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Abstract

Quadratic Hamiltonians with a linear Lie-Poisson bracket have a number of applica-
tions in mechanics. For example, the Lie-Poisson bracket e(3) includes the Euler-Poinsot
model describing motion of a rigid body around a fixed point under gravity and the
Kirchhoff model describes the motion of a rigid body in ideal fluid. Advances in computer
algebra algorithms, in implementations and hardware, together allow the computation
of Hamiltonians with higher degree first integrals providing new results in the search
for integrable models. A computer algebra module enabling related computations in a
3-dimensional vector formalism is described.
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1 Overview

This contribution is based on a talk given at the one-day meeting held at Queen Mary, University
of London, to celebrate Malcolm MacCallum’s 60th birthday and his contributions to general
relativity and computer algebra. This paper differs from the other ones in this GRG issue in
that it has only very few links to general relativity. It deals with computer algebra applied
to the solution of ordinary differential equations (ODEs) which is an area in which Malcolm
made contributions as well. Together with his former PhD student Yiu-Kwong Man, Malcolm
had worked successfully on single first order non-linear ODEs. Malcolm’s computer program
ODESOLVE which was revised in recent years by Francis Wright is an integral part of the
REDUCE computer algebra system and much used, for example in my package CRACK [12].
Before coming to the more technical part of the talk it should not remain unmentioned that
our computer algebra group at the Queen Mary and Westfield College (QMW) was integrated
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in an ESPRIT Working Group together with groups from 5 other European countries. This
was initiated by Malcolm and Evelyne Tournier/Paris and was running for 3 years 1992-95.
Malcolm’s guidance and integrating role were a key for its success and its extension for another
3 years from 1997 to 2000.

The computer algebra group at QMW was visited repeatedly by Vladimir Sokolov from
the Landau Institute in Moscow. He introduced me to the problem that I am going to report
on: integrable quadratic Hamiltonians. The talk at Queen Mary solely concentrated on the
mathematics and the results of this collaboration with Sokolov as they are written up in the
preprint [7]. Because this contribution is to relate to Malcolm’s activity in computer algebra,
here after an introduction to integrable Hamiltonians and Poisson brackets in the following
section and an outline of results in section 3 we explain in more detail in section 4 a module of
computer algebra routines that is able to do the required computations much more efficiently
in a vector formalism and therefore will be useful as a tool for investigating other classes of
Hamiltonians.

2 Poisson Brackets and Quadratic Hamiltonians

The Hamiltonian ODE-systems we investigated are formulated with the help of a Poisson
bracket. In an m-dimensional space of dynamical variables yy, ..., Y, a Poisson bracket {-,-}
can be defined by a skew symmetric m X m structure matrix J through

{F,G}=VF-J-VG, V functions F(y),G(y)

where J has to satisfy skew symmetry J¥(y) = —J’*(y) and a Jacobi identity:
(JH9y 7% 4+ JH G, T + Ji'9 J*) =0, 14,4,k =1,..,m. Equations of motion take the form
dy;

dt ={v, Hy)}, i=1,..,m (2.1)

where H is a given Hamiltonian function. Poisson brackets generalize the canonical form of

the Hamiltonian formalism as seen in the following simple example. Taking for the structure
O _
1 0
instantly: with y; =p, yo =¢q, d/dt =, we get p=—0H/0q , ¢= OH/dp .

An important special class of Poisson brackets is defined through a structure matrix J that
is linear in the dynamical variables y,. The Jacobi identity for J;; = cijk implies a Jacobi
identity for the coefficients cfj which have to be structure constants of a Lie algebra. For
example, in the case of so(3) we have

matrix J the simple form J = ( ) the equations of motion of a point particle follow

0 _y3 y2
J=| ¢v¥» 0 =y
-y> oyt 0

Hamilton’s equations in this case take the form

dy
%_yxVH(y).



