
Takustraße 7
D-14195 Berlin-Dahlem

Germany

Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ALEXANDER STEIDINGER

Data Management for Processing Molecules

ZIB-Report 05-01 (December 2005)

Data Management for Processing Molecules

Alexander Steidinger

Abstract

Molecular dynamics simulations of possible ligands for proteins yield large amounts of
data in the form of trajectories which are further processed in order to find metastable
conformations. These conformations can then be used for docking between ligand and
protein.

Around this core computation procedure lots of other data have to be managed. It
should also be possible for external users not involved in program development to perform
computations.

As a paradigm for other fields where a similar constitution of program usage and data
processing is found we present a software architecture for data generation, access and
management.

Requirements for this system include: Ease of use, graphical user interface, persistent
storage of data concerning molecules, users, programs, program parameters, metadata, and
results. A mere storage in the file system would render a quick overview of data more or less
impossible. On the other hand, storing large amounts of binary data in a database doesn’t
yield any advantage concerning speed of access. Therefore, a hybrid approach combining
file system and database is appropriate.

The system should be easily extensible by inserting new applications which can be
controlled and whose results can be collected and stored.

The software system described here consists of different components, the presentation
layer (graphical user interface), the business logic, the persistence layer (relational database
plus file system), and an interface to the compute cluster (batch system for parallel pro-
cessing).

We will discuss the alternatives and take a closer look at the components.

MSC: 68P05, 68P10, 68P20, 68N15, 68U35
CR: D.2.11, E.1, H.2.4, H.3.2, H.5.2
Keywords: molecular structure, molecular comparison, fingerprints, software architecture,
thin client, web interface, web server, relational database, batch system, XML

1

Contents

1 Introduction 2
1.1 Requirements . 3
1.2 Alternatives and design decision . 4
1.3 Employed software . 5

2 Architecture 6
2.1 Overview . 6
2.2 Components . 7

2.2.1 Presentation layer . 7
2.2.2 Business logic layer . 11
2.2.3 Persistence layer . 12
2.2.4 Data model . 12

3 Improvements and Outlook 14

4 Acknowledgements 15

1 Introduction

As a research group for computational drug design we deal with the processing of molecular
data in order to find molecules which could be candidates for new drugs. We try to find
these molecules by first computing metastable conformations – molecule geometries with high
probability and life time – which are then used for docking against proteins. The other aim
is to find similar molecules to known drugs by comparison, either topologically or based on
structure.

Several applications have been developed by different scientists which can be combined to
obtain a workflow from preprocessing incomplete molecule files to computing docking results.
In Fig. 1 we see a workflow example. In a preprocessing step molecule geometries are

complex

process

preprocessing

conformation analysis
rigorous thermodynamical
sampling

molecule comparison

filtering

docking

data structure database storage

PDB/SDF ZMF meta data

ZMF ZMF meta data, numerical values

geometry topology

trajectorytopology
topology, fingerprintstrajectorytrajectory

input output
format

in out

database list database

ZMF / database

ZMF

topology list

trajectory matrix

trajectory
fingerprints scored list

ZMF

ASCII

ASCII

ASCII

Fig. 1: Workflow example: The processes in the left column can be combined to build a pipeline of data
processing. The next two columns denote the data structures used for input or generated as output. Then
the storage formats for input and output are given. The last column shows what data are stored in the
database for the processes.

augmented e. g. by missing hydrogen atoms. The source files with geometric data stem from
different molecule databases like PDB, Maybridge, Chembridge or NCI. They use the file

2

formats PDB [1] or SDF [2]. The results are stored in our own data format, the ZIB molecular
format (ZMF), which has a human readable part at the beginning describing hierarchically
what is stored as compact binary data at the end.

A ZMF file contains numerical, topological (bonds, bond angles, dihedral angles) and
structural information (trajectories of cartesian coordinates from molecular dynamics (MD),
Hybrid Monte Carlo (HMC) or other simulation methods). Bond lengths, bond angle val-
ues and dihedral angle values can be computed from cartesian coordinates and topological
information.

We have developed a reader for this format which is flexible enough to read ZMF files even
when the format is extended or data types are changed.

Next comes the conformation analysis which results in trajectories of molecule geometries
stored in ZMF files. The applications Epos and Flow compute conformations using different
approaches.

