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Abstract. The result after N steps of an implicit Runge-Kutta time discretization of an inho-
mogeneous linear parabolic differential equation is computed, up to accuracy ε, by solving only

O
“

log N log
1

ε

”

linear systems of equations. We derive, analyse, and numerically illustrate this fast algorithm.
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1. Introduction. In the method of lines, semi-discretization in space turns a
linear parabolic differential equation into a large, stiff system of ordinary differential
equations

u′(t) + Au(t) = g(t), u(0) = u0, (1.1)

possibly with a mass matrix multiplying the time derivative. This system is subse-
quently discretized in time, e.g., by the implicit Euler method with step size h,

(I + hA)un = un−1 + hg(tn), n = 1, . . . , N.

The approximation uN for a prescribed step number N is thus obtained by solving
a sequence of N linear systems with a matrix of the form λ + A, where λ = 1/h in
the implicit Euler method. For N steps with a higher-order, m-stage Runge-Kutta
method, there are mN such linear systems, possibly with complex λ as in the excellent
Radau IIA methods. Even if fast techniques such as multi-grid methods are used,
solving the linear systems of equations typically constitutes the main computational
cost, in particular for problems in complicated spatial geometries.

In this paper we propose an algorithm to compute the implicit Runge-Kutta
approximation uN at a fixed time T = Nh, up to an arbitrary accuracy ε, by doing
N Runge-Kutta steps for differential equations of the form y′(t) = λy(t) + g(t), each
step in parallel for O(log(1/ε)) complex parameters λ, and by solving only

O(log N log 1
ε ) linear systems

with matrices of the form λ + A, all of which can be solved in parallel. The constant
in this work estimate is moderate: for a relative accuracy of 10−5 and N ≤ 105 time
steps we need to solve less than 100 linear systems! For large step numbers N , the
number of linear systems is thus dramatically reduced, both in a sequential and in a
parallel computational setting.

The algorithm is highly efficient for computing Runge-Kutta approximations to
the solution of (1.1) at a relatively small number of selected time points or of short
subintervals, but it is not useful for computing all values u1, . . . , uN .
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Basic ingredients of the algorithm are the following:

• the discrete variation-of-constants formula for the Runge-Kutta method;
• the Cauchy integral representation of the approximations to the operator

exponential;
• the discretization of the contour integrals, using O(log N) contours with

O(log(1/ε)) quadrature points each;
• the discrete semigroup property, which permits us to reinterpret the split

sums as Runge-Kutta approximations to solutions of equations of the form
y′(t) = λy(t) + g(t).

The algorithm given here is closely related to the fast convolution algorithms
developed in [11, 13]. The error analysis for the discretized contour integrals follows
the analysis of inverse Laplace transform approximations in [8].

Discretized contour integrals have been used previously in several instances in
the numerical solution of parabolic equations: for homogeneous problems (g ≡ 0)
in [14] similarly to Talbot’s method [19] for the inversion of the Laplace transform
(s+A)−1u0, and more recently for inhomogeneous problems [15, 5] using the Laplace
transform of the inhomogeneity g or assuming special properties, in particular analyt-
icity, of g. In contrast, the present algorithm works directly with the discrete values
g(t) that are used in the Runge-Kutta discretization of (1.1). No smoothness condi-
tions for g are needed. This is because the algorithm approximates the discrete result
of the Runge-Kutta method, with an error that does not depend on the smoothness of
either the inhomogeneity or the solution. Of course, to make sense, the Runge-Kutta
discretization of (1.1) with the considered step size h should be sufficiently accurate,
which in turn does depend on the smoothness of g (see [10] for Runge-Kutta error
bounds for parabolic equations in terms of the data).

About the differential equation (1.1) we assume that A is sectorial: there exist
real constants M and σ and an angle ϕ < π

2 such that the resolvent is bounded by

‖(λ + A)−1‖ ≤ M

|λ − σ| , for | arg(λ − σ)| ≤ π − ϕ. (1.2)

Here ‖ · ‖ is the operator norm corresponding to a vector norm, also denoted by ‖ · ‖.
Clearly, for a symmetric positive semi-definite matrix A the bound (1.2) holds in the
Euclidean norm with σ = 0 and M = 1/ sinϕ for any positive angle ϕ. More gen-
erally, condition (1.2) includes also non-symmetric operators such as those arising in
convection-diffusion equations. In many situations resolvent bounds (1.2) in Lp norms
are known to be inherited from the continuous problem by finite differences or finite
elements, uniformly in the spatial discretization parameter (see, e.g., [1, 2]).

