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Abstract

Sampling rare events in metastable dynamical systems is often a computationally expensive task and
one needs to resort to enhanced sampling methods such as importance sampling. Since we can formulate
the problem of finding optimal importance sampling controls as a stochastic optimization problem, this
then brings additional numerical challenges and the convergence of corresponding algorithms might
as well suffer from metastabilty. In this article, we address this issue by combining systematic control
approaches with the heuristic adaptive metadynamics method. Crucially, we approximate the importance
sampling control by a neural network, which makes the algorithm in principle feasible for high dimensional
applications. We can numerically demonstrate in relevant metastable problems that our algorithm is more
effective than previous attempts and that only the combination of the two approaches leads to a satisfying
convergence and therefore to an efficient sampling in certain metastable settings.

1 Introduction
The accurate computation of rare events is of great importance in multiple applications, relating to fields
such as molecular dynamics, epidemiology, engineering or finance, to name just a few. One is typically
interested in events that happen only very rarely, but are still relevant for certain phenomena of interest.
Since analytical computations are mostly infeasible in practice, one usually relies on Monte Carlo approxi-
mations for the desired quantities. The related sampling problem, however, can be very challenging mainly
for two reasons: a potentially high dimension of the problem at hand as well as large statistical errors of
corresponding estimators, which are rooted in the characteristic of the events being rare. Loosely speaking,
the difficulty of sampling rare events is based on its very definition: it is hard to observe an event (frequently)
if it almost never appears (at least in relation to the typical timescales for which a simulation is feasible).
In fact, the characteristic exponential divergence of the relative error with the parameter that controls the
rarity of the quantity of interest poses great computational challenges.

In this article we shall focus on rare events in stochastic processes, where one is interested in sampling
regions of the state space which are unlikely to be visited. In particular, we are interested in processes that
exhibit some sort of metastability, where particles that follow the dynamics stay in certain regions of the
space for a very long time. In fact, the average waiting of switching between metastable events is orders of
magnitude longer than the timescale of the process itself. This is for instance typical in molecular simula-
tions with particles following the Langevin dynamics in which a potential function governs the evolution of
the stochastic process, see e.g. [14]. Here, metastable regions correspond to local minima of the potential,
which are separated by so-called energy barriers, and transitions between those regions are of interest since
they correspond to macroscopic properties of corresponding molecules. These are for instance reaction rates
or conformation changes, such as the folding of a protein or a phase transition. However, those transitions
happen only very rarely so that a simulation of transition trajectories can be extremely difficult from a
computational point of view. On the one hand, the time to overcome energy barriers might be extremely
large (in fact, it scales exponentially with the height of the energy barrier [2]), on the other hand, variances
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of estimators related to those rare transitions might be large1.

One idea to overcome those challenges is to apply importance sampling. Abstractly speaking, the basic idea
is to sample from another probability distribution and weight the resulting random variables back in order
to still get an unbiased estimator for the quantity of interest. Since we are interested in path-dependent
quantities we consider importance sampling in the space of continuous trajectories. This corresponds to
adding a function to the drift of original dynamics. One can think of the additional function as a control
function or force that pushes trajectories into desired regions of the state space and thereby allows for
overcoming possible energy barriers. Equivalently, one can think of modifying the original physical potential
such that it appears less “rugged” and particles are no longer trapped in local minima. In principle, it
is possible to design modifications of the potential rather freely. However, one has to keep in mind that
these modifications influence the quality of the importance sampling estimator significantly, see e.g. [16]. A
systematic approach for finding good control functions that aim to minimize the variance of the estimator is
related to a stochastic optimal control problem [18] (for further variational perspectives we refer to [33]). This
perspective then allows for numerical strategies such as iterative stochastic optimization methods that aim
to find efficient controls in practice. At the same time, especially in metastable situations, those approaches
hold two additional challenges that might make corresponding algorithms infeasible in applications:

• In order to compute a first iteration in the stochastic optimization procedure the rare event of interest
must at least be simulated once. If this does not happen, one can usually not proceed.

• Even if one manages to simulate rare events with great computational effort, the estimated objectives
in the optimization routines as well as their gradients might suffer from high variances, which might
make convergence of the method very slow.

In this article we develop an algorithm that shall address these two aspects and improve importance sampling
based estimation in metastable scenarios. In particular, we will combine systematic control-based approaches
with heuristic adaptive methods that are related to the so-called metadynamics algorithm.

1.1 Previous work
We have mentioned before that rare event sampling occurs in multiple different fields of application, where
each field adds a different perspective. In the sequel, let us review some of those perspectives and relate to
works that are relevant for our endeavor.

Adaptive biasing techniques Methods that aim to modify the potential on the fly in order to remove
metastable features of the dynamics depending on the particles in the simulation are often subsumed under
the term adaptive biasing techniques. A well known method is called metadynamics [28], which was developed
in order to improve the sampling related to stationary distributions of complex molecular systems. Many
extensions and applications have been published throughout the last years. For a good review on recent
developments we refer to [4, 41] and the references therein. Convergence results and high dimensional
adaptations can be found in [12, 25]. An extension to importance sampling for path dependent properties
of interest has been proposed in [37] and similar ideas based on the adaptive biasing force technique has
been suggested by [43]. This method has been used in many applications and different extensions have for
instance been proposed in [3, 21]. To our knowledge, for the adaptive biasing force methods no extension for
path dependent quantities has been considered yet. Let us also note that related non-equilibrium methods
have been addressed, see e.g. [27] or [47], but as before, an extension to path dependent problems is usually
not covered.

Rare event sampling in an asymptotic regime Many methods for rare event estimation have been
developed in an asymptotic regime, relying usually on large deviation arguments. Those strategies are often
connected to the associated Hamilton-Jacobi-Bellman equations and can for instance be found in [5, 6,
8]. For variance reduction strategies in a zero noise limit we refer to [42], which relies on optimal control
strategies of the corresponding deterministic problem. The special situation of attractors with resting points
has been addressed in [7], and in [40] the variance of importance sampling based on asymptotic arguments
applied in a nonasymptotic regime has been analyzed. Even though all of these method can be applied to
path dependent quantities, an application to high dimensional applications is usually not addressed.

1Note that those two aspects usually interact.
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Nonasymptotic importance sampling Importance sampling in a nonasymptotic regime, which targets
at sampling path dependent quantities, corresponds to a controlled stochastic process, see e.g. [31]. A
strategy that aims to identify optimal importance sampling controls has been suggested in [18]. Numerically,
the approach rests on the approximation of the control by a linear combination of ansatz functions. In
[17] the corresponding method is analyzed from the perspective of path space measures and variational
formulations of the problem are considered. Further variational perspectives have been suggested in [33],
putting additional emphasis on certain numerical robustness properties and allowing for high-dimensional
applications by modeling the control with neural networks. For strategies that are based on backward
stochastic differential equations we refer for instance to [15]. The optimal control attempt has also been
combined with model reduction techniques in [19, 20] and [45], noting that one of the main drawbacks of
this approach is the placing of ansatz functions over the domain of interest. For a statistical analysis of
importance sampling in path space that highlights its non-robustness in particular in high dimensions we
refer to [16]. We also refer to [38] for a comprehensive introduction to nonasymptotic importance sampling
for path functionals.

Optimal control problems Due to the connections of (optimal) importance sampling and optimal control
theory we may as well refer to numerical strategies that allow to solve (high-dimensional) control problems.
One strategy is to solve the related Hamilton-Jacobi-Bellman equation, which can for instance be tackled
with deep learning based strategies in high-dimensions, see e.g. [13, 33, 44, 46]. Let us in particular refer
to [32], where elliptic partial differential differential equations (PDEs) are considered, which are relevant
for the problems we focus on in this article. Let us further highlight [33] where robustness properties of
loss functions have been analyzed, leading in particular to the novel log-variance divergence, which exhibits
favorable numerical properties. For approximating control functions with tensor trains we for instance refer
to [10].