The quadratic Hamiltonian

where [, I5, I3 are constants gives Euler’s equations of motion of a rigid body

d_’yl 12—1323 d_yg_l3_1131 dy3 11—1212
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with I;, I, I3 being the moments of inertia about the coordinate axis and y', 4?2, y® the corre-
sponding body angular momenta. H is the kinetic energy of the body and the angular velocities
are w' = y'/I,.

In the following we consider the family of Poisson brackets

{M;, M;} = e My, {Mi, v} = €ijk Yes 17>V} = K €ije My (2.2)

where the dynamical variables M; and ~; are components of 3-dimensional vectors M and T,
€k 1s the totally skew-symmetric tensor, x is a constant parameter. The cases k = 0, Kk > 0
and k < 0 correspond to the Lie algebras e(3), so(4) and so(3,1). This bracket possesses two
Casimir functions:

Ji=(MLT), J,=«kM?+|T?

i.e. integrals of motion for any Hamiltonian, with (-, -) denoting the dot product. Each of the
Casimirs can be used once to eliminate one of the 6 dynamical variables, the Hamiltonian H
can be used twice and any other first integral can also be used twice. Therefore, for Liouville
integrability we need one additional first integral I, functionally independent of the Hamiltonian
H and Jl, J2.

The object of our study are quadratic Hamiltonians. Their general form is

H=(M, AM)+ (M, BT) + (I, CT) + (P, M) + (@, I,

where A, C are symmetric constant 3 X 3-matrices, B is an arbitrary constant matrix, P, () are
constant vectors.

There are two examples of classical problems with the e(3)-bracket kK = 0 and a Hamiltonian
of the above form:

1. the Euler-Poinsot model describing the motion of a rigid body around a fixed point under
gravity (with H = (M, AM) + (@, T') ), and

2. the Kirchhoff model describing the motion of a rigid body in ideal fluid (with H =
(M, AM) + (M, BT) + (T, CT) ).

Hamiltonians of the above type with k # 0 are related to the Poincare model of motion of
a rigid body with an ellipsoidal hole filled with fluid. For k # 0 the Kirchhoff model describes
the motion of a rigid body in a space of constant curvature.



Most of the known Hamiltonians with an extra polynomial first integral, which we will call
integrable, were found in the 19*® century by Lagrange, Euler, Kirchhoff, Clebsch, Steklov. One
example is the well known Kowalewski case

H = M} + M3 +2M3 + qiv1 + qay;
with a 4™ degree first integral (FI)
I = G2+ G3,  where
Gy = M} —M; —qv+ @,

Gy = 2M My — @1 — 1.

This and the Hamiltonians of Lagrange (with a 15t FI) and Euler (with a 284 FI) are all the
integrable cases of the Euler-Poinsot model. For the Kirchhoff model the integrable cases of
Frahm-Schottky, Steklov-Lyapunov and Adler-van Moerbeke-Reyman-Semenov-tian Shansky
[1], [2] have a Hamiltonian with diagonal matrices A, B, C.

The first "non-diagonal” Hamiltonian with x = 0 was found only recently by Sokolov ([4]).
Shortly afterwards TW and Efimovskaya combined this and the Kowalewski Hamiltonian to a
more general integrable Hamiltonian by determining all e(3) Hamiltonians with a 4" degree
first integral and a matrix A with two equal eigenvalues (cf. [11]).

A different generalization of Sokolov’s Hamiltonian to k # 0 can be written in the form

H= (M, AM) + (b,M x T), (2.3)

where A is a constant symmetric matrix, b # 0 is a constant vector and x stands for the
cross product. It turns out that this class is very rich in integrable cases. In the paper [6]
all Hamiltonians (2.3) with a quartic additional integral were described. Moreover, it was
mentioned in [8, 6, 9] that the general Sklyanin brackets [3] for the X X X-magnetic model lead
to some integrable Hamiltonians of the same kind.

3 A Rich Class of Integrable Hamiltonians

In this section we summarize results of the collaboration with Vladimir Sokolov as it is described
in more detail in [7] and as it was reported in the talk at Queen Mary.

