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Abstract

A thorough convergence analysis of the Control Reduced Interior Point
Method in function space is performed. This recently proposed method is a
primal interior point pathfollowing scheme with the special feature, that the
control variable is eliminated from the optimality system. Apart from global
linear convergence we show, that this method converges locally almost quadrat-
ically, if the optimal solution satisfies a certain non-degeneracy condition. In
numerical experiments we observe, that a prototype implementation of our
method behaves as predicted by our theoretical results.
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1 Introduction

In the last years, interior point methods enjoyed an increasing popularity in optimal
control with stationary elliptic PDEs, most often applied to a finite dimensional
discretized problem in a discretize then optimize fashion [6, 7]. More recently,
they have also been applied to the infinite-dimensional continuous control problem,
forming the outermost loop of an optimize then discretize approach [12, 16].

For the convergence analysis of interior point methods, the regularity of the
involved variables is of crucial importance. Therefore, the choice of appropriate
function spaces and norms is essential — a problem that is also faced by the dis-
cretize then optimize approach if the discretization is sufficiently fine to capture the
structure of the continuous problem. Typically the least regular variables, which
are the Lagrange multipliers for state constraints, or the control and the multipliers
for control constraints in the absence of state constraints, cause the most troubles
for the analysis as well as for numerical approximation.

Little is known about state constrained problems, even though numerical expe-
rience indicates that interior point methods perform reasonably well on practical
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problems. We just mention [9] for regularized state constraints and [7] for discretized
problems.

In contrast primal-dual interior point methods have been shown to converge
linearly for control constrained problems [14, 16]. This behavior is also observed in
numerical implementations.

A different type of interior point methods in function space was analysed by
Ulbrich and Ulbrich in [12]. Here an affine scaling method was augmented by
a smoothing step in order to achieve superlinear local convergence. These methods
are related to semi-smooth Newton methods [11]. In recent talks Stefan Ulbrich

reports on a primal-dual interior point method with smoothing step that converges
superlinearly [13].

For a faithful approximation of the control, a massive mesh refinement around
the boundaries of the active sets is necessary, due to reduced regularity of the control
at the boundaries of the active sets which are usually not aligned with the coarse
grid.

In order to obtain higher accuracy on coarse meshes, Hinze [4] proposed to
eliminate the control pointwise from the optimality system, such that only the
more regular variables, the state and the adjoint state, need to be discretized.
This approach leads to a semismooth equation that characterizes the solution. The
very same idea has been translated to primal interior point methods by Weiser,
Gänzler, and Schiela [15], where the semismooth equation is substituted by a
homotopy of smooth equations. Linear convergence of a short step pathfollowing
method has been established, and a priori spatial error bounds for finite element
discretizations have been derived.

Distantly related work includes Rösch [8], who obtains similar accuracy on
coarse meshes by a postprocessing step, and Hintermüller and Kunisch [3],
who perform a regularization homotopy in the context of primal-dual active set
methods.

The pointwise elimination of the control does not only alleviate the need for mesh
refinement, but does also close the remaining gap to finite dimensional interior point
methods. In the present paper, we concentrate on the convergence of an abstract
pathfollowing method in function space. Under reasonable assumptions about the
solution’s structure we show r-convergence of order 2. This means r-superlinear
convergence that approaches quadratic convergence asymptotically. This result is
comparable to the convergence speed of finite dimensional interior point methods
as presented in [17]. The analysis mainly depends on two related quantities: the
slope of the central path, and an affine invariant Lipschitz constant that governs
the convergence of Newton’s method.
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2 Basic ideas

We will now give a short summary of the ideas of the control reduced interior point
method. Consider the model problem

min
y∈H1

0
,u∈L2

1

2
‖y − yd‖2L2

+
α

2
‖u‖2L2

subject to Ly = u, −1 ≤ u ≤ 1 (1)

on some convex polyhedric domain Ω ⊂ R
d (1 ≤ d ≤ 3). yd ∈ L2 is the desired

state, and α > 0 is a fixed regularization parameter. Ly = −div(a(x)∇y) + b(x)y
with symmetric a(x) ∈ R

d×d uniformly positive definite and b(x) ∈ R non-negative
is a second order elliptic differential operator. Note, that the state equation is an
H2-regular problem.

As already described in [5] for problem (1) the first order necessary conditions
state the existence of a Lagrange multiplier λ ∈ H 1

0 , such that

y − yd + Lλ = 0

Ly − u = 0

u− Proj[−1,1]

(

α−1λ
)

= 0. (2)

Primal interior point methods substitute (2) by the regularized equation

g(λ, u;µ) := αu− λ− µ

u+ 1
+

µ

1− u
= 0 (3)

for µ > 0 and thus define the central path µ 7→ (y, u, λ) via the system of equations

y − yd + Lλ = 0

Ly − u = 0

αu− λ− µ

u+ 1
+

µ

1− u
= 0

−1 ≤ u ≤ 1. (4)

These are just the first order necessary conditions for the logarithmic barrier refor-
mulation of (1),

min
1

2
‖y − yd‖2L2

+
α

2
‖u‖2L2

+ µ

∫

(ln(u+ 1) + ln(1− u)) dx subject to Ly = u.

2.1 Elimination of the control

We can use (3) and (4) in order to eliminate u = u(λ;µ). We recapitulate and
extend the analysis of the properties of the function u(λ;µ).

Lemma 2.1. For each λ ∈ R, µ > 0 there is exactly one u(λ;µ) ∈] − 1, 1[ that

satisfies (3). Moreover, u(λ;µ) is continuously differentiable with respect to µ and

twice continuously differentiable with respect to λ. Defining

h1(u;µ) := (1 + u)(1− u)gu = α(1 − u2) + µ

(

1− u

1 + u
+

1 + u

1− u

)
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we can formulate

uλ =
1− u2

h1
> 0, uλλ = −4µ

h3
1

u(3 + u2), uµ = −2u

h1
, uλµ = −2(1 + u2)

h2
1

.

Moreover 0 ≤ uλ ≤ (α+ 2µ)−1.

Proof. The uniqueness of u(λ;µ) follows immediately from the monotonicity of g
with respect to u and from limu→±1 g(λ, u;µ) = ±∞.

