
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

ANDREAS BLEY

THORSTEN KOCH

LINGFENG NIU

Experiments with
nonlinear extensions to SCIP

supported by the DGF Research Center Matheon

ZIB-Report 08-28 (July 2008)



Experiments with nonlinear extensions to SCIP∗

Andreas Bley Thorsten Koch Lingfeng Niu†

revised May 8, 2009

Abstract

This paper describes several experiments to explore the options for
solving a class of mixed integer nonlinear programming problems that
stem from a real-world mine production planning project. The only
type of nonlinear constraints in these problems are bilinear equalities
involving continuous variables, which enforce the ratios between ele-
ments in mixed material streams.

A branch-and-bound algorithm to handle the integer variables has
been tried in another project. However, this branch-and-bound algo-
rithm is not effective for handling the nonlinear constraints. There-
fore state-of-the-art nonlinear solvers are utilized to solve the resulting
nonlinear subproblems in this work. The experiments were carried out
using the NEOS server for optimization. After finding that current
nonlinear programming solvers seem to lack suitable preprocessing ca-
pabilities, we preprocess the instances beforehand and use a heuristic
approach to solve the nonlinear subproblems.

In the appendix, we explain how to add a polynomial constraint
handler that uses IPOPT as embedded nonlinear programming solver
for the constraint programming framework SCIP. This is one of the
crucial steps for implementing our algorithm in SCIP. We briefly de-
scribe our approach and give an idea of the work involved.

1 Introduction

Mixed Integer Nonlinear Programming (MINLP) is an optimization prob-
lem with continuous and discrete variables and nonlinearities in the objective
function or at least one of the constraint functions. Many real world appli-
cations are suitable to be modeled as MINLP, because it can simultaneously
optimize the system structure (discrete) and parameters (continuous). One
particular type of nonlinear constraints that is often encountered are mixing
or blending constraints, which enforce that the mixing ratio of materials is

∗Project supported by the DGF Research Center Matheon
†State Key Laboratory of Scientific and Engineering Computing, Institute of Compu-

tational Mathematics and Scientific/Engineering Computing, AMSS, CAS, Beijing

1



the same in certain material streams. Mathematically, these mixing con-
straints can be expressed as bilinear equations. In this paper, we consider
solving a special mixed integer nonlinear programming problem arising from
the problem of scheduling the production of an open-pit mine, whose non-
linear constraints are just bilinear equations.

1.1 Problem Description

The mine can be considered as a set of panels, which are identified by the
numbers 1, . . . , N . Each panel represents a volume of underground material.
In particular, there are a number of mineral attributes which are of interest
in the mining operation. We denote the set of all attributes of interest
by A. For each panel, the quantity of attributes in A is assumed to be
known. The value αa

i ∈ Z+ denotes the quantity of attributes a ∈ A in
panel i ∈ {1, . . . , N}. A special attribute is rock, which describes the total
tonnes of underground material in each panel.

In the operation of the mine, rock is extracted from the mine and then
can be sent to one of three destinations: waste, processing, or into a stock-
pile. Material that is sent to waste can be ignored in scheduling production.
Processing is performed at a processing plant that extracts the valuable
material from the rock. It is assumed that any material processed is im-
mediately sold. All material put into the stockpile is immediately mixed,
thus becoming homogeneous. Nothings happens in the stockpiles, so their
attributes are simply the sum of those of their constituent ingredients. At
any stage, the material on the stockpile can be sent to processing.

An important feature of an open-pit mining operation is the precedence
structure. For each panel i = 1, . . . ,N , mining engineering software is able
to calculate the set of other panels, denoted by Pred(i) ⊆ {1, . . . ,N}, that
must be completely extracted before the extraction of panel i can safely
begin.

The profitability of a mine is calculated as its net present value (NPV),
which depends crucially on when the valuable material extracted is sold.
Thus the life of the mine is divided into T periods. The mine schedule
specifies the mining activities, i.e., the material to be extracted, processed
and stockpiled in each period. The profit that these activities yield must
be multiplied by a period discount factor, which we denote by δt for each
t = 1, . . . , T , and the sum of the profits, weighted by the discount factor
for the period in which they occur, gives the NPV. We seek a schedule that
maximizes this NPV.

