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Abstract

We study the complexity of two Inverse Shortest Paths (ISP) problems with integer arc
lengths and the requirement for uniquely determined shortest paths. Given a collection of
paths in a directed graph, the task is to find positive integer arc lengths such that the given
paths are uniquely determined shortest paths between their respective terminals. The first
problem seeks for arc lengths that minimize the length of the longest of the prescribed paths.
In the second problem, the length of the longest arc is to be minimized.

We show that it is NP-hard to approximate the minimal longest path length within a
factor less than 8/7 or the minimal longest arc length within a factor less than 9/8. This
answers the (previously) open question whether these problems are NP-hard or not. We
also present a simple algorithm that achieves an O(|V |)-approximation guarantee for both
variants.

Both ISP problems arise in the planning of telecommunication networks with shortest
path routing protocols. Our results imply that it is NP-hard to decide whether a given path
set can be realized with a real shortest path routing protocol such as OSPF, IS-IS, or RIP.

Keywords: Inverse Shortest Paths, Computational Complexity, Approximation, Shortest
Path Routing

Mathematical Subject Classification (2000): 68Q25, 90C60, 90C27, 05C38, 90B18

1 Introduction

Computer and communication networks are often based on shortest path routing. Most Internet
domains use shortest path protocols such as OSPF, IS-IS, or RIP for internal routing. With
these routing protocols, all end-to-end traffic streams are routed along shortest paths with respect
to some administrative link lengths (or routing weights).

A major difficulty in planning such networks is to find link lengths that induce a set of globally
efficient end-to-end routing paths. The shortest path routing paradigm enforces rather compli-
cated and subtle interdependencies among the paths that comprise a valid routing. Therefore,
traditional planning approaches for shortest path networks work with the link lengths as decision
variables. Most of these methods rely on local search, simulated annealing, or Lagrangian relax-
ation techniques that evaluate the effects of routing length modifications [4, 3, 6, 12, 15, 16, 21, 23].
More evolved planning methods for shortest path networks use the end-to-end routing paths as
primary decision variables [2, 5, 18, 24]. They decompose the problem of finding an appropri-
ate routing into the task of finding the routing paths and the task of finding routing lengths
that induce these paths. In the master problem, efficient end-to-end routing paths are computed
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with mixed-integer linear programming or combinatorial optimization techniques. In a subsequent
step, linear programming techniques are used to find routing lengths that induce the computed
paths. If there are no compatible lengths for some set of end-to-end paths, then the routing length
computation returns one or more linear constraints that are valid for all shortest path sets but
violated by the given path set. These constraints are then added to the master problem in order
to recompute a different set of end-to-end routing paths.

The main advantage of the decomposition approach is that it permits the use of advanced opti-
mization techniques for multicommodity flow and unsplittable flow problems to compute provenly
optimal routing paths. However, it is essential for this approach that the Inverse Shortest
Paths (ISP) problem of finding compatible routing lengths (or generating the invalidity certifi-
cate) for the computed paths can be solved efficiently: Given a collection of paths in a directed
graph, the ISP problem is to find positive integer arc lengths for which the prescribed paths are
uniquely determined shortest paths between their respective terminals.

Note that the uniqueness of the prescribed shortest paths as well as the range of admissible
length values are very important concerns for shortest path routing in telecommunications. The
routers in a network calculate the shortest paths autonomously. Thus, the lengths must be chosen
such that for any pair of nodes only the prescribed paths are shortest paths. Otherwise, the traffic
flows in the real network might differ from those computed during network planning. For a network
that is operated in single path routing mode, this means that each prescribed path must be the
uniquely determined shortest path between its terminals.1 Furthermore, the routing lengths must
be small integers that fit into the data format of the routing protocol. For link-state protocols like
OSPF or IS-IS, this means that each single link length is bounded by some protocol-dependent
constant. With a distance-vector protocol such as RIP, the total length of each routing path is
bounded. Real network routing domains typically range from 10 to 1000 nodes. Thus, the limited
size of the lengths typically is not relevant for OSPF, which admits link lengths between 1 and
216−1. However, it becomes an important issue for IS-IS, which admits values up to 63 only. For
RIP, where the link lengths must be chosen such that the total length of the longest routing path
does not exceed 15, the restricted range of admissible lengths is one of the major difficulties in
practice. Therefore, it is natural to seek for integer lengths that either minimize the largest link
length or the length of the longest path.