Differentiating g(λ, u(λ;µ);µ) = 0 with respect to λ yields:

guuλ − 1 = 0 ⇒ uλ =
1

gu

guuu
2
λ + guuλλ = 0 ⇒ uλλ = − 1

gu
(guuu

2
λ) = −guu

g3
u

.

Clearly gu ≥ α+ 2µ yields positivity and boundedness of uλ and:

uλλ = − 1

h3
1

guu(1− u)3(u+ 1)3 = − 1

h3
1

( −2µ

(u+ 1)3
+

2µ

(1− u)3

)

(1− u)3(u+ 1)3

= −2µ

h3
1

(−(1− u)3 + (u+ 1)3) = −4µ

h3
1

u(3 + u2).

Similarly, differentiating g(λ, u(λ;µ);µ) = 0 with respect to µ gives us

0 = guuµ + gµ ⇒ uµ = −gµ

gu
= −gµ(1− u)(1 + u)

h1
= −2u

h1
.

The statement for uλµ follows analogously from differentiating uλ with respect to
µ.

Defining

V := H1
0 ×H1

0 , v(µ) :=

(

y(µ)
λ(µ)

)

Lemma 2.1 asserts, that the homotopy

F ( · ;µ) : V → V ∗, F (v;µ) =

[

y − yd + Lλ
Ly − u(λ;µ)

]

= 0 (5)

is well defined and in turn defines the central path. Its existence and differentiability
with respect to µ in V has been discussed in [9] and [15]. In Section 3 we will refine
those results substantially.

Lemma 2.2. Let h1 be defined as in Lemma 2.1 and

h2(u;µ) := h1(u;µ)(1 − u2) = α(1 − u2)2 + 2µ
(

1 + u2
)

.

Then

h1(u;µ) ≥ max{2
√

2αµ, 2µ}
h2(u;µ) ≥ 2µ(1 + u2).
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Proof. First we note: h1 ≥ h2 ≥ 2µ(1+u2). By the relation a, b ≥ 0 ⇒ a+b ≥ 2
√
ab

we infer:

h1(u;µ) ≥ 2

√

α(1 − u2)µ

(

1− u

1 + u
+

1 + u

1− u

)

= 2
√

αµ2 (1 + u2) ≥ 2
√

2αµ.

2.2 Newton linearization and local norms

Now we discuss the solvability of the linearization of (5). This is important for the
analysis of our Newton pathfollowing algorithm. The linearized system reads:

(

I L
L −uλ(λ;µ)

)(

δy
δλ

)

=

(

r
s

)

. (6)

Since uλ > 0 we may define a special family of norms for δv := (δy, δλ) by

‖δv‖v,µ := ‖δy‖L2
+ ‖δλ‖L∞ + ‖

√

uλ(v;µ)δλ‖L2
(7)

depending on a given v ∈ V and µ. Thus we call it a family of local norms.

Theorem 2.3. The linearized optimality system (6) posesses a unique solution

δv ∈ V . If r, s ∈ L2 then additionally δv ∈ H2 × H2 and the following estimates

hold:

‖δv‖v,µ + ‖δλ‖H2 ≤ c

(

‖r‖L2
+ min

{

‖s‖L1
,

∥

∥

∥

∥

s√
uλ

∥

∥

∥

∥

L2

})

, (8)

‖δy‖H2 ≤ c√
α+ 2µ

(

‖r‖L2
+ min

{

‖s‖L1
,

∥

∥

∥

∥

s√
uλ

∥

∥

∥

∥

L2

})

+ ‖s‖L2
. (9)

Proof. Unique solvability of (6) has been established in [15] together with continuity
of

F−1
v : ((H1

0 )∗ × (H1
0 )∗) → (H1

0 ×H1
0 ).

However, its special structure allows us to refine this result if r, s ∈ L2.

By the first row of (6) and r ∈ L2 we have Lδλ ∈ L2, which implies δλ ∈ H2∩H1
0 .

By the second row we similarly obtain Lδy ∈ L2. Thus we can take the scalar
product of the second row and −δλ:

−〈δλ, Lδy〉 + 〈δλ, uλδλ〉 = −〈δλ, s〉 (10)

and apply partial integration twice to obtain 〈δλ, Lδy〉 = 〈Lδλ, δy〉, using δλ, δy ∈
H1

0 . Then we eliminate δy inserting the first row of (6) and finally arrive at the
identity

〈Lδλ,Lδλ〉 + 〈δλ, uλδλ〉 = −〈δλ, s〉+ 〈Lδλ, r〉 .
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The Cauchy Schwartz inequality and Hölder’s inequality yield the following estimate
in the energy norm

‖Lδλ‖2
L2

+ ‖√uλδλ‖2L2
≤ |〈δλ, s〉|+ ‖r‖L2

‖Lδλ‖L2

≤ min
{

‖s/√uλ‖L2
‖√uλδλ‖L2

, ‖s‖L1
‖δλ‖L∞

}

+ ‖r‖L2
‖Lδλ‖L2

.

By the Sobolev imbedding H2∩H1
0 ↪→ L∞ and standard regularity theory it follows

‖δλ‖L∞ ≤ c‖δλ‖H2 ≤ c‖Lδλ‖L2
and thus

√

‖Lδλ‖2
L2

+ ‖√uλδλ‖2L2
≤ c (‖r‖L2

+ min{‖s/√uλ‖L2
, ‖s‖L1

}) .

The estimates for δy are now obtained easily. The first row of (6) yields ‖δy‖L2
≤

‖Lδλ‖L2
+ ‖r‖L2

and thus (8). From the second row of (6) we conclude that
‖δy‖H2 ≤ ‖√uλ‖L∞‖δλ‖v,µ + ‖s‖L2

and thus (9).

Remark 2.4. Compared to the results in [16] the inverse Jacobian F −1
v has the

remarkable property to map from a rough space into a smooth space. This property
is a consequence of the elimination of u via the optimality condition. Moreover, it
is essential to show superlinear convergence.

Here we see a relation between control reduction and the application of a smooth-
ing step to u as performed for example in [12]. There a control iterate u is smoothed
by inserting it into the state equation, which yields a smoothed us via the optimal-
ity condition. This way the missing smoothing property of the inverse Jacobian is
compensated. Thus, both methods use the optimality condition to overcome the
lack of smoothness in the unreduced system.