In Section 2 we review the discrete variation-of-constants formula for implicit
Runge-Kutta methods, and in Section 3 we describe the discretization of the contour
integrals for the rational approximations to the matrix exponential. The fast algo-
rithm is given in Section 4, including an extension to systems with a mass matrix. A
numerical example illustrates the performance of the algorithm in Section 5. Finally,
Section 6 analyses the error of the contour integral discretization, which is the only
error source in the algorithm.

2. The discrete variation-of-constants formula. In this preparatory section
we recall the discrete variation-of-constants formula for implicit Runge-Kutta meth-
ods; cf., e.g., [3].

An implicit m-stage Runge-Kutta method applied to (1.1) yields, at tn = nh, an
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approximation un to u(tn), given recursively by

vni = un + h

m∑

j=1

aij

(
−Avnj + g(tn + cjh)

)
, 1 ≤ i ≤ m, (2.1)

un+1 = un + h

m∑

j=1

bj

(
−Avnj + g(tn + cjh)

)
. (2.2)

The method is determined by its coefficients aij , bj , ci (i, j = 1, . . . , m). We denote
the Runge-Kutta matrix by Oι = (aij) and the row vector of the weights by bT = (bj).
Eliminating the internal stages vni results in

un+1 = r(−hA)un + h

m∑

i=1

qi(−hA) g(tn + cih) , n ≥ 0, (2.3)

where the rational approximation r(z) to ez is defined by

r(z) = 1 + zbT (I − zOι)−11l (2.4)

with 1l = (1, . . . , 1)T , and where the rational functions qi(z) are the entries of the row
vector1

q(z) =
(
q1(z), . . . , qm(z)

)
= bT (I − zOι)−1. (2.5)

We assume that the eigenvalues of the Runge-Kutta matrix Oι have positive real part,
and that the method is L-stable, i.e.,

|r(z)| ≤ 1 for Re z ≤ 0, and r(∞) = 0. (2.6)

These conditions are in particular satisfied by the Radau IIA family of Runge-Kutta
methods [6].

The discrete analogue of the variation-of-constants formula

u(t) = e−tAu0 +

∫ t

0

e−(t−τ)A g(τ) dτ

is obtained by solving the recurrence relation (2.3). With the column vector gj =(
g(tj + cih)

)m
i=1

, this becomes

un = r(−hA)nu0 + h

n−1∑

j=0

r(−hA)n−1−j q(−hA) gj , n ≥ 1. (2.7)

3. Discretization of the contour integrals. We now discretize the Cauchy
integral representation

r(−hA)nq(−hA) =
1

2πi

∫

Γ

(λ + A)−1 r(hλ)n q(hλ) dλ (3.1)

1Instead of taking r(z) and qi(z) as rational functions originating from a Runge-Kutta method,

another suitable choice would be r(z) = ez and qi(z) =
R 1
0

e(1−θ)z `i(θ) dθ, where `i is the ith
Lagrange polynomial corresponding to the Gauss nodes cj . This could be used similarly in the
algorithm below.
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along suitable contours Γ in the resolvent set of −A. The numerical integration in (3.1)
is done by applying the trapezoidal rule with equidistant steps to a parametrization of
a hyperbola [8]. With one contour and one set of quadrature points on this contour,
we do not have a uniformly good approximation for all n = 0, . . . , N , but we can
instead obtain a uniform approximation locally on a sequence of geometrically growing
intervals

I` = [B`−1h, B`h), ` ≥ 1, (3.2)

where the base B > 1 is an integer, e.g., B = 10. For nh ∈ I` we approximate the
contour integrals (3.1) as

r(−hA)nq(−hA) (3.3)