Our starting point is the observation that known Hamiltonians of the form (2.3) have a
linear partial integral P satisfying {H, P} = QP for some (here necessarily linear) polynomial
Q. A closer study reveals the existence of two cases. For one of both cases one can show that it
contains exactly two integrable Hamiltonians, both Hamiltonians having an extra first integral
of 4" degree. One Hamiltonian had been found earlier by Sokolov (cf. [4],[5]) and the other by
Sklyanin and Tsiganov (cf. [3],[8]).

The second case requires the Hamiltonian to have the form

H=c (a, b) IM[? + ¢ (a, M) (b, M) ¥ <b, M x r), (3.4)
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where a and b are constant vectors and ¢; are constant scalars.

It is possible to formulate necessary integrability conditions on ¢; using the Kowalewski-
Lyapunov test as follows. The right hand side of the equations of motion (2.1) consists of
homogeneous quadratic polynomials in y;. In a first step one computes so-called Kowalewsk:
solutions of the form .

Yo = ;K (3.5)
where K is a constant (6-component) vector computed from the algebraic system that arises
when substituting (3.5) into (2.1). A linearization Y = Yo + W around each Kowalewski

solution produces conditions

e 1
= =2S(¥), (3.6)

where S is a constant 6 X 6-matrix depending on the Kowalewski solution. Solutions have the
form ¥ = st~* where s is an eigenvector and k an eigenvalue of the matrix S.

The Kowalewski-Lyapunov test requires the so-called Kowalewski exponent 1 — k either to
be an integer, implying that the solutions of (2.1) are single valued, or at most to be rational,
with the consequence that solutions of (2.1) have algebraic branching points. But & cannot
occupy an open set of C or R if (2.1) is to be integrable. If we seek values of ¢; such that
H from (3.4) is integrable for any value of a and b then this has the consequence that k
must not depend on arbitrary parameters involving a or b. We set k = —|al® which all the
known integrable Hamiltonians of type (3.4) satisfy and scale the norm of b by scaling H. But
the angle between a and b is a non-trivial parameter. Demanding all £ from all Kowalewski
solutions to be independent of this parameter narrows down ¢; to the following 5 pairs:

a) ¢ is arbitrary, co= 0
b) ¢ =1, Cy = —2;
c) ¢ =1, co = —1;
d) =1, Cy = —%;
e) ¢ =1, co = 1.

The case a) describes a Hamiltonian that is a special case of
2
H = ci|b]?|M[? + & (b, M) n (b, M x r), (3.7)

which possesses the linear integral of motion I = (b, M) without the additional restriction
k= —|al?.

The Hamiltonian b) admits an additional cubic integral and had been found earlier by
Tsiganov and Goremykin (cf. [9]). Hamiltonian c¢) is known too. It has an extra quartic
integral (cf. [6]).

Case d) gives a new integrable Hamiltonian

1

H= (a, b)|1v1|2—2

(a, M) (b, M) n (b, M x r), (3.8)



which under the condition x = —|a|? has a first integral of 6" degree

I = (b,M)Q[(b x a, M x a>2M2+2(b x a, M x a) (b x a, M x (M x r))
12 (M,b X a)2 _ (b x a, M x r)2 — M2T? (b,a)2 — /fM2I‘2b2]. (3.9)

Finally, it was shown recently by S.Yu. Sakovich that case e) does not pass the Painleve test
(cf. [10]).

From the six integrable Hamiltonian of type (2.3) the Hamiltonian (3.7) includes a special
case with two non-trivial first integrals. The Hamiltonian

Hiom = |b|? M2 — %(b, M>2 + <b, M x 1‘) (3.10)

has under condition £ = —|bJ? apart from the linear first integral (b, M) the additional integral
of degree 4:
2
+[M*(b, M)? [(k, b)* + [K[*b[*] — (k x b, M xT)

+2(k x b, b x M) [IMP2(k,b x T) — (M, T)(k, b x M)]

where k is an arbitrary constant vector. With two integrals of motion, both functionally
independent of H and the Casimirs, the Hamiltonian (3.10) is superintegrable.

