
Zuse Institute Berlin Takustr. 7
14195 Berlin

Germany

NARIAKI TATEIWA, YUJI SHINANO, MASAYA YASUDA, SHIZUO KAJI,
KEIICHIRO YAMAMURA, KATSUKI FUJISAWA

Massively parallel sharing lattice basis reduction

∗The work for this article has been partially conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (fund number
05M20ZBM) and the project HPO-Navi (fund number 391087700): Sustainable Infrastructures for Archiving and Publishing High-Performance Optimization Software

ZIB Report 21-38 (December 2021)

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30 84185-0
Telefax: +49 30 84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Massively parallel sharing lattice basis reduction

Nariaki Tateiwa1, Yuji Shinano2, Masaya Yasuda3, Shizuo Kaji4,

Keiichiro Yamamura5, Katsuki Fujisawa6

December 9, 2021

Abstract

For cryptanalysis in lattice-based schemes, the performance evaluation of lattice
basis reduction using high-performance computers is becoming increasingly impor-
tant for the determination of the security level. We propose a distributed and asyn-
chronous parallel reduction algorithm based on randomization and DeepBKZ, which
is an improved variant of the block Korkine-Zolotarev (BKZ) reduction algorithm.
Randomized copies of a lattice basis are distributed to up to 103,680 cores and in-
dependently reduced in parallel, while some basis vectors are shared asynchronously
among all processes via MPI. There is a trade-off between randomization and infor-
mation sharing; if a substantial amount of information is shared, all processes will
work on the same problem, thereby diminishing the benefit of parallelization. To
monitor this balance between randomness and sharing, we propose a metric to quan-
tify the variety of lattice bases. We empirically find an optimal parameter of sharing
for high-dimensional lattices. We demonstrate the efficacy of our proposed paral-
lel algorithm and implementation with respect to both performance and scalability
through our experiments.

1 Introduction

A lattice is a discrete subgroup of the real vector space Rn and is defined as the set of all
integral linear combinations of some linearly independent vectors, which is called a basis
of the lattice. The number of basis vectors is called the dimension of the lattice. Lattice
problems are algorithmic problems related to lattices, and they include a number of hard

1Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan
2Department of Applied Algorithmic Intelligence Methods (A2IM), Zuse Institute Berlin, Takustr. 7,

14195 Berlin, Germany
3Department of Mathematics, Rikkyo University, Tokyo, 171-8501, Japan
4Institute of Mathematics for Industry, Kyushu University, 819-0395, Japan
5Graduate School of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan
6Institute of Mathematics for Industry, Kyushu University, 819-0395, Japan

1

problems such as the shortest vector problem (SVP) that asks us to find a non-zero shortest
lattice vector given a basis. Over the past decade, lattices have been actively used to
construct various cryptosystems, such as fully homomorphic encryption and post-quantum
cryptography (PQC). In particular, the security of most lattice-based PQC candidates is
fundamentally based on the hardness of solving the SVP (see [4]).

Many studies have been reported on algorithms for solving lattice problems. Lattice
basis reduction is a powerful tool to solve lattice problems, including SVP. Reduction
algorithms may not necessarily find shortest lattice vectors, but they are significantly
faster than exact-SVP algorithms such as enumeration and sieve (see [25, 38] for a survey).
Given a lattice basis, the aim of lattice basis reduction is to find a new basis of the same
lattice consisting of relatively shorter vectors that are nearly-orthogonal. Most lattice
problems are easier to solve with such a reduced basis. The Lenstra-Lenstra-Lovász (LLL)
algorithm [24] is the most celebrated algorithm, and its blockwise generalization is the
block Korkine-Zolotarev (BKZ) algorithm [31]. Recently, efficient variants of BKZ such
as BKZ 2.0 [11] have been implemented in software libraries (e.g., fplll library [36]), and
they have been used to estimate the security level of lattice-based cryptosystems (e.g.,
see [2, 4]). In contrast, it is mandatory to consider the effect of large-scale parallelization
when solving algorithms in cryptanalysis (see [21]). In this study, we consider the large-
scale parallelization of reduction algorithms. In particular, we use DeepBKZ [37], an
enhancement of BKZ, for our software development.

1.1 Previous work on the large-scale parallelization of reduction
algorithms

While there are many reports of parallelization for enumeration and sieve algorithms (Sub-
section 1.3 below), to date, few studies for reduction algorithms have been conducted.
In 2020, a distributed and asynchronous parallel reduction algorithm was first developed
in [33], which is called MAP-SVP (MAssively Parallel solver for SVP). It was built on
the Ubiquity Generator (UG) framework [32], a generic framework for branch-and-band
algorithms, to parallelize a reduction algorithm based on randomization that generates
different bases of the same lattice through unimodular transformation of an input basis.
Specifically, MAP-SVP runs a reduction algorithm (e.g., BKZ or DeepBKZ) on each solver
independently for a randomized basis while also enabling the sharing of the shortest basis
vector with all solvers to accelerate the reduction process for each of them. The perfor-
mance and scalability of MAP-SVP were reported in [33, Section V] by using up to 100,032
cores for solving several instances of the Darmstadt SVP challenge [28]. In 2021, a generic
framework of parallelization was proposed in [34] for lattice algorithms, and it is called
CMAP-LAP (Configurable Massively Parallel Solver for Lattice Problems). This frame-
work covers the parallelization of reduction, enumeration, and sieve algorithms and can
run these algorithms cooperatively on a large-scale computational platform. CMAP-LAP
was built on a generalized UG (UG version 1.0 RC) from scratch, and it performs a par-
allel execution of the supervisor-worker style [27]. Given an input instance, a supervisor

2

process distributes randomized instances as tasks to all workers, and each worker process
can execute multiple kinds of solvers and multi-threads solvers in a heterogeneous man-
ner. In addition, the supervisor stores lattice bases and vectors in data containers. Using
these data containers, each solver can share a lattice basis and vectors asynchronously
with minimal communication overhead. The stability of CMAP-LAP was demonstrated by
conducting large-scale experiments.

1.2 Our contribution

In this paper, we a develop software specialized for the massive parallelization of lattice
basis reduction. Specifically, we parallelize DeepBKZ [37] in the CMAP-LAP framework
and call our software CMAP-DeepBKZ. (Note that BKZ can also be adopted in the same
way.) Below we summarize our contribution:

• While MAP-SVP [33] only shares a single short lattice vector among solvers, CMAP-
DeepBKZ can sharemultiple short vectors to accelerate the reduction process for every
solver more efficiently than MAP-SVP. In CMAP-DeepBKZ, each solver periodically
sends its short basis vectors to a data container in the supervisor. In contrast,
the supervisor only distributes short lattice vectors from its container to the solver if
they affect the solver’s reduction algorithm. Thus, every solver can share short lattice
vectors with the other solvers while only directly communicating with the supervisor.

• While the reduction process can accelerate for each solver as more vectors are shared,
the randomness of the bases processed by the solvers might be lost. Therefore we pro-
pose a method to quantify the diversity of lattice bases using metrics for Grassmann
manifolds (e.g., see [5, 6] for Grassmann metrics). Using this method, we inspect
the randomness of the bases of our parallel reduction algorithm in CMAP-DeepBKZ
through experimentation.

• We demonstrate the performance and the scalability of CMAP-DeepBKZ by conduct-
ing large-scale experiments using up to 103, 680 cores. Specifically, we evaluate how
the discovery of short lattice vectors and the quality of the output basis change de-
pending on the numbers of shared vectors and CPU cores. We also evaluate the appli-
cation performance of CMAP-DeepBKZ such as the CPU utilization in a large-scale
computing environment. For our experiments, we use instances of the Darmstadt
SVP challenge [28] for up to 132 dimensions.

1.3 Other work on the parallelization of lattice algorithms

We summarize studies other than those listed in Subsection 1.1 that relate to the paral-
lelization of lattice algorithms. The simplest strategy is the divide-and-conquer method
for exact-SVP algorithms such as enumeration and sieve, accomplished by dividing their
search space (e.g., see [12, 20, 23]). Randomization is another way for parallelization,
and it is useful for pruned enumeration of [18]. Because pruned enumeration trees change

3

for different bases, a parallel enumeration search can be conducted by performing pruned
enumeration on different bases (for more detail, see [8] for a shared-memory parallel enu-
meration system using randomization and pruning techniques). In 2018, Teruya et al. [35]
proposed a massive parallelization method for random sampling. In their system, basis
vectors except the last few vectors are stored in global storage and are shared with all pro-
cesses. Each process performs random sampling independently on its basis and competes
to reduce the basis vectors in global storage. Synchronization is only required for storing
and loading the basis vectors between each process and global storage. In 2019, Albrecht
et al. [3] provided the General Sieve Kernel, abbreviated as G6K, supporting a variety of
lattice basis reductions using advanced sieve algorithms. For BKZ with G6K, we can use
a sieve algorithm to run as a core exact-SVP oracle for local block lattices. G6K adopts
a multi-thread parallelization with a highly optimized implementation for core sieve algo-
rithms in high-dimensional lattices. In 2021, a GPU implementation was provided in [15]
for advanced sieve algorithms in G6K to break high-dimensional instances in the Darmstadt
SVP challenge (see also [26] for a GPU implementation of enumeration). Both works of
[3, 35] essentially parallelize core algorithms such as random sampling and sieve to reduce
an input basis while avoiding synchronization overhead.

2 Mathematical and algorithmic preliminaries on lat-

tices

We present mathematical properties on lattices. We also introduce algorithmic problems
for lattices and practical algorithms of lattice basis reduction for solving lattice problems
(see, e.g., [7, 25, 38] for details).

2.1 Basics on lattices

Lattices and their bases A discrete additive subgroup of the n-dimensional real vector
space Rn is called a lattice. Any lattice in Rn is the set of all integral combinations of
linearly independent vectors b1, . . . ,bd in Rn (n ≥ d) as

L(b1, . . . ,bd) =

{
d∑

i=1

xibi ∈ Rn : x1, . . . , xd ∈ Z

}
.

The set (b1, . . . ,bd) of linearly independent vectors spanning a lattice L is called a basis
of L, that is, L = L(b1, . . . ,bd). For convenience, we handle any basis as the d× n matrix
B whose rows are bi’s, and simply write L = L(B). The dimension (or rank) of L is
defined as the number of basis vectors of L, denoted by dim(L). A lattice L in Rn is said of
full-rank when n = dim(L). Two bases B and C span the same lattice if and only if there
exists a unimodular matrix T such that C = TB. This implies that there are infinitely
many bases of a lattice L if dim(L) ≥ 2. It also shows that for two bases B and C of a
lattice L, their Gram determinants are both equal. Then the volume of L is defined as

4

vol(L) =
√

det(BB⊤) for any basis B of L. In particular, we have vol(L) = |det(B)| for a
full-rank lattice L.

Gram-Schmidt orthogonalization Let B = (b1, . . . ,bd) be a basis of a lattice L. The
Gram-Schmidt orthogonalization of B is the orthogonal family B∗ = (b∗

1, . . . ,b
∗
d), defined

recursively by b∗
1 = b1 and for 2 ≤ i ≤ d

b∗
i = bi −

i−1∑
j=1

µijb
∗
j , µij =

⟨bi,b
∗
j⟩

∥b∗
j∥2

(i > j).

Let µ = (µij) denote the d × d lower triangular matrix defined by the Gram-Schmidt
coefficients with diagonal entries all equal to 1. Then B = µB∗, where B∗ is the d × n
matrix whose rows are b∗

i ’s. This shows vol(L) =
∏d

i=1 ∥b∗
i ∥ by the orthogonality of

Gram-Schmidt vectors.

Projected lattices Let B = (b1, . . . ,bd) be a basis of a lattice L, and B∗ = (b∗
1, . . . ,b

∗
d)

its Gram-Schmidt vectors. For every 1 ≤ k ≤ d, we define a projection map to the R-vector
space ⟨b∗

k, . . . ,b
∗
d⟩R spanned by b∗

k, . . . ,b
∗
d as

πk : Rn −→ ⟨b∗
k, . . . ,b

∗
d⟩R, πk(v) =

d∑
i=k

⟨v,b∗
i ⟩

∥b∗
i ∥2

b∗
i (v ∈ Rn).