≈
K∑

k=−K

w
(`)
k (λ

(`)
k + A)−1r(hλ

(`)
k )n q(hλ

(`)
k ) , nh ∈ I`,

with the quadrature points λ
(`)
k lying on a hyperbola Γ` and with the corresponding

weights w
(`)
k . The number of quadrature points on Γ`, 2K + 1, is chosen independent

of `. The contour Γ` is chosen as a hyperbola given by

R → Γ` : θ 7→ γ`(θ) = µ` (1 − sin(α + iθ)) + σ (3.4)

with an `-dependent parameter µ` > 0. The angle α satisfies 0 < α < π
2 − ϕ with ϕ

of (1.2), and σ is the shift in (1.2). The weights and quadrature points in (3.3) are
given by

w
(`)
k =

iτ

2π
γ′

`(θk) , λ
(`)
k = γ`(θk) with θk = kτ ,

where τ is a step length parameter that can be chosen independent of `.

The following bound of the necessary number of quadrature points is a conse-
quence of the error analysis in Section 6.

Theorem 3.1. In (3.3), a quadrature error bounded in norm by ε for nh ∈ I` is
obtained with

K = O(log 1
ε ) .

This holds for n ≥ c log(1/ε), with some constant c > 0. The required number K is
independent of ` and of n and h ≤ h0 with nh ≤ T . For σ ≤ 0, K is also independent
of the length T of the time interval. K depends on the angle ϕ, the bound M and the
shift σ in (1.2), but is otherwise independent of A.

The approximation is, however, poor for the first few n; cf. also [13].

Concerning the choice of parameters we remark that the above asymptotic bound
for K is obtained with 1/τ proportional to log(1/ε) and with the parameter µ` for
the contour Γ` chosen such that µ`B

`h = c1 log(1/ε) with c1 independent of ` and h,
e.g., with c1 = 1/4. Since perturbations in the terms of (3.3) can be magnified with
r(hκ`)

n ≈ eκ`nh with κ` = µ`(1 − sin α) + σ, the factor c1 should not be chosen too
large. We refer to [9] for an optimized strategy to choose the parameters.
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4. The fast algorithm. We start from the discrete variation-of-constants for-
mula (2.7) for the Runge-Kutta approximation uN with a fixed N . For the expression
r(hA)Nu0 we use the discretization of the Cauchy integral like in the previous section
and in fact similarly to the approach of [14] for computing exp(−tA)u0.

The novel algorithm is concerned with the treatment of the inhomogeneity. For a
fixed step number N and a given base B we split the sum in (2.7) into L sums, where
L is the smallest integer such that N ≤ BL:

uN = u
(0)
N + · · · + u

(L)
N

with u
(0)
N = hq(−hA)gN−1 and

u
(`)
N = h

∑

(N−1−j)h∈I`

r(−hA)N−1−j q(−hA) gj

for ` ≥ 1. On inserting the integral representation (3.1) we obtain, with n` = N −B`

for 0 ≤ ` ≤ L − 1 and nL = 0,

u
(`)
N = h

n`−1−1∑

j=n`

1

2πi

∫

Γ`

(λ + A)−1 r(hλ)N−1−j q(hλ) gj dλ.

The integral is discretized with the quadrature formula of Section 3: we approximate

u
(`)
N by U

(`)
N given as

U
(`)
N = h

n`−1−1∑

j=n`

K∑

k=−K

w
(`)
k (λ

(`)
k + A)−1 r(hλ

(`)
k )N−1−j q(hλ

(`)
k ) gj

=

K∑

k=−K

w
(`)
k r(hλ

(`)
k )N−n`−1 (λ

(`)
k + A)−1 y

(`)
k ,

where

y
(`)
k = h

n`−1−1∑

j=n`

r(hλ
(`)
k )n`−1−1−j q(hλ

(`)
k ) gj .

Comparing this formula with (2.7), we see that y
(`)
k is the Runge-Kutta approximation

to the solution at time t = n`−1h of the linear initial-value problem

y′(t) = λ
(`)
k y(t) + g(t), y(n`h) = 0, (4.1)

and hence y
(`)
k is computed by Runge-Kutta time-stepping on (4.1), using (2.3) with

the scalar hλ
(`)
k in place of the operator −hA. With the solutions x

(`)
k of the linear

systems of equations

(λ
(`)
k + A) x

(`)
k = y

(`)
k , (4.2)