In this specific application, the nonlinearities arise from the use of stock-
piles. In fact, the open pit mine production planning problem without the
use of stockpiles can be formulated and solved very efficiently as mixed in-
teger linear programming problems. Several variants of such problems are
described in [13, 12, 6]. We will introduce a MINLP formulation for a mine

2



with a single infinite-capacity stockpile briefly in the next subsection.

1.2 MINLP formulation

In this work, we only consider three attributes: the total rock tonnage, the
ore content, and the metal content, i.e., A = {rock, ore,met}. We make
the simplifying assumption that the stockpile is empty at the start of the
first time period and at the end of the planning horizon. Furthermore, we
assume that material taken from the stockpile is taken off instantaneously at
the start of the respective period. Material added to the stockpile is added
at the end of a period, i.e., after the removal of the material taken off for
processing in the same period, but before the removal of the material taken
off for processing in the following period.

The following parameters and variables are used for our model descrip-
tion.

Parameters (all non-negative):
pmet

t metal price per unit in period t
cm
t extraction cost per ton of rock in period t

cp
t processing cost per ton of ore in period t

bm
t extraction capacity in tons of ore in period t

bp
t processing capacity in tons of rock in period t

Note that the processing capacity and cost depend only on the ore tonnage of
the material sent for processing, while the mining capacity and cost depend
on the rock tonnage of the material extracted.

Variables

For each panel i = 1, .., N and each period t = 1, ..., T :
fm

i,t ∈ [0, 1] fraction of panel i extraced in period t

fp
i,t ∈ [0, 1] fraction of panel i sent directly for processing in period

t
f s

i,t ∈ [0, 1] fraction of panel i sent to stockpile in period t

f o
i,t ∈ [0, 1] fraction of panel i sent from stockpile to stockpile in

period t
f r

i,t ∈ [0, 1] fraction of panel i remaining in stockpile from period
t − 1 to period t

In order to ensure that the extraction respects the given precedence relations
required for safe mining, we introduce binary decision variables:

xi,t =

{

1 panel i is completely extracted by end of period t or earlier,
0 otherwise.

Then the Mine Production Scheduling problem with a single Stockpile
(MPSS) can be formulated as follows:

max
∑T

t=1 δt(
∑N

i=1((p
met
t αmet

i − cp
t α

ore
i )(fp

i,t + f o
i,t) − cm

t αrock
i fm

i,t)) (1.1)

3



s.t. fp
i,t + f s

i,t ≤ fm
i,t, ∀i = 1, ...,N, t = 1, ..., T.

∑T
t=1 fm

i,t ≤ 1, ∀i = 1, · · · ,N.
∑t

t′=1 fm
i,t′ ≥ xi,t, ∀i = 1, ...,N, t = 1, ..., T.

∑t
t′=1 fm

i,t′ ≤ xj,t, ∀i = 1, ...,N, t = 1, ..., T, j ∈ Pred(i).

xi,t ≤ xi,t+1, ∀i = 1, ...,N, t = 1, ..., T − 1.

f r
i,t + f s

i,t = f o
i,t+1 + f r

i,t+1, ∀i = 1, · · · ,N, t = 1, · · · , T − 1.
∑N

i=1 αrock
i fm

i,t ≤ bm
t , ∀t = 1, ..., T.

∑N
i=1 αore

i (fp
i,t + f o

i,t) ≤ bp
t , ∀t = 1, ..., T.

f o
i,tf

r
j,t = f o

j,tf
r
i,t, ∀i, j = 1, · · · ,N, t = 1, · · · , T.

0 ≤ fm
i,t, f

s
i,t, f

p
i,t, f

o
i,t, f

r
i,t ≤ 1, ∀i = 1, ...,N, t = 1, ..., T.

f o
i,1 = f r

i,1 = f r
i,T = f s

i,T = 0, ∀i = 1, · · · ,N.

xi,t ∈ {0, 1}, ∀i = 1, ...,N, t = 1, ..., T.

where the bilinear constraint f o
i,tf

r
j,t = f o

j,tf
r
i,t represents the requirement

that all the material in the stockpile must be homogeneously mixed. This
MINLP contains 5NT continuous variables and NT binary variables. The
number of nonlinear constraints is NT . For a mine with 125 panels and 25
time periods (this is the scale of one of our experiment problems), the scale
of the model is 3125 binary variables and 390625 bilinear constraints. Since
this is considered a large scale instance regarding current MINLP solving
techniques, we would prefer a more compact formulation.