The lattice in Rn spanned by πk(bk), . . . , πk(bd) is called a projected lattice of L, denoted by
πk(L). The projected lattice πk(L) has dimension d−k+1 and volume equal to

∏d
i=k ∥b∗

i ∥
since the Gram-Schmidt orthogonalization of (πk(bk), . . . , πk(bd)) is given by b∗

k, . . . ,b
∗
d.

Note that any projected lattice depends on a basis B of L.

Successive minima and the Gaussian Heuristic For 1 ≤ k ≤ d, the k-th successive
minimum of a d-dimensional lattice L, denoted by λk(L), is the smallest radius of a ball
centered at the origin 0 containing k linearly independent vectors in L. In particular, the
first minimum λ1(L) is equal to the length of a non-zero shortest vector in L. Given a
lattice L of dimension d and a measurable set S in Rd, the Gaussian Heuristic predicts
that the number of vectors in L∩ S is roughly equal to vol(S)/vol(L). By applying to the
ball centered at the origin in Rd with radius λ1(L), it leads to the prediction of the norm
of a shortest non-zero vector in L. Specifically, the expectation of λ1(L) according to the
Gaussian Heuristic is given by

λ1(L) ≈ ω
− 1

d
d vol(L)

1
d ∼

√
d

2πe
vol(L)

1
d =: GH(L), (1)

where ωd denotes the volume of the unit ball in Rd. This is only a heuristic, but it roughly
holds for “random” lattices of high dimensions d ≥ 50.

5

2.2 Lattice problems: Algorithmic problems for lattices

Of various lattice problems, the shortest vector problem (SVP) is the most famous; “Given
a basis B, find a shortest non-zero vector in the lattice L = L(B), that is, a vector
s ∈ L such that ∥s∥ = λ1(L).” SVP is proven NP-hard under randomized reductions [1].
Approximate factors relax SVP; “Given a basis B and an approximation factor f ≥ 1,
find a non-zero vector v in the lattice L = L(B) satisfying ∥v∥ ≤ fλ1(L).” The closest
vector problem (CVP) is another famous problem; “Given a basis B and a target vector
t, find a vector in L = L(B) closest to t, that is, a vector v ∈ L such that the distance
∥t−v∥ is minimized.” It is known that SVP is not harder than CVP. As in the case of SVP,
approximate factors relax CVP. Since Kannan’s embedding [22] transforms approximate-
CVP into approximate-SVP, both problems seem equally hard in practice.

The security of modern lattice-based cryptosystems is based on the hardness of cryp-
tographic lattice problems such as the LWE and the NTRU problems. Such problems can
be reduced to approximate-SVP or/and -CVP (e.g., see [4] for details).

2.3 Lattice basis reduction algorithms

We introduce practical reduction algorithms that give a powerful instrument solving lattice
problems.

LLL We say a basis B = (b1, . . . ,bd) to be δ-LLL-reduced for a reduction parameter
1
4
< δ < 1 if (i) (size-reduced) it holds |µij| ≤ 1

2
for all i > j, and (ii) (Lovász’ condi-

tion) δ∥b∗
k−1∥2 ≤ ∥πk−1(bk)∥2 for all 2 ≤ k ≤ d, where µij’s and b∗

k’s are Gram-Schmidt
coefficients and vectors of B, respectively (recall that πk−1 denotes the projection map to
the R-vector space spanned by b∗

k−1, . . . ,b
∗
d). For a δ-LLL-reduced basis B, it holds both

∥b1∥ ≤ α
d−1
2 λ1(L) and ∥b1∥ ≤ α

d−1
4 vol(L)

1
d for L = L(B) and α = 4

4δ−1
(see [7, 25]).

To find an LLL-reduced basis, the LLL algorithm [24] calls size-reduction as a subroutine,
and it also swaps adjacent basis vectors that do not satisfy Lovász’ condition. The LLL
algorithm has complexity polynomial in d, and it is also useful to get rid of the linear
dependency of vectors.

LLL with deep insertions (DeepLLL) As a generalization of LLL, non-adjacent
basis vectors can be changed in DeepLLL [31]; Given a basis B = (b1, . . . ,bd) and
a reduction parameter 1

4
< δ < 1, we insert the k-th basis vector bk before bi as

B←− (b1, . . . ,bi−1,bk,bi, . . . ,bk−1,bk+1, . . . ,bd) for indexes i < k such that ∥πi(bk)∥2 <
δ∥b∗

i ∥2. This basis permutation is called a deep insertion. After a deep insertion, the
i-th new Gram-Schmidt vector is given by πi(bk), whose length is shorter than the old
one. We say a basis B = (b1, . . . ,bd) to be δ-DeepLLL-reduced if it is size-reduced
and δ∥b∗

i ∥2 ≤ ∥πi(bk)∥2 for all i < k. For a δ-DeepLLL-reduced basis B, it holds both

∥b1∥ ≤
√
α
(
1 + α

4

) d−2
2 λ1(L) and ∥b1∥ ≤ α

d−1
2d

(
1 + α

4

) (d−1)(d−2)
4d vol(L)

1
d for L = L(B) and

6

α = 4
4α−1

(see [40] for a proof). These properties are better than LLL, but the complexity
is no longer polynomial in d.

BKZ For a basis B = (b1, . . . ,bd) of a lattice L, set

B[j,k] = (πj(bj), πj(bj+1), . . . , πj(bk))

and L[j,k] = L(B[j,k]) for j < k. For a blocksize β ≥ 2, a basisB is said to be β-BKZ-reduced
if it is size-reduced and ∥b∗

j∥ = λ1(L[j,k]) for every 1 ≤ j ≤ d−1 and k = min(j+β−1, d). In
particular, it is called HKZ-reduced when β = d (e.g., see [2, Definition 3] for the definition

of HKZ-reduction). For a β-BKZ-reduced basis B, it holds ∥b1∥ ≤ γ
d−1
β−1

β λ1(L) [29], where
γβ denotes Hermite’s constant of dimension β (see [25] for Hermite’s constants). A β-BKZ-
reduced basis can be found by the BKZ algorithm [31], in which LLL is called to reduce
B[j,k] before calling an exact-SVP algorithm (e.g., an enumeration algorithm) over L[j,k].

Since larger β decreases γ
1/(β−1)
β from Mordell’s inequality, BKZ finds short lattice vectors,

but its computational cost is much more expensive. The complexity of BKZ depends on
that of an exact-SVP algorithm over L[j,k].

DeepBKZ It is an enhancement of BKZ proposed in [37] that uses DeepLLL as a sub-
routine in a BKZ framework (instead of LLL). We show a basic procedure of DeepBKZ
in Algorithm 1 that calls enumeration as an exact-SVP algorithm in Step 7. In practice,
DeepBKZ can find shorter lattice vectors than BKZ in using the same blocksize β (see
[37, 39] for their experimental results). Similarly to BKZ, the complexity of DeepBKZ
depends on that of exact-SVP algorithm (e.g., enumeration) in dimension β.

3 Parallelization of lattice basis reduction

In this section, we introduce the massive parallelization system of DeepBKZ and its im-
plementation. Our parallelization is based on randomization, which enables task-parallel
reductions for multiple randomized bases. We also share short basis vectors of the ran-
domized bases among solvers to accelerate the reduction process for every solver.

3.1 Ordering of lattice bases for reduction

We define an ordering of lattice bases for reduction. Let us recall the process of DeepBKZ:
given a basis of a lattice L and a blocksize β ≥ 2, DeepBKZ aims to find a new basis
B = (b1, . . . ,bd) of L such that ∥b∗

j∥ = λ1

(
L[j,k]

)
for all indices j with k = min(j+β−1, d),

by calling an SVP oracle (e.g., an enumeration algorithm in Algorithm 1) on the projected
lattice L[j,k] = L(B[j,k]) cyclically for j = 1, 2, . . . , d − 1. During DeepBKZ reduction, the
Gram-Schmidt norms (∥b∗

1∥, . . . , ∥b∗
d∥) decrease monotonically in lexicographic order. As

β increases, the quality of an output basis improves in both theory and practice. Similar to

7

Algorithm 1 DeepBKZ [37]

1: procedure DeepBKZ(B, δ, β)
2: ▷ B = (b1, . . . ,bd): basis of a lattice L, δ: reduction parameter, β: blocksize
3: B← DeepLLL(B, δ) ▷ DeepLLL-reduction for the input basis B
4: z ← 0, j ← 0
5: while z < d− 1 do
6: j ← (j (mod d− 1)) + 1, k ← min(j + β − 1, d), h← min(k + 1, d)
7: v← ENUM

(
L[j,k]

)
8: ▷ Enumeration over L[j,k] to find v ∈ L satisfying ∥πj(v)∥ = λ1

(
L[j,k]

)
9: if ∥πj(v)∥ < ∥b∗

j∥ then
10: z ← 0, (b1, . . . ,bh)← LLL((b1, . . . ,bj−1,v,bj, . . . ,bh))
11: ▷ Remove the linear dependency by LLL after insertion of v at position j
12: else
13: z ← z + 1
14: end if
15: DeepLLL((b1, . . . ,bh), δ)
16: ▷ DeepLLL-reduction for the sub-basis (b1, . . . ,bh) of the current basis B
17: end while
18: end procedure

BKZ, when β = d, DeepBKZ outputs an HKZ-reduced basis that is the minimum among
the bases of L in the lexicographic order of the Gram-Schmidt norms.

For our parallelization of DeepBKZ, we consider the lexicographic order of the Gram-
Schmidt norms when comparing lattice bases. Precisely, for two sub-basesB = (b1, . . . ,bd1)
and C = (c1, . . . , cd2) of a lattice, we define an order as

B < C ⇐⇒
∃j ≤ min{d1, d2} s.t. (∥b∗

i ∥ = ∥c∗i ∥) ∧ (∥b∗
j∥ < ∥c∗j∥) for all i < j.

(2)

3.2 Strategy of parallel sharing in DeepBKZ

Our aim of parallelization is to efficiently find a small lattice basis in the lexicographic
order (2) of the Gram-Schmidt norms. Our parallelization policy is a heuristic approach.
Specifically, we generate a lot of different bases of a lattice through randomization. We
then execute DeepBKZ on the randomized bases in parallel by sharing short lattice vectors
to find a small basis in the order (2). We here denote a unit that executes DeepBKZ as a
solver.

Given a lattice L, we state that a basis S of L is global if it satisfies S ≤ B in the
order (2) for all bases of the solver B of L. For a global basis S = (s1, . . . , sd) of L, we
also call its sub-basis of the form Sk = (s1, . . . , sk) a global sub-basis for each 1 ≤ k ≤ d.
Any global sub-basis Sk satisfies Sk ≤ B for all the bases of the solver B from (2). In
our strategy, all solvers share a common global sub-basis Sk while running DeepBKZ; in

8

other words, all solvers share the first k vectors of a global basis. One of the realizations of
sharing the global sub-basis is message passing of the whole and a part of the basis. For the
case k = 1, when the first basis vector b1 of a basis B is updated in a solver, the basis of
that solver becomes a global basis. Thus, we set s1 = b1 and send the vector is sent to all
solvers. When a solver receives s1, the solver adds it to the top of its basis C = (c1, . . . , cd)
and performs LLL on the d + 1 vectors (s1, c1, . . . , cd) to remove its linear dependency.
The vector s1 remains as the first basis vector in most cases; thus, we complete to share s1
with the solver. If the first basis vector c1 of C after LLL is not equal to s1, then it must
hold the ∥c1∥ ≤ ∥s1∥ and the basis C of the solver becomes a new global basis, using the
same procedure as above is used to share c1 with the other solvers. To generalize, in the
case where k ≥ 1, when a global basis S is updated, its global sub-basis Sk = (s1, . . . , sk)
is sent to the other solvers, which can be merged by LLL on (s1, . . . , sk, c1, . . . , cd) and
the re-sharing of a basis. In practice, it is more stable to sequentially insert one vector
at a time into its basis and remove the linear dependency by LLL due to floating-point
precision.