Computing shortest paths in a weighted digraph is one of the classical combinatorial opti-
mization problems. Various algorithms are known to solve this problem efficiently. The inverse
problem of finding arc lengths that induce a prescribed set of paths or node-to-node distances
received only little attention in the mathematical literature.

Several groups studied the Inverse Shortest Paths problem in the context of data engineer-
ing where the task is to reconstruct data from inaccurate measurements or observations. Typical
applications are the estimation of the average travel times on road segments from total end-to-end
travel times, the recovery of the densities of earth crust layers from observed seismic waves, or the
reconstruction of relationship degrees in genetic sequencing [7, 22]. In these settings, the goal is to
find edge or arc lengths that match as good as possible with the observed distances and shortest
paths. Neither the uniqueness of the observed shortest paths nor the integrality of the lengths are
required in these ISP variants. Burton and Toint [9, 10] apply a quadratic programming approach
to estimate the arc lengths when the perceived shortest paths are known. For the same problem,
Tong and Lam [25] propose a conjugate gradient method. The case with additional upper bounds
on the shortest paths’ lengths is discussed by Burton et al. [8]. Fekete et al. [14] study the com-
plexity of a problem variant where the lengths shall be reconstructed from observed distances in
the network, but the shortest paths are not known. Cai and Li [11] show that the more general
Inverse Matroid Intersection problem can be transformed into a minimum cost flow problem
and be solved in strongly polynomial time.

The ISP problem with integer lengths and unique shortest paths has been rarely addressed.
Farago et al. [13] study a special case where the given paths are shortest paths w.r.t. the number of

1For simplicity, we consider only single shortest path routing in this article. If traffic is splitting among equally
long shortest paths (ECMP routing), then for every node pair all prescribed paths but only those must be shortest
paths. The inapproximability results presented in this paper carry over straightforward to this variant.
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edges and where the task is to find lengths such that all these paths are unique shortest paths. Ben-
Ameur and Gourdin [1] discuss structural properties of (undirected) path sets where all paths are
uniquely determined shortest paths for some common edge lengths. Ben-Ameur and Gourdin also
consider the problem of finding integer such lengths that minimize the largest link length. They
propose several linear programming based heuristics, but they leave open whether this problem is
NP-hard or not.

In this paper, we study the complexity of the ISP problem with integer lengths and unique
shortest paths. In the following section, we formally introduce two variants of this problem that
arise in the planning of shortest path networks. In Section 3, we prove that both variants areAPX -
hard. More precisely, we show that the minimal longest path length cannot be approximated
within a factor less than 8/7 or the minimal longest arc length within a factor less than 9/8,
unless P = NP. This implies that it is NP-hard to decide whether a prescribed set of paths
can be realized with any real shortest path routing protocol such as OSPF, IS-IS, PNNI or
RIP. In Section 4, we present a simple linear programming based algorithm that achieves an
O(|V |)-approximation guarantee for both ISP variants.

2 Notation and Preliminaries

Let D = (V,A) be a directed graph. For any path P in D and any arc lengths λ = (λa)a∈A ∈ RA+,
we denote λ(P ) :=

∑
a∈P λa.

Definition 2.1 The non-negative arc lengths λ ∈ RA+ are said to be compatible with a given set
Q of paths, if each path P ∈ Q is the uniquely determined shortest path between its terminals with
respect to λ. A set Q of paths is called a Shortest Path System (SPS) if there exist compatible arc
lengths λ ∈ RA+ for Q.

The family of SPSs in a digraph D forms an independence system (or hereditary family), because
any subset (including the empty set) of an SPS is an SPS as well.

In this paper, we consider two problems of finding small integer lengths that are compatible
with a prescribed path set. In the first variant, we want to minimize the length the longest path.
This leads to the following combinatorial optimization problem:

Problem: Minimum Path-Length Inverse Shortest Paths (Min-Path-ISP)

Instance: A digraph D = (V,A) and a path set Q ⊆ P .

Solution: Integer arc lengths λ ∈ ZA+ with λa ≥ 1 for all a ∈ A that are compatible with Q.