1.2 Outline of the article
The article is structured as follows. In Section 2 we state the rare event problem and discuss issues ap-
pearing in naive Monte Carlo estimations. In Section 2.1 we introduce importance sampling as a strategy
to overcome those issues and in Section 2.2 we subsequently show how one can aim for optimal importance
sampling strategies by deriving an equivalent optimal control problem via PDE arguments. In Section 3
we then address computational aspects of solving this control problem via an optimization approach. In
particular, Section 3.1 is devoted to the computation of gradients that are needed in iterative optimization
methods, Section 3.2 introduces the metadynamics based initialization method and Section 3.3 discusses the
approximation of the control functions via neural networks, which then allows us to pose our final algorithm.
In Section 4 we subsequently demonstrate in different numerical examples that the algorithm can signifi-
cantly improve sampling performance in high-dimensional metastable scenarios. Finally, Section 5 provides
a conclusion and an outlook for further research questions. For the proofs and additional statements we refer
to Appendix A.

2 Sampling metastable dynamics
In this article we focus on stochastic dynamical systems which exhibit metastable features. To be precise,
we consider the overdamped Langevin equation

dXs = −∇V (Xs)ds+ σ(Xs)dWs, X0 = x ∈ Rd, (1)

on a bounded domain D ⊂ Rd, where (Ws)s≥0 is a d-dimensional Brownian motion. The function V : Rd → R
shall be understood as a potential that for instance governs the dynamics of multiple atoms in a physical
system, and for the diffusion coefficient we usually choose σ(x) =

√
2β−1 Id, where β > 0 denotes the inverse

temperature2. We assume that there exists a unique strong solution to SDE (1) and that the resulting process
X is ergodic such that we can guarantee convergence to a unique equilibrium distribution, see e.g. [29] or
[36] for details on these assumptions.
Given a target set T ⊂ D, let us define the first hitting time of the process X as

τ := inf{s > 0|Xs ∈ T },
2Note that in principle both the potential and the diffusion coefficient could be made time-dependent as well.
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and note that it is a.s. finite3. We can now define our quantity of interest I : C([0,∞),Rd)→ R as

I(X) := exp (−W(X)), (2)

with the path functional W : C([0,∞),Rd)→ R given as

W(X) :=

∫ τ

0

f(Xs)ds+ g(Xτ ), (3)

where f : Rd → R and g : Rd → R are such that W is integrable. Our goal is to compute the expectation
value of the quantity of interest I,

Ψ(x) := Ex[I(X)], (4)

which we can view as a function of the initial value x, where we introduce the shorthand notation Ex[I(X)] :=
E[I(X)|X0 = x]. Let us recall that a stochastic process, such as the one defined in (1), is metastable if its
dynamic behavior is characterized by unlikely transition events between the so-called metastable regions. In
the particular case of an overdamped Langevin process, one can distinguish between two types of metasta-
bility, coming either from energetic or entropic barriers [29]. In this article we focus on the former. Let
us recall that in this case both the temperature β−1 and the height of the energetic barriers determine the
strength of the metastability [2]. In particular, by Kramer’s law the mean hitting time satisfies the large
deviations asymptotics

E[τ ] � exp

(
2∆V

β

)
as β → 0, (5)

where ∆V is the energy barrier that the dynamics has to overcome in order to reach the target set T . An
illustration of this exponential dependency is provided in Example 2.1.

Example 2.1 (Double well potential). For an illustration, let us consider the one-dimensional double well
potential

Vα(x) = α(x2 − 1)2, (6)

where α > 0 modulates the height of the energetic barrier and thereby influences the strength of the metasta-
bility, see the left panel of Figure 1. Let us consider the initial value x = −1 in the left well of the potential.
We choose the target set T = [1, 3] to be supported in the right well so that the particles need to cross the
potential barrier. In the right panel of Figure 1 we plot the expected hitting time of reaching T for different
values of α and β when using naive Monte Carlo estimations. Indeed we observe the exponential dependence
as indicated by (5). As mentioned above, one can aim to speed up sampling by reducing the trajectory lengths
when applying an importance sampling based sampling scheme. It turns out that there is an optimal way to
design such a scheme, leading to substantially reduced mean hitting times which do not scale exponentially
with the energy barrier anymore. We will show how to design this optimal scheme in the upcoming sections.

−2 −1 0 1 2
x

0

2

4

6

8

10

12

Potential Vα

α = 10

α = 5

α = 2

α = 1

1 2 3 4 5 6 7 8 9 10
α

100

101

102

103

Mean first hitting time

MC sampling (β = 4)
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Figure 1: Left panel: The double well potential for different values of α. Right panel: Mean first hitting
times for different values of α and β.

3Let ρ̃(y, t|x) be the probability distribution of the particles which have not arrived in T yet, given the position x and
assuming the time evolution t. Then, the homogeneous (absorbing) boundary condition for the mean first hitting time implies
that lim

t→∞
ρ̃(y, t|x) = 0 for all y ∈ Rd, which means that the particles will eventually leave the domain and therefore τ < ∞

holds almost surely [36].
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2.1 Monte Carlo approximations and importance sampling
Since there is no closed-form formula available for the computation of the expectation value (4), we must
rely on its Monte Carlo estimator

Ψ̂(x) :=
1

K

K∑

k=1

I(X(k)), (7)

where {X(k)}Kk=1 are independent realizations of the process X, all starting at x. For a finite sample size K
the estimator is unbiased and the usual behaviors of the variance and the relative error hold, i.e.

Var
(

Ψ̂(x)
)

=
Var(I(X))

K
, RE(Ψ̂) :=

√
Var

(
Ψ̂(x)

)

Ex [I(X)]
=

RE(I(X))√
K

(8)

for any x ∈ Rd. In a metastable system the intrinsic relative error of the quantity of interest, RE(I(X)),
can be very large. As a consequence, reducing the relative error of the Monte Carlo estimator underneath
a prescribed positive value ε > 0, i.e. RE(Ψ̂) ≤ ε, might imply that one needs a very large number of
trajectories, namely K ≥ (RE(I(X))/ε)2. Thus, in order to make numerical estimations feasible, one often
needs to rely on methods that reduce the inherent variance of the corresponding stochastic quantities. One
such method is importance sampling, on which we shall focus in the sequel.

The general idea of importance sampling is to draw random variables from another probability measure
and subsequently weight them back in order to still have an unbiased estimator of the desired quantity of
interest [35]. In the case of stochastic processes this change of measure corresponds to adding a control to
the original process (1), yielding the controlled dynamics

dXu
s = (−∇V (Xu

s ) + σ(Xu
s )u(Xu

s ))ds+ σ(Xu
s )dWs, Xu

0 = x, (9)

where the control u is an Itô integrable function that satisfies a linear growth condition, i.e. u ∈ U with

U = {u ∈ C1(Rd,Rd) : u grows at least linearly in x}.

Further details can be found in e.g. [16, 17, 18, 33]. The controlled dynamics (9) can now be related to the
original one (1) via a change of measure in path space, which can be made explicit via Girsanov’s formula
(see Appendix A.2 for details). To be precise, it holds

Ex [I(X)] = Ex [I(Xu)Mu] , (10)

where the exponential martingale

Mu := exp

(
−
∫ τu

0

u(Xu
s ) · dWs −

1

2

∫ τu

0

|u(Xu
s )|2ds

)
(11)

corrects for the induced bias.

Relating to Example 2.1, the control u ∈ U can intuitively be understood as an external force aiming to
push particles over the energy barrier such that they can escape from metastable regions and reach desired
target sets. In principle, the importance sampling relation (10) stays intact for any u ∈ U , however, it turns
out that the variance of corresponding estimators significantly depends on an appropriate choice of u , see
[16]. In particular, it does not suffice to somehow push particles over existing barriers – instead, the specific
control protocol needs to be chosen very carefully. Clearly, a natural goal for designing an optimal control
u∗ ∈ U is to aim for minimizing the variance of the importance sampling estimator, i.e.

