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Abstract. The Periodic Event Scheduling Problem (PESP) is the cen-
tral mathematical model behind the optimization of periodic timetables
in public transport. We apply Benders decomposition to the incidence-
based MIP formulation of PESP. The resulting formulation exhibits par-
ticularly nice features: The subproblem is a minimum cost network flow
problem, and feasibility cuts are equivalent to the well-known cycle in-
equalities by Odijk. We integrate the Benders approach into a branch-
and-cut framework, and assess the performance of this method on in-
stances derived from the benchmarking library PESPIib.

Keywords: Periodic Timetabling, Periodic Event Scheduling Problem,
Benders Decomposition, Mixed Integer Programming

1 Introduction

Public transport is an important pillar of everyday mobility, and its expansion
is indispensable in order to increase the share of climate-friendly traffic. A large
part of public transportation networks is operated in a periodic manner, and this
creates the need for periodic timetable optimization by mathematical methods.
The standard model for this purpose is the Periodic Event Scheduling Problem
(PESP), which is difficult to solve, both in theory and practice. We investigate a
Benders decomposition approach to PESP, providing a new mixed integer pro-
gramming formulation. We formally define our setting in Section 2. The Benders
reformulation is presented and analyzed in Section 3. We evaluate the method
computationally in Section 4.

2 The Periodic Event Scheduling Problem

2.1 Problem Definition

The input to the Periodic Event Scheduling Problem is given by a 5-tuple
(G,T,¢,u,w), where

— G = (V,E) is a directed graph,
— T € N is a period time,
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— ¢ € RE, is a vector of lower bounds,

—u€ Rgo is a vector of upper bounds, u > ¢,
— w € RE, is a vector of weights.

A periodic timetable is a vector m € [0,T)" such that there exists a periodic
tension x € R¥ such that

V(Z,]) ck: &‘j < Tij < Ujj and T — T = Tgj mod T. (1)

A periodic timetable 7 assigns times in [0,7) to the vertices in V, a periodic
tension z fixes arc durations within the bounds, and constraint (1) ensures the
compatibility of 7 and x modulo the period time T'.

Definition 1 ([12]). Given (G, T, ¢, u,w) as above, the Periodic Event Schedul-
ing Problem (PESP) is to find a periodic timetable m along with a periodic tension
x such that w' z is minimum.

Equivalently, one may minimize the weighted periodic slack w " (z — ). If 7 is
a periodic timetable, then a periodic tension z with minimum w 'z compatible
to m can be computed by

Tij 1= [TFj — T — Eij]T +£¢j7 for all (Z,]) € FE,

where [-]7 denotes the modulo T" operator taking values in [0, 7).

In the context of periodic timetabling in public transport, vertices often
model departure or arrival events of vehicles at stations. Arcs represent, e.g.,
driving or dwelling of vehicles, transfers for passengers, and safety conditions
[6]. The weights typically reflect the number of passengers making use of a ve-
hicle or a transfer, so that the PESP objective amounts to minimizing the total
travel time of all passengers.

2.2 Incidence-Based MIP Formulation

Let A € {~1,0,1}V*F denote the incidence matrix of G, i.e., the matrix whose
columns are the unit vector differences e; — e; for (4,j) € E. By (1), a vector
x is a periodic tension for a periodic timetable 7 if and only if £ < z < u and
ATr = 2z mod T. In particular, we can write z = A7 + Tp for some integer
vector p € Z¥. This allows to express PESP as the following mixed-integer linear
program (MIP), cf. [5,7,10]:

Minimize (Aw)'7+Tw'p

s.t. €§AT7r+Tp§u
T eRY
peZb.

(2)

The domain of 7 can be extended beyond [0,7'): for each feasible solution
(m,p) to (2), the vector [r]7 is a periodic timetable in [0, 7)Y, 7—[r]7 = 0 mod T,
and ([7]r,p+ A" (7 — [x]7)/T) has the same objective value as (7, p).
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_ To make (2) even more compact, consider the digraph G = (V,E), where
FE contains all arcs in F and additionally a reverse copy € for each arc e € FE.
Define ¢(p). := ue — T'pe and ¢(p)z :== —Le + T'p. for all e € E. Then

T

(<ATn+Tp<u < A 7 <c(p), (3)

where A denotes the incidence matrix of G.

3 Benders Decomposition

We apply a classical Benders decomposition [1] to the MIP formulation (2),
considering as Benders subproblem the dual of the linear program (LP) that
arises for a fixed vector p € ZF.

3.1 Analysis of the Subproblem

Using (3), the Benders subproblem reads

Maximize —c(p)" f
s.t. Af = —Aw (4)
f=>o.

In this form, (4) is equivalent to an uncapacitated minimum cost flow problem
in the network G with balance —Aw and cost ¢(p). This has also been observed
in [8] in a different context. In particular, minimum cost flow algorithms can be
applied to solve the Benders subproblem rather than general-purpose LP solvers.

Lemma 1. The Benders subproblem (4) is always feasible.

Proof. By Gale’s theorem [3], (4) is feasible if and only if for every subset S C V
the sum of balances ), _q(—Aw), is at most the capacity of all arcs leaving S.
As capacities are infinite, we only need to consider such S that do not admit
any leaving arc. However, as G contains for each arc a reverse copy, S can only
be a union of connected components of G and hence of G. But then the rows of
A corresponding to the vertices in S add to 0, so that ) _o(—Aw), = 0.