Objective: min maxP∈Q λ(P ).

In the second variant, we wish the maximum arc length to be minimized:

Problem: Minimum Arc-Length Inverse Shortest Paths (Min-Arc-ISP)

Instance: A digraph D = (V,A) and a path set Q ⊆ P .

Solution: Integer arc lengths λ ∈ ZA+ with λa ≥ 1 for all a ∈ A that are compatible with Q.

Objective: min maxa∈A λa.

The Min-Path-ISP problem corresponds to the task of finding lengths that realize the prescribed
paths with a distance-vector protocol in practice. The Min-Arc-ISP corresponds to the analogous
task for a link-state protocol.

Without loss of generality, we can assume in both problems that the given path set Q is an
SPS. Otherwise, there are not even real-valued arc lengths compatible with Q, and none of the
two problems has a solution. Whether a path set Q is an SPS can be decided in polynomial time
by solving a linear inequality system as shown in Section 4.

3 Inapproximability Results

In the first part of this section, we show that the problem Min-Path-ISP is APX -hard.
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Figure 1: Nodes Vi and arcs Ai introduced for any i ∈ S.

Theorem 3.1 It is NP-hard to approximate Min-Path-ISP within a factor of 8/7− ε, for any
ε > 0.

Proof. We construct a polynomial reduction from the NP-complete decision problem Set Par-
tition(3) to the problem of computing a solution of value strictly less than 8 for Min-Path-ISP.
Set Partition(3) is a restricted variant of the Set Partition problem introduced by Karp [19]
(also called Exact Set Cover in Garey and Johnson [17]). Given a finite set S and a collection
C ⊂ 2S with |{C ∈ C | i ∈ C}| = 3 for all i ∈ S, the task is to decide whether there exists a
subcollection C′ ⊆ C which forms a partition of S. In Set Partition(3), each element occurs in
exactly three sets of the collection. It is not difficult to verify that this restricted variant of Set
Partition remains NP-complete.

Suppose we are given an instance of Set Partition(3) that consists of the set S and the
collection C =

{
Cj ⊂ S | j ∈ J

}
. For each element i ∈ S, we refer with J(i) :=

{
j(i), k(i), l(i)

}
=

{j ∈ J | i ∈ Cj} to the indices of the three sets in C that contain i. We construct a Min-Path-ISP
instance consisting of a digraph D = (V,A) and a shortest path system Q as follows.

For each i ∈ S, we introduce 28 nodes

Vi :=
{
vji , w

j
i , b

j
i,1 , . . . , b

j
i,6 | j ∈ J(i)

}
∪
{
ui,1, ui,2, v̄

l(i)
i , w̄

l(i)
i

}
.

Some of these nodes receive multiple names. For every i ∈ S, we also denote v̄
j(i)
i := v

k(i)
i ,

v̄
k(i)
i := v

l(i)
i , w̄

j(i)
i := w

k(i)
i , and w̄

k(i)
i := w

l(i)
i . These nodes are connected by two types of arcs.

For each single element i ∈ S, we add the arcs

Ai :=
{

(v
j(i)
i , ui,1) , (ui,1, ui,2) , (ui,2, v̄

l(i)
i ) , (v̄

l(i)
i , w̄

l(i)
i )

}

∪
{

(vji , v̄
j
i ) , (wji , w̄

j
i ) , (v

j(i)
i , w

j(i)
i ) | j ∈ J(i)

}

∪
{

(bji,q , b
j
i,q+1) | j ∈ J(i), q = 1, . . . , 5

}
.

The subgraph induced by these nodes and arcs is illustrated in Figure 1.
Additionally, we introduce two linking arcs Aji,i′ :=

{
(vji , w

j
i′ ) , (v̄ji , w̄

j
i′ )
}

for each pair of ele-
ments i, i′ ∈ S, i 6= i′, that are both contained in some set Cj ∈ C. Figure 2 illustrates these arcs.
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Figure 2: All linking arcs Aji1i2 , Aji1i3 , and Aji2i3 introduced for some set Cj = {i1, i2, i3} ∈ C with
j = k(i1) = k(i2) = l(i3).