All 7 homogeneous integrable Hamiltonians of type (2.3) (2 from case 1, 4 from case 2 and the
super integrable one) can be generalized to inhomogeneous form by adding to H suitable terms
linear in M, T" and appropriate lower degree terms to the first integrals. The inhomogeneous
version of case 2d) is shown below in (4.16),(4.17).

4 A 3-dimensional Vector Formalism

In this section we look into the computer algebra aspects of determining integrable Hamiltoni-
ans.

4.1 Motivation

To write down the Hamiltonian and first integrals in vector notation provides a geometric
interpretation but it is not the way how they were originally obtained. Computations were
performed for a Hamiltonian of the form

H = a1M12 + a2M22 + agMg + a4M1M3 + a5M2M3
+M1’}/2 — MQ’Yl + (k, M) + (II, F) (4].].)



with undetermined a; and k, n. Its quadratic part can be reached by orthogonal transformations
from any (real) Hamiltonian (2.3). The ansatz for the first integral I is a general polynomial of
some degree d in the six variables M;, v; also with undetermined coefficients. The commutator
condition {I, H} = 0 results in a bi-linear system of algebraic equations for the coefficients
of H and I. For homogeneous first integrals of degree d = 6 the bi-linear system involves
already 791 equations with 8938 terms for 458 unknowns and for d = 8 already 2001 equations
with 28158 terms for 1278 unknowns. Inhomogeneous versions of these problems have 2 to
2.5 times as many unknowns and conditions. Such systems can currently not be solved by
standard computer algebra packages and also all attempts to use specialized packages for solving
polynomial systems failed. Although being extremely large, the systems are also sparse and
overdetermined, i.e, the kind of problems the package CRACK is designed for (cf. [12]). Using
this package, degrees d < 6 could be analysed automatically and degrees 6 < d < 8 partially
interactively.

Once the first integral is computed the challenge is to rewrite it in a human readable form,
not involving hundreds or thousands of terms. This was the initial aim of a package V3TooOLS
of routines for facilitating computations with 3-dimensional vectors.

4.2 Converting Representations of Scalar Vector Expressions

The idea is to use products (a, (b X (¢ x (d x ...))) (in the following denoted as (abed..) ) to
compactify large expressions of scalar vector products. In total, routines c2s, s2e, e2s, s2c
convert scalar vector expressions from the following three forms into each other:

e “Component form”: polynomials in terms of components a;, b;, .. of vectors a, b, ...,

e “Standard vector form”: polynomials in terms of dot products (a, b) and triple products
(a, (b x c¢)) (in the following denoted (ab) and (abc))

e “Extended vector form”: polynomials in terms of dot and triple products but also prod-
ucts (abed..).

The conversion from standard vector form to component form as implemented in s2c is
obvious. Also the conversion from extended to standard vector form as implemented in e2s
poses no problem when using recursively the identity

(abcd..) = (ac)(bd..) — (bc)(ad..). (4.12)

To rewrite a scalar vector expression K from component form into standard vector form
(using c2s) one starts by partitioning K = ) K, where all terms in one K, have the same
total degree with respect to all the components of the occuring vectors. For example, the two
terms (a1)2b2 and asgazb; would be in one K,. Then each K, is converted by

e formulating the most general homogeneous polynomial P, in standard vector form with
undetermined coefficients that has the same respective degree in all the vectors as K,

e converting this polynomial to component form and
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e determining the coefficients so that P, = K,,.