Next we recapitulate an affine covariant Newton convergence theorem with local
norms. It is a slight extension of the Newton Mysovskii Theorem presented in [2].

Theorem 2.5. Suppose V,Z are Banach spaces, D ⊂ V is open and F : D → Z is

Gâteaux-differentiable. Additionally, assume Fv(v) is invertible for all v ∈ D. Let

‖ · ‖v : Z → R form a γ-continuous family of norms. Let ω be a constant, such that:

‖F−1
v (v) (Fv(v + t∆v)− Fv(v)) ∆v‖v ≤ tω‖∆v‖v‖∆v‖v+t∆v (11)

holds for all v, v + ∆v ∈ D.

Define e := v−v∗ and h := ω‖e‖. Let v0 ∈ D be given, v∗ a solution of F (v) = 0
and assume

D ⊃ S∗ := S(v∗, ‖ · ‖v∗ , (1 + γ‖e0‖v0
)‖e0‖v0

).

If for the starting error

(1 + γ‖e0‖v0
)3 h0 < 2 (12)

holds, then the Newton sequence vk+1 = vk−Fv(vk)
−1F (vk) converges quadratically

towards v∗ in the sense that

‖ek+1‖vk+1
< (1 + γ‖ek‖vk

)3 ω/2‖ek‖2vk
. (13)
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Roughly speaking, γ and ω capture the nonlinearity of the problem and deter-
mine the radius of convergence. For the analysis of a Newton pathfollowing method
with local norms we have to derive bounds for both parameters. We obtain bounds
for γ in this section and for ω in Section 3. For this purpose we first analyse some
additional continuity properties of the scaling function uλ.

Lemma 2.6. The following continuity properties hold for uλ(λ;µ):

|
√

uλ(λ̂;µ)−
√

uλ(λ̄;µ)| ≤ 2√
µ

√

uλ(λ̂;µ)
√

uλ(λ̄;µ)|λ̂− λ̄| (14)

|
√

uλ(λ; µ̂)−
√

uλ(λ; µ̄)| ≤ 1√
αµ̂
|µ̂− µ̄|, for µ̂ ≤ µ̄ (15)

Proof. To show (14) we suppress the argument µ in uλ. The mean-value theorem
yields

|uλ(λ̄)−1/2 − uλ(λ̂)−1/2| ≤
∣

∣

∣

∣

(

uλ(λ̃)−1/2
)′

(λ̂− λ̄)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

2
uλλ(λ̃)uλ(λ̃)−3/2

∣

∣

∣

∣

|λ̂− λ̄|

for some λ̃ ∈ [λ̄, λ̂]. Defining ũ = u(λ̃) and using Lemma 2.1 and Lemma 2.2 we
continue with

∣

∣

∣

∣

1

2
uλλ(λ̃)uλ(λ̃)−3/2

∣

∣

∣

∣

≤ 2(3 + u2)µ

(h1(1− ũ2))3/2
=

(4 + 2(1 + u2))µ

h
3/2
2

≤ 2√
µ
.

Multiplication with

√

uλ(λ̂)
√

uλ(λ̄) yields (14). For (15) we similarly deduce:

∣

∣

∣

√

uλ(µ̂)−
√

uλ(µ̄)
∣

∣

∣
≤ |uλµ(µ̃)|

2
√

uλ(µ̃)
|µ̂− µ̄| ≤ 2

h1(µ̃)
√

h2(µ̃)
|µ̂− µ̄|

≤ 1√
αµ̃
|µ̂− µ̄| ≤ 1√

αµ̂
|µ̂− µ̄|.

An immediate consequence is the γ-continuity of our norm.

Corollary 2.7. The norm ‖ · ‖v,µ is γ-continuous with γ = 2(αµ)−1/2, or more

precisely:

∣

∣

∣
‖z‖v̂,µ − ‖z‖v̄,µ

∣

∣

∣
≤ 2(αµ)−1/2‖λ̂− λ̄‖L∞‖z‖v̂,µ. (16)

Moreover, the norm ‖ · ‖v,µ is Lipschitz continuous with respect to µ:

∣

∣

∣
‖z‖v,µ̂ − ‖z‖v,µ̄

∣

∣

∣
≤ 1√

αµ̂
|µ̂− µ̄|‖z‖v,µ̂ for µ̂ ≤ µ̄. (17)
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Proof. By definition

∣

∣

∣
‖z‖v̂,µ̂ − ‖z‖v̄,µ̄

∣

∣

∣
=

∣

∣

∣

∣

∣

∥

∥

∥

∥

√

uλ(λ̂; µ̂)λz

∥

∥

∥

∥

L2

−
∥

∥

∥

∥

√

uλ(λ̄; µ̄)λz

∥

∥

∥

∥

L2

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

(

√

uλ(λ̂; µ̂)−
√

uλ(λ̄; µ̄)

)

λz

∥

∥

∥

∥

L2

.

To show (16) we set µ̄ = µ̂ = µ and use Lemma 2.6 and the Hölder inequality to
continue:

∣

∣

∣
‖z‖v̂,µ − ‖z‖v̄,µ

∣

∣

∣
≤ 2µ−1/2

∥

∥

∥

∥

√

uλ(λ̂)

√

uλ(λ̄)|λ̂− λ̄|λz

∥

∥

∥

∥

L2

≤ 2µ−1/2

∥

∥

∥

∥

√

uλ(λ̄)(λ̂− λ̄)

∥

∥

∥

∥

L∞

∥

∥

∥

∥

√

uλ(λ̂)λz

∥

∥

∥

∥

L2

≤ 2(αµ)−1/2‖λ̂− λ̄‖L∞‖z‖v̂,µ.

To show (17) we set λ̄ = λ̂ = λ and continue similarly using (15)
∣

∣

∣
‖z‖v,µ̂ − ‖z‖v,µ̄

∣

∣

∣
≤
∥

∥

∥
µ̂−1|µ̂− µ̄|

√

uλ(µ̂)λz

∥

∥

∥

L2

≤ µ̂−1α−1/2|µ̂− µ̄|‖z‖v,µ̂.

3 The length of the central path and affine invariant

Lipschitz constants.

Our mathematical framework for Newton pathfollowing methods relies on two quan-
tities. On the one hand we need an estimate about the slope of the central path to
assess how the solution of (5) changes when the homotopy parameter µ is reduced.
On the other hand we have to estimate the convergence radius of Newton’s method.
Theorem 2.5 states that this quantity mainly depends on the affine invariant Lips-
chitz constant ω.

