms of runtime, as

TimeM(p) = {TimeC(p) if M(xpS) = −1,

T imeNC(p) if M(xpS) = 1,

where xpS is the feature vector representing p. Finally, we aggregate the results, obtained
over a set of multiple instances, by using the shifted geometric mean (Shm), with shift
set at 10. As explained in Section 5.1, in this experiment we have S= Xpr8.9.

In Table 5.3 we report, on both Dtrain and Dtest, the results achieved by the three
classifiers and the ones, already discussed in Section 5.2, scored by the three regressors
and their main competitor, as well as by the best possible strategy. Moreover, to compare
the classification approach against the regression one on both sets, we highlight, in green,
both the numerical result corresponding to the best among the six learned strategies, i.e.,
the three regressors and the three classifiers, and the improvement and the gap reduction,
reported in the last two columns, provided by this model.

Set Version LM RF NN Always_Cut Oracle Imp (%) Gap (%)

Regression 464.51 427.91 433.38
467.92 414.75

-8.55 -75.25

∼
T
ra

in
Se

t
∼

Classification 462.22 435.00 439.61 -7.04 -61.91

Regression 442.42 420.09 420.83 -3.34 -29.10

∼
T
es

t
Se

t
∼

Classification 428.23 432.54 431.81

434.61 384.72

-1.47 -12.79

Table 5.3: comparison between regressors and classifiers, in terms of the Shm of the
runtime over D.

As clearly shown by the table, the classification approach is able to guarantee positive
results, and to represent an acceptable solution method for our decision problem. The
three classifiers, indeed, are all able to perform better than their competitor on both sets
and to guarantee some improvement to the average runtime of the solver. It is evident,
however, that the classification approach is not able to compete with the regression one.
The random forest and the neural network clearly suffer from the alternative formula-
tion of our problem. Similarly to each other, indeed, they lose performance by roughly
1.5% on the train set, while on the test set, the percentage of performance deterioration
rises to the disappointing value of 3%. The only one, among the learned models, that
seems to benefit from the classification formulation is the linear model, with the linear
classifier showing, in comparison with its regression counterpart, stronger generalization

70 Chapter 5. Computational Experiments

capabilities. This observation, however, is not really significant, since the linear model
shows an unsatisfactory performance already in regression.
By comparing the six learners, i.e., the three regressors and the three classifiers, among
each other, we can realize that, on both sets, the random forest regressor is clearly the
best of them, immediately followed by the neural network regressor. These two regres-
sors represent, indeed, the most competitive and promising heuristics produced by our
approach, and provide evidence of the superiority of the regression method over the clas-
sification regressor.

Now, two main argumentations explain why the regression approach actually outper-
forms the classification one, even though the latter should be, intuitively, more suitable
for the decision problem that we want to solve, given the nature of the problem itself.
First of all, since the central goal of our study is to speed up the solving process of
Xpress, we are evaluating our approach in terms of runtime, that is, we are comparing
the three regressors and the three classifiers, against each other, in terms of a regression
metric, for which the regressors naturally tend to work better. If we repeat the compar-
ison by using, this time, any classification metric, we can clearly observe the opposite
trend. This is confirmed by Figure 5.3, where we report the performance of our mod-
els, over the entire dataset D, in terms of accuracy, defined as the number of correctly
classified instances over the total number of instances.

0.64

0.73

0.81
0.87

0.72

0.84

0.00

0.25

0.50

0.75

LM RF NN

Regression Classification

Accuracy

Figure 5.3: when compared in terms of a classification metric (over the entire dataset
D), each classification model outperforms its regression counterpart.

Secondly, the quality of our models mostly depends on how they behave on those
instances on which the performances of the two methods significantly diverge from each
other, rather than on the ones on which the two methods perform similarly, i.e, the bor-
derline instances. That is, a wrong prediction on an instance with a high speedup factor
impacts the performance of our model much more negatively than a wrong prediction on
a borderline instance. Now, the regression training, unlike the classification one, is driven
especially by the relevant cases, rather than by the ignorable ones, that is, the regressors
focus their learning power on those cases on which a good performance is decisive. This

5.5. Feature Selection 71

was confirmed by a minor experiment that we conducted in our study (not reported in
this thesis), in which we performed a misclassification analysis of our models, both in re-
gression and classification. From the results of the experiment, we could observe that the
regressors tend to fail especially on those instances with a speedup very close to 0, while
for the latter we could observe exactly the opposite situation. This is why the regression
models, in terms of runtime, tend to outperform their classification counterparts.

Conclusions

The classification methodology proves to be a valid solution approach for our decision
problem, being it able to produce competitive models that can improve, or at least not
damage, the average performance of the solver. This approach, however, is evidently not
able to outperform the regression one, given that, among the six learned strategies, the
most competitive ones remain the regression version of the random forest and the neural
network. This, in particular, motivates our preference for the regression formulation over
the classification one, hence justifies our choice of selecting the former as our default
methodology.

Now, as a consequence of the results observed from the first three experiments pre-
sented in this chapter, we can definitely conclude, at the end of this section, that the
linear model can not really provide any contribution to the solver, being our decision
problem, evidently, too complex to be solved by a linear approach. The neural network,
instead, represents a valid solution to the problem, being it able to produce valid policies
that can effectively contribute to the improvement of the solver. Despite the capabilities
demonstrated by this model, however, it is undoubted that the random forest is, espe-
cially in regression, the most competitive one among the three learners, as shown by all
evaluations presented so far.
To simplify the discussion, in the remaining of this chapter we will focus solely on the
random forest, unless explicitly mentioned otherwise.

5.5 Feature Selection

Feature selection is the process of identifying and selecting, among the originally consid-
ered features, the most relevant and consistent ones for the variable(s) to predict. The
feature selection procedure represents a fundamental building block of modern machine
learning workflows, and it is motivated by several reasons, such as:

• simplifying the adopted model and improving its interpretability, other than de-
creasing the training time;

• reducing overfitting, hence enhancing the generalization capabilities of the learner;

• preventing the curse of dimensionality [Bel61];

72 Chapter 5. Computational Experiments

• reducing the computational cost of the feature extraction process for future real-
world deployments of the produced model;

• more in general, refining the overall understanding of the problem, by recognizing
those pieces of information which the response variable(s) especially depends on.

For us, the last two of the motivations listed above are particularly relevant, that is,
by including a feature selection step into the development pipeline of our ML solution,
we aim at a both practical and theoretical goal. On one side, indeed, we want to re-
duce the number of attributes used to describe our input instances, in order to relieve
the computational effort necessary to extract them, given that the ultimate goal of the
present work is to integrate the final predictive tool into the FICO Xpress solver, where
the extraction process needs to be executed online, i.e., during the actual MIP solve. On
the other side, we want to achieve a stronger comprehension of our problem, as well as
of the relations among the pieces of information that we have available.

In the experiment proposed in this section, we develop a method to measure, from the
model’s perspective, how explanatory each input variable is for the output one. Then,
we re-train the model several times, each time by using a reduced number of features,
selected among the most important ones, hence we re-evaluate the model and we observe
how its performance reacts to the feature reduction, in order to understand how hardly
our feature set can be reduced, hence to check whether the feature extraction process, in
the deployment of our solution, can effectively be simplified.
In particular, after training our random forest on the train set Dtrain by using the orig-
inal set of features, we perform a feature ranking process in which we assign a score to
each predictor, in order to measure how informative this is for the decision to take or,
more briefly, to quantify its predictive power. Precisely, the relevance of an attribute is
measured as the mean decrease in impurity [Lou15], that is, in terms of the depths in the
trees of the ensemble where the attribute is used for the node splits, with the rationale
that the more superficially an attribute is used in a decision-tree, the larger the number
of samples that it affects, hence the more influential it is for the decision to take. More
specifically, we perform the ranking procedure by means of the varImp function provided
by the caret package [Kuh20], hence we obtain a scoring of our features consisting of
non-negative scalar values that sum up to 1. The results of the feature ranking procedure,
for our model RF, are displayed in the bar plot in Figure 5.4, where the 32 attributes are
listed, top-to-bottom, in decreasing order of importance.

From the bar plot, it seems that our random forest, in taking its decision, is par-
ticularly influenced by the basic information on the matrix of the problem, as well as
its computational behavior, rather than its combinatorial structure. Among the first
positions in our feature ranking, indeed, we find the features describing the size and the
sparsity of the matrix, Rows, Columns and NonZeros, the size of its presolved matrix,
hence the activity of the presolver, PresolRows and PresolColumns, as well as the gaps
between the different objective values at the end of the root node, hence the impact of

5.5. Feature Selection 73

32

28

24

20

16

12

88888888888888888888888888888888

44444444444444444444444444444444

VariableLowerBound_Const
VariableUpperBound_Const

Symmetries
Continuous_Const

MixedBinary_Const
GreaterThan_Const

Integers
SetCovering_Const
MixedInteger_Const

SetPacking_Const
Objective_Oom

Binaries
Coefficient_Oom

RightHandSide_Oom
Cardinality_Const

KnapsackInteger_Const
SetPartitioning_Const

KnapsackEquality_Const
Equality_Const

Knapsack_Const
PresolIntegers

BinaryPacking_Const
LessThan_Const

Columns
DualInitial_Gap
PresolColumns

NonZeros
PrimalInitial_Gap

Gap_Closure
PrimalDual_Gap

PresolRows
Rows

Predictive Power

Static Dynamic

Figure 5.4: importance of our features from the RF perspective.

the global cutting loop, PrimalInitial_Gap, PrimalDual_Gap, DualInitial_Gap and
Gap_Closure. The dynamic information about the problem, in particular, clearly domi-
nates the static one, that is, the discrimination between the two methods heavily depends
on the behavior of the underlying solver on the problem, rather than on the structure of
the problem itself.