Var
(
I(Xu∗

)Mu∗
)

= inf
u∈U
{Var(I(Xu)Mu)} . (12)

In the next section we shall discuss how this objective can in fact be linked to a classical optimal control
problem, which will subsequently lead to feasible numerical strategies.
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2.2 Optimal control characterizations and associated boundary value problems
In order to derive the connection between variance minimization as stated in (12) and a classical optimal
control problem, we will essentially argue via PDEs that are associated to our estimation problem4. Let
us first recall via the Feynman-Kac theorem [29, Proposition 6.1] that the expectation Ψ (considered as a
function of the initial value), as defined in (4), fulfills the elliptic boundary value problem

(L− f(x))Ψ(x) = 0 x ∈ S, (13a)
Ψ(x) = exp (−g(x)) x ∈ ∂S, (13b)

where L is the infinitesimal generator of the process X, defined as

L =
1

2

d∑

i,j=1

(σσ>)ij(x)
∂2

∂xi∂xj
−

d∑

i=1

∂

∂xi
V (x)

∂

∂xi
.

The domain S := D ∩ T c is assumed to be bounded and the functions f ∈ C(Rd,R), g ∈ C2(Rd,R) are the
same as in (3).

The connection of our estimation problem to an optimal control problem can be revealed when applying the
Hopf-Cole transformation (see e.g. Section 4.4.1 in [9], cf. [18]) to the solution of the PDE (13), namely

Φ(x) = − log Ψ(x). (14)

One can readily show that Φ now fulfills the non-linear boundary value problem

LΦ(x)− 1

2
|σ>∇Φ(x)|2 + f(x) = 0 x ∈ S, (15a)

Φ(x) = g(x) x ∈ ∂S. (15b)

The PDE (15) is known as Hamilton-Jacobi-Bellman (HJB) equation, which is a key equation in optimal
control theory allowing for a characterization of optimal control strategies. In fact, we can now identify the
control problem that corresponds to the above PDE and thus to our estimation problem, by stating the cost
functional

J(u;x) := Ex
[
W(Xu) +

1

2

∫ τu

0

|u(Xu
s )|2ds

]
, (16)

where Xu follows the controlled dynamics as defined in (9) and f and g can be interpreted as running and
terminal costs, respectively. The solution to PDE (15) is sometimes called value function in the sense that
it offers the optimal costs-to-go, depending on the initial value x, i.e.

Φ(x) = inf
u∈U

J(u;x). (17)

Let us make the above observations precise.

Proposition 2.2 (Variance minimization as control problem). Let us assume there exist solutions Ψ ∈
C2
b (Rd,R) and Φ ∈ C2

b (Rd,R) to the elliptic boundary value problems (13) and (15), respectively, and set

u∗ = −σ>∇Φ = σ>∇ log Ψ. (18)

Then the following are equivalent:

(i) u∗ ∈ U minimizes the control costs as defined in (16).

(ii) u∗ ∈ U minimizes the variance of the importance sampling estimator as defined in (12).

In fact it holds
Var

(
I(Xu∗

)Mu∗
)

= 0. (19)

Proof. See e.g. [17, Theorem 2] or [33, Theorem 2.2].
4Note that an alternative derivation can be achieved via certain divergences between path space measures, see [33].
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Proposition 2.2 shows that u∗, which minimizes either (12) or (16), can be recovered from the solution of
the HJB equation. This reveals that the optimal control is in fact of gradient form, just as the drift of our
original stochastic process (1). We can therefore express the overall drift of the optimally controlled process
as

−∇(V + V ∗bias), (20)

where V ∗bias = σσ>Φ is sometimes called the optimal bias potential, which can be interpreted as being the
optimal correction of the original potential V in terms of variance reduction. As stated in Proposition 2.2,
one can show that it is optimal in the sense that it drives the variance of the importance sample estimator
to zero, thereby yielding a perfect sampling scheme. Let us illustrate this by referring again to Example 2.1,
where we have considered a stereotypical double well potential with different energetic barriers depending
on the parameter α > 0. In Figure 2 we display the optimal control functions and optimal bias potentials,
respectively, that allow the trajectories to cross the barrier – note that the control is particularly large in
regions where the particles get trapped when not applying the control. The optimal solutions are calculated
via a finite difference discretization of the corresponding PDE (13). In Figure 3 we display the resulting
Monte Carlo estimators and corresponding relative errors when using either naive Monte Carlo or the optimal
importance sampling estimator. Note that the estimators are indeed much more accurate when relying on
the optimal importance sampling control. We do not observe a zero relative error5 due to the discretization
of the process with different step-sizes ∆t > 0, see also Section 4.
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Figure 2: Optimal control functions and optimal potentials for different values of α and inverse temperature
β = 1, see also Example 2.1.

5The observation that the relative error for the naive Monte Carlo estimator seems to increase with decreasing ∆t is
misleading and seems to be due to the fact that hitting times can be simulated more accurately, which leads to smaller values
of Ψ̂ and therefore larger relative errors, see also the left panel of Figure 3.
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Figure 3: We compare the naive Monte Carlo estimator with optimal importance sampling relying on a
discretization of PDE (13) for different values of α, inverse temperature β = 1 and different time steps ∆t
with sample size K = 103. The confidence intervals are computed according to (40).

3 Numerical strategies for solving the optimal control problem
Numerically solving optimal control problems as the one in (13) or (almost equivalently) solving high-
dimensional PDEs such as the one stated in (15) can be challenging. In particular in high dimensional
settings, this task seems hopeless when relying on classical grid based methods such as finite differences or
finite elements since these methods suffer from the curse of dimensionality [44]. We will therefore work with
an approach that relies on an optimization procedure aiming to iteratively minimize the cost functional (16)
over a prescribed function class in the spirit of machine learning (cf. [33]). Our envisioned procedure can be
described as follows:

(i) Initialize the control u with an appropriate choice uinit.

(ii) Simulate realizations of the controlled process Xu as defined in (9).

(iii) Compute an estimator of the cost functional J(u;x) as well as its derivative with respect to u.

(iv) Update the control u by gradient descent.

(v) Repeat steps (ii)–(iv) until convergence.

We argue that two aspects are crucial in order to implement the above scheme in practice. On the one hand,
we need to design gradient estimators that are feasible in the sense that they can cope with random stopping
times and at the same time exhibit sufficiently low variances. On the other hand, in particular in metastable
settings, an appropriate initialization uinit is important. Otherwise initial gradient information might turn
out to be useless for instance due to increased variances or due to long trajectory simulations. As a remedy,
we suggest a novel simulation algorithm which tries to combine ideas from existing approaches and thereby
overcome these known issues. In particular, we will suggest to identify feasible control initializations coming
from an adapted version of the heuristic metadynamics algorithm.

3.1 Gradient computations
Let us first address the issue of computing gradients of the cost functional

J(u;x) = Ex
[
W(Xu) +

1

2

∫ τu

0

|u(Xu
s )|2ds

]
, (21)

as already defined in (16), with respect to the control. An inherent difficulty is that both the running costs
and the process depend on the control u, and the latter implies that also the hitting time τu depends on
u. We will approach this difficulty by an appropriate change of the path space measure and first compute
a functional derivative in the Gâteaux sense. Subsequently we can relate the rather abstract result to im-
plementable gradients by considering controls u = uθ that are parametrized by a parameter vector θ ∈ Rp.
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The Gâteaux derivative can then be identified with a gradient with respect to θ by considering a special
Gâteaux derivative direction. Notably, this strategy will lead to a gradient estimator that can cope with the
fact that the random hitting time τu appears both in the integral limit as well as in the terminal costs and
depends on the function u, with respect to which we differentiate. Eventually, we can numerically compute
our gradient estimator by a Monte Carlo approximation.

Let us start by recalling the definition of the Gâteaux derivative.

Definition 3.1 (Gâteaux derivative). We say that J : U → R is Gâteaux differentiable at u ∈ U if for all
φ ∈ U the mapping

ε 7→ J(u+ εφ;x) (22)

is differentiable at ε = 0. The Gâteaux derivative of J in direction φ is then defined as

δ

δu
J(u;x;φ) :=

d

dε

∣∣∣
ε=0

J(u+ εφ;x). (23)

We can now compute the functional derivative of J(u;x).