3.1 Estimates for global linear convergence

First we consider the slope of the central path, which is defined by the norm of

vµ(µ) = −Fv(v(µ);µ)−1Fµ(v(µ);µ). (18)

We will derive a bound for the slope that is independent of the choice of α and the
structure of the optimal solution.

Theorem 3.1. There is a constant c̃ < ∞ independent of α and µ, such that the

slope η of the central path is bounded by

η := ‖vµ(µ)‖v(µ),µ + ‖λµ(µ)‖H2 ≤ c̃min{µ−1/2, ‖uµ‖L1
}, (19)
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and simultaneously for 0 ≤ σ ≤ 1 the estimates

‖y(σµ)− y(µ)‖L2
+ ‖λ(σµ)− λ(µ)‖H2 ≤ c̃(1−

√
σ)
√
µ (20)

‖λ(σµ) − λ(µ)‖L∞ ≤ c̃(1−
√
σ)
√
µ (21)

‖y(σµ)− y(µ)‖H2 ≤ c̃(1−
√
σ)
√

µ/α (22)

hold.

Proof. Regarding the system (5) we observe that its first row is independent of µ.
Furthermore, since

d

dµ
(Ly − u(λ;µ)) = −uµ(λ;µ),

we have −Fµ = (0, uµ)T . To evaluate ‖vµ(µ)‖ via (18) we apply Theorem 2.3 to Fv

and the right hand side (r, s)T = −Fµ = (0, uµ)T to obtain

‖vµ‖v(µ),µ + ‖λµ‖H2 ≤ cmin

{

∥

∥

∥

∥

uµ√
uλ

∥

∥

∥

∥

L2

, ‖uµ‖L1

}

.

Now we use the representations of uµ and uλ from Lemma 2.1 and the estimate for
h2 in Lemma 2.2 to show

∥

∥

∥

∥

uµ√
uλ

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

∥

−2u

h1

√

h1

1− u2

∥

∥

∥

∥

∥

L2

=

∥

∥

∥

∥

−2u√
h2

∥

∥

∥

∥

L2

≤ 2√
minh2

≤ cµ−1/2, (23)

which yields (19) and especially

‖yµ(µ)‖L2
+ ‖λµ(µ)‖L∞ + ‖λµ(µ)‖H2 ≤ cµ−1/2.

We use this estimate to show (20) by integration of the slope:

‖y(σµ)− y(µ)‖L2
+ ‖λ(σµ)− λ(µ)‖H2 ≤

∫ µ

σµ
‖yµ(m)‖L2

+ ‖λµ(m)‖H2dm

≤ c(
√
µ−√σµ)

= c(1 −
√
σ)
√
µ

as well as (21). The estimate (22) follows by the same argumentation using (9) and

‖uµ(µ)‖L2
≤ c(minh1)

−1 ≤ c(αµ)−1/2.

The constant c̃ is defined as the maximum of all constants c used in this proof.

Next we derive a general estimate for the affine invariant Lipschitz constant ω.
Here we make use of our local norm to obtain sharp results with respect to α. Since
µ is a constant parameter in one Newton step, we suppress it as an argument.
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Theorem 3.2. The following estimates for the affine invariant Lipschitz constant

ω hold:

‖F−1
v (v) (Fv(v + t∆v)− Fv(v)) ∆v‖v,µ ≤ tωg‖∆λ‖v,µ‖∆λ‖v+t∆v,µ

ωg =
c

√

µ(α+ 2µ)
.

Proof. We define δv := F−1
v (v) (Fv(v + t∆v)− Fv(v)) ∆v and λ̄ := λ + t∆λ to

compute

(Fv(v + t∆v)− Fv(v)) ∆v =

(

0
(uλ(λ̄)− uλ(λ))∆λ

)

=:

(

r
s

)

.

Now we can use Theorem 2.3 and (14) to estimate

‖δv‖v,µ ≤ c‖s‖L1
= c

∥

∥

∥

∥

(

√

uλ(λ̄) +
√

uλ(λ)

)(

√

uλ(λ̄)−
√

uλ(λ)

)

∆λ

∥

∥

∥

∥

L1

≤ 2(α+ 2µ)−1/2 c√
µ

∥

∥

∥

∥

√

uλ(λ̄)uλ(λ)t|∆λ|2
∥

∥

∥

∥

L1

≤ c
√

µ(α+ 2µ)
t‖∆λ‖v̄,µ‖∆λ‖v,µ.

3.2 Estimates for local superlinear convergence

If the adjoint state λ∗ corresponding to the optimal solution u∗, y∗ of (1) satisfies
additional assumptions, we can refine our estimates substantially.

Assumption 3.3. Assume there are e0 > 0,Γ > 0, such that the adjoint state λ∗
associated with the optimal solution of (1) fulfills the following requirement:

∣

∣

∣
{t ∈ Ω : λ∗(t) ∈ [α− 2e, α + 2e] ∪ [−α− 2e,−α + 2e]}

∣

∣

∣
< Γe

for all e < e0.

Assumption 3.3 can be viewed as a function space analogue of a strict comple-
mentarity or non-degeneracy condition. In finite dimensional optimization such a
condition is necessary to show superlinear convergence of interior point methods,
as noted for example in [17]. In function space we cannot impose strict complemen-
tarity. Instead we can restrict the size of the regions, where strict complementarity
is almost violated. This idea has already been used in [12] and [11] in order to show
a certain rate of superlinear convergence of an affine scaling interior point method
and of semismooth Newton methods.

Lemma 3.4. Let Assumption 3.3 hold. Then for e0 > e > ‖λ − λ∗‖L∞ and u =
u(λ;µ) the auxilliary function h1 defined in Lemma 2.1 satisfies

|{t ∈ Ω : h1(t) < e}| ≤ Γe. (24)
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α− 2e

α− e

α

α + e

α + 2e

λ∗(t)− e

λ∗(t) + e

λ∗(t)

|{t : |λ∗ − α| < 2e}| ≤ Γe

Figure 1: Illustration of Assumption 3.3

Proof. Since ‖λ− λ∗‖L∞ < e we conclude

|λ∗ ± α| ≥ 2e⇒ |λ± α| ≥ |λ∗ ± α| − |λ∗ − λ| ≥ 2e− e = e.