If three vectors are involved and the polynomial is at least of 6th degree then the solution of
the linear algebraic system for the coefficients will have an arbitrary parameter resulting from
the vector identity

0 = (abc)? + (aa)(bc)® + (bb)(ac)? + (cc)(ab)?
—(aa)(bb)(cc) — 2(ab)(bc)(ac) (4.13)

for any vectors a, b, c. In the case of four vectors identities exist already with degree 5, like
0 = (abc)(dd) — (abd)(cd) + (acd)(bd) — (bcd)(ad). (4.14)

The conversion from standard to extended vector form proceeds analogously but is more in-
volved. Again the polynomial is partitioned and each part K, is converted on its own. To
convert one K,,

e all permutations of all vectors with their multiplicity as they occur in each term of K,
(for example abcced) are listed, like the permutation becad,

e each permutation is interpreted as a generalized product, like (bccad) and is converted
using (4.12) to create an identity, here
= (bccad) — (abd)(cc) + (acd)(bc),

e these identities are used to reduce the number of terms in K,,.

When trying to convert, for example (3.9), the terms in there have between 12 and 14 vectorial
factors. That means for each K, to be converted several 100,000 permutations are possible.
This number reduces if only those permutations are generated for which the left two vectors
differ and are sorted, for example lexicographically and for which the right two vectors differ
and are sorted. When writing each permutation as an extended product and expanding it into
standard vector form only a small fraction of those turn out to be at least pairwise linearly
independent. To utilize the resulting identities for a length reduction of expressions the related
procedure s2e applies an algorithm described in [13] which is implemented in the package
CRACK.

To give an example: the first integral (3.9) written in component form involves typically
around 2000 terms. It is unique only up to the addition of trivial first integrals depending
functionally exclusively on the Hamiltonian and the two Casimirs. In one of these equivalent
versions the first integral is factorizable and reads in standard vector form

In = (bM)*[(aa)’(bM)*(MM) — 2(aa)(ab)(aM)(bM)(MM)
—2(aa)(abM)(bM)(MT') + 2(aa)(abT')(bM)(MM)
+(aa)(bM)*(I'T) + (ab)*(aM)*(MM)

+2(ab)(abM)(aM)(MT') — 2(ab)(abT')(aM)(MM)
—2(ab)(aM) (bM)(TT) + (aM)?(bb)(I'T)
—(aM)*(bI')? + 2(aM)(al') (bM) (bI') — (aT')*(bM)’]
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which is slightly longer than the “hand-compactified” form (3.9). The second factor of this
expression partitions into 3 sums K,. For example, K; contains 4 terms, each a product
of vectors aaabbMMMI', giving 3280 permutations, leading to 273 pairwise independent
identities of which one fits perfectly to simplify K; to 2(abMI'aMMab). Together with the
other two compressed K, the first integral takes the compact form

Ien, = (bM)? [2(abMT'aMMab) + (MM)(abaM)* — (abMITMba)] (4.15)

computed in 140 sec’. The inhomogeneous generalization of (3.8) reads
1
H = (ab)(MM) — E(aM)(bM) + (bMT') + p(abM) (4.16)

with the compactified first integral

I= Ig from (4.15)
+4p(bM)[(abMTI'T'Mbab) — (aMababbMMaM) — (aMaabbbMI'M)
+2(aMababbMI'M) — (aMbMbabal'M )]
+p*[4(bM)(MM)(abT') ((aa)(bb) — 3(ab)?) + 4(ab)(abM)(al’)(bM)?
+4(abba)(bb)(MT)? + 4(abbMT'TMbba) + 4(abbMMT'bMaab)
+4(bb)(MM) ((aMaMabba) — 2(aMaabMba))
—4(aMabababMMMb) + 4(aMbbaabbMMMa)
+8(aMbaMbbI'Mab) — 4(bMMabI'aMbab) — 8(bT'aMbbMMaab)]
+8p®[(abaMMMbbaab) + (abbMMbal'ba) — (abbl'aMMbba)]
+4p*[(ab)?(MM) — (bb)(I'T")](abba) (4.17)

4.3 The algebra of dot and triple products

As shown above the compression rate going from component form to only standard vector form
is already enormous. To utilize this compression not only for display but for computations one
has to work with dot and triple products as independent variables v, has to find all identities
between the v,, to compute a Grobner basis of all identities and to perform any relevant
computation modulo this Grobner basis. For 3 vectors a, b, c there are only 1 triple product,
6 dot products and 1 identity (4.13) between them. For 4 vectors there are already 4 triple
products, 10 dot products and the Grobner basis involves 25 identities?.