Proposition 3.2 (Gâteaux derivative of cost functional). The Gâteaux derivative of the cost functional
defined in (16) in the direction φ ∈ U is given by

δ

δu
J(u;x;φ) = Ex

[∫ τu

0

(u · φ)(Xu
s ) ds+

(
W(Xu) +

1

2

∫ τu

0

|u(Xu
s )|2 ds

)∫ τu

0

φ(Xu
s ) · dWs

]
. (24)

Proof. See Appendix A.3.

Proposition 3.2 is valid for any direction φ ∈ U . Let us note that we are particularly interested in the
directions6 φ = ∂

∂θi
u for all i ∈ {1, . . . , p}. This choice is motivated by the chain rule of the Gâteaux

derivative, which, under suitable assumptions, states that

∂

∂θi
J(uθ;x) =

δ

δu

∣∣∣
u=uθ

J
(
u;x;

∂

∂θi
uθ

)
. (25)

We therefore readily get the following formula for the gradient of J with respect to the parameter θ.

Corollary 3.3 (Gradient of cost functional). Let u = uθ be parametrized by the parameter vector θ ∈ Rp,
then the partial derivatives of the control functional (16) with respect to the parameters are given by

∂

∂θi
J(uθ;x) = Ex

[∫ τu

0

(
uθ ·

∂

∂θi
uθ

)
(Xuθ

s ) ds

+

(
W(Xuθ ) +

1

2

∫ τu

0

|uθ(Xuθ
s )|2 ds

)∫ τu

0

(
∂

∂θi
uθ

)
(Xuθ

s ) · dWs

] (26)

for any i ∈ {1, . . . , p}.

Remark 3.4. Note that the gradient given by (26) is equivalent to the one derived in [18] up to discretization
and up to a more general approximating function. For convenience, we repeat the related derivation for
general parametrized functions uθ in Appendix A.1. Further note that – contrary to the statement in [18]
– our analysis shows that the gradient is in fact exact, even though it involves the random hitting time τu,
which depends on u.

In principle, the gradient from Corollary 3.3 can be implemented straightforwardly by Monte Carlo ap-
proximation. However, even when relying on automatic differential tools, the repeated computation of, for

6We assume that the functions uθ, θ ∈ Rp, as well as all partial derivatives ∂
∂θi

uθ lie in U .
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instance, ∂
∂θi
uθ might be costly. Let us therefore state a loss functional that is more convenient from a

computational point of view, namely

Jeff(uθ, uϑ;x) = Ex
[

1

2

∫ τu

0

|uϑ(Xuθ
s )|2 ds+

(
W(Xuθ ) +

1

2

∫ τu

0

|uθ(Xuθ
s )|2 ds

)∫ τu

0

uϑ(Xuθ
s ) · dWs

]
,

(27)
which now depends on two parameter vectors θ, ϑ ∈ Rp. It is straightforward to see that the gradient of the
actual cost functional (16), stated in Corollary 3.3, can then be recovered via

∇ϑJeff(uθ, uϑ;x)
∣∣∣
ϑ=θ

= ∇θJ(uθ;x). (28)

In practice, setting ϑ = θ only after the differentiation is achieved by removing the parameter θ from the
computational graph of automatic differentiation. Note that with this trick only one backward pass is needed.

Both ∂
∂θi
J and Jeff, as defined in (26) and (27), respectively, can now be approximated by Monte Carlo,

yielding for instance the estimator

Ĵeff(uθ, uϑ;x) =
1

K

K∑

k=1

(
1

2

∫ τu

0

|uϑ(Xuθ,(k)
s )|2 ds

+

(
W(Xuθ,(k)) +

1

2

∫ τu

0

|uθ(Xuθ,(k)
s )|2 ds

)∫ τu

0

uϑ(Xuθ,(k)
s ) · dW (k)

s

)
,

(29)

where Xuθ,(k) and W (k) are i.i.d. realizations of the controlled process (9) and of Brownian motion, respec-
tively.

3.2 Efficient initializations of stochastic optimization via metadynamics
We have so far computed a gradient estimator that allows for stochastic optimization in the spirit of re-
inforcement learning. To be precise, we can run gradient descent like algorithms that iteratively minimize
a suitable objective function with the aim to improve the control which is applied to the dynamics. In
this section we shall address the question of how to initialize the approximating function u ∈ U in such an
iterative optimization procedure. This is in particular important in problems with random hitting times
which depend crucially on the applied control u – as we have already seen in Figures 1-3.

Aiming for reasonable initializations of u ∈ U that can in particular cope with strong metastabilities of
the dynamics, we suggest to rely on ideas from the so-called metadynamics algorithm. In its original form
metadynamics is an adaptive method for sampling the free energy profile of high-dimensional molecular
systems [28, 41]. Its main intention is related to sampling from corresponding stationary distributions, in
particular in systems that exhibit high metastabilities. The approach can be described quite vividly: one
iteratively “fills up” regions with low potential energy in order to be able to eventually escape local minima
that account for metastable behaviors. Those regions can be identified as the ones where the trajectories
spend a sufficient amount of time. The filling is specifically achieved by adding Gaussian functions every
fixed time interval until the trajectories are eventually able to escape the local minima. Analog to (20), the
idea is therefore to modify the potential via

V + Vbias, (30)

where now the bias potential is given by a sum of unnormalized Gaussian functions, i.e.

Vbias(x; η, µ,Σ) =

M∑

m=1

ηmÑ (x;µm,Σm), (31)

where Ñ ( · ;µm,Σm) is an unnormalized density of a multivariate normal distribution, i.e.

Ñ (x;µm,Σm) = exp

(
−1

2
(x− µm) · Σ−1m (x− µm)

)
, (32)

with mean µm ∈ Rd, covariance matrix Σm ∈ Rd×d and ηm ∈ R being an appropriate weight. The intuition
is that the added bias potential prevents the trajectory from going back to the already visited states. This
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bias potential can also be interpreted as a control function. The control resulting from the bias potential is
then given by

uinit(x) = −σ−1(x)∇Vbias(x; η, µ,Σ) = −σ−1(x)

M∑

m=1

ηm∇Ñ (x;µm,Σm). (33)

We use the underlying idea of the metadynamics algorithm in order to compute a reasonable initialization
for our optimization procedure, however, we adapt the stopping criterion used in the original version: we
add unnormalized Gaussian functions in the simulation until a certain predefined set (usually the target set)
is hit by the perturbed trajectory. The intuition behind this strategy is that we essentially want to “fill up”
those local minima of the potential which influence the estimation of the quantity of interest. Note that this
has already been considered in [37], however, not in combination with optimal control ideas. We then take
the resulting control uinit as a rough initial guess of the optimal control, which is likely to push trajectories
over the energy barrier such that trajectories are not trapped in metastable regions anymore. The expected
advantages of such a control initialization are twofold. On the one hand the trajectories (in particular at
the beginning of the control optimization) are expected to be much shorter, which reduces the runtime sig-
nificantly. On the other hand we expect the variances of the gradient estimators, as for instance defined in
Corollary 3.3, to be smaller, which will result in faster convergence of gradient descent algorithms. Crucially,
we should note that without our metadynamics based initialization method the optimization might not even
converge at all. We refer to Section 4 for illustrative examples of those aspects. The basic principle of our
metadynamics based initialization method is illustrated in Figure 4.

In the following let us suggest two versions of a metadynamics based initialization algorithm. The first one
builds the bias potential Vbias by sampling just one trajectory, as already considered in [37]. This trajectory
follows the dynamics of the controlled stochastic process (9) until it hits the target set T . In particular, the
control u is modified on the fly after each specified time interval δ by adding another unnormalized Gaussian
function to the potential according to (31) with µm being the averaged position of the particle over the last
time interval. This method ensures that metastable regions get “filled up” when visited by the trajectory.
The time interval δ, the covariance matrix of the Gaussians Σm and the weights ηm should be chosen such
that the original potential is not perturbed too much, however still allowing for a significant reduction of
the hitting time τu. It is possible that using different versions of the metadynamics algorithm like well-
tempered metadynamics can lead to further improvements of the initialization procedure. For simplicity, we
however choose constant weights and covariance matrices. Let us summarize our first method in Algorithm 1.