3.3 Implementation

We introduce new software to realize the strategy of parallel sharing DeepBKZ as described
in Subsection 3.2. Our software is based on CMAP-LAP [34], a generic framework for
the massive parallelization of lattice algorithms, including reduction, enumeration, and
sieve algorithms. We call our software “CMAP-DeepBKZ” because it is specialized for the
parallelization of DeepBKZ by using supervisor-worker style [27] functions in CMAP-LAP.
In our software, we denote each worker process as solver. We represent the progress of a
solver as the status, a pair consisting of a basis and a blocksize parameter for DeepBKZ.
We also present a triple containing a lattice basis, algorithm parameters, and a status,
called a task. Given an input basis of a lattice L, the supervisor process generates tasks
with randomized bases of L and distributes them to solvers. The solver process executes
DeepBKZ according to the received task and periodically communicates the current status
to the supervisor to update or fetch a global basis while executing the reduction algorithm.

In Figure 1, we show the overall process of parallel sharing DeepBKZ in CMAP-
DeepBKZ. We describe each process in Figure 1 below.

(i) Given an input basis B of a lattice L, the supervisor sets the global basis S of B and
creates initial tasks by randomizing the lattice bases B.

(ii) The supervisor sends the tasks to idle solvers and simultaneously stores them in a
solver pool.

(iii) Every solver executes DeepBKZ according to a received task.

(iv) Every solver sends its status (B, β) to the supervisor periodically, where B is the
current reduced basis and β is the current blocksize of DeepBKZ.

9

Solver Pool

Solver A

Global
Basis

Task

⋯Task
Solver

Solver

⋯
(ⅲ) Run reduction algorithm from Task
(ⅳ) Send status, and receive

global sub-basisperiodically

(ⅵ) Update
Status of Task

Status
Basis Basis

Supervisor

(ⅱ) Send
task

⋯

Task

BasisBasis

(ⅴ) Update global basis or
send global basis

Solver Z

Basis
Task

Basis

(ⅰ) input basis and
set global basis

Figure 1: The overall process of parallel sharing DeepBKZ in CMAP-DeepBKZ

(v) When the supervisor receives a status (B, β) from a solver, it compares the basis B
of the status with a global sub-basis Sk.

• If B is smaller than the global sub-basis Sk in the lexicographical order of Gram-
Schmidt norms, the supervisor replaces the current global basis S with B.

• If not, the supervisor sends the global sub-basis Sk back to the solver.

(vi) The supervisor updates tasks in the solver pool according to received statuses.

Because the supervisor maintains a global basis, each solver can obtain the global basis
only by communicating solely with the supervisor, that is, without communicating with
other solvers. The solver pool maintained within the supervisor is the container of the
tasks executed by solvers, which are updated according to their respective statuses sent
by the solvers. The solver pool data is used to create a checkpoint file because this pool
maintains the latest progress of all solvers.

3.3.1 Parallel framework

We have implemented CMAP-DeepBKZ based on the CMAP-LAP framework, which ap-
plies massively parallel strategies for lattice problems. The CMAP-LAP framework is de-
signed to facilitate the implementation of other parallel strategies based on this framework.
CMAP-LAP is created by inheriting from the Generalized UG framework (UG version 1.0
RC), a parallel framework implemented in C++11 which provides the infrastructure for
supervisor-worker parallelism. The concept of Generalized UG is to parallelize the state-
of-the-art solvers from the outside. Generalized UG provides several abstract classes which

10

can be customized according to the target problem and solvers. This customization flexi-
bility is suitable for the realization of our strategy.

The motivation of the CMAP-LAP framework is to utilize the interactions of typical
SVP algorithms such as the enumeration, sieve, and lattice reduction algorithms as sam-
plers of lattice basis and vectors. For example, the lattice basis output of the lattice
reduction algorithm can be used for the enumeration and sieve algorithm. Moreover, the
short lattice vector found by each algorithm can accelerate the lattice basis reduction or
sieve. Therefore, CMAP-LAP is designed as a scheme that can heterogeneously parallel
execute solvers in parallel and share lattice vectors and bases among the solvers. It has
a modular system for the implementation of new strategies relating to large-scale paral-
lelization. Developers can customize task structures to execute multi-thread or multi-rank
SVP solvers. In addition, CMAP-LAP’s communication API allows solvers to share infor-
mation synchronously, quickly, and safely with minimal changes. Furthermore, CMAP-LAP
has a flexible and high-level checkpointing function. Thereby, we can challenge to solve
high-dimensional SVP instances which require millions of core hours. In [34], the stability
and future performance of the framework are shown by the several experiments of hetero-
geneous and long-running execution of the naive algorithms combinations in a large-scale
environment using up to 103, 680 cores.

3.3.2 Processing flow of the supervisor and solver

The pseudo processing flow in the supervisor of CMAP-DeepBKZ is shown in Algorithm 2.
The supervisor continuously checks whether it has received a message from the solvers
using the MPI iProbe function. If messages have been sent to the supervisor, it handles
the received message according to its tag, which represents the message type. In CMAP-
DeepBKZ, the most important and frequently exchanged message tag is TagSolverState,
which indicates the status of the algorithm. The status is a pair consisting of the basis and
the blocksize of DeepBKZ. In CMAP-LAP, the supervisor only uses the status to update
the tasks in the solver pool. In addition, the supervisor in CMAP-DeepBKZ updates and
distributes the global basis S using basis B of the status. If B < Sk, that is B satisfies
the condition to be the global basis, the supervisor then updates the global basis S to B.
If Sk < B, the supervisor sends the global sub-basis Sk back to the solver. Because the
CMAP-DeepBKZ has this supervisor-worker style, we can share the global-sub basis using
this simple process.

The algorithmic function executed by the solver is shown in Algorithm 3. The solver
communicates using the communication API in CMAP-LAP. It periodically sends the basis
and the currently running blocksize as status until the algorithm terminates. If the solver’s
basis is smaller than the global sub-basis, the solver receives the global sub-basis from the
supervisor. As shown in Algorithm 3, almost any algorithm can be applied to our software
because we are only required to customize for the communication between subroutines.
The experiment of running several algorithms in parallel is described in [34].

11

3.3.3 Checkpoint and Restart

It is critical to save the progress of the solvers to resume the computation because it takes
a significantly large amount of core hours to solve the large-dimension SVPs. This is
accomplished by powerful checkpointing functionality in CMAP-DeepBKZ that stores the
complete progress information of the SVP solvers. Because the supervisor periodically
receives the algorithm’s progress from these solvers, it tracks progress and writes it to the
checkpoint file. More specifically, whenever the supervisor receives a status from the solver,
it updates the task in the solver pool based on the received status. When a checkpoint is
requested, the supervisor serializes the tasks data in the solver pool, compresses and writes
them by using zlib [13], a portable compression library. When we resume the computation,
the tasks are loaded from the checkpoint file and stored in the task pool, a container of tasks
waiting for execution. Next, the supervisor distributes the tasks to solvers according to the
priority associated with the tasks. The supervisor creates new tasks when many solvers are
available. In contrast, if the number of solvers is less than that when the checkpoint file
was generated, the tasks remain in the task pool and are given priority when the supervisor
distributes the next task.

4 Similarity of lattice bases

The benefit of parallelization in our algorithm mainly depends on the randomization of
bases. Each solver works independently on a randomized copy of the input basis, and
we hope that the reduction algorithm works faster for a certain random copy. While this
independence allows for asynchronous parallelization, the overall system would benefit from
collaboration among solvers. Therefore, we introduced a sharing scheme in the previous
section in which solvers indirectly exchange short lattice vectors with each other via the
supervisor. However, there is a trade-off between randomness and the amount of shared
information. Let us think of the extreme case when all vectors are shared and all solvers
work on the same basis, the benefit of parallelization would be completely nullified. It is
important to ensure that the diversity of the bases is preserved by the sharing. In this
section, we introduce a novel metric to quantify the diversity of lattice bases. This metric
will be used to determine the value of the number of share vectors k for the optimal balance.

4.1 Grassmann metrics

Let B and C be two bases of a d-dimensional lattice in Rn. We define several similarity
metrics between B and C, and use them to quantify the diversity of a set of bases. Recall
that DeepBKZ with blocksize β is an algorithm to find a basis whose i-th basis vector bi

which is the shortest from the projected lattice L
(
B[i,min(i+β−1,d)]

)
for all i. It is natural to

compare the projected lattices B̃i := L
(
B[i,d]

)
and C̃i := L

(
C[i,d]

)
for each 1 ≤ i ≤ d. Each

B̃i defines anm-dimensional subspace in Rn, wherem = d−i+1. The subspace corresponds
to a point in the Grassmannian manifold Gr(m,n) which consists of m-dimensional linear

12

subspaces in the Euclidean space Rn. The Grassmannian manifold comes equipped with
several metrics (distances), which we use as the similarity measures for B̃i and C̃i.

Let Y i (B) be the (m × n)-orthonormal matrix corresponding to B̃i whose rows are
b∗
k/∥b∗

k∥ for i + 1 ≤ k ≤ d. The standard way to define metrics on the Grassmannian
manifold is via principal angles [5]. Denote the singular value decomposition (SVD) of
Y i(B)Y i(C)T by

Y i(B)Y i(C)T = Udiag (cos θ1, . . . , cos θm)V, (3)

where U and V are orthonormal matrices and the singular values cos θk are sorted in
decreasing order. The singular values cos θk are called canonical correlations and the
angles θ1, . . . , θm ∈ [0, π/2] are called the principal angles of Y i(B) and Y i(C) [6, 19]. The
first principal angle θ1 is the minimal angle between the two subspaces spanned by B̃i and
C̃i. If this minimal angle is achieved by u1 ∈ Span(B̃i) and v1 ∈ Span(C̃i), the second
principal angle θ2 is the minimal angle between their orthogonal complements. The third
and subsequent principal angles are defined in a similar manner.

The geodesic distance, which is induced by the canonical Riemannian metric onGr(m,n)
as the homogeneous space of the orthogonal group O(n), is computed as d (Y i(B), Y i(C)) =√∑

i θ
2
i . Although the geodesic distance is the most natural and “authentic” metric on

Gr(m,n), it is computationally expensive since we have to compute the SVD of a large
matrix. It is thus preferable to use metrics that can be computed efficiently without in-
voking SVD. Such metrics include chordal metric dc and the projection 2-norm metric dp2.
The chordal metric is defined as the square root of the square sum of the sine of principal
angles, but can be computed efficiently by the Frobenius norm of the difference of the
projectors:

dc
(
Y i(B), Y i(C)

)
:=

√∑
k

sin2 θk =
1√
2
∥Y i(B)T Y i(B)− Y i(C)T Y i(C)∥F .

It is shown in [16, Section 4.3] that the chordal metric provides a lower bound, and in fact,
a good approximation to the geodesic distance.

The maximum principal angle θm is a generalization of the dihedral angle between two
planes in R3, and hence, it is another natural metric to measure the diversity of bases. The
projection 2-norm metric is defined as

dp2
(
Y i(B), Y i(C)

)
:= sin θm = ∥Y i(B)T Y i(B)− Y i(C)T Y i(C)∥2.

Note that the largest singular value can be efficiently computed by the power method.
When n is sufficiently large, the maximum principal angle for random B and C is close to
π/2, and the projection 2-norm metric is closed to one regardless of i.

4.2 Diversity of bases

Given a multiset B = (B1, . . . ,Bm) of lattice bases, we define its diversity using the
Grassmann metrics defined in the previous subsection.

13

Definition 1 (Diversity of projected lattices) Let P (B) be the set of all pairs of ele-
ments in B. We define its i-th projected diversity associated to a Grassmann metric dg as
the mean of the pairwise distance:

Divi (B, dg) :=
1

|P (B)|
∑

(B,C)∈P (B)

dg
(
Y i(B), Y i(C)

)
.