Together, these sets form the simple digraph D = (V,A) with

V :=
⋃

i∈S
Vi and A :=

⋃

i∈S
Ai ∪

⋃

(i, i′) ∈ C2
j with

j ∈ J and i 6= i′

Aji,i′ .

In this digraph, we prescribe various shortest paths. For each single element i ∈ S, we precribe
eight paths

Qi :=
{

(v
j(i)
i , ui,1, ui,2, v̄

l(i)
i ) , (w

j(i)
i , w

k(i)
i , w

l(i)
i , w̄

l(i)
i )

}

∪
{

(vji , v̄
j
i , w̄

j
i′) , (vji , w

j
i′ , b

j
i′,1, . . . , b

j
i′,6) | j ∈ J(i)

}
.

For each pair i, i′ ∈ S, i 6= i′, with i, i′ ∈ Cj for some Cj ∈ C, we prescribe two paths

Qji,i′ :=
{

(vji , v̄
j
i , w̄

j
i′ ) , (vji , w

j
i′ , b

j
i′,1, . . . , b

j
i′,6)

}
.

Figures 3 and 4 illustrate these paths. The set of all prescribed paths is

Q :=
⋃

i∈S
Qi ∪

⋃

(i, i′) ∈ C2
j with

j ∈ J and i 6= i′

Qji,i′ .

It is obvious that this construction is polynomial.

In the first part of this proof, we show that the constructed Min-Path-ISP instance is solvable
for any given Set Partition(3) instance, i.e., Q is an SPS. Furthermore, we show that the value
of any solution of the Min-Path-ISP instance is at least 7. Consider the arc lengths λ ∈ ZA+
defined as

λa :=





3 , for all a = (wji , w̄
j
i ) with j ∈ J and i ∈ Cj ,

2 , for all a = (vji , v̄
j
i ) with j ∈ J and i ∈ Cj , and

1 , otherwise.

(1)
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Figure 3: Precribed shortest paths Qi for any i ∈ S.

For each i ∈ S, the paths P = (v
j(i)
i , ui,1, ui,2, v̄

l(i)
i ) and P ′ = (v

j(i)
i , v

k(i)
i , v

l(i)
i , v̄

l(i)
i ) are the only

(v
j(i)
i , v̄

l(i)
i )-paths in D. Since λ(P ) = 3 < 6 = λ(P ′) by (1), the path P is the uniquely determined

shortest (v
j(i)
i , v̄

l(i)
i )-path. Similarly, for each j ∈ J and each pair (i, i′) ∈ C2

j , the paths P =

(vji , v̄
j
i , w̄

j
i′ ) and P ′ = (vji , w

j
i′ , w̄

j
i′) are the only (vji , w̄

j
i′ )-paths in D, and λ(P ) = 3 < 4 = λ(P ′)

by (1). The paths (w
j(i)
i , w

k(i)
i , w

l(i)
i , w̄

l(i)
i ), for i ∈ S, and the paths (vji , w

j
i′ , b

j
i′,1, . . . , b

j
i′,6), for

j ∈ J and (i, i′) ∈ C2
j , even are the solitary paths between their respective terminals. Hence, all

paths in Q are uniquely determined shortest paths w.r.t. λ.
Let P = (vji , w

j
i′ , b

j
i′,1, . . . , b

j
i′,6) for some j ∈ J and (i, i′) ∈ C2

j . As P ∈ Q and |P | = 7, we
have maxP∈Q λ(P ) ≥ 7 for all arc lengths that are compatible to Q and satisfy λa ≥ 1 for all
a ∈ A.

In the second part, we show that the constructed Min-Path-ISP instance has a solution of value
7 if the given Set Partition(3) instance is solvable. Assume there is a subcollection C ′ ⊆ C that
forms a partition of S. We define the arc lengths λ = λ(C ′) ∈ ZA+ as

λa :=





3 , for all a = (wji , w̄
j
i ) with Cj ∈ C′ and i ∈ Cj ,

2 , for all a = (wji , w̄
j
i ) with Cj 6∈ C′ and i ∈ Cj ,

2 , for all a = (vji , v̄
j
i ) with Cj ∈ C′ and i ∈ Cj , and

1 , otherwise.