Thus by Assumption 3.3 we have

|{t ∈ Ω : |λ(t)± α| < e}| ≤ Γe. (25)

Now we assume |α− λ| ≥ e and |α+ λ| ≥ e and solve (3) for λ to obtain

∣

∣

∣

∣

α(1− u) +
µ

1 + u
− µ

1− u

∣

∣

∣

∣

(1 + u) ≥ e(1 + u),

∣

∣

∣

∣

α(1 + u)− µ

1 + u
+

µ

1− u

∣

∣

∣

∣

(1− u) ≥ e(1 − u).

Taking the maximum of both inequalities yields

e ≤ e max{1 + u, 1 − u}

≤ max

{∣

∣

∣

∣

α(1 − u)(1 + u) + µ− µ
1 + u

1− u

∣

∣

∣

∣

,

∣

∣

∣

∣

α(1 + u)(1 − u) + µ− µ
1− u

1 + u

∣

∣

∣

∣

}

≤ max

{

∣

∣α(1 − u2) + µ
∣

∣ ,

∣

∣

∣

∣

µ
1 + u

1− u

∣

∣

∣

∣

,

∣

∣

∣

∣

µ
1− u

1 + u

∣

∣

∣

∣

}

≤ α(1− u2) + µ
1 + u

1− u
+ µ

1− u

1 + u
= h1.

Thus {t ∈ Ω : h1(t) < e} ⊂ {t ∈ Ω : |λ(t)± α| < e} and the assertion of the lemma
follows.
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The following lemma is cited from [10]. Its proof can be found there.

Lemma 3.5. Let f ≥ 0 ∈ L∞(Ω), ψ ≥ 0 ∈ C0[e, e] monotone increasing, ϕ ≥ 0 ∈
C1[e, e] monotone decreasing and

|{t ∈ Ω : f(t) > ϕ(e)}| ≤ ψ(e) ∀ e ≤ e ≤ e

Then
∫

Ω
f(t) dt ≤ ψ(e)‖f‖L∞ +

∫ e

e
|ϕ′(e)ψ(e)| de + |Ω|ϕ(e).

Now we have gathered all auxiliary results necessary to show sharpened bounds
on the length of the central path and the affine invariant Lipschitz constant.

Theorem 3.6. Let Assumption 3.3 hold. Then there is µs > 0, such that for all

µ < µs the slope η of the central path is bounded by

η := ‖vµ(µ)‖v,µ + ‖λµ(µ)‖H2 ≤ cΓ(1 − lnαµ) + ce−1
0 , (26)

and the length of the central path can be bounded by

‖y∗ − y(µ)‖L2
+ ‖λ∗ − λ(µ)‖H2 ≤ cµ(Γ(1 − lnαµ) + e−1

0 ) ≤ √
αµ. (27)

Proof. We recall, that Theorem 3.1 bounds the slope of the central path in terms
of ‖uµ‖L1

and also provides the a-priori bound

‖λ∗ − λ(µ)‖L∞ ≤ c̃
√
µ. (28)

By Lemma 2.1 |uµ| = 2u
h1
≤ 2

h1
and thus Lemma 3.4 yields

∣

∣

∣

∣

{

t ∈ Ω : |uµ(v;µ)(t)| > 2

e

}
∣

∣

∣

∣

≤ Γe

for e ≤ e ≤ e0. By (28) we can choose e ≥ c̃
√
µ ≥ ‖λ∗ − λ(µ)‖L∞ . Now we use

Lemma 3.5 with ϕ(e) = 2e−1, ψ(e) = Γe, and e = e0 to obtain

‖uµ(v;µ)(t)‖L1
≤ ψ(e)‖uµ(v;µ)(t)‖L∞ +

∫ e

e
|ϕ′(e)ψ(e)| de + |Ω|ϕ(e)

≤ Γe‖uµ‖L∞ +

∫ e0

e

2

e2
Γe de +

2|Ω|
e0

≤ cΓ
(

e‖h−1
1 ‖L∞ + e−1

0

)

+ 2Γln e
∣

∣

∣

e0

e

≤ cΓ(e(αµ)−1/2 + e−1
0 ) + 2Γ ln e0 − 2Γ ln e

≤ cΓ(1 + e(αµ)−1/2 − ln e2) + ce−1
0 (29)

≤ cΓ(1 + c̃
√
µ(αµ)−1/2 − ln c̃µ) + ce−1

0
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Thus Theorem 3.1 gives us

‖λµ(µ)‖L∞ ≤ ‖vµ(µ)‖v(µ),µ ≤ c‖uµ‖L1
≤ cΓ(1 + α−1/2 − lnµ) + ce−1

0 .

Integration of this slope estimate yields:

‖λ∗ − λ(µ)‖L∞ ≤
∫ µ

0
cΓ(1 + α−1/2 − lnm) + ce−1

0 dm

= cΓm(1 + α−1/2 − lnm) +mce−1
0

∣

∣

∣

µ

0

= cµ(Γ(1 + α−1/2 − lnµ) + e−1
0 ).

Since the error decreases almost linearly in µ there exists a µs, such that for all
µ ≤ µs it follows

‖λ∗ − λ(µ)‖L∞ ≤ √
αµ.

For such µ we can insert e =
√
αµ into (29) and obtain by the same argumentation

as above (26) and especially

‖yµ(µ)‖L2
+ ‖λµ(µ)‖H2 ≤ cΓ(1− lnαµ) + ce−1

0 .

Integration of this slope estimate finally yields (27).

We can also improve our Lipschitz estimates for small µ. The use of local norms
is not necessary here.

Theorem 3.7. There is a constant c <∞, such that for µ ≤ µs and

ωs := c
(

Γ(1 + α−1) + µe−3
0

)

the Lipschitz condition

‖F−1
v (v) (Fv(v + t∆v)− Fv(v)) ∆v‖v,µ ≤ tωs‖∆λ‖2

L∞ (30)

holds for all v, ∆v with λ, λ+ ∆λ in S(λ(µ), ‖ · ‖L∞ ,
√
αµ).