The total projected diversity is defined by the mean of the i-th projected diversity for 1 ≤
i ≤ d:

Div(B, dg) :=
1

d

d∑
i=1

Divi (B, dg) .

The higher value of Div(B, dg) indicates the greater diversity of the bases.

4.3 Effect of sharing short vectors on the diversity of bases

Here, we investigate how the diversity of the bases is affected by our sharing scheme. To
set up a controlled experiment, we run the parallel DeepBKZ in a synchronous manner.
Initially, each solver receives a randomized copy of the input lattice basis. Each iteration
starts by running a tour of DeepBKZ. The global basis is defined as the minimum among
all the bases of the solvers in terms of the order defined in (2). All solvers share the top-k
lattice vectors of the global basis as shown in lines 10–16 of Algorithm 3. The diversity
Div(B, dg) is computed at this point. We then repeat the iteration.

We set the number of solvers m = 100 and DeepBKZ blocksize β = 30, and perform
this experiment with various numbers of shared vectors k ∈ {0, 1, 8, 16, 32, 64, 80} for five
90-dimensional instances of the SVP challenge.

Snapshot of the diversity Figure 2 shows the snapshot of Divi(B, dg) averaged for the
five SVP instances after 100 tours of DeepBKZ. We observe that the shapes of Divi(B, dg)
and Divi(B, dc) are almost identical up to scaling, as dc gives a good approximation to dg.
In the following analysis, we will focus on dc and dp2 as they can be efficiently computed.
Note that Divi(B, dg) for i ≤ k are not necessarily 0 although we share the top-k vectors of
the global basis. This is because the top-k vectors of the basis of each solver are updated
by the insertion and LLL. We observe that the values Divi(B, dg) decrease as the number
of shares k increases. This is an expected result in agreement with our intuition, and it
is implied that the diversity of the projected lattice can be quantified by the proposed
i-th projected diversity metric. When k = 0 and there is no sharing, the shape for the
chordal metric shows a symmetry with respect to i = 45. This is due to the one-to-one
correspondence between Gr(m,n) and Gr(n−m,n) that maps an m-dimensional subspace
to its orthogonal complement. The deviation of the shape of Divi(B, dg) from that for the
k = 0 case indicates the decrease in the diversity of the bases due to the sharing. We
indeed observe that the shape is closer to that of k = 0 for smaller k’s.

14

Figure 2: The average of the i-th projected diversity Divi (B, dg) computed for 90-
dimensional lattice bases with different numbers of shared vectors k right after 100 Deep-
BKZ tours.)

For the projection 2-norm, Divi (B, dp2) is close to one for all i when k = 0, as expected.
This ensures that each solver works on a different search space. When k = 64 and 80,
the lower values of Divi (B, dp2) suggest that there is substantial overlap among the search
spaces of the solvers, which would affect the overall efficiency of the system. We will discuss
this point later in a large-scale experiment in Section 5.4.

Transition of the total diversity with tours Figure 3 shows the transition of the
total diversity Div(B, dg) with respect to the number of tours. We observe that when
k = 0, the total diversity stays constant, indicating that the DeepBKZ algorithm preserves
the diversity of bases and the lattice reduction itself does not reduce the diversity of bases.
We observe that when k > 0, the total diversity decreases at the early stage and then
converges to a certain value which depends on k. This experiment shows that the diversity
of the bases of the solvers is preserved to some extent during the execution of our shared
DeepBKZ algorithm, even though the randomization is performed only once before the
first tour. We confirm these observations through a large-scale experiment in Section 5.4.

Evaluation of different randomization Our novel diversity metric has the potential
to be applied for various analyses of a set of lattice bases. For example, we conduct an
evaluation of the effect of different randomization methods. In general, the quality of

15

Figure 3: Transition of the total diversity Div(B, dg) computed for 90-dimensional lattice
bases with different numbers of shared vectors k after each tour of DeepBKZ.

the random element generator has a large impact on the performance of a randomized
algorithm. In our case, the input basis is multiplied by randomly generated unimodular
matrices to produce different bases for the input lattice. We compare three popular ways
to generate unimodular matrices using our diversity metric.

• LU : A pair consisting of a lower and an upper integer triangular matrix with 1’s along
the diagonal is generated. They are then multiplied after their rows are randomly
shuffled.

• Swap: A permutation matrix is generated uniformly randomly.

• Fplll : A permutation matrix is generated uniformly randomly. Then, row operations
are performed on it three times, picking a row to add to or subtract from another
row. This is used by the fplll library.

First, we generate 100 bases from a single lattice basis by one of the above methods.
Then, we calculate Divi(B, dg) after (i) randomization, (ii) randomization and LLL, and
(iii) randomization and a tour of DeepBKZ without sharing. Figure. 4 shows the aver-
age of Divi(B, dg) of five 90-dimensional instances of the SVP challenge. The three lines
corresponding to the three methods grow closer as one proceeds from (i) to (iii). This
implies that the three methods are all exhibit bias, but this bias is eliminated by LLL and
DeepBKZ. Therefore, in practice, it is not necessary to pay significant attention to the

16

After Randomization

After LLL

After DeepBKZ 1 tour

Figure 4: The i-th projected diversity for the chordal (left) and the projection 2-norm
(right) Grassmann metrics computed (top) immediately after randomization, (middle) af-
ter LLL, and (bottom) after one tour of DeepBKZ for 90-dimensional lattice bases with
different random generation models of unimodular matrices.

randomization method. It is interesting that the reduction process itself contributes to the
diversity of the bases.

Remark 1 (Distribution of reduced bases) Some lattice algorithms assume the ran-
domness of input bases. For example, extreme pruning [18], a pruning technique for enu-
meration, relies on the heuristic of [18, Heuristic 3] that the normalized Gram-Schmidt
vectors (b∗

1/∥b∗
1∥, . . . ,b∗

d/∥b∗
d∥) of a basis is uniformly distributed. This heuristic allows us

to estimate the probability that a vector of a given length is included in a pruned enumera-
tion tree. However, to our best knowledge, this heuristic has not yet been verified in detail
for reduced bases, or more precisely, bases obtained by a reduction algorithm. Below, we
apply our diversity metric to provide supportive evidence for [18, Heuristic 3].

Note that we can sample uniformly from Gr(1, n) by sampling from the n-dimensional
normal distribution with the zero mean and the identity covariance. By sampling m ele-

17

1 15 30 45 60 75 90
index

0.02

0.01

0.00

0.01

0.02

0.03
chordal

1 15 30 45 60 75 90
index

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

projecion 2-norm
25%
75%
mean

Figure 5: Comparison between the diversity metrics of C and that of B. mean:
(i,Divi(C, dg) − Divi(B, dg)), 25%: (i,Divi25%(C, dg) − Divi(B, dg)), 75%: (i,Divi75%(C, dg) −
Divi(B, dg)) for (Left) dg = dc the chordal metric, and (Right) dg = dp2 the projection
2-norm.

ments independently from Gr(1, n), we obtain an element of Gr(m,n) almost surely. Let
Ci be a multiset of elements in Gr(d− i+ 1, n) sampled in this manner. The value

Divi(Ci, dg) :=
1

|P (Ci)|
∑

(B,C)∈P (Ci)

dg (B,C)

represents the diversity of randomly sampled subspaces. We compare this value with the i-th
projected diversity of the subspaces defined by the lattice bases derived from a single lattice
basis by the randomization and the DeepBKZ algorithm. If the distribution of the reduced
bases is similar to that of random bases, the diversity metrics of these two groups should
be similar. As in Section 4.3, we generate a multiset of the lattice bases B by running
DeepBKZ for 100 tours with no sharing (k = 0) on 100 random copies (generated by the
LU method) of a single instance of 90-dimensional SVP challenge. Figure 5 shows the
difference between Divi(B, dg) and Divi(Ci, dg), where d = 90 and |Ci| = 100. In addition
to the difference of means, the difference between Divi(B, dg) and the quartiles, denoted by
Divi25%(C, dg) and Divi75%(C, dg), of Cidg := {dg(Y i(B), Y i(C)); (B,C) ∈ P (C)} are shown.

We observe that the difference between Divi(B, dg) and Divi(Ci, dg) is close to zero. In fact,
Divi(B, dg) fall within the quartiles of the diversity of the random elements Cidg except for
i = 2. The same is observed for other four instances of 90-dimensional SVP challenge.
Note that when i = 2, the first basis vector b1 is likely to be the shortest vector, and hence,
reduced bases share the same first basis vector with a certain probability.

This result suggests that the assumption of [18, Heuristic 3] holds for bases reduced by
DeepBKZ except for the first vector.

18

Table 1: Computing platforms, operating systems, compilers and libraries

Machine
Memory
/ node

CPU
CPU

frequency
nodes # cores

Lisa 384 GB Xeon Platinum 9242 2.30 GHz 1,080 103,680
Emmy 384 GB Xeon Platinum 9242 2.30 GHz 128 12,288
ITO 192 GB Xeon Gold 6154 3.00 GHz 128 4,608

CAL A
256 GB Xeon E5-2640 v3 2.60 GHz 4 64
256 GB Xeon E5-2650 v3 2.30 GHz 4 80

CAL C 32 GB Xeon E3-1284L v3 1.80 GHz 45 180

Operating systems and versions: Lisa and Emmy [CentOS Linux release 7.7.1908], ITO

[Red Hat Enterprise Linux Server release 7.3.1611], CAL A and CAL C [CentOS Linux

release 7.9.2009]. Compilers and versions: Lisa and Emmy [intel19.0.5, impi2019.5], ITO

[icc 19.1.1.217, impi2019.4], CAL A [icc 19.1.3.304, openmpi4.0.5], CAL C [icc19.1.3.304,

impi2020.4.304]. Libraries and versions: NTL v11.3.3, Eigen v3.3.7, gsl v2.6, OpenBLAS

v0.3.7, fplll v5.2.1.

5 Numerical experiments

In this section, we show experimental results to demonstrate the performance of CMAP-
DeepBKZ in a large-scale computing environment. We used the computing platforms in
Table 1 and conducted experiments using up to 103, 680 cores. The supercomputers Lisa
and Emmy are in the HLRN IV system at Zuse Institute Berlin, and the ITO supercom-
puter is at Kyushu University. The CPU cluster computers CAL A and CAL C possess a
total of 144 and 180 cores, respectively. We used MPI processes without hyper-threading.
For our experiments, we used instances in the Darmstadt SVP challenge [28], but we
reduced every instance in advance using LLL implemented in the fplll library [36].

5.1 Metrics to measure the output quality of reduction algo-
rithms

As described below, we present typical metrics to measure the output quality of reduction
algorithms to compare the experimental results later.

• Hermite factor : Let B = (b1, . . . ,bd) be a basis of a lattice L output by a reduction
algorithm. Assume that b1 is the shortest among the vectors bi’s. Then, the Hermite
factor of the reduction algorithm is defined as γ = ∥b1∥

vol(L)1/d
. As γ is smaller, a

reduction algorithm can find a shorter basis vector. Exhaustive experiments in [17]
show that for a practical reduction algorithm such as LLL and BKZ, the root Hermite
factor γ1/d converges to a constant value for high dimensions d ≥ 100. Therefore, the
root Hermite factor γ1/d is a useful metric to compare the identical output quality of
practical reduction algorithms for lattice bases in high dimensions.

19

• Enumeration Cost : Given a basis B = (b1, . . . ,bd) of a lattice L, we can estimate
the cost to find a shortest non-zero vector in L by enumeration using B. Given a
search radius R > 0, an enumeration tree of depth n is constructed whose nodes at
depth d− k+1 correspond to the set of all vectors in πk(L) with a maximum length
of R. The key observation here is that if a shortest vector s satisfies ∥s∥ ≤ R, its
projections must also satisfy ∥πk(s)∥2 ≤ R2 for all 1 ≤ k ≤ d. Hence, it appears
as a leaf of the tree. These d inequalities provide an enumeration of the tree. The
total number of nodes to be traversed is estimated using the Gaussian Heuristic as

N =
∑d

k=1Hk, where Hk =
Rkωk

vol(πd+1−k(L))
for every 1 ≤ k ≤ d (see [18] for details).