Notice that variables f o
·,· and f r

·,· are only used to indicate the mate-
rial flows in and out of the stockpile. Now consider using the following
aggregated variables instead of reducing the number of variables and non-
linear constraints . We define for each period t = 2, ..., T and each attribute
a ∈ {ore,met} the following variables:

qa
t units of attribute a in the stockpile at the end of period t,

oa
t units of attribute a removed from the stockpile at the start

of period t (i.e., at the end of period t − 1).

As all material put into the stockpile is mixed, we have to ensure that the
material taken off the stockpile at the start of a period has the same metal–
ore composition as the material contained in the stockpile at the end of the
preceding period. Therefore, the following bilinear equalities are needed,

oore
t qmet

t−1 = omet
t qore

t−1 ∀t = 2, . . . , T.

which is also the only group of nonlinear constraints that are necessary to
model the mixing property of the stockpile. Then we get another MINLP
model:

max
∑T

t=1
δt(

∑N

i=1
((pmet

t αmet
i −cp

t α
ore
i )fp

i,t−cm
t αrock

i fm
i,t)+pmet

t omet
t −cp

t o
ore
t )

(1.2)

4



s.t. fp
i,t + f s

i,t ≤ fm
i,t, ∀i = 1, ...,N, t = 1, ..., T.

∑T
t=1 fm

i,t ≤ 1, ∀i = 1, · · · ,N.
∑t

t′=1 fm
i,t′ ≥ xi,t, ∀i = 1, ...,N, t = 1, ..., T.

∑t
t′=1 fm

i,t′ ≤ xj,t, ∀i = 1, ...,N, t = 1, ..., T, j ∈ Pred(i).

xi,t ≤ xi,t+1, ∀i = 1, ...,N, t = 1, ..., T − 1.
∑N

i=1 αa
i f

s
i,1 = qa

1 , ∀a ∈ {ore,met}

qa
t−1 − oa

t +
∑N

i=1 αa
i f

s
i,t = qa

t , ∀t = 2, ..., T − 1, a ∈ {ore,met}.

qa
T−1 − oa

T +
∑N

i=1 αa
i f

s
i,T = 0,

∑N
i=1 αrock

i fm
i,t ≤ bm

t , ∀t = 1, ..., T.
∑N

i=1 αore
i fp

i,1 ≤ bp
1,

∑N
i=1 αore

i fp
i,t + oore

t ≤ bp
t , ∀t = 2, ..., T.

oore
t qmet

t−1 = omet
t qore

t−1, ∀t = 2, ..., T − 1.

oa
T = qa

T−1, ∀a ∈ {ore,met}.

oa
t , q

a
t−1 ≥ 0, ∀t = 2, ..., T, a ∈ {ore,met}.

0 ≤ fm
i,t, f

s
i,t, f

p
i,t ≤ 1, ∀i = 1, ...,N, t = 1, ..., T.

xi,t ∈ {0, 1}, ∀i = 1, ...,N, t = 1, ..., T.

This MINLP model has T − 2 nonlinear constraints and 4NT + 2T − 2 vari-
ables, whose scale is smaller than (1.1). We call this MINLP the aggregated
MPSS formulation due to the use of aggregated variables qa

t and oq
t . Model

(1.1) is called the Basic Warehouse formulation.

2 The solution of the MPSS model

In this paper we will concentrate on the situation when a feasible schedule
for mining is given (that is, all binary variables in the model are fixed), how
to solve the resulting pure nonlinear programming (NLP) effectively and
efficiently. Because both the number of variables and nonlinear constraints
in (1.2) are much smaller than the number in (1.1), we only consider (1.2)
in the following.

When binary variables x·,· are fixed, the formulation of the resulting pure
NLP is the same as (1.2). The only difference is that x is parameter instead
of variable this time. For completeness, we restate the pure continuous
problem here:

max
∑T

t=1
δt(

∑N

i=1
((pmet

t αmet
i −cp

t α
ore
i )fp

i,t−cm
t αrock

i fm
i,t)+pmet

t omet
t −cp

t o
ore
t )

(2.1)

5



s.t. fp
i,t + f s

i,t ≤ fm
i,t, ∀i = 1, ...,N, t = 1, ..., T.

∑T
t=1 fm

i,t ≤ 1, ∀i = 1, · · · ,N.
∑t

t′=1 fm
i,t′ ≥ xi,t, ∀i = 1, ...,N, t = 1, ..., T.