Proof. The proof is similar to the proof of Theorem 3.2. However, now we apply a
different estimate on

s = (uλ(λ)− uλ(λ+ t∆λ))∆λ =

∫ 1

0
uλλ(λ+ Θt∆λ)t∆λ dΘ∆λ

and proceed using Theorem 2.3 to obtain for δv := F −1
v (v) (Fv(v + t∆v)− Fv(v)) ∆v

‖δv‖v,µ ≤ c‖s‖L1
≤ c

∫ 1

0
‖uλλ(λ+ Θt∆λ)‖L1

dΘ t‖∆λ‖2
L∞

≤ c sup
Θ∈[0,1]

‖uλλ(λ+ Θt∆λ)‖L1
t‖∆λ‖2

L∞ . (31)
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Now we recall that |uλλ| ≤ cµ
h3
1

, and by Theorem 3.6 that

‖λ∗ − λ‖L∞ ≤ ‖λ∗ − λ(µ)‖L∞ + ‖λ(µ)− λ‖L∞ ≤ 2
√
αµ

for µ < µs. Thus in Lemma 3.4 the choice of e := 2
√
αµ is possible and we obtain

∣

∣

∣

{

t ∈ Ω : |uλλ(v;µ)(t)| > cµ

e3

}
∣

∣

∣
≤ Γe

for 2
√
αµ ≤ e ≤ e0. Using Lemma 3.5 with ϕ(e) = cµe−3, ψ(e) = Γe, e = 2

√
αµ,

e = e0 we conclude

‖uλλ(λ;µ)‖L1
≤ ψ(e)‖uλλ(λ;µ)‖L∞ +

∫ e

e
|ϕ′(e)ψ(e)| de + |Ω|ϕ(e)

≤ Γecµ‖h−1
1 ‖3L∞ +

∫ e0

e

cµ

e4
Γe de+

2µ|Ω|
e30

≤ cΓeµ(αµ)−3/2 − cΓ
µ

e2

∣

∣

∣

e0

e
+

2µ|Ω|
e30

≤ c

(

Γ
√

2µαµ(µα)−3/2 + Γ

(

µ

(2
√
µα)2

− µ

e20

)

+ µe−3
0

)

≤ cΓ(α−1 + 1) + cµe−3
0 .

Remark 3.8. The assertion in Theorem 3.7 can be formulated differently. With
δv defined as in the proof we even have by Theorem 2.3

‖δy‖L2
+ ‖δλ‖H2 ≤ ωs‖∆λ‖2

L∞

and Newton’s method will converge also in the norm used on the left hand side of
this estimate.

3.3 Estimates for a rapid starting phase

After our local analysis for small µ, we shortly discuss bounds for η and ω that
are an improvement over Theorem 3.1 and Theorem 3.2 for large µ. These bounds
reflect the fact, that for µ → ∞ the central path converges towards the analytical
center u ≡ 0 of the admissible set.

Corollary 3.9. The slope η of the central path can be bounded by

η = ‖vµ(µ)‖v,µ + ‖λµ(µ)‖H2 ≤ c
‖λ(µ)‖L1

+ α

µ2
. (32)

Moreover, the estimate (30) in Theorem 3.7 also holds for

ωs := c
r + α

µ3
(33)

for all v, v + ∆v, such that λ, λ+ ∆λ ∈ S(0, ‖ · ‖L1
, r).
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Proof. From Lemma 2.1 we know that |uµ(t)| ≤ 2u(t)
2µ . Furthermore (3) yields

pointwise for feasible u ∈]− 1; 1[:

|u| =
∣

∣

∣

∣

λ− αu

2µ
(1− u2)

∣

∣

∣

∣

≤ |λ|+ α

2µ

and thus

‖uµ‖1 ≤
‖λ(µ)‖L1

+ α

4µ2

which yields (32) by Theorem 3.1. Considering (33) we use Lemma 2.1 again to
obtain

|uλλ(t)| ≤ |u(t)|6µ
(2µ)3

⇒ ‖uλλ‖1 ≤
µ(‖λ‖L1

+ α)

2µ(2µ)3

inserting this bound into the estimate (31) in the proof of Theorem 3.7 yields the
assertion.

The consequence of our Corollary 3.9 is, that a properly controlled algorithm
can reduce µ rapidly, if the initial value for µ was chosen larger than necessary.

4 A theoretical pathfollowing method

This section is devoted to the analysis of a pathfollowing method for solving (5).
We assume for simplicity, that the Newton step in function space

∂vF (vk;µk)δvk = −F (vk;µ) (34)

can be computed exactly.

Algorithm 4.1.

select µ0 > 0, µs > 0, 0 < ρ, 0 < σ < 1, τ > 0,
and v0 with ‖v0 − v(µ0)‖v0 ,µ0

≤ ρ
√
αµ0

For k = 0, . . .
solve (34) for δvk

vk+1 = vk + δvk

if µk ≥ µs

µk+1 = σµk

else

µk+1 = τ(Γ(1− lnαµk) + e−1
0 )2µ2

k

Remark 4.2. The algorithm sketched here is of course not designed for imple-
mentation in practice. Apart from the fact, that we cannot solve the Newton step
without discretization error, several parameters cannot be determined a-priori for
a particular problem. An efficient and robust algorithm will have to choose its
stepsizes adaptively during the course of the homotopy and take into account the
errors introduced by solving (34) inexactly. Our aim here is much more to explore
the potential of such an algorithm by presenting a possible fixed choice of stepsizes
that yields superlinear convergence.
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vk

v(µk+1)

v(µk)

vk+1

S(v(µk+1), ρ
√

αµk+1)

S(v(µk), ρ
√

αµk)

v(µ)

S(v(µk), ρ̃
√

αµk)

Figure 2: Neighbourhoods of the central path during Algorithm 4.1.

Our algorithm is constructed as follows: for 0 < ρ we choose 0 < σ < 1, τ > 0, and
ρ̃ :=

√
σρ/4, such that one Newton step maps

vk ∈ S(v(µk), ρ
√
αµk) −→ vk+1 ∈ S(v(µk), ρ̃

√
αµk)

and after a reduction of µ the inclusion

vk+1 ∈ S(v(µk+1), ρ
√
αµk+1) ⊃ S(v(µk), ρ̃

√
αµk)

holds. This mechanism is depicted graphically in Figure 2.