As B is reduced, the total number of nodes N decreases in practice.

• Geometric Series Assumption (GSA): Let B = (b1, . . . ,bd) be a reduced basis, and
b∗
1, . . . ,b

∗
d its Gram-Schmidt vectors. The GSA in [30] states that the plots of log-

norms log ∥b∗
i ∥ of Gram-Schmidt vectors approximate a straight line. (For a β-BKZ-

reduced basis, the GSA does not hold for the last d− β plots because the last block
B[d−β+1:d] is HKZ-reduced. See [2, Figure 1] for an example of the GSA and its
tail-adapted version.) To measure the average quality of B, fpylll [36] adopts a least
squares fit of log ∥b∗

i ∥2 for 1 ≤ i ≤ d is adopted in fpylll [36] as a slope metric ρ.
Under the GSA, the slope relates to the root Hermite factor via γ1/d = exp

(
−ρ

4

)
.

5.2 Efficacy when sharing short lattice vectors

Here, we demonstrate the efficacy of CMAP-DeepBKZ when sharing short lattice vectors
among solvers.

5.2.1 Analysis using deterministic parallel execution

First, we conducted experiments to accurately evaluate the effect of sharing short lat-
tice vectors for 95, 100, and 105-dimensional SVP. We used the parallel DeepBKZ in the
synchronous manner described in Section 4.3. By repeatedly running a tour of Deep-
BKZ, sharing, and distributing the global basis for each step, the behaviors of the solvers
become deterministic. By contrast, in CMAP-DeepBKZ, a global basis is updated and dis-
tributed asynchronously through MPI communication. It is difficult to completely control
the shared lattice vectors using CMAP-DeepBKZ.

We executed the parallel DeepBKZ with the number of solvers set to m = 128, while
changing the number of short vectors shared among the solvers. In particular, we used
k = 0, 2, 4, 8, 16, 32, and 64 as the number of short lattice vectors shared among the
solvers, and we performed 10 runs for each value of k. (The case where k = 0 means that no
vector is shared among the solvers.) The initial blocksize of DeepBKZ is set as β = 30, and
execution times are adjusted according to the dimension of the SVP instances. In Figure 6,
we show the transition of the averages of minimum root Hermite factors, enumeration costs,
and GSA slopes when running our parallel DeepBKZ. (For the enumeration cost, we set

20

Figure 6: Transition of metrics on the output quality of parallel sharing DeepBKZ in
dimension d = 95 (Top), 100 (Middle) and 105 (Bottom), by using k = 0, 2, 4, 8, 16, 32
and 64 as the number of short vectors shared among solvers using (Left: the average root
Hermite factor γ1/d, Center: the logarithm of the average enumeration cost log(N), Right:
the minus of the average GSA slope −ρ > 0)

R = GH(L) as the search radius of enumeration.) Comparing the results for k = 0 and
k > 0, we see that enumeration costs and GSA slopes ρ decreased when sharing short
lattice vectors. This means that more reduced bases can be obtained through the sharing
of short lattice vectors. However, the root Hermite factor transitions in dimensions d = 95
and 100 were not explicitly different for the various value of k, and variation appeared only
in dimension d = 105. This result shows that for 95-dimensional and 100-dimensional SVP,
DeepBKZ with a blocksize β = 30 could find shortest vectors by only utilizing the effect
of parallel lattice reductions through randomization. In contrast, for SVPs of dimensions
d ≥ 105, parallel lattice reduction by randomization was insufficient. This finding implies
that the transition of the root Hermite factor, enumeration costs, and GSA slopes can be
reduced by speeding up DeepBKZ through short vector sharing, in exchange for some loss

21

0 2 4 6
Time [h]

1.0084

1.0086

1.0088

1.0090

1.0092

1.0094 Root Hermite factor

k = 0 k = 16 k = 64

0 2 4 6
Time [h]

60

61

62

63

64

65

66 log(enumeration cost)

0 2 4 6
Time [h]

0.060

0.062

0.064

0.066

0.068

0.070

0.072

0.074
- GSA slope

Figure 7: Same as Figure 6, but using CMAP-DeepBKZ and dimension d = 118, by using
k = 0, 16 and 64 as the number of short vectors shared among solvers

of basis diversity in a few dimensions.

5.2.2 Analysis of MPI parallelization using CMAP-DeepBKZ

In Figure 7 and Table 2, we display the experimental results of CMAP-DeepBKZ for the
instances of the Darmstadt SVP challenge in dimension d = 118 with seeds ranging from
2 to 6. Specifically, we used k = 0, 16, and 64 as the number of short lattice vectors
shared among the solvers. We ran CMAP-DeepBKZ for six hours for each SVP instance
on the supercomputer system ITO using 2, 304 cores (see Table 1 for ITO). Each solver
ran DeepBKZ with a blocksize β = 30 and sent the current status to the supervisor at an
interval of 120 seconds. (In other words, each solver obtained a global sub-basis of size k
every 120 seconds.) In Figure 7, we show the transition of the averages of global basis’s
root Hermite factors, enumeration costs, and GSA slopes when running CMAP-DeepBKZ.
In Table 2, we summarize the experimental results of CMAP-DeepBKZ after six hours of
execution. As illustrated in Figure 7 and Table 2, it is effective to share short lattice
vectors to decrease the metrics of DeepBKZ for finding short lattice vectors. For example,
the minimum of the logarithm of the enumeration cost is 62.6578 (resp., 59.7701) for k = 0
(resp., k = 64) as shown in Figure 7, and we calculate e59.7701/e62.6578 ≈ 0.0557. This
implies that enumeration costs can be reduced by 5.57%, through sharing 64 short lattice
vectors among the solvers.

Remark 2 (Comparison with BKZ) In cryptanalysis, BKZ and its variants such as
BKZ 2.0 [11] are de facto standard reduction algorithms utilized to evaluate the security of
lattice-based cryptography (see [4] for details). Under the GSA and the Gaussian Heuristic,
a limiting value of the root Hermite factor of BKZ with blocksize β for a d-dimensional

22

Table 2: Experimental results of CMAP-DeepBKZ after 6 hours execution for instances of
the Darmstadt SVP challenge in dimension d = 118 with seeds 2–6 (k denotes the number
of short vectors shared among solvers, and b1 the shortest basis vector of all solver’s bases)

SVP Number Updated Norm Approx. Root Hermite Machine

instance of shares time [h] of b1 factor ∥b1∥
GH(L)

factor γ1/d (Table 1)

seed2

k = 0

4.4354 2818.92 1.0272 1.00867

ITO

seed3 4.4358 2785.57 1.0117 1.00854
seed4 2.2824 2834.39 1.0308 1.00870
seed5 4.3073 2787.56 1.0153 1.00857
seed6 5.5766 2837.97 1.0303 1.00869

Average 1.0231 1.00863
seed2

k = 16

2.0172 2789.09 1.0163 1.00858

ITO

seed3 3.6039 2770.70 1.0063 1.00849
seed4 0.8736 2793.29 1.0159 1.00857
seed5 5.0591 2764.17 1.0068 1.00850
seed6 2.5595 2768.58 1.0051 1.00848

Average 1.0101 1.00852
seed2

k = 64

1.7197 2789.09 1.0163 1.00858

ITO

seed3 1.5907 2785.57 1.0117 1.00854
seed4 1.2151 2799.01 1.0179 1.00859
seed5 1.0780 2765.60 1.0073 1.00850
seed6 3.7370 2786.96 1.0118 1.00854

Average 1.0130 1.00855

lattice is predicted in [10] as

lim
d→∞

γ
1
d =

(
ω
− 1

β

β

) 1
β−1

∼
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

(4)

for β > 50 and β ≪ d (see [10, 11, 41] for experimental results supporting the prediction).
Table 2 shows that CMAP-DeepBKZ can achieve the root Hermite factor around γ1/d =
1.0085 with average by blocksize β = 30 in dimension d = 118. (See also Tables 3, 5
and 6 for root Hermite factors of CMAP-DeepBKZ in other dimensions.) In contrast, the
prediction (4) implies that BKZ requires around β = 115 to achieve the same root Hermite
factor. Recall that it is the most dominant factor in both BKZ and DeepBKZ to run an
exact-SVP algorithm over projected lattices of dimension β, and the cost is 2O(β2) when
using an enumeration algorithm for solving exact-SVP in dimension β. Therefore, CMAP-
DeepBKZ is significantly more efficient than BKZ without parallelization.

History of updating global bases In Figure 8, we display the history of updating
a global basis when running CMAP-DeepBKZ with the number of shares k = 16 for the
SVP instance in dimension d = 118 with seed 5, which is the result of updating the
shortest vector at the latest time. Each plot (x, y) in the figure indicates that a global

23

0 1 2 3 4 5
Time [h]

2

4

6

8

10

12

14

16

Up
da

te
d

In
de

x

Figure 8: History of updating a global basis in an execution of CMAP-DeepBKZ with the
number of shares k = 16 in dimension d = 118 (Each plot (x, y) indicates that a global
basis at index y was updated at time x)

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

k = 0

k = 16

k = 64

Figure 9: Plots of approximation factors in projected lattices ∥s∗i ∥/GH(πi(L)) for a global
basis S = (s1, . . . , sd) of a lattice L of dimension d = 118, output by CMAP-DeepBKZ after
6 hours execution (We used k = 0, 16 and 64 as the number of shares in CMAP-DeepBKZ)

basis S = (s1, . . . , sd) at index y was updated at time x. We can see from Figure 8 that
a global basis is updated frequently, and it is less frequent to update a global basis at
a smaller index. Therefore, if the number of shares k is small, for example k = 1, each
solver will run with almost no information sharing. To benefit from this sharing effect of
CMAP-DeepBKZ, it is necessary to have a large number of shares.

Approximation factors in projected lattices In Figure 9, we show the approximate
factors in projected lattices for a global basis S = (s1, . . . , sd), output by CMAP-DeepBKZ
after six hours of execution for the SVP lattice L of dimension d = 118 with seed 2.
Specifically, we plot all (i, yi) for 1 ≤ i ≤ d, where yi =

∥s∗i ∥
GH(πi(L))

denotes the approximate

factor in the projected lattice πi(L) of dimension n = d− i+ 1. (Recall that GH(πi(L)) ≈
λ1(πi(L)) for large n ≥ 50; however it does not hold for small n.) Therefore, we focus on
indices 1 ≤ i ≤ 80. We note from Figure 9 that approximate factors at indices 1 ≤ i ≤ 16

24

0 20 40 60 80 100 120

index i

8

9

10

11

lo
g

2
‖s
∗ i‖

k = 0

k = 16

k = 64

Figure 10: The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a global basis
S = (s1, . . . , sd) output by CMAP-DeepBKZ with the numbers of shares k = 0, 16 and 64
after 6 hours execution for an SVP instance in d = 118

are extremely close to 1.0 when the numbers of shares k = 16 and 64. This implies that
the first 16 basis vectors of S are almost equal to those of an HKZ-reduced basis. (We also
note from Figure 9 that k = 16 seems sufficient for dimension d = 118.)

GSA shapes In Figure 10, we show the logarithms of the Gram-Schmidt squared norms
log ∥s∗i ∥2 of a global basis S = (s1, . . . , sd), output by CMAP-DeepBKZ with the number
of shares k after six hours execution for the SVP instance in dimension d = 118 with
seed 2. We can observe the “head concavity” as pointed out in [9] in both cases with and
without sharing (cf., see [2, Figure 1] for an image of the GSA shape by the BKZ reduction
algorithm.) Specifically, the log-norms log ∥s∗i ∥2 at the first 20 indices for the two cases
k = 16 and 64 are more concave than for the case k = 0.