(2)

Analogous to the first part, we now verify for each path in Q that it is a unique shortest path
between its terminals and its length is at most 7. For this, we consider each of the four path types
in Q individually.

Let P = (v
j(i)
i , ui,1, ui,2, v̄

l(i)
i ) for some i ∈ S. By (2), we have λa = 1 for all a ∈ P , and

thus λ(P ) = 3. According to our construction, the only other (v
j(i)
i , v̄

l(i)
i )-path in D is

P ′ = (v
j(i)
i , v

k(i)
i , v

l(i)
i , v̄

l(i)
i ). Since C′ defines a partition, the element i is contained in some

set Cj ∈ C′. By (2), this implies λ(vji ,v̄
j
i )

= 2 and, therefore, λ(P ′) ≥ 4.

Let P = (w
j(i)
i , w

k(i)
i , w

l(i)
i , w̄

l(i)
i ) for i ∈ S. As C′ defines a partition of S, i is contained in

exactly one set Cj ∈ C′. W.l.o.g., suppose this set is Cj(i). According to (2), we then have
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λ(w
j(i)
i ,w̄

j(i)
i ) = 3 and λ(w

k(i)
i ,w̄

k(i)
i ) = λ(w

l(i)
i ,w̄

l(i)
i ) = 2. Thus, λ(P ) = 7. Since P is the unique

(w
j(i)
i , w̄

l(i)
i )-path in D, it also is the unique shortest such path.

Let P = (vji , v̄
j
i , w̄

j
i′ ) for j ∈ J and (i, i′) ∈ C2

j . If Cj ∈ C′, then (2) implies λ(vji ,v̄
j
i )

= 2 and
λ(v̄ji ,w̄

j

i′ )
= 1. If Cj 6∈ C′, then the length of both arcs in P is one. Consequently, λ(P ) ≤ 3.

The only other (vji , w̄
j
i′ )-path in D is P ′ = (vji , w

j
i′ , w̄

j
i′ ). If Cj ∈ C′, then λ(vji ,w

j
i )

= 1 and
λ(wji ,w̄

j

i′ )
= 3. Otherwise, λ(vji ,w

j
i )

= 1 and λ(wji ,w̄
j

i′ )
= 2. Independent of whether Cj ∈ C′ or

not, it follows that λ(P ) < λ(P ′).

Finally, let P = (vji , w
j
i′ , b

j
i′,1, . . . , b

j
i′,6) for some j ∈ J and (i, i′) ∈ C2

j . By (2), all arcs in P have

length one. Hence, λ(P ) = 7. Furthermore, P is the solitary (vji , b
j
i′,6)-path.

Summarizing these arguments, it follows that the arc lengths λ are compatible with Q and that
maxP∈Q λ(P ) = 7. This concludes the second part of the proof.

In the following third part, it remains to show that the constructed Min-Path-ISP instance
has a solution of value 7 only if the given Set Partition(3) instance is solvable. For this, we
prove that any arc length vector λ ∈ Za+ with λa ≥ 1 for all a ∈ A that is compatible with Q and
satisfies maxP∈Q λ(P ) = 7 can be transformed into a subcollection C ′ ⊆ C that defines a partition
of S. So, suppose we are given such arc lengths and define the subcollection C ′ = C′(λ) ⊆ C as

C′ :=
{
Cj ∈ C | λ(vji ,v̄

j
i )
≥ 2 for some i ∈ Cj

}
. (3)

First, we show that every element i ∈ S is covered by C ′. Let i ∈ S and consider the two

(v
j(i)
i , v̄

l(i)
i )-paths P = (v

j(i)
i , ui,1, ui,2, v̄

l(i)
i ) and P ′ = (v

j(i)
i , v

k(i)
i , v

l(i)
i , v̄

l(i)
i ). Since P ∈ Q and

the lengths λ are compatible with Q, the inequality λ(P ′) ≥ λ(P ) + 1 must hold. With λa ≥ 1
for all a ∈ A, it follows that λ(P ′) ≥ 4. This, in turn, implies λ(vji ,v̄

j
i )
≥ 2 for some j ∈ J(i).