Algorithm 1 One trajectory adapted metadynamics

Consider specified target set T and dynamics Xu as in (9).
Choose time interval δ, weight η > 0 and covariance matrix Σ ∈ Rd×d.
Initialize Xu

0 = x, V (0)
bias = 0,m = 0.

while trajectory has not arrived in T do
Run dynamics Xu with control u = −σ−1∇V (m)

bias for time interval δ.
Choose µm = 1

δ

∫ (m+1)δ

mδ
Xu
s ds.

Adapt bias potential V (m+1)
bias ← V

(m)
bias + η Ñ ( · ;µm,Σ).

m← m+ 1.
end while
Set Vbias = V

(m)
bias .

In high dimensional settings the considered dynamics often exhibits multiple metastable regions. In this
case, a bias potential provided by only one trajectory might not be sufficient since we cannot guarantee
the trajectory to visit all metastable regions before hitting the target set. Therefore, only some of those
regions might be “filled up”. To deal with this issue, we suggest to sample multiple trajectories and exe-
cute corresponding bias potential modifications cumulatively. To be precise, each trajectory starts at the
same initial position, one after the other. The first trajectory starts with the zero bias initialization, the
second one considers the bias potential that came out after running the first trajectory, and so on. Ide-
ally one would like to stop sampling trajectories once the bias potential is already properly “filled up”, but
this can be difficult to determine. In any case, it is unlikely that we perturb the potential much more
than needed since otherwise trajectories would hit the target set even before the time interval δ elapsed.
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Furthermore, we introduce the scaling factor r ∈ (0, 1) that shall stabilize the procedure by reducing the
effect of adding further Gaussians for each trajectory. The cumulative method is summarized in Algorithm 2.

Algorithm 2 Cumulative adapted metadynamics

Consider specified target set T and dynamics Xu as in (9).
Choose time interval δ, number of trajectories Kmeta, weight η > 0, scaling factor r ∈ (0, 1) and covariance
matrix Σ ∈ Rd×d.
Initialize V (0)

bias = 0.
for k ∈ {1, . . . ,Kmeta} do

Set Xu,(k)
0 = x,m = 0.

while trajectory has not arrived in T do
Run dynamics Xu,(k) with control u = −σ−1∇V (m)

bias for time interval δ.
Choose µm = 1

δ

∫ (m+1)δ

mδ
X
u,(k)
s ds.

Adapt bias potential V (m+1)
bias ← V

(m)
bias + rk−1η Ñ ( · ;µm,Σ).

m← m+ 1.
end while

end for
Set Vbias = V

(m)
bias .
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Figure 4: Left panel: perturbed potential for different updates of V (m)
bias during Algorithm 1 for the double

well potential Example 2.1 with α = 5 and β = 1. Right panel: centers of the added unnormalized Gaussian
functions after Algorithm 2 for the two-dimensional extensional of the double well potential. The color of
the centers represent the weights of the added functions.

3.3 Control function approximations
Finally, we need to specify how to approximate the control function u ∈ U . The general idea is to rely on
parametrized functions uθ, specified by the parameter vector θ ∈ Rp. In particular, we consider a linear
combination of ansatz functions (Galerkin approach) as well as neural network approximations. The former
match well with the structure of the metadynamics based initialization algorithm that we have introduced
before, but suffer from the curse of dimensionality. The latter seem well suited for high-dimensional problems,
but need an additional step in order to benefit from our initialization strategy. Note that either function
space needs to be sufficiently large in order to approximate the optimal control u∗ well enough.

In the Galerkin approach the control u is projected onto a space consisting of finitely many ansatz functions.
A clever choice of ansatz functions depends on the problem at hand and one might for instance consider radial
symmetric functions, polynomials or piecewise linear functions with Chebyshev coefficients, see e.g. [20]. As
a related method let us mention tensor train approximations and refer to [10, 39] for further details. In
this work we rely on Gaussian ansatz functions since they match well with the aforementioned initialization
strategy. To be precise, let us choose the control approximation

uθ(x) =

p∑

i=1

θi∇N (x;µi,Σi), (34)
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where N ( · ;µi,Σi) is the density of a multivariate normal distribution with mean µi ∈ Rd and covariance
matrix Σi ∈ Rd×d, as in (33).

Feed-forward neural networks, on the other hand, are nonlinear functions that exhibit remarkable approxima-
tion properties [1, 24]. They essentially consist of compositions of affine-linear maps and nonlinear activation
functions. In particular, we define a feed-forward neural network uθ : Rd0 → RdL with L layers by

uθ(x) = ALρ(AL−1ρ(· · · ρ(A1x+ b1) · · · ) + bL−1) + bL, (35)

with matrices Al ∈ Rdl×dl−1 , vectors bl ∈ Rdl , 1 ≤ l ≤ L, and a nonlinear activation function ρ : R→ R that
is applied componentwise. The collection of matrices Al and vectors bl comprises the learnable parameters
θ. For our control approximations, we can now choose d0 = dL = d. Note that the choice of the so-called
architecture of neural networks, i.e. the number of parameters in each layer, is not always straight-forward
and requires some finetuning.

For initializing uθ with the control uinit obtained by one of the two adapted metadynamics algorithms, which
have been suggested in Section 3.2, we can consider a least squares minimization on a given domain D. That
means we minimize the loss

Linit(θ) := E
[∣∣uθ(X)− uinit(X)

∣∣2
]
, (36)

where X ∼ ν is sampled from a prescribed measure ν that has full support on the domain D, e.g. the
uniform measure. For the parametric approximation we can solve the minimization of the loss explicitly
by solving a least squares problem. When considering neural networks we have to minimize Linit by some
variant of gradient descent where the different parameters, such as batch size and stopping criterion, have
to be chosen depending on the problem. Further details on the applied minimization method are provided
in Section 4. For this minimization and for the computation of the gradient of the control cost, we rely on
automatic differentiation tools such as PyTorch. For convenience let us state our final algorithm.

Algorithm 3 Efficient importance sampling

Choose a metadynamics time interval δ, weight η > 0 (potentially a scaling factor r ∈ (0, 1)), covariance
matrix Σ ∈ Rd×d, a function approximation uθ, a gradient based optimization algorithm, a corresponding
learning rate λ > 0, a sample size K, a step size ∆t and a stopping criterion.
Compute uinit by either Algorithm 1 or 2.
Initialize uθ ≈ uinit by minimizing Linit(θ).
repeat

Simulate K samples of Xu,(k).
Compute the gradient of the control cost estimator Ĵeff defined in (29) via automatic differentiation.
Update the parameters based on the optimization algorithm.

until stopping criterion is fulfilled.
Do importance sampling according to (10) with the control uθ.
Result: Low-variance estimate of Ψ as defined in (4).

4 Numerical examples
In this section we demonstrate that our proposed Algorithm 3 can indeed lead to low-variance estimators of
observables that involve random stopping times. In particular, we will show in both low and high-dimensional
metastable examples that the combination of control based importance sampling together with reasonable
initializations leads to improved estimators. Throughout we will consider the overdamped Langevin equation
as stated in (9) with σ(x) =

√
2β−1 Id on the domain D = [−3, 3]d. We consider a multi-dimensional

extension of the double well potential7

Vα(x) =

d∑

i=1

αi(x
2
i − 1)2, (37)

where the parameter α ∈ Rd as well as the inverse temperature β encode the strength of the metastability.
We aim to compute the quantity

E
[
e−τ

]
, (38)

7Notice that even though the potential is symmetric in all dimensions we cannot decouple the estimation or control problem,
respectively.
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by choosing f = 1 and g = 0 in the observable (3). If not stated differently we set the initial value of the
process to x = (−1, . . . ,−1)> for all examples. The inverse temperature is set to β = 1 so that the metasta-
bility is mainly influenced by the choice of α. If not otherwise stated the target set is chosen to be T = [1, 3]d.