Remark 3 (Performance difference due to the number of shares) Through exhaus-
tive experimentation considering different numbers of shares k for 95, 100, and 105-dimensional
SVPs in Subsection 5.2.1, the results showed little difference in the root Hermite factor when
the number of shares k > 0. In contrast, the value of the enumeration cost and the GSA
slope tended to improve as the number of shares k increased, but converged to similar values
for k ≥ 16. The same tendency was observed in the experiment using CMAP-DeepBKZ in
118-dimensional SVPs in Subsection 5.2.2. In addition, as shown in Figure 15, when the
number of shares k = 64, lattice bases update frequently in each solver, and the number of
substantial shares is up to 16. This result explains why there are no significant differences
between k = 16 and 64. In the following subsections, we mainly use k = 16 in terms of
both the output quality and the diversity of CMAP-DeepBKZ.

5.3 Scalability of the number of processes

In this subsection, we show the scalability of CMAP-DeepBKZ in large-scale computing
environments. Specifically, we used different computing platforms with a maximum of

25

0.0 2.5 5.0 7.5 10.0
Time [h]

1.00800

1.00825

1.00850

1.00875

1.00900

1.00925

1.00950

1.00975

1.01000 Root Hermite factor

#procecses = 40
#procecses = 80

#procecses = 180
#procecses = 2304

#procecses = 24576

0.0 2.5 5.0 7.5 10.0
Time [h]

61.5
62.0
62.5
63.0
63.5
64.0
64.5
65.0
65.5
66.0 log(enumeration cost)

0.0 2.5 5.0 7.5 10.0
Time [h]

0.060

0.062

0.064

0.066

0.068

0.070 - GSA slope

Figure 11: Same as Figure 7, but the dimension is d = 120 and lines in each metric
represent difference by different numbers of processes (We used k = 16 as the number of
shares)

p = 24, 576 cores (see Table 3 for details of computing platforms). We ran CMAP-DeepBKZ
for 11 hours for every instance of the Darmstadt SVP challenge [28] in two dimensions,
d = 120 and d = 124, with seeds 0–4. More specifically, each solver used an initial blocksize
β = 30 for DeepBKZ, increasing β by increments of five with the early termination strategy
of [11]. (The strategy is also implemented in fplll [36] as an auto-abort option for BKZ.)
When a solver reached β = 50, the reduction process was terminated and the solver
received a new task (that is, a new basis) from the supervisor to run DeepBKZ again from
the beginning. We set k = 16 as the number of short basis vectors shared among solvers,
which is a low value that on average exhibited good performance in the experiments of
the previous section. In Tables 3 and 4, we show experimental results on the scalability
of CMAP-DeepBKZ in the dimensions d = 120 and d = 124, respectively. We assigned
one core to the supervisor except for Emmy and used p − 1 solvers for basis reduction.
When using p = 24, 576 cores for Emmy, we assigned one node to the supervisor with a
sufficient amount of memory, and used p − 96 = 24, 480 solvers for basis reduction. In
Figure 11, we also show the same as Figure 7, but the dimension is d = 120 and different
lines in each metric correspond to different numbers of cores. Because the computing
platforms are different, the comparison is not exact; however as shown in Tables 3, 4 and
Figure 11, the quality of a global basis improves in every metric as the number of cores
is increased. In particular, Table 3 shows that an extremely short lattice vector with an
approximate factor close to 1.0 in dimension d = 120 can be found within 11 hours when
using p = 24, 576 cores for CMAP-DeepBKZ. To evaluate the scalability, we recall from the
Gaussian Heuristic that there are roughly αd lattice vectors of norms less than αGH(L)
in a d-dimensional lattice L for a constant α ≥ 1. When we evaluate the hardness of an
approximate SVP by the number of solutions, the approximate factor α = 1.0013 achieved

26

Table 3: Results of CMAP-DeepBKZ after 11 hours execution on platforms with the
number of processes p for SVP instances in dimension d = 120 (We used k = 16 as the
number of shares, and let b1 denote a shortest basis vector of all solver’s bases)

SVP Number of Updated Norm Approx. Root Hermite Machine

instance cores time [h] of b1 factor ∥b1∥
GH(L)

factor γ1/d (Table 1)

seed0

p = 180

6.2015 2848.69 1.0288 1.00860

CAL C

seed1 8.2300 2963.32 1.0669 1.00891
seed2 8.6904 2996.73 1.0785 1.00900
seed3 4.6942 2898.89 1.0424 1.00871
seed4 1.6277 2947.42 1.0618 1.00887

Average 1.0557 1.00882
seed0

p = 2, 304

1.1908 2804.94 1.0130 1.00847

ITO

seed1 2.8657 2844.46 1.0241 1.00856
seed2 1.5187 2896.61 1.0424 1.00871
seed3 1.4221 2897.27 1.0419 1.00871
seed4 3.6159 2729.25 0.9833 1.00822

Average 1.0209 1.00853
seed0

p = 24, 576

1.5810 2756.06 0.9954 1.00833

Emmy

seed1 7.0333 2792.47 1.0054 1.00841
seed2 3.1890 2778.82 1.0001 1.00836
seed3 0.6497 2842.70 1.0222 1.00855
seed4 0.6117 2729.25 0.9833 1.00822

Average 1.0013 1.00837

by using p = 24, 576 processes is (1.0557/1.0013)120 ≈ 572 times harder than α = 1.0557,
which was attained by p = 180 in dimension d = 120 as shown in Table 3.

In Figure 12 (resp., Figure 13), similar to Figure 7 (resp., Figure 10), we show approx-
imate factors in projected lattices (resp., the logarithms of Gram-Schmidt squared norms)
of a global basis in d = 120 according to the different numbers of processes. Because
we shared the first 16 basis vectors among the solvers, the plots at the first 16 indices in
Figure 12 become closer to 1.0 by increasing the number of processes. Similarly, we see
from Figure 13 that the logarithms of the Gram-Schmidt squared norms of a global basis
in the first 16 indices are reduced as the number of cores is increased.

5.4 Transition of diversity on large-scale execution

We measured the diversity of a set of bases of the solver during large-scale execution with
Div defined in Section 4.2. Figure 15 is created from five results of 118-dimensional instances
in Section 5.2.2, with six hours executions using 2,304 cores and 16 shared short vectors.
Figure 15 shows the three results with different numbers of shared vectors. The left figure
shows the transition of the number of overlapping basis vectors, excluding positive and
negative differences. Because the solver obtained the global basis from the supervisor at

27

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

#Processes = 180

#Processes = 2304

#Processes = 24576

Figure 12: Same as Figure 7, but the dimension is d = 120 and plots represent difference
by different numbers of cores (We used k = 16 as the number of shares)

0 20 40 60 80 100 120

index i

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

lo
g

2
‖s
∗ i‖

#Processes = 180

#Processes = 2304

#Processes = 24576

Figure 13: Same as Figure 10, but the dimension is d = 120 and three lines represent
different GSA shapes by different numbers of processes (We used k = 16 as the number of
shares)

relatively large intervals of 120 seconds, the situation where the top-16 vectors are aligned
did not occur during the early calculation time, and the number of overlaps approaches 16
after one hour. The right figure shows the transition of the Div values using the chordal
metric. The diversity Div is defined as the average of the diversities for all pairs in the basis
set. However, because the size of the basis set is 2, 303 for these executions, which is equal
to the number of solvers, calculating the diversity for all pairs in this set requires high
computation time and is impractical. Therefore, we sampled 100 basis pairs from the basis
set and approximated Div by taking the average value of those pairs. This computation
of Div was performed every 10 minutes, and it was shown that Div grows smaller as the
execution progresses, that is, the diversity of the basis set tends to decrease. However,
the transition of Div did not continue to decrease and eventually plateaus, even though
the actual number of basis vectors received from the supervisor was larger than 16. This
tendency for diversity to plateau was also confirmed in a large-scale experiment using the

28

0.0 2.5 5.0 7.5 10.0
Time [h]

1.00800

1.00825

1.00850

1.00875

1.00900

1.00925

1.00950

1.00975

1.01000 Root Hermite factor

#procecses = 180 #procecses = 2304 #procecses = 24576

0.0 2.5 5.0 7.5 10.0
Time [h]

64.5
65.0
65.5
66.0
66.5
67.0
67.5
68.0
68.5
69.0 log(enumeration cost)

0.0 2.5 5.0 7.5 10.0
Time [h]

0.060

0.062

0.064

0.066

0.068

0.070 - GSA slope

Figure 14: Same as Figure 7, but the dimension is d = 124 and lines in each metric
represent difference by different numbers of processes (We used k = 16 as the number of
shares)

24, 576 cores. Figure 16 was created from the results of experiments utilizing up to 24, 576
cores in 11 hours executions on a 120-dimensional SVP in Section 5.3. The figures are the
same as Figure 15 but show the diversity transition for the different number of cores. The
tendency for diversity to plateau suggests that the diversity of the basis is preserved even
in large-scale execution owing to the one-time randomization performed before the lattice
basis reduction. Therefore, even in the large-scale computing platform where massive
solvers execute the lattice basis reduction in parallel, the computations of the subroutines
of the lattice basis reduction hardly overlapped. This result indicates that efficient use of
computational resources was achieved in our software.

5.5 Massive parallelization experiments with checkpoints and
restarts

For CMAP-DeepBKZ, we conducted large-scale experiments on the supercomputer systems
Emmy and Lisa (Table 1) with multiple checkpoints and restarts for instances of the
Darmstadt SVP challenges [28] in dimensions d = 128, 130 and 132. In Figure 17, we
show the transition of the approximation factor of a shortest basis vector in all bases of
solver during the execution of CMAP-DeepBKZ. We started with the numbers of shared
vectors k = 16 and manually increased k to 32 when the global basis was no longer being
significantly updated. In Table 5, we summarize the final output results of Figure 17. In
particular, we succeeded in finding a new solution for the SVP challenge in the dimension
d = 128 using an instance with seed 1. It took approximately 57.5 hours to find the new
solution, whose norm (resp., approximation factor) is 2812.0 (resp., 0.98470) from Table 5.
In contrast, it was reported on the webpage of [28] that it took approximately five months
on an iMac core-i7 to find the previous record in the case of d = 128, the norm (resp.,

29

Table 4: Same as Figure 3, but the dimension is d = 124
SVP Number of Updated Norm Approx. Root Hermite Machine

instance processes time [h] of b1 factor ∥b1∥
GH(L)

factor γ1/d (Table 1)

seed0

p = 180

5.8853 3086.00 1.0930 1.00894

CAL C

seed1 4.1859 3082.17 1.0948 1.00896
seed2 7.8734 2879.06 1.0207 1.00839
seed3 4.3137 3101.22 1.0996 1.00899
seed4 2.9052 3045.08 1.0807 1.00885

Average 1.0778 1.00883
seed0

p = 2, 304

2.1351 2978.44 1.0549 1.00866

ITO

seed1 10.489 3015.78 1.0712 1.00878
seed2 3.0634 2885.80 1.0231 1.00841
seed3 2.7563 2742.98 0.9726 1.00800
seed4 1.3161 2921.65 1.0369 1.00852

Average 1.0317 1.00847
seed0

p = 24, 576

3.3615 2892.64 1.0245 1.00842

Emmy

seed1 1.6687 2920.47 1.0374 1.00852
seed2 3.1216 2854.12 1.0118 1.00832
seed3 0.7056 2886.65 1.0236 1.00841
seed4 4.3993 2873.73 1.0199 1.00838

Average 1.0234 1.00841

approximation factor) of which was about 2882 (resp., 1.00477). However, the norms of
Table 5 in the other dimensions d = 130 and 132 do not surpass the current records yet.

Execution details on Lisa We describe execution details on Lisa when using 103, 680
cores, which is the maximum number of cores used across all computers (Table 1 for
computing platforms). We used Lisa for solving SVP instances in dimension 130 with seeds
3 and 7. In both executions, solutions were updated after more than 28 hours of execution
(see Table 17). In Figure 18 and 19, we show snapshots of a global basis S = (s1, . . . , sd)
in dimension 130 with seed 7 execution. Over the course of the execution, the values of
the approximation factor for each i-th projected lattice ∥s∗i ∥/GH(πi(L)) grew smaller for
indices i under 32, and approached 1.0 at 100 hours. This implies that a basis close to the
HKZ-reduced basis was obtained for the first indexes of the basis. This strict reduction is
also clearly shown for GSA shapes in Figure 19. We can see the step difference at the index
with exactly i = 32, which corresponds to the final number of shares k. While the GSA
slope ρ of the entire basis is −0.05867, but the ρ of the sub-basis consisting of (s1, . . . , s32)
is −0.03685, indicating that the first indexes of the basis were more reduced.