At this time numerical values like atom mass or charge are stored in the database together
with topological properties like number of aromatic atoms or double bonds and structural
information like fingerprints which incorporate information about the neighborhood of atoms.

To compute the thermodynamical weights of the conformations rigorous thermodynamical
sampling is applied which results in ZMF output as well. There are three programs for doing
rigorous sampling differing in the mathematical procedures: ZMFree, Jump and molRate.

To reduce the search space of molecules for later comparison a filtering according to nu-
merical values like the Lipinski rule of five can be applied to the database yielding result lists
of molecules that fall into the given range of parameters.

Molecule comparison is made by either comparing the 3-dimensional structure of molecules
or by comparing fingerprints. Hashed fingerprints [3] consist in our case of bit sets of fixed
a length where a bit set to one means that a certain property is present in a molecule. The
mapping of topology to bit sets is not injective which means that different molecules can have
the same bit set to one but if two bits in the same position differ, the molecules differ in this
property. Thus, fingerprints are used to divide search space into sets of dissimilar molecules.

We have devised a second kind of fingerprints – steric fingerprints – which take into account
the dihedral angles of molecules which we compute in the conformation analysis step.

The docking process proves how good the candidates match given protein molecules geo-
metrically. A good docking indicates that the ligand molecule could influence the biochemical
behavior of the protein.

To speed up computation we use a cluster of workstations for parallel processing. At the
front end a batch system is employed with several queues where jobs are sent to by submitting
batch files.

This workflow example shows that lots of data of different formats are generated and
processed. The data generated by our applications are either stored in ZMF files or as ASCII
files. The data types we deal with can be divided into integers like number of aromatic atoms,
real values like mass or charge, topological information and 3D structural information.

1.1 Requirements

It has to be decided which part of the data should be left in the file system and what should
be stored in the database.

Certain properties of molecules like mass, charge or number of aromatic atoms and some
metadata are permanently used for management, filtering and search. It lends itself to store
such unstructured data in a database. Atom coordinates of trajectories of binary data should

3

be left in files as there is no advantage concerning saved space or time to access data in the
database.

Therefore, the hybrid approach of having data in the file system as well as in a database
will suit best.

To enable a user not familiar with command line editing or even direct access to compu-
tation resources to execute applications a web interface is the method of choice for uniform
remote access to computing resources. With a graphical user interface the user has the possi-
bility to view molecules to judge the outcome of his computations qualitatively.

The aim of our system is to facilitate the use of all the applications, to help combine them
to a workflow from data input over data generation to data comparison. It shall be made
easy to select data to start with and to use the computation results for further experiments.
The concept of a data pool helps the user to manage molecules he or she wants to perform
processing on.

From the above-mentioned setting requirements are set up to meet the needs of users: It
should be possible to

� access and filter data

� augment existing data

� insert new data even from remote machines

� search and retrieve data

� move, compress or bundle data

� visualize molecules or computation results

� extend the system, e. g. by attaching new applications

� submit jobs to the batch system for parallel processing

� control batch jobs

� start molecule processing from the desktop

Our system is a tool to fulfil these requirements.

1.2 Alternatives and design decision

There are alternatives to the architecture as well as to the used software.
A web based system with graphical user interface could either be realised by a web portal

or by software tailored to the special needs of the users which are determined by the field of
research. Web portals are used to integrate different resources and services and make them
accessible under a common interface. An example is GridSphere [4], which is a framework for
implementing web portals obeying the portlet specification [5], a definition how to establish
code for portals to run in a portal server.

As we want to set up an architecture specialized for our needs but still extensible and
changeable we don’t need the overhead of functionality at this stage. If the need arises in the
future to integrate our system into other computation environments we could promote the
servlets to portlets as the two concepts have many similarities. The web server would then be
replaced by a portlet server.

4

The graphical user interface could either be a fat client with an application running on
each client machine which stores the state of the computation locally or a thin client like a web
browser. A thin client has the advantage that only the presentation layer has to be present
whereas the business logic is hidden from the user and is executed on the server side. Thus, if
the business code changes the thin client need not be updated in contrast to a fat one.