Now, in the second part of this experiment, we repeat the training/testing process
of our model several times, each time by using only the n most important features,
for n = 32, 28, 24, 20, 16, 12, 8, 4, selected according to the feature importance ranking
displayed in Figure 5.4. In other words, we recursively reduce our feature set by 12.5%,
hence we observe the impact of the reduction on the quality of our model. Figure 5.5
depicts how the performance of the random forest, measured in terms of the Shm of the
runtime over our dataset D, changes after each iteration of our feature reduction process.

As clearly shown by the plot, the RF performance slightly improves after the reduction
of the features. Precisely, the minimum Shm value is reached by the model trained on
the 8 most important features; this model, in particular, is roughly 1% faster than the

74 Chapter 5. Computational Experiments

419

421

423

425

427

429

32 28 24 20 16 12 8 4
Selection

T
im

e

Figure 5.5: The change in the performance of the random forest over D during our feature
reduction process.

one trained on the original feature set. This shows that our random forest is able to
preserve its quality even when it is forced to learn over a significantly reduced amount
of information. This, in particular, allows for an effective simplification of our problem
formulation, as well as for a substantial mitigation of the feature extraction process, that
needs to be executed online once that the model is deployed for practical MIP solving.

Conclusions

From the experiment presented in this section, we can draw the following conclusions.
On one side, our model seems to react very well to our feature reduction process, hence
allowing for a substantial decrease in the amount of information necessary for an effective
discrimination between the two methods, which turns out to be particularly convenient
in the deployment stage. On the other side, however, in order to correctly make our
choice, the computational behavior of the problem can not be ignored, that is, the de-
cision that we are investigating seems to significantly depend on the particular solver in
use. A question that naturally arises, at this point, is whether the model, trained for
one solver, can be transferred and adapted to different solvers, without losing its com-
petitive performance. This question represents one of the motivations for the experiment
presented in the following section, in which we will investigate how the quality of our
approach changes from one solver to another.

5.6. Evaluation With Different Solver Releases 75

5.6 Evaluation With Different Solver Releases

The methodological approach described in Chapter 4, hence the solution provided to
the decision problem defined in Chapter 3, have been implemented, basically, for FICO
Xpress 8.9 (Xpr8.9), representing our main technological support. With the research
project formalized in this thesis, however, we have the higher ambition of developing, for
the mentioned problem, a powerful and more general solving tool that, independently of
the particular version of Xpress in use, can be permanently integrated into the solver
framework in order to contribute to its improvement. A question that arises naturally,
in these terms, is whether the encouraging results, achieved by our approach for Xpress
8.9, can be confirmed also for other, especially more recent, releases of the same software.
This question, in particular, is further motivated by the results obtained from the feature
selection experiment discussed in Section 5.5, where we observe that our predictive model
RF significantly depends on those features representing the behavior of the solver on the
input instance. More precisely, with the experiment presented in this section, we aim at
answering the following questions.

• Can our approach be entirely re-implemented for another solver version, without
altering the quality shown for our default version?

• How does the efficacy of our solution, implemented for a certain solver release,
change when it is transferred to a different release, that is, when the underlying
solver undergoes a significant change between the training and testing phase of our
model?

In order to answer these questions, we consider two versions of Xpress, namely,
Xpr8.9, our default release, and Xpr8.11, the second most recent one at the time of
writing this thesis. In particular, we train our random forest once on D8.9

train and once on
D8.11
train, hence we evaluate each of the two produced strategies on both D8.9 and D8.11,

where D8.9 and D8.11 are, as described in Section 5.1, the datasets collected by running,
on our ground problem set, the two solvers Xpr8.9 and Xpr8.11, respectively.
In other words, the experiment consists in training/evaluating our random forest, once
by keeping the solver unchanged, and once, instead, by switching it between the two
phases. More precisely, by training and testing our model with the same solver, we
aim at discovering whether our solution can be entirely re-implemented in a different
solver release, without observing any loss in its quality, hence at answering the first
of the two questions listed above. By changing the solver between the training and
the testing phase, instead, the goal is to find out whether the trained heuristic can be
eventually transferred, without negative consequences, from one solver release to another
or, equivalently, to test its robustness with respect to the solver, hence to answer the
second question. The results of the experiment are reported in Table 5.4.

As shown by the upper side of the table, our approach proves to be a valid one even
for other versions of Xpress. The random forest, indeed, is able to guarantee, to the
more recent release of the software, the same positive contribution that provides to the
older one. The same considerations, however, can not be made when the predictive tool is

76 Chapter 5. Computational Experiments

Train/Test RF Always_Cut Oracle Imp (%) Gap (%)

8.9/8.9 399.45 435.39 384.45 -8.26 -70.56

8.11/8.11 375.74 407.87 364.05 -7.88 -73.32

8.9/8.11 401.05 407.87 364.05 -1.67 -15.58

8.11/8.9 427.00 435.39 384.45 -1.93 -16.48

Table 5.4: The performance of the random forest when it is trained and tested by using
the same solver, as well as when it is transferred from one solver to another.

transferred from one solver to another, that is, when it is designed for one solver version,
but then employed for a different one. As shown by the lower side of the table, indeed,
when trained for Xpress 8.9 but tested for Xpress 8.11, as well as in the opposite
situation, the improvement and gap reduction provided to the solver by our random
forest roughly deteriorate from 8% to 1.5%, and from 70% to 15%, respectively.
One possible explanation of the observed phenomenon is that the decision that we want
to take simply can not disregard the solver in use. In particular, this is consistent with
the results observed in Section 5.5, that is, the information about the mathematical
formulation of the input problem is not enough to effectively discriminate between the
two methods C and NC. In other words, the decision that we want to take heavily
depends on the underlying solver, hence the model loses performance when this solver is
substituted with a different one. A second interpretation is that the optimistic results
reported in the upper side of the table are slightly heightened by the occurrence of
overfitting; in this side indeed, unlike in the lower one, the model is evaluated on a
relevant percentage of instances that have already been seen during its training. Despite
this quality deterioration, however, we observe that the learned heuristic is still able to
improve the solver upon the existing strategies.

Conclusions

The experiment presented in this section demonstrates that the quality of our solution
can be replicated also for another, more recent release of FICO Xpress. When, instead,
our model is transferred between different solver versions, it suffers an evident quality
deterioration. Even in this case, however, the model is still able to provide the solver
with a positive contribution. In other words, our random forest has the potential to
be generalized across different solver releases, meaning that it can be implemented and
integrated into the software permanently, that is, it does not need to be re-trained in
each development cycle. This represents, undoubtedly, a very promising conclusion of
this experiment.

Conclusions and Outlook

In this thesis we provided a data-driven answer to a critical algorithmic question that
arises during the solving process of a mixed-integer linear programming problem, namely,
whether to use a branch-and-cut or rather a cut-and-branch algorithm. To the best of
the author’s knowledge, the MIP community is still suffering the lack of a satisfactory
comprehension of this specific question for general MIP problems.

In particular, we stated and discussed the decision problem representing the object
of the present study, local-cut vs no-local-cut, and we showed that the policy consisting
in always choosing the local-cut method (always cutting), although outperforming, on
average, its counterpart (never cutting), is far from being the optimal strategy for our
decision. Hence, we learned to discriminate between the two methods by developing,
within a supervised regression framework, three machine learning models, Linear Model,
Random Forest and Neural Network.