In the remainder of the section we show that there is a suitable choice of param-
eters, such that Algorithm 4.1 is well defined and computes iterates that converge
to the solution v(0). For this purpose we will use the estimates derived in Section 3,
that mainly depend on α, µ, e0, and Γ.

Since we are interested in small α and our estimates are not uniform for very
large values of this parameter we bound α a-priori by αmax. The generic constants
we use may depend on αmax.

First, we analyse the effect of a µ-reduction by a constant factor σ, which is
technically involved due to the necessary use of local norms.

Lemma 4.3. There is a constant c̄, such that for 0 < ρ ≤ 1 and

σ ≥ max

{

(

1 +
ρ
√
α

8c̄

)−2

,
1

4

}

. (35)
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we can conclude

‖v − v(µ)‖v,µ ≤ ρ̃
√
αµ =⇒ ‖v − v(σµ)‖v,σµ ≤ ρ

√
ασµ

with ρ̃ =
√
σρ/4 defined as above.

Proof. By the triangle inequality and (17) we derive

‖v − v(σµ)‖v,σµ ≤ ‖v − v(µ)‖v,σµ + ‖v(µ) − v(σµ)‖v,σµ

≤ ‖v − v(µ)‖v,µ

(

1 +
1√
ασµ

|µ− σµ|
)

+

∥

∥

∥

∥

∫ µ

σµ
vµ(m)dm

∥

∥

∥

∥

v,σµ

≤ ρ̃
√
αµ

(

1 +
σ−1 − 1√

α

)

+

∫ µ

σµ
‖vµ(m)‖v,σµ dm. (36)

Using (21) we conclude for µ ≥ m ≥ σµ and c̃ as in Theorem 3.1 that

‖λ− λ(m)‖L∞ ≤ ‖λ− λ(µ)‖L∞ + ‖λ(µ)− λ(m)‖L∞ ≤ ρ̃
√
αµ+ c̃(1−

√
σ)
√
µ.

Thus the integrand can be estimated via (16) and (17) from Corollary 2.7, and (19)
from Theorem 3.1:

‖vµ(m)‖v,σµ ≤
(

1 +
2√
αm

‖λ− λ(m)‖L∞

)

‖vµ(m)‖v(m),σµ

≤
(

1 +
2
√
µ√
m

(

ρ̃+ c̃
1−√σ√

α

))(

1 +
1√
αm

|µ−m|
)

‖vµ(m)‖v(m),m

≤
(

1 +
2ρ̃√
σ

+ 2c̃
σ−1/2 − 1√

α

)

(

1 +
σ−1 − 1√

α

)

‖vµ(m)‖v(m),m . (37)

Now we use Assumption (35) to bound the factors in parentheses that appear in
(36) and (37). Setting c̄ := max{c̃, 1} we derive

c̃α−1/2(σ−1/2 − 1) ≤ ρ/8 ≤ 1/8, (38)

σ−1/2 + 1 ≤ (1/4)−1/2 + 1 ≤ 3,

α−1/2(σ−1 − 1) = α−1/2(σ−1/2 − 1)(σ−1/2 + 1) ≤ ρ

8c̄
· 3 ≤ 3

8
, (39)

and thus inserting these inequalities and the definition of ρ̃

∫ µ

σµ
‖vµ(m)‖v,σµ dm ≤

∫ µ

σµ

(

1 +
1

2
+

1

4

)(

1 +
3

8

)

‖vµ(m)‖v(m),m dm

≤ 5

2

∫ µ

σµ

c̃√
m
dm ≤ 5 c̃(1−

√
σ)
√
µ

≤ 5 c̃
σ−1/2 − 1√

α

√
σαµ.
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Inserting this estimate and (39) into (36) we obtain

‖v − v(σµ)‖v,σµ ≤
11

8
ρ̃
√
αµ+

5

8
ρ
√
σαµ ≤

(

11

32
+

5

8

)

ρ
√
σαµ ≤ ρ

√
ασµ.

Theorem 4.4. There exists 0 < ρ < 1 independent of µ, α, e0, and Γ, such that if

σ satisfies (35) and

‖v0 − v(µ0)‖v0,µ0
≤ ρ

√
αµ0

Algorithm 4.1 is well defined and converges linearly:

‖λk − λ∗‖H2 + ‖yk − y∗‖L2
≤ c

√
µk. (40)

If Assumption 3.3 holds, then there are µs > 0 and τ independent of µ, such that

Algorithm 4.1 is of “r-order 2” for µ < µs:

lim
k→∞

lnµk+1

lnµk
= 2 (41)

and

‖λk+1 − λ∗‖H2 + ‖yk+1 − y∗‖L2
≤ cµk(Γ(1− lnαµk) + e−1

0 ) (42)

Proof. Assume for the purpose of induction that

‖vk − v(µk)‖vk ,µk
≤ ρ

√
αµk.

Then by Theorem 2.5 using the estimates for γ in Lemma 2.7 and for ω in Theo-
rem 3.2 we have

‖vk+1 − v(µk)‖vk+1,µk
≤ (1 + γ‖vk − v(µk)‖vk ,µk

)3 ωg/2‖vk − v(µk)‖2vk ,µk

≤
(

1 + 2(αµk)−1/2ρ
√
αµk

)3 c

2
√
αµk

ρ2αµk

≤ c (1 + 2ρ)3
1

2
ρ2√αµk.

Since ρ appears quadratically for sufficiently small ρ independent of α and µ it holds

‖vk+1 − v(µk)‖vk+1,µk
≤ ρ̃

√
αµk.

Now Lemma 4.3 completes the induction, showing that after a reduction of µ

‖vk+1 − v(µk+1)‖vk+1 ,µk+1
≤ ρ

√
αµk+1.

Equation (40) follows by the triangle inequality and (20) (with σµ = 0) in Theo-
rem 3.1.

If Assumption 3.3 holds, Theorem 3.6 states the existence of a constant µs, such
that for µ < µs refined estimates hold. We assume µs ≤ e20α

−1 and consider µ < µs.
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From Phase 1 of the algorithm we know that ‖λk − λ(µk)‖L∞ ≤ ρ
√
αµk. Since our

estimate for ωs in Theorem 3.7 makes no use of local norms we can set γ = 0 in
Theorem 2.5 and conclude

‖λk+1 − λ(µk)‖L∞ ≤ ‖vk+1 − v(µk)‖v,µ ≤
ωs

2
‖λk − λ(µk)‖2L∞

≤ c
Γ(α−1 + 1) + µke

−3
0

2
ρ2αµk ≤ c(Γ(1 + α) + αµke

−3
0 ) ρ2µk

≤ c(Γ(1 + α) + e−1
0 ) ρ2µk.