As mentioned above a hybrid approach of data storage in the file system as well as in a
database is appropriate. There are different types of database management systems (DBMS).
The most flexible one concerning structured data is the object-oriented DBMS (OODBMS)
as it can store objects of arbitrary complexity, but it lacks speed and there only exists a niche
market for such databases today.

In consequence database manufacturers augmented their data by some structure which is
why these DBMS are called object-relational databases (ORDBMS). The reality looks like
this: The structure consists mainly of a types like date, enumeration, set and BLOB (binary
large object). A BLOB can be used for storage if no suitable data type exists in the database.
If one wants to access a data item of a BLOB it must be fetched from the database and
unpacked. Saving big files or files containing binary data in a database has no advantages over
leaving them in the file system.

If tabular data exists it is appropriate to store them in a relational database because access
is fast. One important example in our setting is the storage of fingerprints as strings of fixed
length. Then there is a second advantage for speed-up: Computations beyond those possible
by using SQL (structured query language, the standard for definition, access and manipulation
of data in RDBMS) can be performed by stored procedures, functions written in a language
the DBMS can understand. They can be invoked within an SQL statement. In our case such
a function can compare fingerprints by using bit operations. There is no need to fetch data
from the database one at a time and make computations externally.

1.3 Employed software

There are different programming languages in use today to deal with the combination of
graphical user interfaces and business logic like PHP, Perl or Java.

They differ in their programmatic approach: Java is purely object oriented. It was designed
for building software projects whereas PHP and Perl were designed for the web and text
processing, respectively. Code generation and debugging of Java programs is easier than ever
by using integrated development environments (IDEs) like Eclipse [6] which is written in Java
and in wide use.

The decision to use Java with its implications on the use of other software is not made by
merely looking at the language capabilities but also by taking into account the possibility to
combine existing software products like web servers and databases.

Java comes with a wide range of application programming interfaces (APIs) either from
the developer of Java or from third party developers. It is an interpreted language but as
we don’t need high speed computation for the presentation of data and business logic it is
sufficiently fast to reply to all user interactions.

Java packages we benefit from in our framework are the CDK [7] package for manipulating
molecular data, the JavaView [8] package for visualizing molecules, and packages for processing
XML data [9].

A web server is needed to supply dynamically generated content to the client’s web browser.
The Tomcat web server from the Apache Jakarta project [10] is fully implemented in Java. So,
interaction between Java code in the business logic layer and the web server is straightforward.

5

The Apache Software Foundation [11] provides not only the Tomcat web server we use
but also the most commonly used web server on the Internet, the Apache web server. In
connection with the Apache server the use of languages like Perl or PHP is possible. To
generate web pages dynamically these languages make use of the Common Gateway Interface
[12], a simple interface for communication with information servers like web servers. This
has the disadvantages of starting a process for each web request which consumes time and
resources and having no common or persistent state of variables between two web requests,
i. e. the session tracking has to be handled by the programmer.

Another approach is the use of modules for Perl and PHP within the Apache server but
there is still the drawback of the languages themselves. An extension to this is the invention of
Perl Active Server Pages [13] which facilitates the generation and management of web content.
As we decided to use one programming language throughout our system we abandoned the
idea to employ this extension.

It is possible to integrate the Tomcat servlet container into the Apache server. Each time
the URL locates a Java Servlet [14] or JavaServer Page (JSP) [15] the Apache server delegates
these to Tomcat. Servlets are Java classes containing Java code to print out HTML code.
JSPs are files which should contain mainly HTML code where Java code is embedded. The
main functionality is delegated to JavaBeans referenced inside the JSP. This facilitates to
separate the representation part from the business logic part such that web site designers can
concentrate on HTML and pretty printing while Java developers manage the functionality.

As a database management system we chose MySQL [16]. Starting with the aim to provide
simple and fast access to data it evolved to a convenient system with more and more features
we need for our framework. MySQL comes with a Java JDBC driver [17] for database access
via the Java language.

All three products – Java language, Tomcat web server, and MySQL database – are free of
charge. The quality of the products is guaranteed by a large user community which contributes
to reduce errors.

2 Architecture

2.1 Overview

We now give an overview of the software components of our architecture. A rough sketch can
be seen in Fig. 2. The architecture is divided horizontally as well as vertically.