To classify integrable Hamiltonians by working in the algebra of scalar vector products v,
the key abilities are:

e the generation of an ansatz for H and I with specific homogeneity weights,

e the computation of the Poisson bracket,

LAll run times refer to computations done in REDUCE under Linux on a 3GHz Pentium 4.
2when based on a lexicographical ordering giving triple products highest priority



e the solution of the algebraic system for the undetermined coefficients,

e the analysis of whether any found first integral is functionally independent of known
trivial and non-trivial first integrals.

In the following we will discuss the first two and the last step.

4.4 Multiple Homogeneity

To generate a finite degree polynomial ansatz for the Hamiltonian and the first integral in terms
of v, one has to introduce a list of homogeneity weights for each vector. We abbreviate ‘weight
list of ..” in the following by [..].

Inspecting the Poisson bracket (2.2) and Casimir x|M]|? + |T'|? one is led to weight lists
[M] = (1,0), [T'] = (1,1) and [k] = (0, 2) with the meaning that the Casimir is scaling invariant
under the group M; — e M;,v; — €vi, k — k and the group M; — M;,v; — €y, k — e* K, e €
R

Known vector formulations of integrable homogeneous Hamiltonians and their vector form
involve two constant vectors. A natural choice is to give one constant vector a the weight list
[a] = (0,1) to have [k] = [|a]?] and the other constant vector b a separate weight which is zero
for all the other vectors and k. Consequently one arrives at weight lists [M] = (1,0,0), [T'] =
(1,1,0),[a] = (0,1,0),[b] = (0,0,1),[x] = (0,2,0). Based on these weights the Hamiltonian
(3.4) is homogeneous with weights (2,1,1) and the first integral (3.9) is homogeneous with
weights (6,4,4).

From given weight lists for M, T, a, b follow weight lists for their dot and triple products v,
and it is no problem to computer generate a polynomial ansatz for a first integral I in terms
of v, and undetermined coefficients such that I has a given list of weight. For example, using
the above weight lists for M, T, a, b, x the ansatz for I with the weight list (6,4, 4) involves 136
terms.

4.5 Computing Poisson Brackets

After formulating an ansatz for H and I the next step is to compute Poisson brackets between

both through
OH oI
{H, I} = ; 8—%8—m{v“’ v} (4.18)

working in the free algebra of dot and triple products v, modulo a set of identities. This is
accomplished by computing the Poisson bracket structure constants cf,, from

{vy, v} = Chy Vp (4.19)

based on the component form of v, in terms of the dynamical variables M;,;, the Poisson
bracket (2.2) and a vanishing Poisson bracket if one of their arguments is a component of a
vector other than M, I". For example, when working with 4 vectors (M, I' + 2 constant vectors)
then computing cf,, from (4.19) for the 14 dot and vector products v, takes about one second.
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With known ¢f,, the computation of {H, I} based on (4.18) with H from (3.4) and I with
weight list (6,4,4) and 136 terms is done in milliseconds.