Communication performance Here, we describe the memory usage and CPU utiliza-
tion on Lisa supercomputer using p = 103, 680 cores for a 130-dimensional instance with
seed 7 instance. One node was allocated to a supervisor process, leaving p− 96 = 103, 524

30

0 1 2 3 4 5 6
Time [h]

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Du

pl
ica

te

k = 0 k = 16 k = 64

0 1 2 3 4 5 6
Time [h]

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Di
v

us
in

g
ch

or
da

l m
et

ric

Figure 15: Transition of the diversity of 118-dimensional lattice basis with different the
number of shared vectors; left figure is the transition of the number of overlap of basis
vectors, right figure is the transition of the Div with Projection metric

0 2 4 6 8 10
Time [h]

0

5

10

15

Du

pl
ica

te

#cores = 80 #cores = 180 #cores = 2304 #cores = 24576

0 2 4 6 8 10
Time [h]

3.2

3.4

3.6

3.8

4.0

4.2

Di
v

us
in

g
ch

or
da

l m
et

ric

Figure 16: Same as Figure 15, but dimension is 120 and with different the number of cores.

solvers to be created in the remaining nodes. The maximum memory usage in the supervi-
sor (resp., the solver) process was 61.7172 GiB (resp., 0.2274 GiB). Both transitions of the
memory usage during the runtime eventually plateaued, aligning with our expectations.
Because the amount of memory usage of DeepBKZ in Algorithm 1 does not change, we
can maintain low memory usage in the solver process. This implies that the solver process
can execute even in a low-memory computational environment. By contract, because the
supervisor has the lattice basis information of all solvers in the solver pool, it requires a
sufficient amount of memory.

Next, we describe the CPU utilization of the supervisor and solver processes. The ratio
of idle time to the total execution time of the solver is 0.9059%, including the commu-
nication latency for receiving tasks and lattice vectors from the supervisor process. The
ratio of idle time was extremely low, suggesting that the solver process has a high CPU
utilization. In the case of the supervisor, the ratio of idle time was 81.36%. This idle
time corresponded to the time spent by the supervisor when waiting for a message from

31

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 128 Seed 1

Emmy

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 128 Seed 2

Emmy

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 3

Emmy
Lisa

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 130 Seed 7

Emmy
Lisa

0 20 40 60 80 100
Time [h]

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 132 Seed 1

Emmy

0 20 40 60 80 100
Time [h]

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

Ap
pr

ox
im

at
io

n
Fa

ct
or

Dimension 132 Seed 2

Emmy

Figure 17: Transition of the approximation factor ∥b1∥
GH(L)

of a shortest basis vector b1

for SVP instances in dimensions d = 128, 130 and 132 (Each dot show the timing of
checkpoint-and-restart, and see also Table 5 for a summary)

the solver, and a large idle rate is desirable because it allows the supervisor to process
messages from the solver without delay.

Next, to evaluate the stability of our software, we note the checkpointing times of these
executions. Specifically, the checkpoint creation times increase along with the number of
solvers because our software writes all task data to checkpoint files, including information
of all bases of the solvers. While the supervisor is copying the tasks, its message handling
is blocked. Therefore, if there is a significant delay when copying, MPI can run out of
memory buffers, causing an error. In an execution on Lisa by using 103, 584 solvers, it
took an average of 1.93 seconds for the supervisor to copy the tasks, and 468.01 seconds
for the checkpointing thread created in the supervisor to write the file. We can see that
the blocking duration of the supervisor handling was kept extremely short, suggesting that
execution by more solvers is possible.

32

Table 5: Large-scale experimental results of CMAP-DeepBKZ for SVP instances in dimen-
sions d = 128, 130 and 132 (b1 denotes a shortest basis vector of all solver’s bases, and
“Updated time” is wall time to update final shortest vectors found)

SVP Instance # of Updated Norm Approx. Root Hermite Machine∗

Dim. Seed cores∗ time [h] of b1 factor ∥b1∥
GH(L)

factor γ1/d (Table 1)

128
1† 24,576 57.5 2812.00 0.98470 1.00796 Emmy
2 24,576 37.1 2947,45 1.02808 1.00830 Emmy

130
3 103,680 81.1 2968.73 1.03001 1.00825 Lisa
7 103,680 39.4 2914.22 1.01236 1.00811 Lisa

132
1 24,576 34.6 2968.05 1.02260 1.00812 Emmy
2 24,576 56.5 2899.90 0.99662 1.00818 Emmy

† a new solution for the Darmstadt SVP challenge [28] in dimension 128 (see also Table 6
for other dimensions). ∗ We list the maximum number of cores and machines used for
executions, including restarts, and the wall time for the updated time.

Table 6: New solutions for the Darmstadt SVP challenge [28], found by parallel sharing
DeepBKZ with the number of shares k = 16 (cf., [33, Table II] for solutions by using k = 1)

SVP Instance # of Updated Norm Approx. Root Hermite Machine

Dim. Seed cores time of b1 factor ∥b1∥
GH(L)

factor γ1/d (Table 1)

103 3 144 52.3 m 2581.65 0.97168 1.00875 CAL A
109 2 144 49.8 m 2559.17 0.96465 1.00845 CAL A
113 5 144 1.21 h 2621.54 0.97459 1.00840 CAL A
124 2 24,576 2.85 h 2826.79 1.00215 1.00824 Emmy
128 1 24,576 57.5 h 2812.00 0.98470 1.00796 Emmy

New solutions for the Darmstadt SVP challenge In Table 6, we list new solutions
proposed by CMAP-DeepBKZ for the Darmstadt SVP challenge [28]. For each dimension
d = 103, 105, 107, 109, 113 and 114, we performed CMAP-DeepBKZ with the number of
shares k = 16 for 10 instances from seeds 0 to 9, and succeeded in finding new solutions for
dimensions 103, 109 and 113. For dimension 124 (resp., 128), we found a new solution by
executing five instances with seeds ranging from zero to four (resp., two instances of seeds
1 and 2) on Emmy. In [33], new solutions were found by parallel DeepBKZ with k = 1
for SVP instances in dimensions up to 127. For dimension d = 127, it took approximately
147 hours of execution on several supercomputer systems with up to 91, 200 cores (see [33,
Tables II and III]). In contrast, Table 6 shows that it took about 57.5 hours for d = 128 by
CMAP-DeepBKZ with k = 16 on Emmy with 24, 576 processes. Such comparisons provide
experimental evidence supporting the efficacy of sharing short basis vectors in parallel
DeepBKZ.

Comparison with G6K We provide a comparison with G6K [3], the state-of-the-art
SVP solver using advanced sieve algorithms as described in Subsection 1.3. G6K adopts

33

0 20 40 60 80 100 120

index i

1.0

1.2

1.4

1.6

1.8

2.0

‖s
∗ i‖
/G

H
(π
i
(L

))

time = 1.0 hours

time = 33.3 hours

time = 66.6 hours

time = 100.0 hours

Figure 18: Plots of approximation factors in projected lattices ∥s∗i ∥/GH(πi(L)) for a global
basis S = (s1, . . . , sd) output by CMAP-DeepBKZ of a lattice L of dimension d = 130 with
seed = 7 of SVP challenge instance after 1.0, 33.3, 66.6, 100 hours executions, and the final
numbers of shares k = 32

0 20 40 60 80 100 120

index i

8

9

10

11

lo
g

2
‖s
∗ i‖

time = 1.0 hours

time = 33.3 hours

time = 66.6 hours

time = 100.0 hours

Figure 19: The logarithms of Gram-Schmidt squared norms log2 ∥s∗i ∥ of a global basis
S = (s1, . . . , sd) of a lattice L same as Figure 18.

the sub-sieve strategy of [14]. For a d-dimensional lattice L, it runs a sieve algorithm in
a projected lattice πk(L) of dimension m = d− k + 1 to find a significantly large number
of short projected lattice vectors, and lifts them into vectors in the whole lattice L. Such
lattice vectors do not always include shortest vectors in L; however, some of them can be
short enough to have approximation factors within 1.05 for entering the hall of fame of
the SVP challenge. It was reported in [3, Table 2] that it took about 11.6 (resp., 11.8 and
14.7) days to find a solution of the SVP challenge in dimension d = 151 (resp., 153 and
155) by using the maximum sieving dimension m = 123 (resp., 124 and 127). According
to the latest result [15, Table 1] for a GPU implementation of sieve algorithms inside G6K,
it took about 51.6 days on a server with four NVIDIA Turing GPUs with 1.5TB of RAM
for an SVP instance in d = 180 by using m = 150. Note that the current SVP records in
d ≥ 150 have approximation factors around 1.03 or 1.04, they must not be the shortest.

34

Because we do not use the sub-sieve strategy, it is reasonable to compare CMAP-DeepBKZ
in dimension d with G6K in the maximum sieving dimension m. As shown in Tables 5 and
6, the performance of CMAP-DeepBKZ in dimensions around d = 130 is faster than that of
G6K around m = 130 in [3, Table 2] if we ignore the difference of computing resources. In
contrast, the performance in [15, Table 1] is faster than CMAP-DeepBKZ due to a GPU-
implementation for sieve algorithms. However, sieve algorithms require exponential-space
in m. Indeed, it is reported in [15] that about 1.4TB of RAM was required for finding
an SVP solution in d = 180 using m = 150. On the other hand, CMAP-DeepBKZ adopts
enumeration for SVP oracles in blocksize β, and its space-complexity is polynomial with
respect to β. In particular, CMAP-DeepBKZ has sufficient performance even with small
blocksizes such as β = 30. This implies that CMAP-DeepBKZ can be practically applied
to large-scale computers with minimal memory footprint and no memory limitation.

6 Conclusion

We developed a software using the CMAP-LAP framework [34] for massively parallel ex-
ecution of a BKZ-type reduction algorithm. Our software enables us to simultaneously
execute a reduction algorithm on randomized bases by sharing short basis vectors among
solvers to accelerate the reduction process in every solver. We also evaluated the diversity
of reduced bases using Grassmann metrics and verified that the randomness of bases is
highly unlikely to be lost during the execution of parallel reduction when sharing k ≤ 64
short basis vectors for high-dimensional lattices (Figures 2, 3 and 15). Furthermore, we
demonstrated through our experiments that sharing k = 16 short basis vectors is effective
in both the output quality and the performance of CMAP-DeepBKZ using our software
with DeepBKZ [37] as a reduction algorithm. Our experiments (Table 5) showed that
CMAP-DeepBKZ with small blocksizes around β = 30–40 can find a very short vector close
to the shortest in a lattice of dimension d = 132 within 100 hours on supercomputers using
up to 103, 680 cores, without using other strategies such as the sub-sieve of [14] adopted
by G6K [3]. Specifically, it took approximately 57.5 hours using 24, 576 cores to find a new
solution of the Darmstadt SVP challenge in dimension d = 128 (Table 6).

Acknowledgements

This research project was supported by the Japan Science and Technology Agency (JST),
the Core Research of Evolutionary Science and Technology (CREST), the Center of In-
novation Science and Technology based Radical Innovation and Entrepreneurship Pro-
gram (COI Program), JSPS KAKENHI Grant Number JP21H04599, JP20H04142, Japan,
the German Research Foundation (DFG) through the project HPO-Navi (fund number
391087700): Sustainable Infrastructures for Archiving and Publishing High-Performance
Optimization Software, the Research Campus MODAL funded by the German Federal
Ministry of Education and Research (fund number 05M20ZBM). This work was also sup-

35

ported the National High Performance Computing Center at the Zuse Institute Berlin
(NHR@ZIB). We are grateful to the supercomputer staff, especially Matthias Läuter and
Tobias Watermann.