On the client side we have a graphical web browser for the display of dynamically generated
web pages. The user can interact with the system via input fields and click buttons. He or
she can manipulate the graphical representation of molecules by mouse motions. With text-
based browsers like Lynx it is also possible to start computations but they lack the possibility
to judge results visually. Furthermore, they have difficulties in displaying tables. To get the
full capabilities of the system the browser should be Java capable as there are Java applets
implemented for graphical representation of molecular data. The reason for using applets is
the possibility for the user to interact with the web content, e. g. by rotating, moving and
scaling molecules. The applet runs as a process in the browser. No other software is needed
on the client side.

On the remote side several servers work together to make the data flow possible.
HTML pages are generated by the Tomcat web server [10] using Java Servlets and mostly

JavaServer Pages.

6

CDK, JavaView
ext. packages Java Business Classes/Java Beans

Servlets/JSPsTomcat Web Server

Stored

File system

Web browser

OpenPBSData model

procedures MySQL DBMS
Linux cluster

Fig. 2: Components of the software architecture, divided vertically into local client and remote server
side, horizontally into presentation layer, business logic layer and a heterogeneous part at the bottom
where persistent data either in the file system or in the database are accessed by the business layer or via
the DBMS. External code of stored procedures is executed within queries to the DBMS. Batch jobs are
submitted to the batch system of the Linux cluster as external processes started by the business classes.

The business logic is performed by JavaBeans associated with JSPs and additional Java
classes. The bean classes contain code that should not appear within HTML code to keep the
presentation and the logic apart. This layer has full access to system resources under the ID
of the web server user. Packages external to the standard Java API are used for processing
molecular data and displaying them (CDK and JavaView).

The persistence layer comprises the MySQL DBMS together with stored procedures written
in C. The database is accessed via a JDBC driver delivered together with MySQL. Java
enables an efficient SQL processing by generating so-called prepared statements that means
SQL statements which are precompiled and can be reused with different query parameters.
For small to middle range data requirements this DBMS suffices. There is no overhead for
memory management like defining table spaces before generating tables. The database can be
used nearly instantaneously and there is no need to employ a separate database administrator.

To speed up computation by parallel execution we use a Linux cluster consisting of 16 nodes
with 2 processors per node. As an alternative, a Cray XD1 can be used. It has 6 nodes with
2 processors per node. Computation is triggered by submitting batch files to the OpenPBS
batch system, which queues the jobs until enough processors are available. Users can choose
between different queues. They differ in the amount of processors dispatched for a job and
the maximal running time. If a computation has finished an email is sent to the user. More
information on the hardware infrastructure is available at [18].

2.2 Components

2.2.1 Presentation layer

The user works with a Java enabled web browser to manage data and processing. User inter-
action is session-oriented through the login process. The session object unique to each user
contains parameter values used during the session. If the browser accepts cookies they are
used instead by the web server to store parameters.

It depends on the browser’s capabilities and settings if a cookie persists for a session or
longer. The maximal number of cookies a browser can store – at least 20 per unique host
after the recommendation of the IETF [19] – could be too little to hold all the information
generated during a session. This depends on how the web servers manages its cookies.

To circumvent this problem cookies can be disabled in the Tomcat web server. This way

7

it is assured that always session objects are used. This allows to easily check whether a user
requesting a web page has logged in before. In Fig. 3 we see a part of the main page
presented to the user after logging in with the description of the functionalities.

The user can choose between the following options

� overview of data, tarring, extracting, deleting, moving files

� file upload from the client’s machine to the remote server via the functionality of the
web browser

� defining parameter input masks using XML

� computation: set parameters, choose queue, number of processors

� job control: viewing batch queues and killing erroneous jobs

� visualization of molecules with the JavaView package

� filtering of database according to molecule parameters

� comparison of molecules by means of fingerprints

The center of the page displays the applications from different developers which can be used
together to form a complete workflow where the output of one program can serve as the input
of the next one. The workflow ranges from data enrichment, data extraction and conformation
analysis [20] to docking [21] and alignment [22, 23] of metastable conformations.