we obtain U
(`)
N as the linear combination

U
(`)
N =

K∑

k=−K

c
(`)
k x

(`)
k with c

(`)
k = w

(`)
k r(hλ

(`)
k )B`−1

. (4.3)
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There are only (K +1)L linear systems (4.2) to be solved, for k = 0, . . . , K and ` ≤ L.
(Since the quadrature points lie symmetric with respect to the real axis, only the sum
of the real parts of half the terms in (4.3) needs to be computed when approximating
solutions with real components.) We recall L − 1 ≤ logB N and K = O(log(1/ε)),
where ε is the accuracy requirement in the discretization of the contour integrals. Note

that the only approximation made in the computation of U
(`)
N , is the discretization of

the contour integrals.
Because of the poor approximation of the contour integral (3.1) for small n, we

evaluate U
(0)
N + U

(1)
N by B direct Runge-Kutta steps up to time t = Nh for the initial

value problem

v′(t) + Av(t) = g(t), v((N − B)h) = 0. (4.4)

This requires the solution of another mB linear systems with matrices of the form
(λ + A). For small values of B or stringent accuracy requirements, we take B2 direct

Runge-Kutta steps to compute u
(0)
N + u

(1)
N + u

(2)
N . (Asymptotically, we need to take

O(log(1/ε)) direct steps according to Theorem 1.)

Finally we sum up the U
(`)
N to obtain

UN = U
(0)
N + · · · + U

(L)
N (4.5)

as the approximation to uN . The fast algorithm thus consists of doing the steps
(4.1)–(4.5) in the given order.

Remark 1. The algorithm extends to differential equations with a positive definite
mass matrix M ,

Mu′(t) + Au(t) = g(t), u(0) = u0, (4.6)

which is transformed to a system ũ′(t) + Ãũ(t) = g̃(t) for ũ(t) = M1/2u(t) with

Ã = M−1/2AM−1/2 and g̃(t) = M−1/2g(t). Applying formally the above algorithm
to the transformed system and then transforming back yields again (4.3), where now

x
(`)
k is the solution of the linear system

(λ
(`)
k M + A) x

(`)
k = y

(`)
k , (4.7)

and y
(`)
k is the Runge-Kutta approximation at t = n`−1h of the initial value problem

(4.1) with the untransformed inhomogeneity g(t).
Remark 2. We have formulated the algorithm for a constant time step size h, but

this is not essential. The algorithm is readily extended to accommodate variable step
sizes, with the same step size sequence for all k in (4.1), chosen adaptively according to
the behaviour of the inhomogeneity g(t). Adaptivity in space can be used in solving the
linear systems (4.2), choosing the spatial mesh according to the behaviour of the right-

hand sides y
(`)
k and the operator A. Note that in a hierarchical basis representation,

adding a mesh point just corresponds to adding a scalar differential equation in (4.1).
The details of such an adaptive algorithm are beyond the scope of this paper.

5. Numerical experiment. We consider an initial-boundary value problem of
the heat equation in two space dimensions for u = u(x, t),





∂tu(x, t) = ∆u(x, t), x ∈ Ω, 0 ≤ t ≤ T,

u(x, 0) = 0, x ∈ Ω,

∂νu(x, t) = 0, x ∈ Γint, 0 ≤ t ≤ T,

∂νu(x, t) = β(x, t) − ρ(u(x, t) − uout), x ∈ Γout, 0 ≤ t ≤ T,
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on a wire-fence like structure (rectangle of size 10.65 × 12.64 with hexagonal holes,
each hole with radius 0.8), see Figure 5.1. Here Γint denotes the boundary of the
holes, and Γout is the boundary of the rectangle. In the example we set the heat flux
β = 5 sin2(t) on the upper and left boundary of the rectangle and β = 0 on the lower
and right boundary, and the convective heat flux to ρ(u − uout), with the ambient
temperature uout = 0 and the coefficient of surface heat transfer ρ = 0.5, cf. the
introduction in [7]. Space is discretized using linear finite elements on a triangular
mesh, with 27346 vertices and 50368 triangles. Triangulation is done using the tool
Triangle [16].

Fig. 5.1. Domain for the heat equation, with isolines of the temperature distribution at t = 20.