According to (3), Cj then belongs to C′. Since i ∈ Cj , the element i is covered by C ′.
Secondly, we show that the sets in C ′ are pairwise disjoint. Suppose C ′ contains two sets Cj and

Ck with j 6= k such that i ∈ Cj ∩Ck 6= ∅. Since Cj belongs to C′, there must be some q ∈ Cj with
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Figure 5: Extension of digraph D to digraph D∗.

λ(vjq ,v̄
j
q) ≥ 2. For this q, consider the two (vjq , w̄

j
i )-paths P1 = (vjq , v̄

j
q , w̄

j
i ) and P2 = (vjq , w

j
i , w̄

j
i ).

As λ is compatible with Q and P1 ∈ Q, the lengths λ must satisfy λ(P2) ≥ λ(P1) + 1, i.e.,

λ(vjq ,w
j
i )

+ λ(wji ,w̄
j
i )
≥ λ(vjq ,v̄

j
q)

+ λ(v̄jq ,w̄
j
i )

+ 1 . (4)

Let P3 = (vjq , w
j
i , b

j
i,1, . . . , b

j
i,6). Since P3 ∈ Q and |P3| = 7, all arcs in P3 have length 1. In

particular, λ(vjq ,w
j
i )

= 1. Together with (4) and λ(vjq ,v̄
j
q) ≥ 2, this implies λ(wji ,w̄

j
i )
≥ 3. Analogously,

Ck ∈ C′ implies λ(wki ,w̄
k
i ) ≥ 3. For the third index l = J(q) \ {j, k}, a similar argument yields

λ(wli,w̄
l
i) ≥ 2.

Now consider the path P = (w
j(q)
q , w

k(q)
q , w

l(q)
q , w̄

l(i)
q ) ∈ Q. Since all arcs (wji , w̄

j
i ), (wki , w̄

k
i ),

and (wli, w̄
l
i) are contained in P , it follows that λ(P ) ≥ 8. This, however, conflicts with our

assumption maxP∈Q λ(P ) = 7. Consequently, all sets in C ′ are pairwise disjoint and form a
partition of S.

Together, the three parts of the proof imply that our construction maps any given Set Par-
tition(3) instance to a solvable Min-Path-ISP instance. Furthermore, the optimum solution
value of the constructed Min-Path-ISP instance is 7 if and only if the given Set Partition(3)
instance is solvable and at least 8 otherwise. As Set Partition(3) is NP-complete and the above
construction is polynomial, it is NP-hard to approximate Min-Path-ISP within a factor strictly
less than 8/7. �

An analogous construction proves the APX -hardness of the corresponding undirected problem
variant of Min-Path-ISP. The argumentation becomes slightly more complicated, because there
are more valid paths between certain terminal pairs in the corresponding undirected graph than
in the directed one. Yet, the construction yields the same inapproximability bounds of 8/7.

In the remainder of this section, we show that also the second problem variant Min-Arc-ISP
is APX -hard. This result follows straightforward from the constant inapproximability threshold
for Min-Path-ISP.

Theorem 3.2 It is NP-hard to approximate Min-Arc-ISP within a factor of 9/8− ε, for any
ε > 0.

Proof. Suppose we are given an Min-Path-ISP instance consisting of a digraph D = (V,A) and
a shortest path system Q. Consider the Min-Arc-ISP instance with the same path set Q, but
in an extended digraph D∗ = (V,A ∪ A∗) with A∗ :=

{
(s, t) | Q contains an (s, t)-path Ps,t

}
, see

Figure 5. Note that we introduce a new arc (s, t) in A∗ even if the original arc set A contains a
parralel arc (s, t) between the terminals of some prescribed (s, t)-path Ps,t.
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Clearly, the Min-Arc-ISP instance remains solvable. Furthermore, for any arc length vector
λ ∈ ZA+ that is compatible with Q in D, the arc lengths λ∗ ∈ ZA∪A∗+ defined as

λ∗a :=

{
λa , for all a ∈ A, and

λ(Ps,t) + 1 , for all a = (s, t) ∈ A∗,

are compatible with Q in D∗. Reversely, all arc lengths λ∗ ∈ ZA∪A∗+ in D∗ that are compatible with
Q define arc lengths λ = (λ∗a)a∈A in D that are compatible with Q and satisfy λ(Ps,t) ≤ λ∗(s,t)− 1
for all Ps,t ∈ Q.