In detail, the current programs which can be applied to selected files are: Flexible and rigid
docking, i. e. the molecules themselves are flexible or rigid during the docking process. Flexible
alignment moves similar molecules until they are maximally aligned. If two molecules are
docked together the quality of docking can be quantized by computing a score. After molecular
dynamics simulation resulting in trajectories of molecule geometries the conformation analysis
computes metastable conformations, i. e. geometries with high probability and long life time.
In a preprocessing step, files in formats like SDF are read and augmented by missing data,
e. g. hydrogen atoms. Flow is another program for computation of conformations, wheras
ZIBgridfree does conformation analysis.

All the applications are executed in the batch system. To control the jobs a listing of the
user’s and all other jobs is displayed. In case of a failure the user can kill his own jobs via a
job ID.

Central to the applications is the data pool where the user selects the molecules he or she
wants to process – viewing or running applications with them. It is individual to each user and
persistent also between web sessions as it is realized as a hidden file in the users data path.

Filtering molecular data stored in the database is possible by giving ranges of values like
mass, charge, number of aromatic atoms or number of H-bond donors. This process is fast as it
uses query statements of the DBMS. It serves as a preselection of molecules whose properties lie
in a certain range of values. The selected molecules can then be submitted to the applications
for further processing.

The molecule editor MarvinSketch [24] can be used to click together a molecule which can
then be stored in many different formats like SDF.

Molecules stored in ZMF files can be viewed in the browser. This has the advantage that
no external software has to be installed to get a first impression of how molecules look like. In

8

Fig. 3: Screenshot of part of the main window. Upper left: Management of remote data like file
upload, tarring, extracting, moving and deleting files. The data pool contains the molecules chosen for
computations. With the help of an XML file molecular data can be inserted into the database. Middle
box: Different applications can be chosen to perform molecular computations or preprocessing after
molecules have been selected. The setup deals with parameters for computation. Right: Molecules can
be viewed using the JavaView package. Own jobs can be viewed and deleted if necessary. The database
can be filtered according to numerical parameters. Fingerprints in the database can be compared with
a given one using bit operations on the bit sets of the fingerprints resulting in a normalized numerical
value called Tanimoto coefficient [3] by which the results can be ordered. Bottom: In the data pool one
can select molecules for display, similarity search or running applications on.

9

Fig. 4: Example of visualization of phenylbutazone, a nonsteroidal anti-inflammatory drug and cyclo-
oxygenase inhibitor: The given file contains a trajectory of molecule geometries, in this case the metastable
conformations. Three of them are pictured. The user can scale and rotate the conformations to find out
differences.

10

Fig. 4 you can see the visualization of phenylbutazone. The quality of conformation analysis
can be judged roughly at a first glance.

Many different options can be chosen to manipulate molecules. The JavaView package
makes it easy for developers to alter and extend the visual representation of objects, which
is not constrained to molecules. Additionally, comparisons of molecular properties like finger-
prints can be made visible e. g. as grey-scale matrix diagrams.

2.2.2 Business logic layer

The business logic is contained in JavaBean classes referenced from JavaServer Pages and
in external classes. It provides access to the persistence layer by generating connections to
the database and reading from and writing to the file system. The applications for molecule
processing mentioned above are managed and surveyed by this business logic. The main func-
tionality consists of

� logging into the system. After the user has logged in, a session ID is generated which is
attached to a session object which is contained in each invoked web page. The session
object represents the state of a session: it stores all attribute values generated throughout
a session.

� managing the data pool. The data pool is persistent regardless of the current session.
If the session ends either intentionally or due to a failure the data pool stays the same
until it is changed during the next session. This is achieved by storage of the contents
in a hidden file for each user in their main data path.

� storage of parameters. Mainly for the use of applications for molecular computations
parameter values have to be set. In our case parameters are stored in files as input for
applications which can automatically be deleted after they are read.

� start of queueing jobs into the batch system. The OpenPBS batch system [25] enables
the use of several queues with different resource limits like computing time or maximal
number of processors used.

� job control with the ability to kill one’s own jobs. All jobs currently running are displayed
to the user. He or she can recognize their own jobs by name. The job ID is unique and
can be used to delete a running or queued job.

� reading special data formats like our ZMF file format. The ZMF reader traverses the
hierarchical file structure given at the beginning of the file and identifies the byte code
at the end. It is flexible enough to react to changes of the structure.