The results obtained from our computational study, conducted on a large test bed of
MIP problems with Xpress 8.9, led to the following conclusions. The linear model is
not really able to discriminate between the two approaches, local-cut and no-local-cut,
evidently due to the fact that our decision problem is too complex to be solved by a lin-
ear regression. The neural network and especially the random forest, instead, represent
valid policies for the decision that we want to take. When compared against our main
competitor, i.e., always cutting, the random forest is able to provide to the runtime of
the solver, averaged over the considered dataset, a 7.7% speedup. This improvement, in
particular, increases to the encouraging value of 24% when the evaluation is restricted to
those instances that are particularly hard for the solver. The random forest, moreover,
guarantees a 68% reduction in the solver performance gap between the always cutting
strategy and the best possible one, that is, the "perfect oracle" that always makes the
optimal choice between the two methods, local-cut and no-local-cut, hence representing
the best that we can achieve. In other words, if always cutting and never cutting were
the only available strategies for our decision, then we would certainly choose the former,
being it the better solution between the two. An even better solution, however, is to
make our random forest decide, instance by instance, when to use local cuts and when,
instead, to refrain from it. Finally, the random forest is able to preserve its competitive
performance even when it is trained over a reduced number of features, hence allowing

77

78 Conclusions and Outlook

for an effective simplification of our problem formulation, as well as when it is designed
and evaluated for Xpress 8.11, hence showing that the quality of our solution can be
replicated also for another, more recent release of the same software. When, instead,
the underlying solver undergoes a significant change between the training and testing
phase, that is, when the trained model is transferred from one solver version to another,
it evidently suffers a quality deterioration. However, even in this case, our model is still
able to improve the solver performance upon the existing strategies.

The promising results achieved in our study demonstrate the possibility to learn in-
telligent algorithms for taking crucial decisions that arise from practical MIP solving.
In fact, a variant of the random forest suggested in this thesis has already been imple-
mented by the development team of FICO Xpress, and will represent one of the main
features to be released with the next version of the solver. There are, however, many
potential sources of improvement, in contemporary optimization frameworks, that a ma-
chine learning approach particularly suits, hence many fruitful directions in which the
interplay between these two disciplines might evolve.
For example, one direct extension of the present work consists in learning to choose, for
the input problem, the maximum depth of the B&B search tree in which the cutting pro-
cedure should be stopped, rather than choosing only whether to deactivate the procedure
after the root node or not, hence in generalizing our binary decision to an integer one.
More in general, the methodology proposed in our study can be potentially extended to
all those decision problems that fall into the context of algorithm configuration (or solver
parameter tuning), such as the problem of deciding which presolving techniques to apply
or the one of configuring the details of the underlying linear solver. In these problems,
machine learning can help in predicting, before starting the run or at some specific point
during the run itself (as in our case), the most performant parameter configuration for
the given MIP instance, hence providing the solver with greater flexibility and adaptivity.

Beyond the specific lines of research encouraged by our study, we strongly believe that
the technology resulting from the hybridization of machine learning and combinatorial
optimization will be playing an ever more leading role in pushing forward the state of
the art of Artificial Intelligence.

Appendix A

Ground Problem Sets

In this chapter, we report the composition of the ground problem set of D, used for the
experiments presented from Section 5.2 to 5.5, and the ground problem set of both D8.9

and D8.11, used instead for the experiment presented in section 5.6. Precisely:

• Table A.1 reports the instances from Miplib17∗, that survived the data cleaning
process of solely Xpr8.9 ;

• Table A.2 reports the instances from Miplib17∗, that survived the data cleaning
process of both Xpr8.9 and Xpr8.11.

In both tables, the column "Name" refers to the name of the problems from Miplib17,
while "Freq" specifies the number of permuted instances that Miplib17∗ contains for the
corresponding problem.