As it is NP-hard to find lengths λ in D such that the longest path in Q is strictly less than
8, it is also NP-hard to find lengths λ∗ in D∗ such that all arc lengths (in particular those of
the arcs in A∗) are strictly less than 9. Therefore, it is NP-hard to approximate Min-Arc-ISP
within a factor less than 9/8. �

Analogously, one can show the same inapproximability threshold of 9/8 for the corresponding
undirected problem.

4 An O(|V |)-Approximation Algorithm

Real-valued arc lengths that are compatible with a given set of paths can be computed in polyno-
mial time. Let sP and tP denote the source and the destination node of a path P , and let P(s, t)
be the set of all (s, t)-paths in D. The following linear program models the problem of finding
(unbounded) real-valued arc lengths λ ∈ RA+ with λa ≥ 1 for all a ∈ A that are compatible with a
given path set Q.

∑

a∈P ′
λa −

∑

a∈P
λa ≥ 1 for all P ∈ Q and P ′ ∈ P(sP , tP ) \ {P}, and (5)

λa ≥ 1 for all a ∈ A. (6)

Clearly, this linear system has a solution λ∗ if and only if Q is an SPS.
Many inequalities of type (5) are redundant for a given path set Q. To characterize the

corresponding path, we introduce the notion of weak disjointness. For a path P and two nodes u
and v that occur in P (in this order) we denote by P [u, v] the (u, v)-subpath of P .

Definition 4.1 We say that two (s, t)-paths P1 and P2 are weakly disjoint if there are two distinct
nodes u and v that occur in this order in both paths P1 and P2 and

(i) P1[s, u] = P2[s, u],

(ii) P1[v, t] = P2[v, t], and

(iii) P1[u, v] and P2[u, v] are (internally) node disjoint.

For an (s, t)-path P , the set of all weakly disjoint paths is denoted by WD(P ) ⊂ P(s, t).

Two weakly disjoint paths must be disjoint except for a common subpath at the start and a
common subpath at the end. These subpaths may be empty, i.e., a pair of disjoint (s, t)-paths is
also weakly disjoint. Figure 6 illustrates the weak disjointness of paths.

It is easy to verify that inequality (5) is redundant for all paths P and P ′ that are not weakly
disjoint. Thus, the linear system (5)–(6) reduces to

∑

a∈P ′
λa −

∑

a∈P
λa ≥ 1 for all P ∈ Q and P ′ ∈ WD(P ), and (7)

λa ≥ 1 for all a ∈ A. (8)
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Figure 6: Examples for weakly disjoint paths (left) and not weakly disjoint paths (right).

Note that there are still exponentially many inequalities (7). However, these inequalities can
be separated polynomially, by a 2-shortest paths algorithm [20] for example. Thus, the entire
linear system (7)–(8) can be solved in polynomial time.

With an appropriate linear objective function, few additional variables and linear constraints,
and the requirement for integer routing length variables λa, this linear system can be extended to
an integer linear programming formulation for Min-Arc-ISP:

min λmax (9)
∑

a∈P ′
λa −

∑

a∈P
λa ≥ 1 for all P ∈ Q and P ′ ∈ WD(P ), (10)

1 ≤ λa ≤ λmax for all a ∈ A, and (11)

λa ∈ Z+ for all a ∈ A. (12)

A formulation for Min-Path-ISP can be obtained similarly.
The optimal solution λ∗ of the linear programming relaxation (9)-(11) corresponds to an op-

timal ’fractional’ solution of Min-Arc-ISP, i.e., real-valued arc lengths that are compatible with
the given paths Q and minimize the largest arc length. Standard scaling and rounding techniques
can be applied to turn the optimal fractional lengths λ∗ into an integer solution of Min-Arc-ISP.

A simple algorithm which first solves the linear programming relaxation and then scales and
rounds all fractional lengths simultaneously depending on the length of the longest path is shown
below. Ben-Ameur and Gourdin [1] proposed a variant of this algorithm based on two similar
linear programming formulations for the undirected Min-Arc-ISP problem.

MIP-Rounding for Min-Arc-ISP

Solve linear program (9)-(11).

If not solvable then

return ’Q is no SPS’.