The finite element equations are of the form (4.6), where M is the standard mass
matrix containing the L2 inner products of the nodal basis functions ϕi. The stiffness
matrix is the sum A = A0 + ρMb with

A0

∣∣
ij

=

∫

Ω

∇ϕi∇ϕj dx , Mb

∣∣
ij

=

∫

Γout

ϕiϕj dσ .

The inhomogeneity g(t) is given by

gi(t) =

∫

Γout

(β(x, t) + ρuout)ϕi dσ(x).

The algorithm takes into account that g(t) has nonzero entries only along the outer
boundary Γout, so that effectively g(t) is a vector whose dimension is the number of
degrees of freedom on the outer boundary – in this example 776. The differential
equations (4.1) need to be integrated only for this reduced dimension, since they have
no coupling between the components.

We have used the 2- and 3-stage Radau IIA methods (of orders 3 and 5, respec-
tively) for time discretization in our numerical experiments.

In the fast algorithm we set B = 5 and K = 15 and, from the experience of
[9, 13], we choose the angle in the hyperbola as α = π/4, the parameter µ` = 3/(hB`)
and the parameter τ = 5/K. This choice of parameters leads to a deviation of the
order 10−6 from the Runge-Kutta approximation at time t = 20.
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Fig. 5.2. Number of solves of linear systems versus step number: direct time-stepping (◦) and

fast algorithm (∗).

The two-dimensional example above is still small enough that a direct solution
of the linear systems using sparse solvers is reasonable. A direct implementation of
the m-stage Radau IIA method (cf. [6]) requires only m sparse LU factorizations,
computed at the beginning of the integration, followed by mN substitutions. On
the other hand, for the algorithm presented here we need to solve (K + 1)(L − 1)
linear systems with matrices λM + A for as many different values of λ, and the mB
linear systems for the B direct steps. Especially with a diagonal, lumped mass matrix
M = DDT , this work can be reduced by a similarity transform taking D−1AD−T

to tridiagonal (or Hessenberg) form T , but exploiting sparsity here becomes an issue;
see [4, 12]. The resulting linear systems with λI + T are then inexpensive to solve.
Even without using such a transform, the fast algorithm eventually overtakes the
standard algorithm for sufficiently large step numbers N , in the present example for
N ≈ 1000. Much earlier and larger relative gains arise when iterative solvers are used
for the linear systems in both algorithms, as is clear from the linear systems count in
Figure 5.2.

6. Error analysis. Our analysis relies on the good behaviour of the trapezoidal
rule for certain holomorphic integrands [8, 17, 18]. Following the ideas in [8], we
consider the continuation of the parametrization (3.4) to the conformal mapping

γ(w) = µ (1 − sin(α + iw)). (6.1)

(For ease of presentation we set σ = 0 in (1.2).) This conformal mapping transforms
each horizontal straight line

Im w = y, −d ≤ y ≤ d,

with 0 < α − d < α + d < π
2 , into the left branch of the hyperbola

λ ∈ C :

(
Re λ − µ

µ sin(α − y)

)2

−
(

Im λ

µ cos(α − y)

)2

= 1,

i.e., the left branch of the hyperbola with center at (µ, 0), foci at (0, 0), (2µ, 0) and
with asymptotes forming angles ±[π/2 − (α − y)] with the real axis. Therefore, γ
transforms the horizontal strip

Dd = {w ∈ C : |Im w| ≤ d}
8



into the region Ω = γ(Dd) limited by the left branches corresponding to y = ±d. To
indicate the dependence on the parameter µ of (6.1), we write Ω = Ωµ. We note that
λ ∈ Ωµ if and only if hλ ∈ Ωhµ for any h > 0, so that

hΩµ = Ωhµ.

Because of (1.2), henceforth we will assume that α > 0 and d > 0 satisfy 0 < α− d <
α + d < π

2 − ϕ. Under these conditions, all the hyperbolas we are considering lie
outside the spectrum of −A.