79

80 Chapter A. Ground Problem Sets

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

30
n2

0b
8

6
ei

l3
3-

2
6

ma
s7

6
6

ne
os

-4
38

78
71

-t
av

ua
6

pe
g-

so
li

ta
ir

e-
a3

6
si

ng
32

6
6

50
v-

10
6

ei
lA

10
1-

2
6

mc
sc

he
d

6
ne

os
-4

53
22

48
-w

ai
hi

6
pg

6
si

ng
44

6
ac

ad
em

ic
ti

me
ta

bl
es

ma
ll

6
en

li
gh

t_
ha

rd
6

mi
k-

25
0-

20
-7

5-
4

6
ne

os
-4

64
70

30
-t

ut
ak

i
6

pg
5_

34
6

so
rr

el
l3

6
ap

p1
-2

6
fa

st
05

07
6

mi
lo

-v
12

-6
-r

2-
40

-1
6

ne
os

-4
72

28
43

-w
id

de
n

6
ph

ys
ic

ia
ns

ch
ed

3-
3

6
sp

97
ar

_d
up

1
6

as
si

gn
1-

5-
8

6
fa

st
xg

em
m-

n2
r6

s0
t2

6
mo

me
nt

um
1

6
ne

os
-4

73
89

12
-a

tr
at

o
6

pi
pe

ro
ut

-0
8

1
sp

98
ar

_d
up

1
6

at
la

nt
a-

ip
6

fh
nw

-b
in

pa
ck

4-
4

6
mu

sh
ro

om
-b

es
t

6
ne

os
-4

76
33

24
-t

og
ur

u
6

pk
1

6
sq

ua
re

41
6

b1
c1

s1
6

fh
nw

-b
in

pa
ck

4-
48

6
n2

se
q3

6q
2

ne
os

-4
95

46
72

-b
er

ke
l

6
pr

ot
ei

nd
es

ig
n1

21
hz

51
2p

9
6

sq
ua

re
47

6
ba

b2
6

ge
n-

ip
00

2
6

n3
di

v3
6

6
ne

os
-5

05
24

03
-c

yg
ne

t
5

pr
ot

ei
nd

es
ig

n1
22

tr
x1

1p
8

6
su

pp
or

tc
as

e1
0

6
ba

b6
6

ge
n-

ip
05

4
6

n5
-3

6
ne

os
-5

09
33

27
-h

ua
hu

m
5

qa
p1

0
6

su
pp

or
tc

as
e1

2
6

bi
nk

ar
10

_1
6

ge
rm

an
rr

6
n9

-3
6

ne
os

-5
10

75
97

-k
ak

ap
o

6
ra

di
at

io
nm

18
-1

2-
05

6
su

pp
or

tc
as

e1
8

6
bl

p-
ar

98
6

gl
as

s-
sc

6
ne

os
-1

12
20

47
6

ne
os

-5
18

88
08

-n
at

ta
i

6
ra

di
at

io
nm

40
-1

0-
02

6
su

pp
or

tc
as

e1
9

1
bl

p-
ic

98
6

gl
as

s4
_d

up
2

6
ne

os
-1

17
17

37
6

ne
os

-5
19

52
21

-n
ie

mu
r

6
ra

il
01

2
su

pp
or

tc
as

e2
2

5
bn

at
t4

00
6

gm
u-

35
-4

0
6

ne
os

-1
35

40
92

6
ne

os
-6

62
46

9
6

ra
il

02
6

su
pp

or
tc

as
e2

6
6

bn
at

t5
00

6
gm

u-
35

-5
0

6
ne

os
-1

44
57

65
6

ne
os

-8
48

58
9

6
ra

il
50

7
6

su
pp

or
tc

as
e3

3
6

bp
pc

4-
08

6
gr

ap
h2

0-
20

-1
ra

nd
6

ne
os

-1
45

69
79

6
ne

os
-8

73
06

1
6

ra
n1

4x
18

-d
is

j-
8

6
su

pp
or

tc
as

e4
0

6
br

az
il

3
6

gr
ap

hd
ra

w-
do

ma
in

6
ne

os
-1

58
24

20
6

ne
os

-9
11

97
0

6
rd

-r
pl

us
c-

21
6

su
pp

or
tc

as
e6

6
bu

il
di

ng
en

er
gy

6
h8

0x
63

20
d

6
ne

os
-2

65
75

25
-c

rn
a

6
ne

os
-9

33
96

6
6

re
bl

oc
k1

15
6

su
pp

or
tc

as
e7

6
ch

ro
ma

ti
ci

nd
ex

10
24

-7
6

hi
gh

sc
ho

ol
1-

ai
gi

o
6

ne
os

-2
74

65
89

-d
oo

n
6

ne
os

-9
50

24
2

1
rm

at
r1

00
-p

10
6

sw
at

h1
6

ch
ro

ma
ti

ci
nd

ex
51

2-
7

6
ic

97
_p

ot
en

ti
al

6
ne

os
-2

97
81

93
-i

nd
e

6
ne

os
-9

57
32

3
4

rm
at

r2
00

-p
5

6
sw

at
h3

6
cm

fl
sp

50
-2

4-
8-

8
6

ic
ir

97
_t

en
si

on
_d

up
1

6
ne

os
-3

00
40

26
-k

rk
a

5
ne

os
-9

60
39

2
1

ro
cI

-4
-1

1
6

tb
fp

-n
et

wo
rk

6
cm

s7
50

_4
6

ir
is

h-
el

ec
tr

ic
it

y
6

ne
os

-3
02

49
52

-l
ou

e
6

ne
os

17
6

ro
cI

I-
5-

11
6

th
or

50
dd

ay
6

co
-1

00
6

ir
p

1
ne

os
-3

04
66

15
-m

ur
g

6
ne

os
5

6
ro

co
co

B1
0-

01
10

00
_d

up
1

6
ti

mt
ab

1
6

co
d1

05
_d

up
2

6
is

ta
nb

ul
-n

o-
cu

to
ff

6
ne

os
-3

08
38

19
-n

ub
u

6
ne

os
85

90
80

3
ro

co
co

C1
1-

01
11

00
_d

up
1

6
to

ll
-l

ik
e

6
co

mp
07

-2
id

x
6

k1
mu

sh
ro

om
6

ne
os

-3
21

69
31

-p
ur

ir
i

6
ne

t1
2_

du
p1

6
ro

i2
al

ph
a3

n4
6

tr
12

-3
0

6
co

mp
21

-2
id

x
6

le
ct

sc
he

d-
5-

ob
j

6
ne

os
-3

38
12

06
-a

wh
ea

6
ne

td
iv

er
si

on
6

ro
i5

al
ph

a1
0n

8
6

tr
ai

ni
ns

ta
nc

e2
6

co
st

26
6-

UU
E

6
le

o1
6

ne
os

-3
40

22
94

-b
ob

in
4

ns
11

16
95

4
1

ro
ll

30
00

6
tr

ai
ni

ns
ta

nc
e6

6
cr

yp
ta

na
ly

si
sk

b1
28

n5
ob

j1
4

6
le

o2
6

ne
os

-3
55

59
04

-t
ur

am
a

6
ns

12
08

40
0

6
s1

00
6

tr
en

to
1

6
cr

yp
ta

na
ly

si
sk

b1
28

n5
ob

j1
6

6
lo

ts
iz

e
6

ne
os

-3
62

71
68

-k
as

ai
4

ns
17

60
99

5
6

s2
50

r1
0

6
tr

ip
ti

m1
3

cs
ch

ed
00

7
6

ma
d

6
ne

os
-3

65
60

78
-k

um
eu

6
ns

18
30

65
3

6
sa

te
ll

it
es

3-
25

6
uc

ca
se

9
6

cs
ch

ed
00

8
6

ma
p1

0
6

ne
os

-3
75

42
24

-n
av

ua
6

ns
19

52
66

7
6

sa
te

ll
it

es
4-

25
6

uc
t-

su
bp

ro
b

6
cv

s1
6r

12
8-

89
6

ma
p1

67
15

-0
4

6
ne

os
-3

75
44

80
-n

id
da

6
nu

25
-p

r1
2

6
sa

vs
ch

ed
1

2
un

it
ca

l_
7

6
da

no
3_

3
6

ma
rk

sh
ar

e_
4_

0
6

ne
os

-3
98

85
77

-w
ol

ga
n

6
nu

rs
es

ch
ed

-m
ed

iu
m-

hi
nt

03
6

sc
t2

6
va

r-
sm

al
le

me
ry

-m
6j

6
6

da
no

3_
5

6
ma

rk
sh

ar
e2

6
ne

os
-4

30
06

52
-r

ah
ue

6
nw

04
1

se
ym

ou
r

6
wa

ch
pl

an
6

dw
s0

08
-0

1
6

ma
s7

4
6

ne
os

-4
33

88
04

-s
no

wy
6

op
m2

-z
10

-s
4

6
se

ym
ou

r1
6

T
ab

le
A
.1
:
T
he

co
m
po

si
ti
on

of
th
e
gr
ou

nd
pr
ob

le
m

se
t
of

D
.