� processing molecular data with the CDK package. This Java package is used for storing
molecular data in a specified format, e. g. mass, charge, element name, bonds or bond
orders can be hierarchically accessed. The API allows the computation of hashed finger-
prints and SMILES strings, i. e. the structure formulas [3]. A fingerprint in our setting
is a bit set of a fixed length. The molecule is viewed as a graph with atoms as nodes
and bonds as edges. A bit is set to one if a certain path up to a fixed length is present
in the graph. Thus, equal subpaths of different molecules yield the same bits set to one.
Therefore, this map is not injective and one cannot conclude from the same bit sequence
that the molecules are similar. But one can conclude from different bit sequences that
the molecules are dissimilar.

11

2.2.3 Persistence layer

The persistence layer has the purpose to permanently store data which is relevant over a long
time span. Part of the data is stored in the file system like source files in the formats SDF,
PDB, MOL2, and ZMF. Extracted data are stored in the database for filtering, searching and
comparison as well as documentation of computations by using metadata.

The data stored in the database comprise the following:

� Data relevant to search and comparison: Topological data and numerical values like
mass, charge, number of H-bond acceptors and donors, aromatic atoms and bonds and
so on.

� For a fast and preliminary comparison of molecules, molecular fingerprints have shown
to be an appropriate means. As these are bit sets, they can be efficiently stored as a
series of bytes in the form of characters. Stored procedures written in C can read strings
and perform comparison of fingerprints by comparing the characters of the strings. We
use the Tanimoto coefficient [3] as a similarity measure. It can be computed fast and
readily as its calculation involves only bit operations.

� User data is stored to control the access to the system and to assign computation data
and results.

� XML files are used for the generation of HTML masks for computation parameters used
by the applications. These are developed independently of this architecture for different
purposes like alignment, docking or conformation analysis. Each developer generates the
XML file for their application. The processing of XML files is achieved by using Java
packages for reading and transforming them into HTML [26] [27].

2.2.4 Data model

For an efficient usage of database space and access to data the following concept for the data
model has been established.

There are four different types of data that are stored in the database: (1) Meta data like
location of files or user names, (2) numerical values of molecular data, (3) topological data
like fingerprints and SMILES strings, (4) structural data like bond information and structural
fingerprints using dihedral angles.

A filtering of the data under (2) yields molecules whose numerical attributes lie in a given
range, e. g. mass, charge or counting numbers like number of H-bond donors or acceptors.
The Lipinski rule of 5 gives a range of parameters for filtering out drug-like molecules [28].
This fast filtering process can serve as a front end for topological search and comparison of
filtered molecules regarding the data under (3). The SMILES strings contain the topology in
the form of structural formulas whereas the fingerprints incorporate neighborhood relations.
The search in these data delivers molecules of similar topology which potentially have similar
pharmacological properties.

A more time-consuming search can be performed using the structural information under
(4). There, 3-dimensional data like bond angles and dihedral angles are used for comparison.

Part of the database tables can be seen in Fig. 5. The most important tables for storage
of molecular information are proteins, nonproteins, trajectories and topology because they
contain either molecular properties or information about how the molecular data was enriched

12

types

id
name
static

attributes

id
type_id
type_table_id
entry_id

thetables

id
name
comment

projects

id
name
user_id
trajectory_id
table_id
entry_id
comment

id
name
filename
filepath
complex
source
experimental
topology_id

comment
parameterized

non/proteins

trajectories

id
table_id
entry_id
molecule
timestamp
user_id
filename
filepath
comment

complex

protein_id
ligand_id
id

1 N1

has
1

1

1

attribute_ref

attribute_id

entry_id
table_id

value
id

ints/floats/strings

has has

references

N

N

contains
N

1

1
has

1
1

has

builds

1

M

2 num_aromaticatoms

num_aromaticbonds

num_donors

num_singlebonds
num_doublebonds
num_triplebonds

num_5rings
num_6rings
mass
charge

topology

num_acceptors

fp_search_depth
fp_length
fp_comment

smile
fingerprint

library
moleculename
comment
filepath
filename
timestamp
id

Fig. 5: Entity-relationship model for a part of the database schema. The diamonds represent relationships
between the tables depicted as rectangular entities. The numbers at the lines denote the cardinalities of
the relations, i. e. how many entities can take part in the relation. Not all relationships are shown to keep
the picture simple. The main tables for molecular data are protein, nonprotein, topology, and trajectories.
Mostly metadata are stored except for the topology table which contains numerical values for filtering
molecules. Not shown are e. g. the client and steric fingerprint tables. The dashed lines in the upper right
corner emanating from the attribute ref table shall indicate that the attributes refer to several tables.