After parametrizing (3.1) via γ, we get

r(−hA)n q(−hA) =

∫ +∞

−∞

Gh,n(x) dx,

where Gh,n(w) is given, for w ∈ Dd, by

Gh,n(w) =
1

2πi

(
γ(w) + A

)−1

r(hγ(w))n q(hγ(w)) γ′(w). (6.2)

For an integrable mapping G : R → X , K ≥ 1 and τ > 0, set

Eτ,K(G) =

∫ +∞

−∞

G(x) dx − τ

K∑

k=−K

G(kτ), (6.3)

i.e., Eτ,K(G) stands for the quadrature error of the truncated trapezoidal rule for
the integral of G. Our goal is precisely to estimate Eτ,K(Gh,n). To this end we first
consider the behaviour of Gh,n on Dd. We need the following lemma whose elementary
proof is omitted.

Lemma 6.1. Let r(z) be a rational function with r(0) = 1, r′(0) = 1 which
satisfies the L-stability condition (2.6). Then, there exist ρ > 0 and b > 0 such that

|r(z)| ≤ e2δ

1 + b |z| , for z ∈ Ωδ with 0 < δ ≤ ρ. (6.4)

Now, from the sectorial condition (1.2) on A and Lemma 6.1 with δ = hµ ≤ ρ,
we obtain

‖Gh,n(x + iy)‖ ≤ C0
e2µhn

(1 + bhµ(coshx − sin(α − y)))n
(6.5)

for x ∈ R and |y| ≤ d (recall that 0 < α − d < α + d < π
2 − ϕ), where C0 is the

constant given by

C0 =
M

2π

√
1 + sin(α + d)

1 − sin(α + d)
max
z∈Ωρ

‖q(z)‖.

Finally, the above bound (6.5), the elementary inequality

1 + c − s ≥ (1 − s)(1 + c), c, s > 0,

and the bound 1 for the sine yield, for |y| ≤ d and t = nh,

‖Gh,n(x + iy)‖ ≤ C0 e2µt

(1 − bµt/n)n

(
1 +

bµt

n
coshx

)−n

. (6.6)
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Next, to estimate Eτ,K(Gh,n), we are going to use an approach similar to the one
in [8, 17, 18]. We denote by S(Dd, X) the class formed by all the continuous mappings
G : Dd → X (for a complex Banach space X , here a space of matrices) holomorphic
on the interior of the strip Dd, and satisfying the following two conditions:

∫ d

−d

‖G(x + iy)‖ dy → 0, as |x| → +∞, (6.7)

N(G, Dd) :=

∫ +∞

−∞

{‖G(x + id)‖ + ‖G(x − id)‖} dx < +∞. (6.8)

Given G ∈ S(Dd, X), it turns out, assuming that G has a fast decay at ∞, that
Eτ,K(G) becomes very small as K → +∞ if τ is properly tuned (see [8, 17, 18] for
various situations). In Theorem 6.2 we assume that G exhibits the kind of decay of
Gh,n in (6.6) and this theorem will directly provide the estimate for Eτ,K(Gh,n) we
are looking for.

Theorem 6.2. Assume that G ∈ S(Dd, X) for some d > 0, and that there exist
C, a > 0 and n ≥ 1 such that

‖G(x)‖ ≤ C
(
1 +

a

n
coshx

)−n

, x ∈ R. (6.9)

Then, for τ > 0, K ≥ 1, there holds

‖Eτ,K(G)‖ ≤ N(G, Dd)

e2πd/τ − 1

+C

(
φ(a) e−a cosh(Kτ)/2 +

(
1 +

a

n
coshKτ

)−(n−1)
)

,

with φ(a) = 2 + | log(1 − e−a/2)|.
Notice that φ is decreasing, φ(a) → 2 as a → +∞ and φ(a) ∼ | log a| as a → 0+.
Proof. Set

Eτ,∞(G) =

∫ +∞

−∞

G(x) dx − τ

∞∑

k=−∞

G(kτ), τ > 0.

For fixed K ≥ 1, it is clear that

‖Eτ,K(G)‖ ≤ ‖Eτ,∞(G)‖ + τ
∑

|k|≥K+1

‖G(kτ)‖.

On the one hand, by Theorem 4.1 in [17] (see also [18]), we have

‖Eτ,∞(G)‖ ≤ N(G, Dd)

e2πd/τ − 1
.

On the other hand,

τ
∑

|k|≥K+1

‖G(kτ)‖ ≤ 2Cτ

+∞∑

k=K+1

(
1 +

a

n
cosh kτ

)−n

≤ 2C

∫ +∞

Kτ

(
1 +

a

n
coshx

)−n

dx.