In our numerical simulations we discretize the controlled stochastic process in time 0 < t1 < · · · < TÑ = τ
using the Euler-Maruyama scheme

X̂u
n+1 = X̂u

n + (−∇V (X̂u
n) +

√
2β−1 u(X̂u

n))∆t+
√

2β−1 ξn+1

√
∆t, Xu

0 = x, (39)

where ∆t = tn+1− tn is a time-step and ξn+1 ∼ N (0, Id) is a standard normally distributed random variable
[22]. Note that the length of each discrete trajectory is random according to Ñ = bτu/∆tc. For each
experiment we monitor the importance sampling mean as the Monte Carlo estimator of (10) and its variance
and relative error accordingly. For the Monte Carlo estimators we compute confidence intervals by

Ψ̂(x)± 1.96

√
V̂ar(Iu)
√
K

, (40)

where V̂ar is the estimated variance computed with a sample size KVar = 105, and K the sample size of the
Monte Carlo estimator. We also keep track of mean first hitting time E[τu] and the time needed for the last
trajectory of an ensemble to reach the target set T .

L2(u) := E

[∫ τu

0

|u− u∗ref|2(Xu
s ) ds

]
. (41)

The control approximation with Gaussian ansatz functions is done according to (34) with p Gaussians uni-
formly distributed over the domain D. The covariance matrix is constant, Σi = 0.5 Id, for all i ∈ {1, . . . , p}
and the number of ansatz functions changes depending on the example. The initialization of uθ with the con-
trol uinit is achieved by solving a least squares problem. For the neural network representation we consider a
feed-forward neural network according to (35) with two hidden layers, d1 = d2 = 30 and activation function
ρ(x) = tanh(x). The initialization of uθ with the control uinit is achieved after minimizing the mean squared
error loss (36) by using the Adam algorithm with learning rate λ = 0.01 [26]. If not otherwise specified
the training data points for this approximation problem have been uniformly sampled from the domain just
one time and have been used for all gradient steps. A total of 103 gradient steps suffices to obtain a good
approximation. In order to have fair comparisons we set the control u(0) to be the zero function when not
considering a metadynamics based initialization.

Moreover, the control optimization in Algorithm 3 is implemented using the Adam algorithm with learning
rate λ = 0.01. If not otherwise stated, the batch-size is set to be K = 103 and the time step ∆t = 0.005.
We repeat all of our experiments multiple times with different random seeds and different time intervals δ
in order to guarantee generalizability. Each experiment requires just one CPU core and the maximum value
of allocated memory is set to 100GB.

4.1 Metastable double well potential
Let us start with a one-dimensional metastable example for which α = 5. We approximate the control with
neural networks or Gaussians ansatz functions, where both are either initialized with the zero function or
an initialization given by Algorithm 1, for which we choose δ = 0.2, η = 1.0 and σ2 = 0.5. For this example
we consider a finer time step ∆t = 0.001 and a batch size of K = 1000. The resulting modified potential
consist of M = 7 unnormalized Gaussian functions. Figure 5 shows the L2 approximation error compared
to a reference solution as well as the relative error of the importance sampling estimator as a function of
the gradient steps. We can see that the neural network performs better and that the control initializations
speed up the convergence significantly. Note that the learnt importance sampling control leads to a similar
relative error compared to a reference optimal control.
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Figure 5: Importance sampling relative error and estimation of L2(u) at each gradient step.

In Figure 6 we display the approximated functions, once as the control and once as the perturbed potential.
We can see that in particular the neural network approximation agrees well with the reference solution,
whereas both the Gaussian approximation and the metadynamics attempt without control optimizations
based control are off.
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Figure 6: Perturbed potential and control after convergence.

We have stated before that the metastability depends on the parameter α. Let us therefore vary this
parameter and compare performances of the following schemes against each other: naive Monte Carlo (MC
sampling), a bias constructed by an adapted metadynamics algorithm without optimization as proposed in
[37] (Metadynamics), a Gaussian control representation without initialization (Gaussians) as well as with the
metadynamics based initialization (Gaussians, uinit), a neural network representation without initialization
(NN) as well as with initialization (NN, uinit), a sampling with the discretized optimal control calculated
with a finite difference method (Optimal) and the reference solution from the PDE (Reference Solution).
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Figure 7: Estimation Ψ̂ and importance sampling relative error of the different methods described above.

In Figure 7 we display the estimator as well as the relative errors. We can see that the estimation of the
expectation value gets worse with increasing value of α, in particular when relying on naive Monte Carlo
estimation, the Gaussian control approximations or the metadynamcis algorithm only. We should highlight
that without control initialization we are not able to get results for α > 6 for the importance sampling
estimators since corresponding control based optimization algorithms excel the memory constraints. The
reason for this is that the first sampling of the gradient estimator takes very long and thus the allocated
memory capacity is exceeded. With the adapted metadynamics based initializations, on the other hand, we
can observe that the optimal control importance sampling strategies yield valid estimators with low relative
error even for large metastabilities. However, the neural network representation with initialization results in
a much smaller relative error than the Gaussian representation also with initialization. Moreover, we stress
the fact that doing importance sampling right after metadynamics does not guarantee satisfactory results.
This is probably due to uinit still being off from u∗, noting that there is an exponential dependency on the
variance in the distance of the used control to the optimal control [16].

4.2 Multi-dimensional extension of the double well potential
Let us now repeat the above experiment for multi-dimensional problems. We start with d = 2, for which
we can still compute a reference solution by approximating PDE (13) via the finite difference method. This
example is followed by an example in d = 4 for which the PDE can not be discretized anymore due to the
curse of dimensionality. Here we compute a reference value of Ψ by Monte Carlo estimation using a very
large batch size.

Example in d = 2

For the 2d example we choose α = (5, 5)>. As before we compute the metadynamic based initialization
of the control according to Algorithm 1 with time interval δ = 1.0, weight η = 1.0 and covariance matrix
Σ = 0.5 Id. The resulting modified potential consist of M = 10 unnormalized Gaussian functions. For the
linear combination of ansatz functions we choose p = 100 Gaussians, again placed on an equidistant grid in
the domain D.
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Figure 8: Left panel: The double well potential for d = 2 has four minima at x = (±1,±1) and a local
maximum at x = (0, 0). The uncontrolled trajectory (in red) is long and gets trapped in two of the minima
for a significant amount of time. The optimal importance sampling trajectory (in green) on the other hand
is much shorter. Right panel: control approximated by a neural network using Algorithm 3.
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Figure 9: Importance sampling relative error and estimation of L2(u) as a function of the computation time.

Let us highlight two important aspects of the experiment. First, we see in Figure 9 that even after a runtime
of 104 seconds both Gaussian ansatz approximation attempts in contrast neural networks have not converged.
We have observed in our experiments that the Gaussian approximation is sensible with respect to the number
of ansatz functions, their placing in the considered domain and the choice of the covariance matrix. Note
that such hyperparameters do not have to be tuned for neural networks. Second, we can observe that the
optimization initialized with the adapted metadynamics algorithm results in a faster convergence. In Figure 9
we see that our suggested approach needs only half of computational time to converge in comparison with
the simulation using zero initialization. Note that the applied control yields shorter trajectories and thus
reduced overall computational costs – this can for instance be seen in Figure 8.

Example in d = 4

Let us now consider an example in d = 4. We again use the potential stated in (37) and set α = (5, 5, 5, 5)>.
Note that the potential now has 16 minima. This time we rely on Algorithm 2 for our metadynamics based
control initialization, for which we choose δ = 5, Kmeta = 100, η = 1, r = 0.95 and Σ = 0.5 Id. The main
advantage of the cumulative version of the adapted metadynamics algorithm is that we now rely on multiple
trajectories for finding a good control initialization. This method is more robust and the trajectories explore
a larger part of the domain. For the chosen parameters the resulting modified potential consists of M = 284
unnormalized Gaussian functions. For d ≥ 4 a relevant step is the initialization of the control with uinit

by minimizing the loss stated in (36). In such a case the support of the bias potential can be small in
comparison with the considered domain and sampling the training data uniformly might not be feasible.
Instead, we sample new training data for each gradient step following a normal distribution centered in
the different unnormalized Gaussian which the chosen adapted version of the metadynamics algorithm has
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added. A total of 104 gradient steps and 103 sampled points for each gradient step suffice to provide
a good initialization. Figure 10 shows the estimation of Ψ provided by the NN approximation with the
above mentioned metadynamics based initialization as well as the relative error of the importance sampling
estimator as a function of the gradient steps. As a reference value for Ψ we take a Monte Carlo estimator
that relies on K = 108 trajectories.
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Figure 10: Estimation of Ψ and the importance sampling relative error as a function of the gradient iterations.