13

or preprocessed (parameterized), e. g. whether molecules exist as a complex or whether the
data is experimentally determined.

All tables are noted in thetables. Values not belonging to static attributes of the main
tables are stored in the ints, floats or strings tables. If a new attribute appears it is saved
in the attribute table where the type is entered in types and standard attributes marked as
static. The table in which an attribute appears as well as the location within this table is
saved in attribute ref. proteins and nonproteins contain information about preprocessed data.
If a protein and a ligand form a complex this is noted in complex.

Important for the filtering of molecular data is the topology table. It contains numerical
and topological values like mass or fingerprint. The fingerprints are generated as bit sets by
viewing them as graphs with atoms as nodes and bonds as edges. From the paths of the graph
random numbers are generated for setting the bits. The length of the fingerprint and the
search depth within the graphs are stored together with the fingerprint.

The user can define projects for his computations. In the projects table it is noted which
proteins and non-proteins belong to a given project. If trajectories are computed their location
and affiliation to proteins or non-proteins can be stored.

3 Improvements and Outlook

The data model is divided into the file system part and the database part. Currently, users have
to know the location of their data. In the future it is the aim to give the users a transparent
view of the data such that they don’t need to know its location.

In order to make the system available to a large number of users some improvements have
to be made.

To prevent unwanted access to the system, the security mechanism using merely the session
ID will not suffice. Only admitted users should be able to use the system. It has to be prevented
that a user enters a web page without passing the login process. Thus, the session ID has to
be checked for each web page. However, this is not sufficient as one could guess or copy the
ID from somewhere. And if the user has cookies enabled in his web browser no session ID is
generated. A more elaborated procedure uses so-called credentials, e. g. the user’s password
to generate a token with cryptographic algorithms which has a certain lifetime. This can be
achieved by using the standard Java packages Java Cryptography Extension (JCE) [29] and
Java Authentication and Authorization Service (JAAS) [30]. To differentiate between users
concerning their access rights one could employ access control lists (ACLs) which use roles.
Such roles can be defined for the Tomcat web server and would be stored in the database.
An encrypted data exchange between web browser and server via the https protocol can be
employed.

If many users take part in the system at the same time, the web server and the database
must be prepared for it. The establishment of a database connection consumes time and
resources. In contrast to opening and closing a connection for each user request connections
can be reused with the help of a connection pool. The Tomcat web server can be configured
for using such a pool.

It should be easily possible to replace our DBMS with another one as only standard SQL
is used. The only thing to take into account are the stored procedures which can differ from
database to database.

For the representation of and access to computation results we plan to use a simple XML
data format which is then transformed to HTML. The check of XML files concerning syntax

14

only does not prevent the use of wrong datatypes for the attribute values or wrong tag names.
In order to preclude such failures, XML Schema [31] could be used to define data types for
each attribute. An XML validator can then find mistakes if an attribute name does not match
the schema.

The email messages of the batch system which display only rudimentary status information
could be enhanced by sending additional information via JavaMail.

To separate the web server from the business logic and database part, a remote interface
to an RMI server (remote method invocation) [32] can be employed. The local methods of the
servlets and JSP beans are only stubs (surrogates). The methods’ code is executed within the
RMI server at the remote site. This has the advantage of having different operating system
user IDs for web server and RMI server and thus the users can have different access rights to
system resources. Also, if the web server crashes the programs running in the RMI server are
left undisturbed.

4 Acknowledgements

I wish to thank the following students for advancing this software architecture to the current
state: Aysam Gürler for contributing to the insertion and access to our applications in the web
interface, Sebastian Moll for the setup of the table structure for storing arbitrary attributes,
and Antje Wolf for her commitment to enhance our ZMF file reader, the implementation of
the data pool and the inclusion of JavaView for making the visualization of molecules in the
web site possible.