81

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

N
am

e
Fr
eq

30
n2

0b
8

6
ei

l3
3-

2
6

mi
k-

25
0-

20
-7

5-
4

6
ne

os
-4

73
89

12
-a

tr
at

o
6

qa
p1

0
6

su
pp

or
tc

as
e2

6
6

50
v-

10
6

ei
lA

10
1-

2
6

mi
lo

-v
12

-6
-r

2-
40

-1
6

ne
os

-4
76

33
24

-t
og

ur
u

6
ra

di
at

io
nm

18
-1

2-
05

6
su

pp
or

tc
as

e3
3

6
ac

ad
em

ic
ti

me
ta

bl
es

ma
ll

6
en

li
gh

t_
ha

rd
6

mo
me

nt
um

1
6

ne
os

-4
95

46
72

-b
er

ke
l

6
ra

di
at

io
nm

40
-1

0-
02

6
su

pp
or

tc
as

e4
0

6
ap

p1
-2

6
fa

st
05

07
6

mu
sh

ro
om

-b
es

t
6

ne
os

-5
05

24
03

-c
yg

ne
t

5
ra

il
01

2
su

pp
or

tc
as

e6
6

as
si

gn
1-

5-
8

6
fh

nw
-b

in
pa

ck
4-

4
6

n2
se

q3
6q

2
ne

os
-5

09
33

27
-h

ua
hu

m
3

ra
il

02
6

su
pp

or
tc

as
e7

6
at

la
nt

a-
ip

6
fh

nw
-b

in
pa

ck
4-

48
6

n3
di

v3
6

6
ne

os
-5

10
75

97
-k

ak
ap

o
6

ra
il

50
7

6
sw

at
h1

6
b1

c1
s1

6
ge

n-
ip

00
2

6
n5

-3
6

ne
os

-5
18

88
08

-n
at

ta
i

6
ra

n1
4x

18
-d

is
j-

8
6

sw
at

h3
6

ba
b2

6
ge

n-
ip

05
4

6
ne

os
-1

12
20

47
6

ne
os

-5
19

52
21

-n
ie

mu
r

6
rd

-r
pl

us
c-

21
6

tb
fp

-n
et

wo
rk

6
ba

b6
6

ge
rm

an
rr

6
ne

os
-1

17
17

37
6

ne
os

-6
62

46
9

6
re

bl
oc

k1
15

6
th

or
50

dd
ay

6
bi

nk
ar

10
_1

6
gl

as
s-

sc
6

ne
os

-1
35

40
92

6
ne

os
-8

73
06

1
6

rm
at

r1
00

-p
10

6
ti

mt
ab

1
6

bl
p-

ar
98

6
gl

as
s4

_d
up

2
6

ne
os

-1
44

57
65

6
ne

os
-9

11
97

0
6

rm
at

r2
00

-p
5

6
tr

12
-3

0
6

bl
p-

ic
98

6
gm

u-
35

-4
0

6
ne

os
-1

45
69

79
6

ne
os

-9
33

96
6

6
ro

cI
-4

-1
1

6
tr

ai
ni

ns
ta

nc
e2

6
bn

at
t4

00
6

gm
u-

35
-5

0
6

ne
os

-1
58

24
20

6
ne

os
-9

57
32

3
4

ro
cI

I-
5-

11
6

tr
ai

ni
ns

ta
nc

e6
6

bn
at

t5
00

6
gr

ap
h2

0-
20

-1
ra

nd
6

ne
os

-2
65

75
25

-c
rn

a
6

ne
os

17
6

ro
co

co
B1

0-
01

10
00

_d
up

1
6

tr
en

to
1

6
bp

pc
4-

08
6

gr
ap

hd
ra

w-
do

ma
in

6
ne

os
-2

74
65

89
-d

oo
n

6
ne

os
5

6
ro

co
co

C1
1-

01
11

00
_d

up
1

6
tr

ip
ti

m1
3

br
az

il
3

6
h8

0x
63

20
d

6
ne

os
-2

97
81

93
-i

nd
e

6
ne

os
85

90
80

3
ro

i2
al

ph
a3

n4
6

uc
ca

se
9

6
bu

il
di

ng
en

er
gy

6
hi

gh
sc

ho
ol

1-
ai

gi
o

6
ne

os
-3

00
40

26
-k

rk
a

5
ne

t1
2_

du
p1

6
ro

i5
al

ph
a1

0n
8

6
uc

t-
su

bp
ro

b
6

ch
ro

ma
ti

ci
nd

ex
10

24
-7

6
ic

97
_p

ot
en

ti
al

6
ne

os
-3

02
49

52
-l

ou
e

6
ne

td
iv

er
si

on
6

ro
ll

30
00

6
va

r-
sm

al
le

me
ry

-m
6j

6
6

ch
ro

ma
ti

ci
nd

ex
51

2-
7

3
ic

ir
97

_t
en

si
on

_d
up

1
6

ne
os

-3
04

66
15

-m
ur

g
6

ns
11

16
95

4
1

s1
00

2
wa

ch
pl

an
6

cm
fl

sp
50

-2
4-

8-
8

6
ir

is
h-

el
ec

tr
ic

it
y

6
ne

os
-3

08
38

19
-n

ub
u

6
ns

12
08

40
0

6
s2

50
r1

0
6

cm
s7

50
_4

6
is

ta
nb

ul
-n

o-
cu

to
ff

6
ne

os
-3

21
69

31
-p

ur
ir

i
6

ns
17

60
99

5
6

sa
vs

ch
ed

1
1

co
-1

00
6

k1
mu

sh
ro

om
6

ne
os

-3
38

12
06

-a
wh

ea
5

ns
18

30
65

3
6

se
ym

ou
r

6
co

d1
05

_d
up

2
6

le
ct

sc
he

d-
5-

ob
j

6
ne

os
-3

40
22

94
-b

ob
in

4
ns

19
52

66
7

6
si

ng
32

6
6

co
mp

07
-2

id
x

6
le

o1
6

ne
os

-3
55

59
04

-t
ur

am
a

6
nu

25
-p

r1
2

6
si

ng
44

6
co

mp
21

-2
id

x
6

le
o2

6
ne

os
-3

62
71

68
-k

as
ai

4
nu

rs
es

ch
ed

-m
ed

iu
m-

hi
nt

03
6

so
rr

el
l3

6
co

st
26

6-
UU

E
6

lo
ts

iz
e

6
ne

os
-3

65
60

78
-k

um
eu

6
op

m2
-z

10
-s

4
6

sp
97

ar
_d

up
1

6
cr

yp
ta

na
ly

si
sk

b1
28

n5
ob

j1
4

6
ma

d
6

ne
os

-3
75

44
80

-n
id

da
6

pe
g-

so
li

ta
ir

e-
a3

6
sp

98
ar

_d
up

1
6

cr
yp

ta
na

ly
si

sk
b1

28
n5

ob
j1

6
6

ma
p1

0
6

ne
os

-3
98

85
77

-w
ol

ga
n

6
pg

6
sq

ua
re

41
6

cs
ch

ed
00

7
6

ma
p1

67
15

-0
4

6
ne

os
-4

30
06

52
-r

ah
ue

6
pg

5_
34

6
sq

ua
re

47
6

cs
ch

ed
00

8
6

ma
rk

sh
ar

e_
4_

0
6

ne
os

-4
33

88
04

-s
no

wy
6

ph
ys

ic
ia

ns
ch

ed
3-

3
6

su
pp

or
tc

as
e1

0
6

cv
s1

6r
12

8-
89

6
ma

rk
sh

ar
e2

6
ne

os
-4

38
78

71
-t

av
ua

6
pi

pe
ro

ut
-0

8
1

su
pp

or
tc

as
e1

2
6

da
no

3_
3

6
ma

s7
4

6
ne

os
-4

53
22

48
-w

ai
hi

2
pk

1
6

su
pp

or
tc

as
e1

8
6

da
no

3_
5

6
ma

s7
6

6
ne

os
-4

64
70

30
-t

ut
ak

i
6

pr
ot

ei
nd

es
ig

n1
21

hz
51

2p
9

6
su

pp
or

tc
as

e1
9

1
dw

s0
08

-0
1

6
mc

sc
he

d
6

ne
os

-4
72

28
43

-w
id

de
n

6
pr

ot
ei

nd
es

ig
n1

22
tr

x1
1p

8
6

su
pp

or
tc

as
e2

2
5

T
ab

le
A
.2
:
T
he

co
m
po

si
ti
on

of
th
e
gr
ou

nd
pr
ob

le
m

se
t
of

bo
th

D
8
.9
an

d
D

8
.1

1
.

82

List of Algorithms

1 LP-based Branch-&-Bound . 14
2 Generic Cutting-Plane . 17

3 Model Selection with K-Fold Cross-Validation 26

4 Evaluation With Different Thresholds . 66

83

84

Bibliography

[AB08] Tobias Achterberg and Robert E. Bixby. Personal communication, 2008.

[AB09] Tobias Achterberg and Timo Berthold. Hybrid branching. In Willem-Jan
van Hoeve and John N. Hooker, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Optimization Prob-
lems, 6th International Conference, CPAIOR 2009, volume 5547 of Lecture
Notes in Computer Science, pages 309–311. Springer Berlin Heidelberg,
2009. doi:10.1007/978-3-642-01929-6_23.

[ABCC95] David L. Applegate, Robert E. Bixby, Vašek Chvátal, and William J. Cook.
Finding cuts in the TSP (A preliminary report). Technical Report 95–05,
DIMACS, 1995.

[ACF07] Giuseppe Andreello, Alberto Caprara, and Matteo Fischetti. Embedding
{0, 1/2}-cuts in a branch-and-cut framework: A computational study. IN-
FORMS Journal on Computing, 19(2):229–238, 05 2007. doi:10.1287/
ijoc.1050.0162.

[Ach07a] Tobias Achterberg. Conflict analysis in mixed integer programming. Dis-
crete Optimization, 4(1):4–20, 2007. doi:10.1016/j.disopt.2006.10.
006.

[Ach07b] Tobias Achterberg. Constraint Integer Programming. phdthesis, Technische
Universität Berlin, 2007.

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules
revisited. Operations Research Letters, 33(1):42–54, 2005. doi:10.1016/
j.orl.2004.04.002.

[AW13] Tobias Achterberg and Roland Wunderling. Mixed integer programming:
Analyzing 12 years of progress. In Michael Jünger and Gerhard Reinelt, ed-
itors, Facets of combinatorial optimization, pages 449–481. Springer Berlin
Heidelberg, 2013. doi:10.1007/978-3-642-38189-8_18.

[Bal71] Egon Balas. Intersection cuts—a new type of cutting planes for integer pro-
gramming. Operations Research, 19(1):19–39, 1971. doi:10.1287/opre.
19.1.19.

85

http://dx.doi.org/10.1007/978-3-642-01929-6_23
http://dx.doi.org/10.1287/ijoc.1050.0162
http://dx.doi.org/10.1287/ijoc.1050.0162
http://dx.doi.org/10.1016/j.disopt.2006.10.006
http://dx.doi.org/10.1016/j.disopt.2006.10.006
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1007/978-3-642-38189-8_18
http://dx.doi.org/10.1287/opre.19.1.19
http://dx.doi.org/10.1287/opre.19.1.19

86 BIBLIOGRAPHY

[BB12] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. J. Mach. Learn. Res., 13(10):281–305, 2012.

[BCC96] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 program-
ming by lift-and-project in a branch-and-cut framework. Management Sci-
ence, 42(9):1229–1246, 1996. doi:10.1287/mnsc.42.9.1229.

[BCCN96] Egon Balas, Sebastián Ceria, Gérard Cornuéjols, and N. Natraj. Gomory
cuts revisited. Operations Research Letters, 19(1):1–9, 1996. doi:10.1016/
0167-6377(96)00007-7.

[BCMS90] Robert E. Bixby, Sebastián Ceria, Cassandra M. McZeal, and Martin W.P.
Savelsbergh. An updated mixed integer programming library: Miplib 3.0.,
1990. URL: https://hdl.handle.net/1911/101898.

[Bel61] Richard Bellman. Adaptive Control Processes: A Guided Tour. Princeton
University Press, 1961.

[Ber06] Timo Berthold. Primal heuristics for mixed integer programs. Master’s
thesis, Technische Universität Berlin, 2006.

[Ber13] Timo Berthold. Measuring the impact of primal heuristics. Operations
Research Letters, 41(6):611–614, 2013. doi:10.1016/j.orl.2013.08.007.

[BGG+71] M. Bénichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribière, and
O. Vincent. Experiments in mixed-integer programming. Mathematical
Programming, 1:76–94, 1971. doi:10.1007/BF01584074.

[BGV92] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A
training algorithm for optimal margin classifiers. In Proceedings of the
Fifth Annual Workshop on Computational Learning Theory, COLT ’92,
page 144–152. Association for Computing Machinery, 1992. doi:10.1145/
130385.130401.

[BH21] Timo Berthold and Gregor Hendel. Learning to scale mixed-integer pro-
grams. Proceedings of the AAAI Conference on Artificial Intelligence,
35(5):3661–3668, 2021.

[BHL+10] Timo Berthold, Stefan Heinz, Marco Lübbecke, Rolf H. Möhring, and
Jens Schulz. A constraint integer programming approach for resource-
constrained project scheduling. In Andrea Lodi, Michela Milano, and Paolo
Toth, editors, Proc. of CPAIOR 2010, volume 6140 of LNCS, pages 313–
317. Springer Berlin Heidelberg, 2010. doi:10.1007/978-3-642-13520-0_
34.

[Bix12] Robert E. Bixby. A brief history of linear and mixed-integer programming
computation. Documenta Mathematica, pages 107–121, 2012.

http://dx.doi.org/10.1287/mnsc.42.9.1229
http://dx.doi.org/10.1016/0167-6377(96)00007-7
http://dx.doi.org/10.1016/0167-6377(96)00007-7
https://hdl.handle.net/1911/101898
http://dx.doi.org/10.1016/j.orl.2013.08.007
http://dx.doi.org/10.1007/BF01584074
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1007/978-3-642-13520-0_34
http://dx.doi.org/10.1007/978-3-642-13520-0_34

BIBLIOGRAPHY 87

[BLBMT18] Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tra-
montani. Selecting cutting planes for quadratic semidefinite outer-
approximation via trained neural networks, 2018.

[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for
combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper.
Res., 290:405–421, 2021. doi:10.1016/j.ejor.2020.07.063.

[BLZ18] Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classifica-
tion of mixed-integer quadratic programming problems. In Integration of
Constraint Programming, Artificial Intelligence, and Operations Research,
Lecture Notes in Computer Science, pages 595–604. Springer, 2018.

[BPL+17] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy
Bengio. Neural combinatorial optimization with reinforcement learning,
2017. arXiv:1611.09940.