∑t
t′=1 fm

i,t′ ≤ xj,t, ∀i = 1, ...,N, t = 1, ..., T, j ∈ Pred(i).

xi,t ≤ xi,t+1, ∀i = 1, ...,N, t = 1, ..., T − 1.
∑N

i=1 αa
i f

s
i,1 = qa

1 , ∀a ∈ {ore,met}

qa
t−1 − oa

t +
∑N

i=1 αa
i f

s
i,t = qa

t , ∀t = 2, ..., T − 1, a ∈ {ore,met}.

qa
T−1 − oa

T +
∑N

i=1 αa
i f

s
i,T = 0,

∑N
i=1 αrock

i fm
i,t ≤ bm

t , ∀t = 1, ..., T.
∑N

i=1 αore
i fp

i,1 ≤ bp
1,

∑N
i=1 αore

i fp
i,t + oore

t ≤ bp
t , ∀t = 2, ..., T.

oore
t qmet

t−1 = omet
t qore

t−1, ∀t = 2, ..., T − 1.

oa
T = qa

T−1, ∀a ∈ {ore,met}.

oa
t , q

a
t−1 ≥ 0, ∀t = 2, ..., T, a ∈ {ore,met}.

0 ≤ fm
i,t, f

s
i,t, f

p
i,t ≤ 1, ∀i = 1, ...,N, t = 1, ..., T.

2.1 Solving the continuous nonlinear subproblem

Two mines are used in our experiment: marvin (85 panels and 17 time pe-
riods) and ob25 (125 panels and 25 time periods). For the construction of
our nonlinear subproblems, the values of the x variables are needed. Notice
that the x variables have the same meaning in all the models mentioned
above. So different sets of x values which have been fixed to the values of
a global near-optimal solution computed by a branch-and-bound algorithm
for the aggregated model (1.1), warehouse model (1.2) and extended ware-
house model are used. In the following, we will use “agg”, ”wh” and “ewh”
to represent the aggregated model, warehouse model and extended model,
respectively. All together, 9 different datasets are used: marvin (agg, wh,
ewh); marvin2 (agg, wh, ewh) and ob25 (agg, wh, ewh).

We formulated our nonlinear optimization problem in the AMPL [14]
modeling language and tried to solve the resulting NLP with several state-of-
the-art nonlinear programming solvers available through the NEOS server [9,
8, 4]: filterQP version 20020316 [5], IPOPT version 3.3.3 [16], KNITRO
version 5.2.0 [2], Lancelot release A [3], LOQO version 6.06 [15], MINOS
version 5.51 [11], PENNON version 2.2 [10], and SNOPT version 7.2-8 [7].

When applying these solvers off-the-shelf, we experienced substantial
problems. Only a few solvers were able to find a local solution to at least
some datasets. Most solvers were not able to find a feasible solution at all.
Computational results for marvin, marvin2 and ob25 are listed in Table 1, 2,

6



and 3, respectively. Column “Solver” gives the name of different solvers. The
optimal objective function values found are listed in the column “Solution
info.” if the corresponding solver can find a optimal solution successfully.
Otherwise, the reason for failure is given.

Observing that several solvers complain about reaching the iteration
limit, we doubled the maximum iteration number for these solvers. However,
all of those solvers still failed, indicating that enlarging the iteration number
or computing time alone has only very little impact.

There are also some solvers which complain that the models are badly
scaled. We concluded that the NLP solvers were not capable of doing the
necessary preprocessing automatically. Hence, the preprocessing for the
continuous nonlinear subproblems was done by us in advance. The fixed
integer variables are removed and the resulting implications were propagated
on the other variables’ domains in order to eliminate variables that implicitly
have been fixed by these implications. If, for example, variable xi,t has been
fixed to 1 (i.e., panel i is completely extracted by the end of period t), it
follows that xi,t̂ = 1 and fm

i,t̂
= 0 for all t̂ = t + 1, . . . , T and, consequently,

all variables xi,t and fm
i,t̂

can be removed from the subproblem. This simple

preprocessing technique reduces the scale of the NLP considerably. Take
the marvin dataset for example, preprocessing reduced the number of f -
variables in the marvin test dataset from 4335 to 339 and the number of
constraints accordingly.

Applying our preprocessing techniques prior to passing the subproblem
to the nonlinear programming solvers resulted in a much better performance
of the solvers. Most of them were now able to find feasible and locally
optimal solutions within a few seconds. Table 4 gives an overview of the
results, which indicate that careful preprocessing is important to successful
NLP solving.