Furthermore, I want to mention that this work has been accomplished during my mem-
bership in the Berlin Center for Genome Based Bioinformatics [33].

References

[1] Protein Data Bank. URL http://www.rcsb.org/pdb. 3

[2] MDL CTfile formats. URL http://www.litlink.com/solutions/white_papers/

ctfile_formats.jsp. 3

[3] A. R. Leach. Molecular Modelling, Principles and Applications. Prentice Hall, 2001. 3,
9, 11, 12

[4] GridSphere Portal Framework. URL http://www.gridsphere.org/gridsphere/

gridsphere. 4

[5] JSR-000168 Portlet Specification. URL http://jcp.org/aboutJava/

communityprocess/final/jsr168. 4

[6] Eclipse integrated development environment. URL http://www.eclipse.org. 5

[7] The Chemistry Development Kit (CDK). URL http://almost.cubic.uni-koeln.de/

cdk/cdk_top. 5

[8] JavaView. URL http://www.javaview.de. 5

[9] Extensible Markup Language XML. URL http://www.w3.org/XML. 5

[10] Apache Jakarta Tomcat. URL http://tomcat.apache.org. 5, 6

15

[11] Apache Software Foundation. URL http://www.apache.org. 6

[12] The Common Gateway Interface. URL http://hoohoo.ncsa.uiuc.edu/cgi. 6

[13] Apache Active Server Pages. URL http://www.apache-asp.org. 6

[14] Java Servlets. URL http://java.sun.com/products/servlet. 6

[15] JavaServer Pages. URL http://java.sun.com/products/jsp. 6

[16] MySQL. URL http://www.mysql.com. 6

[17] Java Database Connectivity JDBC. URL http://java.sun.com/products/jdbc. 6

[18] BCB Cluster Complex at ZIB. URL http://elfie.bcbio.de. 7

[19] HTTP State Management Mechanism. Internet Engineering Task Force (IETF). URL
http://www.ietf.org/rfc/rfc2965.txt. 7

[20] M. Weber and H. Meyer. ZIBgridfree – adaptive conformation analysis with qualified
support of transition states and thermodynamic weights. ZIB-Report 05-17. URL http:

//www.zib.de/Publications/Reports/ZR-05-17.pdf. 8

[21] A. May, S. Eisenhardt, J. Schmidt-Ehrenberg, and F. Cordes. Rigid body docking for vir-
tual screening. ZIB-Report 03-47. URL http://www.zib.de/Publications/Reports/

ZR-03-47.pdf. 8

[22] D. Baum. Multiple semi-flexible 3d superposition of drug-sized molecules. ZIB-Report
04-52. URL http://www.zib.de/Publications/Reports/ZR-04-52.pdf. 8

[23] T. Baumeister and F. Cordes. A new model for the free energy of solvation and its
application in protein ligand scoring. ZIB-Report 04-51. URL http://www.zib.de/

Publications/Reports/ZR-04-51.pdf. 8

[24] MarvinSketch – a molecule editor. URL http://www.chemaxon.com/marvin. 8

[25] OpenPBS Personal Batch System. URL http://www.openpbs.org. 11

[26] Xerces2 Java XML Parser. URL http://xerces.apache.org/xerces2-j. 12

[27] Xalan XSLT processor. URL http://xml.apache.org/xalan-j. 12

[28] C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and com-
putational approaches to estimate solubility and permeability in drug discovery and de-
velopment settings. Adv. Drug Delivery Rev., 23(1-3), pages 3–25, 1997. 12

[29] Java Cryptography Extension JCE. URL http://java.sun.com/j2se/1.5.0/docs/

guide/security/jce/JCERefGuide.html. 14

[30] Java Authentication and Authorization Service JAAS. URL http://java.sun.com/

j2se/1.5.0/docs/guide/security/jaas/JAASRefGuide.html. 14

[31] XML Schema. URL http://www.w3.org/TR/2004/REC-xmlschema-0-20041028. 15

[32] Remote Method Invocation. URL http://java.sun.com/docs/books/tutorial/rmi.
15

[33] Berlin Center for Genome Based Bioinformatics. URL http://www.bcbio.de. 15

16