4.6 Functional Independence

The remaining task in an attempt to compute integrable Hamiltonians in vector form lies in
dealing with functional dependence of first integrals. For our purpose, only Hamiltonians that
have first integrals that are functionally independent of the two Casimirs and the Hamiltonian
itself are of interest. Instead of computing at first the Hamiltonian and first integrals and
investigating their functional dependence afterwards it is more elegant and efficient to prevent
functional dependence already in the ansatz for the first integrals. Such a restricted ansatz will
have fewer undetermined coefficients and, more importantly, will have fewer solutions (no trivial
solutions) and will thus be much easier to be solved completely. The problem to overcome is
that in a vector formalism we want to work modulo vector identities and at the same time
develop an ansatz modulo the functional dependence on trivial first integrals. What is given
initially is the weight list W of the first integral I for which an ansatz is to be computed. The
following algorithm does the job.

e With each known first integral I; one associates a symbol s, and the weight list wy, of Ii.

e One generates the most general polynomial S with weight list W in terms of variables sy,
each having a weight list wy.

e For each term t;(sy) of S one

— replaces s; by Ij(v,) to obtain the polynomial p;(v,) = t;(sk)]

Sp—1g?

— computes p;(v,) = p;j(v,) modulo the Grobner basis of vector identities, and
— adds the leading term Tj of p;(v,) to a list L of such leading terms.
o After generating the most general polynomial ansatz I with weight list W for the first

integral in terms of variables v,, based on a weight list for each v,, the ansatz for I is
reduced modulo the Grobner basis of vector identities to obtain 1.

e Finally, all terms of the list L are dropped from 1.

What remains is an ansatz for the first integral that can not be functionally dependent on
known first integrals and is reduced modulo all vector identities but otherwise is as general as
possible.

4.7 Comparison

Working in terms of v, has strengths and weaknesses. The advantage is that computations in
vector notation are much faster. With the weights as described in section 4.4 the computation of
integrable Hamiltonians with a 6'® degree first integral involves solving a system of 175 equations
with 1861 terms for 143 unknowns (including k, (aa), (ab), (bb) to increase generality) and
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takes less than 3 minutes compared to a partially interactive computation in component form
taking about 1/2 day (see section 4.1). But the vector computation has also disadvantages.

5

e [t requires to determine in advance how many constant vectors in addition to the two

vectors M, I are to be involved. For computing all the known homogeneous Hamiltonians
of type (2.3) and their first integrals two extra constant vectors are enough.

All the known integrable Hamiltonians and their first integrals listed in [7] have low
weights and at least their homogeneous parts can be found quickly with the vector for-
malism if one guesses the right weight list for all vectors beforehand. The advantage of
a computation in component form is to obtain a complete list of integrable cases. To
reach the same completeness statement when computing in vector form would, for ex-
ample, require to investigate all weights (2,m,n) for H and weights (6, p,q) for I with
m,n,p,q — oo to find all homogeneous quadratic Hamiltonians with a 6 degree first
integral. Therefore vector computations are more appropriate when searching for new
integrable Hamiltonians whereas computations in component form are more suitable for
formulating a completeness statement.

If the Hamiltonian H has not only terms of second degree in M, I but also of first degree
then it is called inhomogeneous and if this has an additional first integral I then the
homogeneous part Iy, of I, i.e. the terms of highest degree in M, I in [ are a first integral
of the quadratic part Hyom of H. Therefore inhomogeneous integrable Hamiltonians can
be found by first computing integrable homogeneous Hamiltonians and generalizing them
afterwards. In vector notation this generalization need not be straight forward as it
becomes apparent in case 4 of proposition 1 in [7]. In that case [jpom is rational in the
two constant vectors a, b with denominator (abab). One can write I as a polynomial by
multiplying it with the constant denominator but this denominator still has to be found
first, if necessary by doing a computation in component form. Another potential problem
that becomes apparent in the above case is that the inhomogeneous generalization may
allow an extra arbitrary constant vector that would not be found if one would try to
generalize Hyom, Ihom Only with the constant vectors appearing in there.

Conclusion

A set of algorithms and programs has been developed to do integrability investigations of
Hamiltonians in a vector formalism. This has been used so far to verify known integrable
Hamiltonians and their first integrals as reported in [7] and to find a compact representation
of those first integrals. Because of the large speed up that this vector representation allows, it
is well suited for further integrability studies of other classes of Hamiltonians.
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