In our experiments, it turns out that we indeed need to rely on the metadynamics based control initialization,
since the zero initialization does not work due to long trajectories and memory issues. Note that the target
set is much smaller in comparison to the rest of the domain, which, together with the intrinsic metastability
of the system, implies very long trajectories. In Figure 10 we notice that the suggested metadynamics based
initialization converges and gives an accurate estimator with a smaller relative error. In Figure 11 we observe
that the estimation via naive Monte Carlo sampling requires the simulation of a huge amount of trajectories
and is less accurate as the estimation via our suggested procedure.
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Figure 11: Estimation of Ψ as well as the corresponding sampling variance when using either naive Monte
Carlo or the learnt importance sampling estimating according to Algorithm 3 as a function of different batch
sizes K. Note that the Monte Carlo estimator corresponds to a non controlled sampling, i.e. u = 0.

4.3 High-dimensional example with metastable features
In our final example we consider a high-dimensional example in d = 20, where one dimension is particularly
metastable. We set α1 = 5 and αj = 0.5 for j ∈ {2, . . . , 20}. Here, we set the target set to T = [1, 3] ×
[−3, 3]d−1, so that the trajectories stop after overcoming the potential barrier in the metastable coordinate.
Here we again do not have a reference solution due to the curse of dimensionality.
As in the previous example we use the cumulative version of the adapted metadynamics algorithm to gener-
ate a good control initialization uinit. Algorithm 2 is implemented with δ = 2, Kmeta = 100, η = 1, r = 0.95
and Σ = 0.5 Id. The biasing potential obtained after the metadynamics procedure consists of M = 295
unnormalized Gaussian functions. We compare our results with a naive Monte Carlo estimator with a batch
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size of K = 108.
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Figure 12: Estimation of Ψ and importance sampling relative error at each gradient iteration.

In our experiments we can see that the optimization procedure benefits from the metadynamics based
initialization. While here both methods eventually find the same minimum, the initialized version converges
much faster. In Figure 12 we can observe that the not initialized approximation reaches a similar relative
error estimator after 2500 gradient iterations. In Figure 13 we can see the projection of the control in the
i-th coordinate as a function of xi for a fixed value of xj , j ∈ {2, . . . , 20} after convergence. We compare the
metastable direction i = 1 with the others, e.g. i = 2.

0 500 1000 1500 2000 2500
gradient iterations

101

4× 100

6× 100
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Figure 13: Left panel: minimization of the objective function during the approximation procedure. Right
panel: different components of the control function after convergence.
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5 Conclusion and outlook
In this paper we have presented a novel method that improves the sampling of metastable diffusions. To be
precise, this method is able to cope with two particular challenges, namely 1) the simulation of certain rare
events of interest and 2) high variances in the gradient computation of importance sampling optimization
algorithms. To overcome those issues, we have suggested to combine optimal control based importance sam-
pling with the metadynamics algorithm. In fact, we are able to combine the best of those two algorithms:
offering reasonable initializations, but still striving for systematic variance reductions of Monte Carlo estima-
tors. For the control function approximation we rely on neural networks, which allow for high-dimensional
applications and offer further advantages in contrast to a linear combination of ansatz functions, since those
would have to be placed explicitly in the domain of interest and would require the tuning of additional
hyperparameters. We have further derived a gradient estimator that can easily be computed with auto-
matic differentiation tools and thereby allows for efficient computations. We could demonstrate in multiple
numerical experiments that our method improves the convergence of optimizing control based importance
sampling significantly. In particular, we note that often our methods work well when alternative strategies
do not produce reasonable results anymore. Overall, we are thus able to design low variance importance
sampling estimators even in very metastable scenarios.

The stochastic optimization algorithms that we have considered in this work can be understood as some
sort of reinforcement learning. For future work, it might therefore be interesting to consider tricks that have
been developed in this fruitful field of machine learning in recent years. In particular, it might be promising
to alter optimization objectives by for instance adding additional terms that strive for a minimization of the
hitting times, while still keeping the variance of the estimators low. Such strategies might become particular
relevant in realistic examples in ever larger dimensions with even higher metastabilities. Furthermore, we
believe that a connection of our algorithms to model reduction attempts might be fruitful such that (as in
the original version of the algorithms) metadynamics based control initialization would only be executed in
the relevant coordinates. With that we are optimistic that our proposed method will lead to more efficient
sampling of real physical systems.

Acknowledgement
The research of E.R.B and L.R. has been funded by Deutsche Forschungsgemeinschaft (DFG) through grant
CRC 1114 “Scaling Cascades in Complex Systems”, A05 (Probing scales in equilibrated systems by optimal
nonequilibrium forcing, project number 235221301). The research of J.Q. has been funded by the Einstein
Foundation Berlin.

Code availability
The code used for the numerical examples is available on GitHub at www.github.com/riberaborrell/sde-
importance-sampling.

A Appendix

A.1 Alternative gradient computations
In this section we present an alternative way of computing the gradient of the control functional (16), now
relying on a discrete version of the controlled stochastic process. This gradient estimator has already been
suggested in [18], however, we generalize it to more general function classes. The strategy is to consider the
controlled process in discrete time, first with deterministic time horizons. Then, by relying on transition
probabilities of the discretized process, we can compute the gradient of the discrete cost functional. Eventu-
ally, we can change to random stopping times, which yields a gradient that can be estimated by Monte Carlo.

Let us start by stating the discrete version of our controlled process (9) on a time grid 0 < t1 < · · · < tN ,
for a fixed N , namely

X̂u
n+1 = X̂u

n +
(
−∇V (X̂u

n) + σ(X̂u
n)uθ(X̂

u
n)
)

∆t+ σ(X̂u
n)ξn+1

√
∆t, (42)
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where ∆t = tn+1 − tn is the time increment and ξn ∼ NN (0, Id) are standard normally distributed random
variables. Moreover, the discrete version of the control functional (16) reads

Ĵ(uθ;x) := Ex[hθ(X̂
u)], hθ(X̂

u) :=

N−1∑

n=0

(
f(X̂u

n) +
1

2
|uθ(X̂u

n)|2
)

∆t+ g(X̂u
N ). (43)

The process X̂u is a discrete Markov process and by using the Chapman-Kolmogorov equation (see e.g.
Section 2.2 in [36]) we can express its joint probability density function conditional on X̂u

0 = x in terms of
the transition densities G : Rd × Rd → R≥0

ρ(X̂u) =

N−1∏

n=0

G(X̂u
n+1|X̂u

n). (44)

From (42) we know that for any discrete steps x, y ∈ Rd, G is of multivariate normal form, namely

G(y|x) = N
(
y;x+ (−∇V (x) + σ(x)u(x)) ∆t, σ(x)σ>(x)∆t

)
. (45)

Let us for computational convenience assume σ(x) =
√

2β−1 Id, then

G(y|x) =
1

(4πβ−1∆t)d/2
exp

(
−β∆t

4

∣∣∣∣
y − x

∆t
+∇V (x)−

√
2β−1uθ(x)

∣∣∣∣
2
)
. (46)

By combining the transition densities in the above expression (44), we get

ρθ(X̂
u) =

1

Z exp
(
−Sθ(X̂u)

)
, (47)

where the so called discrete action and its normalization factor are given by

Sθ(X̂
u) =

β∆t

4

N−1∑

n=0

∣∣∣X̂
u
n+1 − X̂u

n

∆t
+∇V (X̂u

n)−
√

2β−1 uθ(X̂
u
n)
∣∣∣
2

, Z = (4πβ−1∆t)Nd/2. (48)

With the help of infinitesimal perturbation analysis we can now obtain an estimator for the gradient of the
above discretized loss function with respect to the parameter vector θ.