All the nonlinear solvers mentioned above only seek local solutions, i.e., a
point at which the objective function is larger than at all other feasible points
in the vicinity. They do not necessarily find a global optimal solution. One
the other hand, the branch-and-bound algorithm needs to know the global
optimum or at least a reasonable upper bound for each node. How to cope
with the gap between the nonlinear solvers’ ability of only finding the local
optima and the requirement from branch-and-bound framework for global
optima will be our next topic in this section.

We give the following heuristic algorithm which we think can “lead” the
iteration to a local optimum with a larger objective value.

The intuitive explanation is that the objective value is reduced step by
step and the previous solution provides a good starting point for the next
step. Suppose there are n nonlinear constraints, in each step we add at least
one of the remaining constraints to the model. We need to call the nonlinear
solver at most n times. It can be expected that, with a good starting point

7



Algorithm 1 Heuristic Algorithm for Finding Global Solution

Step 1. Initialization. Drop the nonlinear constraints and solve the
resulting linear programming to get an initial point.
Step 2. Construct New Subproblem. Choose one nonlinear con-
straint which is violated by the current solution. Add this constraint to
the problem formulation and solve the new problem starting with the
solution of the last step as initial point.
Step 3. Termination Test. Stop the iteration if all the nonlinear
constraints are satisfied numerically. Otherwise, goto Step 2.

given, the expense for each iteration is not so high.
For our special problem, the nonlinear constraints represent the require-

ment of homogeneous materials in the stockpile. In other words, they forbid
the free processing to happen in the stockpile. With this background knowl-
edge, we can simplify Algorithm 1 as follows:

Algorithm 2 Heuristic Algorithm for Finding Global Solution

Step 1. Initialization. Drop the nonlinear constraints and solve the
resulting linear programming. Let t = 2
Step 2. Construct New Subproblem. Choose the nonlinear con-
straint corresponding to the t-th time period and add it to the problem
formulation. Add this constraint to the problem formulation and solve the
new problem starting with the solution of the last step as initial point.
Step 3. Termination Test. Stop the iteration if t = T − 1. Otherwise,
set t := t + 1 and goto Step 2.

The computational results for Algorithm 2 are listed in Table 5. The
underlying NLP solver chosen in this set of experiments is filterQP. The
reason is that we think Algorithm 2, which considers nonlinear constraints
one by one, is very suitable to be used together with the active set method,
which is just the underlying algorithm in filterQP.

Column “OneByOne” gives the solution found by Algorithm 2. Column
”AllInOne” shows the solution obtained by solving the preprocessed NLP
model (2.1) with filterQP directly. Column “original solution” contains the
objective function values for the solution found by a branch-and-bound algo-
rithm from another project. From these results we can see that our solution
has larger objective function values than the original solution. We experi-
enced that the solutions obtained by NLP solvers usually fit the nonlinear
constraints better numerically, i.e., the corresponding constraint violation
value is smaller.

We also tried the interior point solver IPOPT, but the results obtained
by Algorithm 2 using IPOPT are almost the same as the results obtained
by considering all the nonlinear constraints together. On the other hand,

8



we find most of the time, the solution obtained by filterQP using Algorithm
2 is as good as the solution found by using IPOPT directly. So we guess
maybe these solution are already the global optimal. Therefore, now our
problem will be to estimate the quality of our solution.

2.1.1 Piecewise linearization to estimate the quality of NLP so-

lution

For the general non-convex NLP, global solutions are not only difficult to
locate, but also difficult to identify. There are no easily computable crite-
ria to verify the global optimality of a given solution. One of the common
approaches to estimate the quality of the solution is computing an upper
bound (for the maximization problems) by piecewisely linearizing the non-
linear constraints and solving the resulting MIP. In this work, we also utilize
this technique.

Firstly, a set of threshold values for the metal-to-ore grade of the mixed
material in the stockpile is introduced. For t ∈ {1, · · · , T − 2}, we define
values rt,1 < · · · < rt,L, where rt,1 = rmin

t , rt,L = rmax
t are estimated

lower and upper bounds for qmet
t /qore

t . Since the material in the stockpile is
homogeneously mixed, the grade of the material in the stockpile at the end
of period of t should be the same as the grade of the material taken off the
stockpile at the start of the next period. Hence, there exists a number l(t)
between 1 and L for each t, such that

rt,l(t) ≤
qmet
t

qore
t

=
omet
t+1

oore
t+1

< rt,l(t)+1

i.e.,

rt,l(t)q
ore
t ≤ qmet

t < rt,l(t)+1q
ore
t

rt,l(t)o
ore
t+1 ≤ omet

t+1 < rt,l(t)+1o
ore
t+1 .