[Bre96] Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.
doi:10.1007/BF00058655.

[Bre01] L. Breiman. Random forests. Machine Learning, 45:5–32, 2001. doi:
10.1023/A:1010933404324.

[BS07] Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation.
In Christian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, 7th
Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems (ATMOS’07), volume 7 of OpenAccess Series in
Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,
2007. doi:10.4230/OASIcs.ATMOS.2007.1170.

[BS13] Timo Berthold and Domenico Salvagnin. Cloud branching. In Carla Gomes
and Meinolf Sellmann, editors, Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, volume
7874 of Lecture Notes in Computer Science, pages 28–43. Springer Berlin
Heidelberg, 2013. doi:10.1007/978-3-642-38171-3_3.

[BZ78] Egon Balas and Eitan Zemel. Facets of the knapsack polytope from minimal
covers. SIAM Journal on Applied Mathematics, 34(1):119–148, 1978. doi:
10.1137/0134010.

[Cbc] Cbc. URL: https://www.coin-or.org/Cbc.

[CdAMJ17] Laura Calvet, Jésica de Armas, David Masip, and Angel A. Juan. Learn-
heuristics: hybridizing metaheuristics with machine learning for opti-
mization with dynamic inputs. Open Mathematics, 15(1):261–280, 2017.
doi:doi:10.1515/math-2017-0029.

http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://arxiv.org/abs/1611.09940
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.4230/OASIcs.ATMOS.2007.1170
http://dx.doi.org/10.1007/978-3-642-38171-3_3
http://dx.doi.org/10.1137/0134010
http://dx.doi.org/10.1137/0134010
https://www.coin-or.org/Cbc
http://dx.doi.org/doi:10.1515/math-2017-0029

88 BIBLIOGRAPHY

[CF96] Alberto Caprara and Matteo Fischetti. {0, 1/2}-Chvátal-Gomory
cuts. Mathematical Programming, 74(3):221–235, 1996. doi:10.1007/
BF02592196.

[CMLW97] Cecile Cordier, Hugues Marchand, Richard Laundy, and Laurence A.
Wolsey. bc-opt :A branch-and-cut code for mixed integer programs. Tech-
nical report, Université catholique de Louvain, Center for Operations Re-
search and Econometrics (CORE), 1997.

[Com] Personal Communication. Dr. Timo Berthold, Sr Engineer, FICO Xpress
Development Team, Fair Isaac Germany GmbH.

[Cpl] IBM CPLEX Optimizer. URL: https://www.ibm.com/analytics/
cplex-optimizer.

[Dak65] Robert J. Dakin. A tree-search algorithm for mixed integer program-
ming problems. The Computer Journal, 8(3):250–255, 1965. doi:10.1093/
comjnl/8.3.250.

[Dat20] Leonid Datta. A survey on activation functions and their relation with
xavier and he normal initialization, 2020. arXiv:2004.06632.

[Dem15] Mehmet Demirci. A survey of machine learning applications for energy-
efficient resource management in cloud computing environments. In 2015
IEEE 14th International Conference on Machine Learning and Applications
(ICMLA), pages 1185–1190, 2015. doi:10.1109/ICMLA.2015.205.

[DHS11] John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. J. Mach. Learn.
Res., 12:2121–2159, 2011.

[EAB+20] Marc Etheve, Zacharie Alès, Côme Bissuel, Olivier Juan, and Safia Kedad-
Sidhoum. Reinforcement learning for variable selection in a branch and
bound algorithm. In Hebrard E. and Musliu N., editors, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research.
CPAIOR 2020., volume 12296, pages 176–185. Springer, Cham., 2020. doi:
10.1007/978-3-030-58942-4_12.

[ER18] Patrick Emami and Sanjay Ranka. Learning permutations with sinkhorn
policy gradient, 2018. arXiv:1805.07010.

[FGW19] Stefan Fritsch, Frauke Guenther, and Marvin N. Wright. neuralnet: Train-
ing of Neural Networks, 2019. R package version 1.44.2. URL: https:
//CRAN.R-project.org/package=neuralnet.

[FJ18] Matteo Fischetti and Jason Jo. Deep neural networks and mixed inte-
ger linear optimization. Constraints, 23(3):296–309, 2018. doi:10.1007/
s10601-018-9285-6.

http://dx.doi.org/10.1007/BF02592196
http://dx.doi.org/10.1007/BF02592196
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://dx.doi.org/10.1093/comjnl/8.3.250
http://dx.doi.org/10.1093/comjnl/8.3.250
http://arxiv.org/abs/2004.06632
http://dx.doi.org/10.1109/ICMLA.2015.205
http://dx.doi.org/10.1007/978-3-030-58942-4_12
http://dx.doi.org/10.1007/978-3-030-58942-4_12
http://arxiv.org/abs/1805.07010
https://CRAN.R-project.org/package=neuralnet
https://CRAN.R-project.org/package=neuralnet
http://dx.doi.org/10.1007/s10601-018-9285-6
http://dx.doi.org/10.1007/s10601-018-9285-6

BIBLIOGRAPHY 89

[FM05] Armin Fügenschuh and Alexander Martin. Computational integer pro-
gramming and cutting planes. In K. Aardal, G.L. Nemhauser, and R. Weis-
mantel, editors, Discrete Optimization, volume 12 of Handbooks in Oper-
ations Research and Management Science, pages 69–121. Elsevier, 2005.
doi:10.1016/S0927-0507(05)12002-7.

[Fou19] Robert Fourer. Software survey: Linear programming. OR/MS Today,
46(3), 2019. doi:10.1287/orms.2019.03.05.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[GDDM14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich
feature hierarchies for accurate object detection and semantic segmentation.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pages 580–587, 2014. doi:10.1109/CVPR.2014.81.

[GGK+20] Prateek Gupta, Maxime Gasse, Elias B. Khalil, M. Pawan Kumar, Andrea
Lodi, and Yoshua Bengio. Hybrid models for learning to branch, 2020.
arXiv:2006.15212.

[GGNS21] Claudio Gambella, Bissan Ghaddar, and Joe Naoum-Sawaya. Optimization
problems for machine learning: A survey. European Journal of Operational
Research, 290(3):807–828, 2021. doi:10.1016/j.ejor.2020.08.045.

[GHG+21] Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg,
Michael Bastubbe, Timo Berthold, Philipp M. Christophel, Kati Jarck,
Thorsten Koch, Jeff Linderoth, Marco Lübbecke, Hans D. Mittelmann,
Derya Ozyurt, Ted K. Ralphs, Domenico Salvagnin, and Yuji Shinano. MI-
PLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Program-
ming Library. Mathematical Programming Computation, 13:443–490, 2021.
doi:10.1007/s12532-020-00194-3.

[GLP] GLPK. URL: https://www.gnu.org/software/glpk.

[GM21] Arunim Garg and Vijay Mago. Role of machine learning in medical re-
search: A survey. Computer Science Review, 40:100370, 2021. doi:
doi.org/10.1016/j.cosrev.2021.100370.

[Gom58] Ralph E. Gomory. Outline of an algorithm for integer solutions to linear
programs. Bulletin of the American Mathematical Society, 64(5):275–278,
1958. doi:978-3-540-68279-0_4.

[Gom60] Ralph E. Gomory. An algorithm for the mixed integer problem. Technical
report, RAND Corporation, 1960.

[Gur] Gurobi Optimization. URL: https://www.gurobi.com.

http://dx.doi.org/10.1016/S0927-0507(05)12002-7
http://dx.doi.org/10.1287/orms.2019.03.05
http://www.deeplearningbook.org
http://dx.doi.org/10.1109/CVPR.2014.81
http://arxiv.org/abs/2006.15212
http://dx.doi.org/10.1016/j.ejor.2020.08.045
http://dx.doi.org/10.1007/s12532-020-00194-3
https://www.gnu.org/software/glpk
http://dx.doi.org/doi.org/10.1016/j.cosrev.2021.100370
http://dx.doi.org/doi.org/10.1016/j.cosrev.2021.100370
http://dx.doi.org/978-3-540-68279-0_4
https://www.gurobi.com

90 BIBLIOGRAPHY

[HCP83] Ellis L. Johnson Harlan Crowder and Manfred Padberg. Solving large-scale
zero-one linear programming problems. Operations Research, 31(5):803–
834, 1983. doi:10.1287/opre.31.5.803.

[Hen18] Gregor Hendel. Adaptive large neighborhood search for mixed integer pro-
gramming. Technical Report 18-60, ZIB, 2018.

[HJLT96] Thomas Hancock, Tao Jiang, Ming Li, and John Tromp. Lower bounds on
learning decision lists and trees. Information and Computation, 126(2):114–
122, 1996. doi:10.1006/inco.1996.0040.