References

[1] Ajtai, M.: Generating hard instances of lattice problems. In: Symposium on Theory
of Computing (STOC 1996), pp. 99–108. ACM (1996)

[2] Albrecht, M., Ducas, L.: Lattice attacks on NTRU and LWE: A history of refinements.
Cryptology ePrint Archive: Report 2021/799 (2021)

[3] Albrecht, M., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W., Stevens,
M.: The general sieve kernel and new records in lattice reduction. In: Advances in
Cryptology–EUROCRYPT 2019, Lecture Notes in Computer Science, vol. 11477, pp.
717–746. Springer (2019)

[4] Albrecht, M.R., Curtis, B.R., Deo, A., Davidson, A., Player, R., Postlethwaite, E.W.,
Virdia, F., Wunderer, T.: Estimate all the {LWE, NTRU} schemes! In: Security
and Cryptography for Networks (SCN 2018), Lecture Notes in Computer Science, vol.
11035, pp. 351–367 (2018)

[5] Barg, A., Nogin, D.Y.: Bounds on packings of spheres in the grassmann manifold.
IEEE Transactions on Information Theory 48(9), 2450–2454 (2002)

[6] Björck, Ȧ., Golub, G.H.: Numerical methods for computing angles between linear
subspaces. Mathematics of computation 27(123), 579–594 (1973)

[7] Bremner, M.R.: Lattice basis reduction: An introduction to the LLL algorithm and
its applications. CRC Press (2011)

[8] Burger, M., Bischof, C., Krämer, J.: p3Enum: A new parameterizable and shared-
memory parallelized shortest vector problem solver. In: Computational Science–ICCS
2019, Lecture Notes in Computer Science, vol. 11540, pp. 535–542. Springer (2019)

[9] Chen, H.: A measure version of Gaussian heuristic. IACR Cryptology ePrint Archive:
Report 2016/439 (2016)

[10] Chen, Y.: Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. Ph.D. thesis, Paris 7 (2013)

[11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: Advances
in Cryptology–ASIACRYPT 2011, Lecture Notes in Computer Science, vol. 7073, pp.
1–20. Springer (2011)

36

[12] Dagdelen, Ö., Schneider, M.: Parallel enumeration of shortest lattice vectors. In:
Euro-Par 2010–Parallel Processing, Lecture Notes in Computer Science, vol. 6272, pp.
211–222. Springer (2010)

[13] Deutsch, P., Gailly, J.L.: Zlib compressed data format specification version 3.3. Tech.
rep., RFC 1950, May (1996)

[14] Ducas, L.: Shortest vector from lattice sieving: A few dimensions for free. In: Ada-
vances in Cryptology–EUROCRYPT 2018, Lecture Notes in Computer Science, vol.
10820, pp. 125–145. Springer (2018)

[15] Ducas, L., Stevens, M., van Woerden, W.: Advanced lattice sieving on GPUs, with
tensor cores. In: Advances in Cryptology–EUROCRYPT 2021, Lecture Notes in Com-
puter Science, vol. 12697, pp. 249–279. Springer (2021)

[16] Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality
constraints. SIAM journal on Matrix Analysis and Applications 20(2), 303–353 (1998)

[17] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Advances in Cryptology–
EUROCRYPT 2008, Lecture Notes in Computer Science, vol. 4965, pp. 31–51.
Springer (2008)

[18] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme pruning. In:
Advances in Cryptology–EUROCRYPT 2010, Lecture Notes in Computer Science,
vol. 6110, pp. 257–278. Springer (2010)

[19] Golub, G.H., Van Loan, C.F.: Matrix Computations, forth edn. The Johns Hopkins
University Press (1996)

[20] Hermans, J., Schneider, M., Buchmann, J., Vercauteren, F., Preneel, B.: Parallel
shortest lattice vector enumeration on graphics cards. In: Progress in Cryptology–
AFRICACRYPT 2010, Lecture Notes in Computer Science, vol. 6055, pp. 52–68.
Springer (2010)

[21] Joux, A.: A tutorial on high performance computing applied to cryptanalysis (invited
talk). In: Advances in Cryptology–EUROCRYPT 2012, Lecture Notes in Computer
Science, vol. 7237, pp. 1–7. Springer (2012)

[22] Kannan, R.: Minkowski’s convex body theorem and integer programming. Mathe-
matics of operations research 12(3), 415–440 (1987)

[23] Kuo, P.C., Schneider, M., Dagdelen, Ö., Reichelt, J., Buchmann, J., Cheng, C.M.,
Yang, B.Y.: Extreme enumeration on GPU and in clouds. In: Cryptographic Hard-
ware and Embedded Systems–CHES 2011, Lecture Notes in Computer Science, vol.
6917, pp. 176–191. Springer (2011)

37

[24] Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coeffi-
cients. Mathematische Annalen 261(4), 515–534 (1982)

[25] Nguyen, P.Q.: Hermite’s constant and lattice algorithms. In: The LLL Algorithm,
pp. 19–69. Springer (2009)

[26] Pohmann, S., Stevens, M., Zumbrägel, J.: Lattice enumeration on GPUs for fplll.
IACR ePrint 2021/430 (2021)

[27] Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel Solvers for Mixed In-
teger Linear Optimization, pp. 283–336. Springer International Publishing, Cham
(2018). DOI 10.1007/978-3-319-63516-3{\ }8. URL https://doi.org/10.1007/

978-3-319-63516-3_8

[28] Schneider, M., Gama, N., Baumann, P., Nobach, L.: SVP challenge (2010). URL:
http://latticechallenge.org/svp-challenge (2010)

[29] Schnorr, C.P.: Block Korkin-Zolotarev bases and successive minima. International
Computer Science Institute (1992)

[30] Schnorr, C.P.: Lattice reduction by random sampling and birthday methods. In:
Symposium on Theoretical Aspects of Computer Science (STACS 2003), Lecture Notes
in Computer Science, vol. 2607, pp. 145–156. Springer (2003)

[31] Schnorr, C.P., Euchner, M.: Lattice basis reduction: Improved practical algorithms
and solving subset sum problems. Mathematical programming 66, 181–199 (1994)

[32] Shinano, Y.: Ug: Ubiquity generator framework. http://ug.zib.de/

[33] Tateiwa, N., Shinano, Y., Nakamura, S., Yoshida, A., Kaji, S., Yasuda, M., Fuji-
sawa, K.: Massive parallelization for finding shortest lattice vectors based on ubiquity
generator framework. In: SC20: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pp. 1–15. IEEE (2020)

[34] Tateiwa, N., Shinano, Y., Yamamura, K., Yoshida, A., Kaji, S., Yasuda, M., Fujisawa,
K.: CMAP-LAP: Configurable massively parallel solver for lattice problems “in press”.
In: 2021 IEEE 28th International Conference on High Performance Computing, Data,
and Analytics (HiPC)

[35] Teruya, T., Kashiwabara, K., Hanaoka, G.: Fast lattice basis reduction suitable for
massive parallelization and its application to the shortest vector problem. In: Public
Key Cryptography (PKC 2018), Lecture Notes in Computer Science, vol. 10769, pp.
437–460. Springer (2018)

[36] The FPLLL development team: fplll, a lattice reduction library (2016). URL https:

//github.com/fplll/fplll

38

https://doi.org/10.1007/978-3-319-63516-3_8
https://doi.org/10.1007/978-3-319-63516-3_8
http://ug.zib.de/
https://github.com/fplll/fplll
https://github.com/fplll/fplll

[37] Yamaguchi, J., Yasuda, M.: Explicit formula for Gram-Schmidt vectors in LLL with
deep insertions and its applications. In: Number-Theoretic Methods in Cryptology
(NuTMiC 2017), Lecture Notes in Computer Science, vol. 10737, pp. 142–160. Springer
(2017)

[38] Yasuda, M.: A survey of solving SVP algorithms and recent strategies for solving the
SVP challenge. In: International Symposium on Mathematics, Quantum Theory, and
Cryptography, pp. 189–207. Springer (2021)

[39] Yasuda, M., Nakamura, S., Yamaguchi, J.: Analysis of DeepBKZ reduction for finding
short lattice vectors. Designs, Codes and Cryptography 88, 2077–2100 (2020)

[40] Yasuda, M., Yamaguchi, J.: A new polynomial-time variant of LLL with deep inser-
tions for decreasing the squared-sum of Gram-Schmidt lengths. Designs, Codes and
Cryptography 87, 2489–2505 (2019)

[41] Yu, Y., Ducas, L.: Second order statistical behavior of LLL and BKZ. In: Selected
Areas in Cryptography (SAC 2017), Lecture Notes in Computer Science, vol. 10719,
pp. 3–22. Springer (2017)

39

Algorithm 2 Processing flow of the supervisor

1: procedure supervisor(B) ▷ B: instance basis
2: S← B; ▷ Set initial the global basis S
3: seed← 0;
4: for i = 1→ m do
5: C← randomize(B, seed); seed← seed + 1;
6: Send task (C, parameters) to i-rank solver; ▷ Send initial tasks to solvers
7: SolverPool[i] ← (C, parameters);
8: end for
9: while iProbe(source, tag) do
10: if tag is SolverState then
11: Receive Status (B, β) from the source-rank solver;
12: ▷ B is basis and β is blocksize of DeepBKZ
13: Update task of source-rank solver in the solver pool using (B, β);
14: if B < Sk then
15: S← B; ▷ Update the global basis
16: else if B > Sk then
17: Send Sk to the source-rank solver;
18: end if
19: Send notification to the source-rank solver;
20: end if
21: if tag is Termination then
22: C← randomize(B, seed); seed← seed + 1;
23: Send task (C, parameters) to the source-rank solver;
24: SolverPool[source] ← (C, parameters);
25: end if
26: if current time reaches the checkpoint time then
27: Serialize SolverPool, compress it, and write it to checkpoint file;
28: ▷ Create a checkpoint file
29: end if
30: if current time reaches the time limit then
31: break;
32: end if
33: end while
34: end procedure

40

Algorithm 3 Reduction algorithm in solver

1: procedure Reduction(B, β)
2:

3: Set ts to next status sending time;
4: while Reduction has not finished do
5: B← subroutine(B, β); ▷ Subroutine of reduction algorithm
6: if current time > ts then
7: Send a status (B, β) to supervisor with SolverState tag;
8: Wait a notification from supervisor;
9: if solver receives the global sub-basis Sk = (s1, . . . , sk) then;
10: if Sk < B then
11: for j = 1→ k do
12: l← minimum index h satisfies ∥πh(sj)∥ < ∥b∗

h∥;
13: B← LLL((b1, . . . ,bl−1, sj,bl, . . . ,bd));
14: ▷ Merge the global sub-basis into its own basis
15: end for
16: end if
17: end if
18: Update ts to next status sending time;
19: end if
20: end while
21: Send Termination tag to supervisor;
22: end procedure

41

	Introduction
	Previous work on the large-scale parallelization of reduction algorithms
	Our contribution
	Other work on the parallelization of lattice algorithms

	Mathematical and algorithmic preliminaries on lattices
	Basics on lattices
	Lattice problems: Algorithmic problems for lattices
	Lattice basis reduction algorithms

	Parallelization of lattice basis reduction
	Ordering of lattice bases for reduction
	Strategy of parallel sharing in DeepBKZ
	Implementation
	Parallel framework
	Processing flow of the supervisor and solver
	Checkpoint and Restart

	Similarity of lattice bases
	Grassmann metrics
	Diversity of bases
	Effect of sharing short vectors on the diversity of bases

	Numerical experiments
	Metrics to measure the output quality of reduction algorithms
	Efficacy when sharing short lattice vectors
	Analysis using deterministic parallel execution
	Analysis of MPI parallelization using CMAP-DeepBKZ

	Scalability of the number of processes
	Transition of diversity on large-scale execution
	Massive parallelization experiments with checkpoints and restarts

	Conclusion