We can relax this group of constraints by introducing binary variable

yt,l =

{

1 if qmet
t /qore

t ≥ rt,l ,

0 otherwise

for all t ∈ {1, · · · , T − 2} and l ∈ {1, . . . , L} such that

rt,lq
ore
t − qmet

t + rt,lB
ore
t yt,l ≤ rt,lB

ore
t (2.2a)

qmet
t − rt,lq

ore
t − Bmet

t yt,l < 0 (2.2b)

rt,lo
ore
t+1 − omet

t+1 + rt,lB
ore
t yt,l ≤ rt,lB

ore
t (2.2c)

omet
t+1 − rt,lo

ore
t+1 − Bmet

t yt,l < 0 (2.2d)

yt,l ≥ yt,l+1 (2.2e)

9



where Bore
t and Bmet

t are upper bounds on the amount of ore and metal that
can be contained in the stockpile at the beginning of period t, respectively.

Replacing the nonlinear mixing equalities (1.3) with the linear con-
straints (2.2) and the additional binary variables yt,l, we obtain the following
MIP relaxation of the original formulation (2.1):

max
∑T

t=1
δt(

∑N

i=1
((pmet

t αmet
i −cp

t α
ore
i )fp

i,t−cm
t αrock

i fm
i,t)+pmet

t omet
t −cp

t o
ore
t )

(2.3)

s.t. fp
i,t + f s

i,t ≤ fm
i,t, ∀i = 1, ...,N, t = 1, ..., T.

∑T
t=1 fm

i,t ≤ 1, ∀i = 1, · · · ,N.
∑t

t′=1 fm
i,t′ ≥ xi,t, ∀i = 1, ...,N, t = 1, ..., T.

∑t
t′=1 fm

i,t′ ≤ xj,t, ∀i = 1, ...,N, t = 1, ..., T, j ∈ Pred(i).

xi,t ≤ xi,t+1, ∀i = 1, ...,N, t = 1, ..., T − 1.
∑N

i=1 αa
i f

s
i,1 = qa

1 , ∀a ∈ {ore,met}

qa
t−1 − oa

t +
∑N

i=1 αa
i f

s
i,t = qa

t , ∀t = 2, ..., T − 1, a ∈ {ore,met}.

qa
T−1 − oa

T +
∑N

i=1 αa
i f

s
i,T = 0,

∑N
i=1 αrock

i fm
i,t ≤ bm

t , ∀t = 1, ..., T.
∑N

i=1 αore
i fp

i,1 ≤ bp
1,

∑N
i=1 αore

i fp
i,t + oore

t ≤ bp
t , ∀t = 2, ..., T.

rt,lq
ore
t − qmet

t + rt,lB
ore
t yt,l ≤ rt,lB

ore
t , ∀t = 1, ..., T − 2, l = 1, · · · , L.

qmet
t − rt,lq

ore
t − Bmet

t yt,l < 0, ∀t = 1, ..., T − 2, l = 1, · · · , L.

rt,lo
ore
t+1 − omet

t+1 + rt,lB
ore
t yt,l ≤ rt,lB

ore
t , ∀t = 1, ..., T − 2, l = 1, · · · , L.

omet
t+1 − rt,lo

ore
t+1 − Bmet

t yt,l < 0, ∀t = 1, ..., T − 2, l = 1, · · · , L.

yt,l ≥ yt,l+1, ∀t = 1, ..., T − 2, l = 1, · · · , L.

oa
T = qa

T−1, ∀a ∈ {ore,met}.

oa
t , q

a
t−1 ≥ 0, ∀t = 2, ..., T, a ∈ {ore,met}.

0 ≤ fm
i,t, f

s
i,t, f

p
i,t ≤ 1, ∀i = 1, ...,N, t = 1, ..., T.

yt,l ∈ {0, 1}, ∀t = 1, ..., T − 2, l = 1, ..., L.