[HMW19] Gregor Hendel, Matthias Miltenberger, and Jakob Witzig. Adaptive al-
gorithmic behavior for solving mixed integer programs using bandit al-
gorithms. In Fortz B. and Labbé M., editors, Operations Research Pro-
ceedings 2018, Operations Research Proceedings (GOR (Gesellschaft für
Operations Research e.V.)), pages 513–519. Springer, 2019. doi:10.1007/
978-3-030-18500-8_64.

[Ho95] Tin Kam Ho. Random decision forests. In Proceedings of the Third Inter-
national Conference on Document Analysis and Recognition, volume 1 of
ICDAR ’95, pages 278–282. IEEE Computer Society, 1995.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5(1):15–17, 1976.
doi:10.1016/0020-0190(76)90095-8.

[HWL+21] Zeren Huang, Kerong Wang, Furui Liu, Hui-ling Zhen, Weinan Zhang,
Mingxuan Yuan, Jianye Hao, Yong Yu, and Jun Wang. Learning to select
cuts for efficient mixed-integer programming, 2021. arXiv:2105.13645.

[JP82] Ellis L. Johnson and Manfred W. Padberg. Degree-two inequalities, clique
facets, and biperfect graphs. In Achim Bachem, Martin Grötschel, and
Bemhard Korte, editors, Bonn Workshop on Combinatorial Optimization,
volume 66 of North-Holland Mathematics Studies, pages 169–187. North-
Holland, 1982. doi:10.1016/S0304-0208(08)72450-2.

[JRT95] Michael Jünger, Gerhard Reinelt, and Stefan Thienel. Practical problem
solving with cutting plane algorithms in combinatorial optimization. In
William J. Cook, Laszlo Lovasz, and Paul Seymour, editors, Combinatorial
optimization, volume 20 of DIMACS Series in Discrete Mathematics and
Computer Science, AMS, pages 111 – 152, 1995.

[Kar72] Richard Karp. Reducibility among combinatorial problems. In Ray-
mond Miller and James Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, 1972. doi:10.1007/
978-1-4684-2001-2_9.

http://dx.doi.org/10.1287/opre.31.5.803
http://dx.doi.org/10.1006/inco.1996.0040
http://dx.doi.org/10.1007/978-3-030-18500-8_64
http://dx.doi.org/10.1007/978-3-030-18500-8_64
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://arxiv.org/abs/2105.13645
http://dx.doi.org/10.1016/S0304-0208(08)72450-2
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

BIBLIOGRAPHY 91

[Kas80] G. V. Kass. An exploratory technique for investigating large quantities of
categorical data. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 29(2):119–127, 1980. doi:10.2307/2986296.

[Kha79] Leonid G. Khachiyan. A polynomial algorithm in linear programming.
Doklady Akademii Nauk SSSR, 244(5):1093–1096, 1979. doi:10.1016/
0041-5553(80)90061-0.

[KLP17] Markus Kruber, Marco Lübbecke, and Axel Parmentier. Learning when to
use a decomposition. In Integration of AI and OR Techniques in Constraint
Programming, Lecture Notes in Computer Science, pages 202–210. Springer,
2017.

[KPP17] Daniel Karapetyan, Abraham Punnen, and Andrew Parkes. Markov
chain methods for the bipartite boolean quadratic programming prob-
lem. European Journal of Operational Research, 260(2):494–506, 2017.
doi:10.1016/j.ejor.2017.01.001.

[KRBA16] Jim Y. J. Kuo, David A. Romero, J. Christopher Beck, and Cristina H.
Amon. Wind farm layout optimization on complex terrains–integrating a
cfd wake model with mixed-integer programming. Applied Energy, 178:404–
414, 2016. doi:10.1016/j.apenergy.2016.06.085.

[Kuh20] Max Kuhn. caret: Classification and Regression Training, 2020. R package
version 6.0-86. URL: https://CRAN.R-project.org/package=caret.

[KvHW19] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve
routing problems!, 2019. arXiv:1803.08475.

[LBS84] Richard A. Olshen Leo Breiman, Jerome H. Friedman and Charles J. Stone.
Classification And Regression Trees. Taylor & Francis Group, 1984. doi:
10.1201/9781315139470.

[LD60] Ailsa H. Land and Alison G. Doig. An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520, 1960. doi:10.2307/
1910129.

[Leg05] Adrien-Marie Legendre. Nouvelles méthodes pour la détermination des or-
bites des comètes. F. Didot, 1805.

[LLB+21] Eric Larsen, Sébastien Lachapelle, Yoshua Bengio, Emma Frejinger, Si-
mon Lacoste-Julien, and Andrea Lodi. Predicting tactical solutions to op-
erational planning problems under imperfect information, 2021. arXiv:
1901.07935.

[LNL16] Minglei Li, Liangliang Nan, and Shaochuang Liu. Fitting boxes to man-
hattan scenes using linear integer programming. International journal of
digital earth, 9(8):806–817, 2016. doi:10.1080/17538947.2016.1143982.

http://dx.doi.org/10.2307/2986296
http://dx.doi.org/10.1016/0041-5553(80)90061-0
http://dx.doi.org/10.1016/0041-5553(80)90061-0
http://dx.doi.org/10.1016/j.ejor.2017.01.001
http://dx.doi.org/10.1016/j.apenergy.2016.06.085
https://CRAN.R-project.org/package=caret
http://arxiv.org/abs/1803.08475
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.1201/9781315139470
http://dx.doi.org/10.2307/1910129
http://dx.doi.org/10.2307/1910129
http://arxiv.org/abs/1901.07935
http://arxiv.org/abs/1901.07935
http://dx.doi.org/10.1080/17538947.2016.1143982

92 BIBLIOGRAPHY

[Lod10] Andrea Lodi. Mixed integer programming computation. In Michael Jünger,
Thomas M. Liebling, Denis Naddef, George L. Nemhauser, William R.
Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A. Wolsey,
editors, 50 Years of Integer Programming 1958-2008: From the Early Years
to the State-of-the-Art, pages 619–645, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg. doi:10.1007/978-3-540-68279-0_16.

[Loh14] Wei-Yin Loh. Fifty years of classification and regression trees. International
Statistical Review, 82(3):329–348, 2014. doi:10.1111/insr.12016.

[Lou15] Gilles Louppe. Understanding random forests: From theory to practice,
2015. arXiv:1407.7502.

[lps] lp_solve. URL: http://lpsolve.sourceforge.net.

[LT14] Andrea Lodi and Andrea Tramontani. Performance variability in mixed-
integer programming. TutORials in Operations Research, pages 1–12, 2014.
doi:10.1287/educ.2013.0112.

[LZ17] Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey.
TOP, 25(2):207–236, 2017. doi:10.1007/s11750-017-0451-6.

[LZMW09] Fuhai Li, Xiaobo Zhou, Jinwen Ma, and Stephen T. C. Wong. Multiple
nuclei tracking using integer programming for quantitative cancer cell cycle
analysis. IEEE transactions on medical imaging, 29(1):96–105, 2009. doi:
10.1109/TMI.2009.2027813.

[Mar01] Alexander Martin. General mixed integer programming: Computational
issues for branch-and-cut algorithms. Lecture Notes in Computer Science,
2241:1–25, 2001. doi:10.1007/3-540-45586-8_1.

[MBB+20] Seifeddine Messaoud, Abbas Bradai, Syed Hashim Raza Bukhari, Pham
Tran Anh Quang, Olfa Ben Ahmed, and Mohamed Atri. A survey on
machine learning in Internet of Things: Algorithms, strategies, and appli-
cations. Internet of Things, 12:100314, 2020. doi:10.1016/j.iot.2020.
100314.

[M.D44] Joseph Berkson M.D. Applications of the logistic function to bioassay.
Journal of the American Statistical Association, 39(227):357–365, 1944.
doi:10.1080/01621459.1944.10500699.

[M.D51] Joseph Berkson M.D. Why I prefer logits to probits. Biometrics, 7(4):327–
339, 1951. doi:10.2307/3001655.

[Mip] Miplib 2017 website. URL: https://miplib.zib.de/index.html.

[Mit02] John E. Mitchell. Branch-and-cut algorithms for combinatorial optimiza-
tion problems. Handbook of Applied Optimization, pages 65–77, 2002.

http://dx.doi.org/10.1007/978-3-540-68279-0_16
http://dx.doi.org/10.1111/insr.12016
http://arxiv.org/abs/1407.7502
http://lpsolve.sourceforge.net
http://dx.doi.org/10.1287/educ.2013.0112
http://dx.doi.org/10.1007/s11750-017-0451-6
http://dx.doi.org/10.1109/TMI.2009.2027813
http://dx.doi.org/10.1109/TMI.2009.2027813
http://dx.doi.org/10.1007/3-540-45586-8_1
http://dx.doi.org/10.1016/j.iot.2020.100314
http://dx.doi.org/10.1016/j.iot.2020.100314
http://dx.doi.org/10.1080/01621459.1944.10500699
http://dx.doi.org/10.2307/3001655
https://miplib.zib.de/index.html

BIBLIOGRAPHY 93

[MK11] Kent McClymont and Edward C. Keedwell. Markov chain hyper-heuristic
(mchh): An online selective hyper-heuristic for multi-objective continuous
problems. In Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, page 2003–2010. Association for
Computing Machinery, 2011. doi:10.1145/2001576.2001845.