Consequently for sufficiently small ρ we have

‖λk+1 − λ(µk)‖L∞ ≤ c(Γ + e−1
0 )ρµk.

Moreover, considering Remark 3.8 a closer look on Theorems 2.3, 3.2 and 2.5 yields
that Newton’s method also converges in the H2-norm for λ and thus

‖λk+1 − λ(µk)‖H2 + ‖yk+1 − y(µk)‖L2
≤ c(Γ + e−1

0 )µk. (43)

Estimating the error after a µ-reduction we compute

‖λk+1 − λ(µk+1)‖L∞ ≤ ‖λk+1 − λ(µk)‖L∞ + ‖λ(µk)− λ(µk+1)‖L∞

≤ cµk(Γ + e−1
0 )ρ+ cµk(Γ(1− lnαµk) + ce−1

0 )

≤ ρ
√
α
(

(cα−1/2ρ−1)µk

(

Γ(1− lnαµk) + e−1
0

)

)

.

Now we notice, that there is a constant c, such that for τ := c2α−1ρ−2 we can
continue with

‖λk+1 − λ(µk+1)‖L∞ ≤ ρ
√

ατµ2
k(Γ(1− lnαµk) + e−1

0 )2

≤ ρ
√
αµk+1,

which completes the induction. The estimate (42) follows from (43) together with
(27) in Theorem 3.6. Finally, relation (41) holds for our update rule µk → µk+1,
since

lim
x→0

lnx2(c− lnx)2

lnx
= 2

ln x+ ln(c− lnx)

lnx
= 2.

Remark 4.5. Since ρ can be chosen independently of α and µ, assumption (35)
requires 1 − σ = O(

√
α) for small α whereas τ = O(α−1). These are worst case

bounds for the efficiency of Algorithm 4.1.
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5 Numerical experiments

We present some numerical results to illustrate the theory developed in the previous
sections. We implemented a prototype version of a control reduced interior point
algorithm in matlab in order to obtain computational estiamtes of the quanities
relevant for the progress of the homotopy. We have implemented a simple adaptive
step size strategy, which already shows superlinear convergence behavior.

We considered the numerical solution of (1) on Ω =]0, 1[×]0, 1[, with L = −∆
and piecewise constant yd ∈ L2(Ω). Defining χM as the characteristic function of
M ⊂ Ω, we used

yd := a
(

4χ[0,3/4]×[0,1/2] − 10χ[0,3/4]×[1/2,1] − 2χ[3/4,1]×[0,1/2] + 50χ[3/4,1]×[1/2,1]

)

for different values of a. This unsymmetric choice prevents solutions from getting a
too simple structure. A general observation was, that problems with both small α
and small residual ‖y − yd‖ were more expensive to compute than problems where
one of these quantities is large.

We present estimates for the slope η of the central path and for the Lipschitz
constant ω. The slope was approximated by the finite differences

η(µk;µk+1) ≈
‖v(µk)− v(µk+1)‖v(µk+1),µk+1

µk − µk+1
.

The Lipschitz constant ω was estimated by monitoring the convergence behaviour
of Newtons method similar to the methodology presented in [1]. Both estimates
have to be used with care in the presence of round-off errors. In order to obtain
smooth graphs in our diagrams we restrict the step size σ to σ ≥ 0.1.

50 100 150 200 250 300 350 400 450 500
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100
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200

250

300
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Figure 3: Control u and state y for α = 10−8 and a = 0.001.

In our first test set we consider a = 0.001 chosen, such that e0 is relatively small
since |λ| is small on a large portion of Ω, furthermore we set α = 10−8. Optimal
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control and state are depicted in Figure 3. We see, that there are large active sets
but also large areas where the control lies in the interior of the feasible region.

Considering Figure 4 we observe that our estimates for η and ω are largely
independent of the mesh sizes h = 2−k with k = 6 . . . 9 we have used. Moreover,
we can identify three phases. For large µ the quantities η ∼ µ−2 and ω ∼ µ−3 are
very small and increase rapidly. This is the “rapid starting phase”. Then a phase
of moderate increase starts: the “global phase”. Here ω, η ∼ µ−1/2 and constant
stepsizes σ will have to be taken. In difficult examples this will be the phase, where
most of the steps are taken. Finally, the increase in η and ω stagnates almost
entirely. We have reached the “local phase of superlinear convergence”. Here the
estimated values of η and ω for different h diverge slightly, but clearly behave very
similarly. If the restriction on σ is dropped, this phase usually consists of not more
that three or four steps.
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Figure 4: Logarithmic plot of estimates for η (left) and ω (right) with respect to µ
for several mesh sizes.

Next we perform test runs for a = 0.001 and several choices of α, namely
α = 10−2k with k = 1 . . . 6 at constant mesh-size h = 1/128. In Figure 5 we see,
that the phase of superlinear convergence starts later with larger final values of η
and ω as α becomes smaller. This may be a consequence of e0 becoming smaller
for smaller α.

In a second example we set a = 0.1 which leads to a large e0. Now we observe,
that the neither the slope η, nor the starting point µs depend significantly on α.
Moreover, we see that the starting phase immediately blends into the phase of
local superlinear convergence. The Lipschitz constant ω seems to be very small in
this example, and we cannot give any reliable estimates for numerical reasons as
indicated above. If the restriction on σ is dropped, the algorithm takes 5 µ-reduction
steps to reduce µ from 10 to 10−15.

Conclusion

We have shown robust global and fast local convergence of the control reduced pri-
mal interior point method for PDE constrained optimization. Its properties make
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Figure 5: Logarithmic plot of estimates for η (left) and ω (right) with respect to µ
for several choices of α and small a. The smaller α is chosen, the larger the final
value of the estimates.
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Figure 6: Logarithmic plot of estimate for η for several choices of α and large a

it an excellent basis for an efficient algorithm in optimal control. Clearly our algo-
rithm in function space has to be complemented by both an efficient and adaptive
discretization scheme and stepsize control. The development of these features is
subject of ongoing work.
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