Proposition A.1 (Derivative of discrete cost functional). Consider hθ as defined in (43). We can compute
the derivative of the discrete cost functional with respect to a parameter θi as

∂

∂θi
Ĵ(uθ;x) = Ex

[
∂

∂θi
hθ(X̂

u)− hθ(X̂u)
∂

∂θi
Sθ(X̂

u)

]
, (49a)

= Ex
[
N−1∑

n=0

uθ(X̂
u
n) · ∂

∂θi
uθ(X̂

u
n)∆t+

(
N−1∑

n=0

(
f(X̂u

n) +
1

2
|uθ(X̂u

n)|2
)

∆t+ g(X̂u
N )

)

N−1∑

n=0

ξk+1 ·
∂

∂θi
uθ(X̂

u
n)
√

∆t

] (49b)

where the expectation is to be understood with respect to the discrete path measure with density ρ as defined
in (47) and the discrete action S is defined in (48).

Proof. See Appendix A.3.

As mentioned before, Proposition A.1 holds for the case of a fixed time horizon. Let us now replace fixed
times by random stopping times of the controlled dynamics, namely τu := inf{s > 0|Xu

s ∈ T }. Note that this
stopping time now depends on the control u (and therefore on the parameter θ) and one could be tempted
to incorporate this dependency in the gradient computations. However, we have seen in Corollary 3.3 that
the derived gradient is in fact exact.
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A.2 Girsanov’s theorem
Girsanov’s theorem [34] provides a formula for changes of measures in path space, which are relevant for our
importance sampling computations. Let us therefore provide a brief summary of the theorem.
Let Ω̃ = C([0,∞),Rd) be the space of continuous paths equipped with the supremum norm and let F = B(Ω̃)
denote the corresponding σ-algebra. First, we define (Mu

t )0≤t≤T by

Mu
t := exp

(
−
∫ t

0

u(Xu
s ) · dWs −

1

2

∫ t

0

|u(Xu
s )|2ds

)
, Mu

0 := 0, (50)

where Xu is the controlled process following (9) and (W̃t)0≤t≤T is a Brownian Motion with additional drift,
determined for all t ∈ [0, T ] by

W̃t := Wt +

∫ t

0

u(Xu
s )ds.

If (Mu
t )0≤t≤T is a martingale w.r.t. the canonical filtration of the Brownian motion (Wt)0≤t≤T then the

Girsanov Theorem [34, Thm 8.6.8] states that there exists a probability measure Q absolutely continuous
w.r.t. the original probability measure P characterized by Mu

T = dQ
dP , i.e. for all A ∈ F

Q(A) = EQ[1A] = EP[Mu
T1A],

such that (W̃t)0≤t≤T is a Brownian motion with respect to Q and (Xu
t , W̃t) is a weak solution of (1), i.e.

Q-law of (Xu
t )0≤t≤T = P-law of (Xt)0≤t≤T .

Notice that for applying Girsanov’s theorem, one has to assume that the process (50) is a martingale.
Novikov’s condition provides us with a sufficient requirement for stochastic processes of the form (50) to be
a martingale, see [23]. Namely, it suffices that for all t ∈ [0, T ]

Ex

exp


1

2

t∫

0

|u(Xu
s )|2ds




 <∞.

Girsanov’s theorem can be extended to bounded stopping times (see [37, Prop 1]). If the stopping time is
bounded the fulfillment of Novikov’s condition has already been discussed in [29], [37]. In this case, it holds
that

ExP[exp (−W(X))] = ExQ[exp (−W(Xu))] = ExP[exp (−W(Xu))Mu
τu ], (51)

where Q is the Wiener measure of the Brownian motion with drift, W̃ . This implies that the random variable
Iu : Ω̃→ R given by

Iu = exp (−W(Xu))Mu
τu (52)

= exp
(
−
∫ τu

0

f(Xu
s )ds− g(Xu

τu)−
∫ τu

0

u(Xu
s ) · dWs −

1

2

∫ τu

0

|u(Xu
s )|2ds

)
(53)

is equivalent to our quantity of interest I, as defined in (2). We call the quantity Iu the (re-weighted)
importance sampling quantity of interest.

A.3 Proofs
Proof of Proposition 3.2. The proof is adapted from [33] and we refer to a similar computation in [11] and
to further technical details in [30].

For ε ∈ R and φ ∈ C1
b (Rd,Rd), let us define the change of measure

Λτ (ε, φ) = exp

(
−ε
∫ τu

0

φ(Xu
s ) · dWs −

ε2

2

∫ τu

0

|φ(Xu
s )|2 ds

)
,

dQ
dP

= Λτ (ε, φ). (54)

According to Girsanov’s theorem, the process (W̃t)0≤t≤T , defined as

W̃t = Wt + ε

∫ t

0

φ(Xu
s ) ds, (55)
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is a Brownian motion under Q. We therefore obtain

J(u+ εφ;x) = Ex
[(

1

2

∫ τu+εφ

0

|(u+ εφ)(Xu+εφ
s )|2 ds+

∫ τu+εφ

0

f(Xu+εφ
s ) ds+ g(Xu+εφ

τu+εφ
)

)]
(56a)

= Ex
[(

1

2

∫ τu

0

|(u+ εφ)(Xu
s )|2 ds+

∫ τu

0

f(Xu
s ) ds+ g(Xu

τu)

)
Λ−1τ (ε, φ)

]
. (56b)

Using dominated convergence, we can interchange derivatives and integrals (for technical details, we refer to
[30]) and compute

d

dε

∣∣∣
ε=0

J(u+ εφ;x) = Ex
[∫ τu

0

(u · φ)(Xu
s ) ds+

(
1

2

∫ τu

0

|u(Xu
s )|2 ds+

∫ τu

0

f(Xu
s ) ds+ g(Xu

τu)

)

∫ τu

0

φ(Xu
s ) · dWs

]
.

(57)

Proof of Proposition A.1. We follow essentially the arguments of [18] without restricting the choice of the
space of possible controls to linear combination of vector fields related to Gaussian ansatz functions. First,
let us compute the partial derivatives of the discrete control functional (43) and the discrete action (48),
namely

∂

∂θi
hθ(X̂

u) = ∆t

N−1∑

n=0

uθ(X̂
u
n) · ∂

∂θi
uθ(X̂

u
n) (58)

and

∂

∂θi
Sθ(X̂

u) = −
√
β∆t√

2

N−1∑

n=0

(
X̂u
n+1 − X̂u

n

∆t
+∇V (X̂u

n)−
√

2β−1 uθ(X̂
u
n)

)
∂

∂θi
uθ(X̂n) (59a)

= −
√

∆t

N−1∑

n=0

ξn+1
∂

∂θi
uθ(X̂

u
n). (59b)

Let us write the expectation of the loss function as an integral over the state space

Ĵ(uθ;x) = Ex[hθ(X̂
u)] =

∫

Rd×···×Rd
hθ ρθ dx1 . . . dxN .

Then, the partial derivative of the loss function with respect to θi can be computed like

∂

∂θi
Ĵ(uθ;x) =

∫

Rd×···×Rd

((
∂

∂θi
hθ

)
ρθ + hθ

(
∂

∂θi
ρθ

))
dx1 . . . dxN . (60)

By using the fact that the normalization factor does not depend on the parameters the partial derivative of
the probability density function with respect to θi simplifies to

∂

∂θi
ρθ =

∂

∂θi

(
1

Z
exp (−Sθ)

)
=

1

Z

∂

∂θi
exp (−Sθ) = −

(
∂

∂θi
Sθ

)
ρθ,

and the expression (60) finally reads

∂

∂θi
Ĵ(uθ;x) =

∫

Rd×···×Rd

((
∂

∂θi
hθ − hθ

(
∂

∂θi
Sθ

))
ρθ

)
dx1 . . . dxN

= Ex
[
∂

∂θi
hθ − hθ

(
∂

∂θi
Sθ

)]
.
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