We now turn to boundedness of (4). An oriented cycle in G is a vector
v € {~1,0,1}¥ such that {e € E | 7. # 0} becomes a cycle when undirecting G.
Any oriented cycle can be decomposed as v = v — vy—, where y4 := max(~y,0)
is the forward part, and y_ := max(—~, 0) is the backward part of ~.

Lemma 2. For p € ZF, the following are equivalent:

a) The Benders subproblem (4) is bounded for p.
b) There is no directed cycle in G of negative cost w.r.t. ¢(p).
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¢) For all oriented cycles v in G holds

T

Proof. The equivalence of a) and b) is well-known for network flow problems.
By LP duality and Lemma 1, a) is equivalent to the feasibility of the LP arising
from (2) when fixing p. That the latter is in turn equivalent to b) resp. c) is
indicated in [9] and is explained in detail in the proof of Theorem 4.3 in [11].

T T
You—~y 4
S bUEST)

Remark 1. In the PESP literature, the inequalities in Lemma 2c¢ are known as
Odijk’s cycle inequalities [9], which are the base for a cutting plane algorithm
to construct a feasible, but not necessarily optimal, periodic timetable [10].

3.2 Master Problem
Having discussed the subproblem, we now turn to the master problem:

Theorem 1. The following mized integer program solves PESP:

Minimize z
s.t. z—Tw'p>—c(p)'f, f feasible for (4),
c(p)(C) >0, C directed cycle in G, (5)
z €R,
peZr.

*

An optimal periodic timetable 7™ can be recovered from an optimal solution
(z*,p*) by solving the LP that arises from (2) by fizing p to p*.

The proof of Theorem 1 is straightforward using the standard Benders de-
composition technique [1]. The second line of constraints in (5) corresponds to
the Benders feasibility cuts, which, by Lemma 2, are equivalent to Odijk’s cycle
inequalities for each oriented cycle. The first line of constraints correspond to the
Benders optimality cuts. It is sufficient to consider these cuts only for vertices of
the polyhedron {f > 0| Af = —Aw}, i.e., extremal flows given by spanning tree
structures, i.e., flows f > 0 that can be positive only on the arcs of a spanning
tree of G. This way, the MIP (5) is endowed with a finite description, however,
there will in general be exponentially many spanning trees, and exponentially
many cycles. When solving the Benders master problem with a MIP solver in
practice, it is therefore necessary to generate the constraints dynamically.

Remark 2. Any PESP instance can be preprocessed so that it is no restriction
to assume p € {0,1,2}¥ [5]. This is useful for breaking symmetries in (5).

Remark 3. Spanning trees in G provide lower bounds on the optimal objective
value by means of the Benders optimality cuts in (5). On the other hand, span-
ning trees in G correspond to spanning trees in G with an additional marking
of the tree arcs as either original or reversed. The latter is the combinatorial
structure behind the vertices of the periodic tension polytope [7]. In particular,
the value w "z of any such vertex x is an upper bound on the optimal value.
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4 Computational Results

We implemented a branch-and-cut algorithm to solve formulation (5) using the
generic callback framework of CPLEX 12.10. The subproblem is solved using the
network simplex implementation available in CPLEX. To stabilize and accelerate
the solution process, we use the method for cut loop stabilization described in [2].
The computations were carried out on a Dell Precision 7520 running Windows
10 with an Intel Core i7-7820HQ processor at 2.9 GHz and with 16 GB of RAM.

We test the Benders approach on sub-instances of R1L1, one of the instances
from the benchmark library PESPIib [4]. Table 1 presents the objective (weighted
slack), optimality gap and number of cuts, obtained with a computation time
of 20 minutes. We find that the Benders approach terminates with a large op-
timality gap for all instances. The resulting solution for instance R1L1-0.8 is
known to be optimal, but it appears that the Benders optimality cuts are not
strong enough to close the optimality gap. For the other instances, the found
solutions are worse than best known solutions, hence the Benders approach is
not competitive with other approaches, neither on the primal nor on the dual
side. The number of generated cuts for all instances is very large, indicating that
the cuts are relatively weak.

Table 1. Results of the branch-and-cut algorithm.

Instance  Objective Optimality Gap (%)  Cuts

R1L1-0.8 1032021 44.1 3743
R1L1-0.7 3568074 81.4 30828
R1L1-0.6 9080015 82.8 23925
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Fig. 1. Evolution of the lower and upper bound for instance R1L1-0.8.
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The typical behavior of the Benders approach is illustrated in Figure 1, visu-
alizing the evolution of the lower and upper bounds on the instance R1L1-0.8.
We observe that the optimal solution is already found within 10 seconds. On
the other hand, there is a large gap between lower and upper bound, with the
lower bound increasing at a diminishing rate. This is rather disappointing, as
the underlying digraph G of R1L1-0.8 has only 23 nodes and 36 arcs, and the
incidence-based MIP formulation (2) can be solved to optimality by CPLEX
within less than a second.

We therefore conclude that Benders decomposition, despite its attractive
theoretical properties, does not seem to be beneficial compared to the well-
established solution methods for the PESP.
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