10



The proof of the theorem is now completed by applying the following lemma. 2

Lemma 6.3. For R ≥ 0, a > 0 and n ≥ 1 there holds
∫ +∞

R

(
1 +

a

n
coshx

)−n

dx ≤ φ(a) e−a cosh R/2 +
(
1 +

a

n
coshR

)−(n−1)

.

Proof. The change of variables u = coshx shows that
∫ +∞

R

(
1 +

a

n
coshx

)−n

dx =

∫ +∞

cosh R

(
1 +

a

n
u
)−n du√

u2 − 1
.

Set β = max{coshR, n/a}. Then, from the estimates in [8] and the elementary
inequality

(1 + y/n)−n ≤ e−y/2, for 0 ≤ y ≤ n (6.10)

it turns out that
∫ β

cosh R

(
1 +

a

n
u
)−n du√

u2 − 1
≤
∫ β

coshR

e−au/2 du√
u2 − 1

≤
∫ +∞

R

e−a coshx/2 dx

≤ φ(a) e−a cosh R/2 .

Moreover,
∫ +∞

β

(
1 +

a

n
u
)−n du√

u2 − 1

≤
(
1 +

a

n
coshR

)−(n−1)
∫ +∞

β

(
1 +

a

n
u
)−1 du√

u2 − 1
.

Now, since β ≥ max{1, n/a}, the result follows from the observation that for both
n/a ≥ 1 and n/a ≤ 1 we have

∫ +∞

max{1,n/a}

(
1 +

a

n
u
)−1 du√

u2 − 1
≤
∫ +∞

1

(1 + v)−1 dv√
v2 − 1

= 1. 2

We apply Theorem 6.2 to Gh,n. First of all, notice that by (6.6) it is clear that
Gh,n satisties (6.7). Moreover, by Lemma 6.3, we have

N(Gh,n, Dd) ≤
4C0 e2µt

(1 − bµt/n)n
(6.11)

×
(

φ(bµt) e−bµt/2 +
(
1 +

bµt

n

)−(n−1)
)

,

and conclude that Gh,n ∈ S(Dd, X). Then, in view of (6.6) and (6.11), Theorem 6.2
yields directly

‖Eτ,K(Gh,n)‖ ≤ 4C0 e2µt

(1 − bµt/n)n

(
φ(bµt) e−bµt/2 + (1 + bµt/n)−(n−1)

e2πd/τ − 1

+ φ(bµt) e−bµt cosh(Kτ)/2+
(
1 +

bµt

n
cosh(Kτ)

)−(n−1)
)

.

11



A simplified version of this estimate is obtained by using the elementary inequalities
(6.10) and

(1 − y/n)−n ≤ e2y, for 0 ≤ y ≤ n/2,

φ(y) ≤ 3, for y ≥ 1.

Setting

C = 20 C0, a0 = 2 + 3
2b, a1 = 2 + 2b, a2 = 1

2b,

with b of Lemma 6.1 as before, we can summarize the final result in the following
theorem.

Theorem 6.4. The quadrature error (6.3) for Gh,n of (6.2) with (6.1) satisfies,
for t = nh and if n/2 ≥ bµt ≥ 1,

‖Eτ,K(Gh,n)‖ ≤ C

(
ea0µt

e2πd/τ − 1
+ e(a1−a2 cosh(Kτ))µt

+ ea1µt
(
1 +

bµt

n
cosh(Kτ)

)−(n−1)
)

.

The first term in the error bound becomes O(ε) if τ is chosen so small that
a0µt − 2πd/τ ≤ log ε, which requires an asymptotic proportionality

1

τ
∼ log

1

ε
+ µt.

For µ chosen such that

c1

B
log

1

ε
≤ µt ≤ c1 log

1

ε

with an arbitrary positive constant c1 and with B > 1, we obtain that the second
term is O(ε) if a1 − a2 cosh(Kτ) ≤ −B/c1, i.e., with

cosh(Kτ) = c2

for a sufficiently large constant c2. With the above choice of τ , this yields

K ∼ log
1

ε
.

The third term then becomes smaller than ε for

n ≥ c log
1

ε

with a sufficiently large constant c. Taken together, these estimates prove Theo-
rem 3.1.
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