(λ∗, λ∗max) := optimal solution of (9)-(11)

M := maxP∈Q |P |
If M < |V |/2 then

return lengths λa := dλ∗a ·Me for all a ∈ A,

else

return lengths λa := dλ∗a · |V |/2− 1/2e for all a ∈ A.

Theorem 4.2 The worst-case approximation ratio of algorithm MIP-Rounding for Min-Arc-
ISP is ρ = min (|V |/2, maxP∈Q |P |).

Proof. Consider an Min-Arc-ISP instance given by the digraph D and the path set Q. If Q
is not an SPS, then the linear subsystem (10)-(11) has no solution and the algorithm returns
infeasibility. So, assume Q is an SPS and denote by (λ∗, λ∗max) the optimal solution of (9)-(11).
Clearly, dλ∗maxe is a lower bound on the optimal solution value.

First, consider the case where M := maxP∈Q |P | < |V |/2. Let λ̄a := λ∗a ·M , for all a ∈ A.
MIP-Rounding returns arc lengths λa = dλ̄ae, for all a ∈ A. Because λ∗ satisfies all inequalities
(10), we have λ̄(P ′) − λ̄(P ) ≥ M for all P ∈ Q and P ′ ∈ WD(P ). With λ̄a ≤ λa < λ̄a + 1, it
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follows that λ(P ′) − λ(P ) > 0 for all P ∈ Q and P ′ ∈ WD(P ). This implies that all paths in Q
are indeed unique shortest paths w.r.t. λ. Hence, λ is a compatible arc length function for Q with

λmax = max
a∈A

λa ≤ dM · λ∗maxe ≤M · dλ∗maxe .

Now, consider the case where M ≥ |V |/2. Let λ̄a := λ∗a · |V |/2, for all a ∈ A. Analogous to
the first case, we observe that λ̄(P ′)− λ̄(P ) ≥ |V |/2 for all P ∈ Q and P ′ ∈ WD(P ). Because P
and P ′ are weakly disjoint, there are at most |V | many arcs in either P or P ′. With λ̄a − 1/2 ≤
λa < λ̄a + 1/2, we therefore have λ(P ′) − λ(P ) > 0 for all P ∈ Q and P ′ ∈ WD(P ). Hence, λ is
a compatible with Q and

λmax = max
a∈A

λa ≤
⌈ |V |

2
· λ∗max −

1

2

⌉
≤ |V |

2
· dλ∗maxe.

This concludes the proof. �

Analogously, it follows that algorithm MIP-Rounding achieves an approximation ratio of ρ =
min (|V |/2, maxP∈Q |P |) for Min-Path-ISP if applied to the corresponding linear programming
formulation for Min-Path-ISP. The same approximation ratio is achieved for the corresponding
undirected problem variants, too.

For instances arising in real-world telecommunication network planning, the integer linear
programming models for Min-Arc-ISP and Min-Path-ISP usually can be solved efficiently with
standard integer linear programming solvers.

5 Concluding remarks

In this paper, we have shown that it is NP-hard to approximate Min-Path-ISP and Min-Arc-
ISP within factors less than 8/7 and 9/8, respectively. For any real shortest path routing protocol
such as OSPF, IS-IS, PNNI, or RIP, it therefore is NP-hard to decide whether a given set
of paths can be realized. We also presented integer linear programming models and a simple
O(|V |)-approximation algorithm for Min-Arc-ISP and Min-Path-ISP. This algorithm is based
on scaling and rounding the optimal solution of the corresponding linear relaxation.

The APX -hardness of a third problem variant Min-Sum-ISP, where the objective is to mini-
mize the sum of all arc lengths, can be shown with an approximation-preserving reduction from the
Min Vertex Cover problem. Because of the smaller practical relevance of the Min-Sum-ISP
problem we omit the proof here.

Theorem 5.1 It is NP-hard to approximate Min-Sum-ISP within a factor of 91/90− ε, for any
ε > 0.

It remains open whether there are constant factor approximation algorithms for Min-Path-
ISP, Min-Arc-ISP, or Min-Sum-ISP. The best know algorithms are based on linear program-
ming and rounding and achieve a worst-case approximation ratio of O(|V |) for all three objectives.
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