Clearly, the optimal objective function value for this MIP is an upper bound
for the global optimal solution of nonlinear programming (2.1). The accu-
racy of this approximation depends on the number and the values of the
threshold grades rt,l. Generally speaking, the more threshold grades we use,
the finer is the approximation we can get. But increasing the number of
grades also increases the time needed to solve MIP (2.3). In our following
tests, we set L = 10 and evenly divide the possible grade range. We com-
pute the values of yt,l according to the NLP solution and take them as the

10



starting point for the MIP. So if our solution is the global optimum, the
MIP usually terminates very quickly.

Results are given in Table 6. For comparison, we list the objective func-
tion values corresponding to the solution found by algorithm 2 again in col-
umn “NLP sol.”. Column “upper bound” and “gap” give the upper bound
we computed from MIP relaxation (2.3) (SCIP is used as the underlying
MIP solver) and the difference percentage between upper bound and NLP
solutions. Results show that from point of view of the objective function
value our solution is very close to the optimal solution.

The computing time is also given in the same table. We find most of the
time is spent on solving MIP (2.3) to get the upper bound of the solution.
Although algorithm 2 needs to solve T − 2 NLP and 1 LP, the computing
time still can be controlled in a few seconds, and relatively less than the
phase of estimating the upper bound. And the total time of finding the
NLP solution and estimating the upper bound is less than finding the same
accurate solution by using the branch-and-bound algorithm. So combining
the branch-and-bound algorithm with the NLP solver and our upper bound
MIP relaxation will be a better choice for the open-pit mine production
scheduling problem.

3 Conclusions

We discussed in detail how to solve the NLP raised when solving the multi-
period single stockpile open-pit mine production scheduling problem. Sev-
eral state-of-the-art NLP solvers are used. A simple iterative scheme is pro-
posed as a heuristic algorithm for finding the global solution. A piecewise
linearization technique to estimate the quality of the solutions is derived at
the same time. Numerical results show that the solutions produced are very
close to the proven global upper bounds.

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technis-
che Universität Berlin, 2007.

[2] R. Byrd, J. Nocedal, and R. Waltz. KNITRO: An integrated package for
nonlinear optimization. In Large-Scale Nonlinear Optimization, pages
35–59. Springer-Verlag, 2006.

[3] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: a Fortran
Package for Large-Scale Nonlinear Optimization (Release A), volume 17
of Springer Series in Computational Mathematics. Springer Verlag,
Heidelberg, New York, 1992.

11



[4] E. Dolan. The NEOS server 4.0 administrative guide. Technical Mem-
orandum ANL/MCS-TM-250, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, May 2001.

[5] R. Fletcher and S. Leyffer. User manual for filterSQP. University of
Dundee, March 1999.

[6] C. Fricke. Applications of Integer Programming in Open Pit Mining.
PhD thesis, University of Melbourne, Aug. 2006.

[7] P. E. Gill, W. Murray, and M. Saunders. User’s guide for SNOPT
(version 5.3). Technical report, Department of Mathematics, University
of California, 1997.

[8] W. Gropp and J. Moré. Optimization environments and the NEOS
server. In M. D. Buhmann and A. Iserles, editors, Approximation
Theory and Optimization, pages 168–172. Cambridge University Press,
1997.

[9] M. M. J. Czyzyk and J. Moré. The NEOS server. IEEE Journal on
Computational Science and Engineering, 5:68–75, 1998.

[10] M. Kocvara and M. Stingl. PENNON: A code for convex nonlinear
and semidefinite programming. Optimization Methods and Software,
18(3):317–333, 2003.

[11] B. A. Murtagh and M. Saunders. MINOS 5.5 user’s guide. Techni-
cal report, Department of Operations Research, Stanford University,
Stanford, CA, USA, 1998.

[12] C. F. Natashia Boland and G. Froyland. A strengthened formulation
for the open pit mine production scheduling problem. Technical Re-
port 1624, Optimization Online, Mar. 2007. http://www.optimization-
online.org/DB FILE/2007/03/1624.pdf.

[13] G. F. Natashia Boland, Irina Dumitrescu and A. M. Gleixner. LP-based
disaggregation approaches to solving the open pit mining production
scheduling problem with block processing selectivity. Computers &
Operations Research, 36:1064–1089, 2009.

[14] D. M. G. R, Fourer and B. W. Kernighan. AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press/Wadsworth Publishing
Company, Belmont, CA, 1993.

[15] R. J. Vanderbei. LOQO: An interior point code for quadratic program-
ming. Optimization Methods and Software, 11:451–484, 1999.

[16] A. Wächter. Introduction to IPOPT: A tutorial for downloading, in-
stalling, and using IPOPT, November 2006.