[MLIDLS14] Franco Mascia, Manuel López-Ibáñez, Jérémie Dubois-Lacoste, and
Thomas Stützle. Grammar-based generation of stochastic local search
heuristics through automatic algorithm configuration tools. Computers &
Operations Research, 51:190–199, 2014. doi:10.1016/j.cor.2014.05.020.

[MM72] Robert Messenger and Lewis Mandell. A modal search technique for pre-
dictive nominal scale multivariate analysis. Journal of the American Sta-
tistical Association, 67(340):768–772, 1972. doi:10.1080/01621459.1972.
10481290.

[MMWW02] Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence
Wolsey. Cutting planes in integer and mixed integer programming. Discrete
Applied Mathematics, 123(1):397 – 446, 2002. doi:https://doi.org/10.
1016/S0166-218X(01)00348-1.

[Mos] Mosek. URL: https://www.mosek.com.

[MP43] W. S. McCulloch and W. Pitts. A logical calculus of ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[MS63] James N. Morgan and John A. Sonquist. Problems in the analysis of survey
data, and a proposal. Journal of the American Statistical Association,
58(302):415–434, 1963. doi:10.1080/01621459.1963.10500855.

[NBG+20] Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Li-
chocki, Ivan Lobov, Brendan O’Donoghue, Nicolas Sonnerat, Christian
Tjandraatmadja, Pengming Wang, Ravichandra Addanki, Tharindi Ha-
puarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena,
Yujia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs
using neural networks, 2020. arXiv:2012.13349.

[NVBB18] Alex Nowak, Soledad Villar, Afonso S. Bandeira, and Joan Bruna. Revised
note on learning algorithms for quadratic assignment with graph neural
networks, 2018. arXiv:1706.07450.

[Pad05] Manfred Padberg. Classical cuts for mixed-integer programming and
branch-and-cut. Annals of Operations Research, 139(1):321 – 352, 2005.
doi:https://doi.org/10.1007/s10479-005-3453-y.

[PAMAL15] Maria J. Pires, Pedro Amorim, Sara Martins, and Bernardo Almada-
Lobo. Production planning of perishable food products by mixed-integer

http://dx.doi.org/10.1145/2001576.2001845
http://dx.doi.org/10.1016/j.cor.2014.05.020
http://dx.doi.org/10.1080/01621459.1972.10481290
http://dx.doi.org/10.1080/01621459.1972.10481290
http://dx.doi.org/https://doi.org/10.1016/S0166-218X(01)00348-1
http://dx.doi.org/https://doi.org/10.1016/S0166-218X(01)00348-1
https://www.mosek.com
http://dx.doi.org/10.1080/01621459.1963.10500855
http://arxiv.org/abs/2012.13349
http://arxiv.org/abs/1706.07450
http://dx.doi.org/https://doi.org/10.1007/s10479-005-3453-y

94 BIBLIOGRAPHY

programming. In João Paulo Almeida, José Fernando Oliveira, and Al-
berto Adrego Pinto, editors, Operational Research, volume 4 of CIM
Series in Mathematical Sciences, pages 331–352. Springer, 2015. doi:
10.1007/978-3-319-20328-7_19.

[PR91] Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for
the resolution of large-scale symmetric traveling salesman problems. SIAM
Review, 33(1):60–100, 1991. doi:10.1137/1033004.

[Qui86] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1:81–106,
1986. doi:10.1023/A:1022643204877.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., 1993.

[R C13] R Core Team. R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, 2013. URL: http:
//www.R-project.org/.

[Ros58] F. Rosenblatt. The perceptron: A probabilistic model for information stor-
age and organization in the brain. Psychological Review, 65(6):386–408,
1958. doi:10.1037/h0042519.

[Rud17] Sebastian Ruder. An overview of gradient descent optimization algorithms,
2017. arXiv:1609.04747.

[SCI] SCIP. URL: https://www.scipopt.org.

[SCZZ20] Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimiza-
tion methods from a machine learning perspective. IEEE Transactions on
Cybernetics, 50(8):3668–3681, 2020. doi:10.1109/TCYB.2019.2950779.

[SSBD14] Shai Shalsev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. Cambridge University Press, USA, 2014.

[SSR12] Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combi-
natorial optimization with UCT. In Nicolas Beldiceanu, Narendra Jussien,
and Eric Pinson, editors, CPAIOR, volume 7298 of Lecture Notes in Com-
puter Science, pages 356–361. Springer, 2012.

[Sym] SYMPHONY. URL: https://projects.coin-or.org/SYMPHONY.

[TAF20a] Yunhao Tang, Shipra Agrawal, and Yuri Faenza.
learning to cut. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 9367–9376, 2020.

[TAF20b] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. Reinforcement learning
for integer programming: Learning to cut, 2020. arXiv:1906.04859.

http://dx.doi.org/10.1007/978-3-319-20328-7_19
http://dx.doi.org/10.1007/978-3-319-20328-7_19
http://dx.doi.org/10.1137/1033004
http://dx.doi.org/10.1023/A:1022643204877
http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1037/h0042519
http://arxiv.org/abs/1609.04747
https://www.scipopt.org
http://dx.doi.org/10.1109/TCYB.2019.2950779
https://projects.coin-or.org/SYMPHONY
http://arxiv.org/abs/1906.04859

BIBLIOGRAPHY 95

[TGH11] Isaac Triguero, Salvador García, and Francisco Herrera. Differential evolu-
tion for optimizing the positioning of prototypes in nearest neighbor classifi-
cation. Pattern Recognition, 44(4):901–916, 2011. doi:10.1016/j.patcog.
2010.10.020.

[TMD+06] Sebastian Thrun, Michael Montemerlo, Hendrik Dahlkamp, David Stavens,
Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny,
Gabriel Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan
Pratt, Pascal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek,
Christian Koelen, and Pamela Mahoney. Stanley: The robot that won the
darpa grand challenge. J. Field Robotics, 23:661–692, 2006.

[VC71] Vladimir N. Vapnik and Alexy Y. Chervonenkis. On the uniform con-
vergence of relative frequencies of events to their probabilities. Theory of
Probability & Its Applications, 16(2):264–280, 1971. doi:10.1137/1116025.

[VFJ17] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks,
2017. arXiv:1506.03134.

[VRW87] Tony J. Van Roy and Laurence A. Wolsey. Solving mixed integer pro-
gramming problems using automatic reformulation. Operations Research,
35(1):45–57, 1987.

[WB21] Jakob Witzig and Timo Berthold. Conflict Analysis for MINLP. INFORMS
Journal on Computing, 33(2):421–435, 2021. doi:10.1287/ijoc.2020.
1050.

[WBH21] Jakob Witzig, Timo Berthold, and Stefan Heinz. Computational aspects
of infeasibility analysis in mixed integer programming. Mathematical Pro-
gramming Computation, 2021. doi:10.1007/s12532-021-00202-0.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation,
2016. arXiv:1609.08144.

[Xpr] FICO Xpress Optimization. URL: https://www.fico.com/en/products/
fico-xpress-optimization.

[ZJLB20] Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parame-
terizing branch-and-bound search trees to learn branching policies, 2020.
arXiv:arXiv:2002.05120.

http://dx.doi.org/10.1016/j.patcog.2010.10.020
http://dx.doi.org/10.1016/j.patcog.2010.10.020
http://dx.doi.org/10.1137/1116025
http://arxiv.org/abs/1506.03134
http://dx.doi.org/10.1287/ijoc.2020.1050
http://dx.doi.org/10.1287/ijoc.2020.1050
http://dx.doi.org/10.1007/s12532-021-00202-0
http://arxiv.org/abs/1609.08144
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
http://arxiv.org/abs/arXiv: 2002.05120

	Acknowledgments
	Abstract
	Introduction
	Mathematical Optimization
	Mixed-Integer Programs
	Branch-and-Bound
	Cutting Planes
	Use of Cutting Planes in B&B

	Practical MIP Solving & FICO Xpress

	Machine Learning
	Supervised Learning
	Train/Test Set
	Underfitting vs Overfitting
	Hyperparameters & K-Fold Cross-Validation

	Linear Model
	Random Forest
	Decision Tree
	Random Forest

	Neural Network

	A Machine Learning Strategy for the Use of Local Cuts
	A Crucial Decision: Cut vs Not Cut
	Machine Learning for Combinatorial Optimization
	Learning to Use Local Cuts

	Methodological Approach
	Feature Design
	Label Definition
	Data Collection
	Data Split

	Training & Testing
	Training Methods
	Testing Methods

	Computational Experiments
	Computational Setup & Data Preprocessing
	Baseline Evaluation
	Evaluation With Different Thresholds
	Classification Experiments
	Feature Selection
	Evaluation With Different Solver Releases

	Conclusions and Outlook
	Ground Problem Sets
	List of Algorithms
	Bibliography