12



Solver Solution info.

Aggregated Model

filterQP Nonlinear constraints locally infeasible
IPOPT Maximum number of iteration exceeded
Lancelot Too many iterations
LOQO Iteration limit
MINOS Unbounded(or badly scaled) problem
PENNON No progress
SNOPT Cannot satisfy nonlinear constraints
KNITRO Iteration limit reached

Extended Warehouse Model

filterQP Nonlinear constraints locally infeasible
IPOPT Restoration Phase Failed.
Lancelot Too many iterations
LOQO Iteration limit
MINOS 693879181.5
PENNON No progress
SNOPT Requested accuracy could not be achieved.
KNITRO 691868010.2

Warehouse Model

filterQP Nonlinear constraints locally infeasible
IPOPT Restoration Phase Failed
Lancelot Too many iterations
LOQO Iteration limit
MINOS The current point cannot be improved
PENNON No progress
SNOPT Cannot satisfy nonlinear constraints
KNITRO Iteration limit reached

Table 1: Results of different solvers for marvin data without preprocessing

13



Solver Solution info.

Aggregated Model

filterQP Nonlinear constraints locally infeasible
IPOPT Restoration Phase Failed.
Lancelot Too many iterations
LOQO Iteration limit
MINOS Objective has not changed
PENNON No progress
SNOPT Cannot satisfy nonlinear constraints
KNITRO Iteration limit reached

Extended Warehouse Model

filterQP Nonlinear constraints locally infeasible
IPOPT Maximum Number of Iterations Exceeded.
Lancelot Too many iterations
LOQO Iteration limit
MINOS 693290432.9
PENNON No progress
SNOPT 693290291.6
KNITRO Iteration limit reached

Warehouse Model

filterQP Nonlinear constraints locally infeasible
IPOPT 687684346.8
Lancelot Too many iterations
LOQO Iteration limit
MINOS 671547237.4
PENNON No progress
SNOPT Cannot satisfy nonlinear constraints
KNITRO Iteration limit reached

Table 2: Results of different solvers for marvin2 data without preprocessing

14



Solver Solution info.

Aggregated Model

filterQP Nonlinear constraints locally infeasible
IPOPT 46325056.7 (solved to acceptable level)
Lancelot Too many iterations
LOQO Iteration limit
MINOS Too many major iterations
PENNON Iteration limit
SNOPT Cannot satisfy nonlinear constraints
KNITRO Iteration limit reached

Extended Warehouse Model

filterQP 48834876.98
IPOPT 48835025.54
Lancelot Too many iterations
LOQO Iteration limit
MINOS 48834869.22
PENNON Iteration limit
SNOPT 48834867.45
KNITRO 48833251.19

Warehouse Model

filterQP 48790471.32
IPOPT 48790471.76
Lancelot Too many iterations
LOQO Iteration limit
MINOS 48706876.16
PENNON No progress
SNOPT 48696006.39
KNITRO 48702059.05

Table 3: Results of different solvers for ob25 data without preprocessing

15



Solver Solution info.
marvin marvin2 ob25

Aggregated Model

filterQP 671261921.2 675214818.9 46325056.1
IPOPT 671261927 675214827.3 46325055.51
Lancelot 671261966.4 Step too small 46042626.54
LOQO Iteration limit Iteration limit Iteration limit
MINOS 671261921.2 675214819.3 46325056.1
PENNON 671261921.3 Line search fail. 46325056.08
SNOPT 671261923.7 675215259.7 46325056.1
KNITRO 671261892 675214788.1 46325050.19

Extended Warehouse Model

filterQP 694254443.5 694117682.5 48834998.46
IPOPT 694472431.7 694117688.2 48835024.33
Lancelot Step too small 694151532.3 Too many iter.
LOQO 694459569.5 694096130.3 Iteration limit
MINOS 694254455.5 694117682.5 Too many iter.
PENNON 694472426 694117682.3 No progress
SNOPT 694255806.1 694117682.5 48842209.5
KNITRO 694472397.2 694117653.9 48835017.81

Warehouse Model

filterQP 689050448.5 687678500.4 48790471.5
IPOPT 689050453.1 687684345.6 48790470.63
Lancelot 689055911.9 687685030.2 Too many iter.
LOQO 688952262.8 Iteration limit Iteration limit
MINOS 689050450.9 687678500.7 48790472.03
PENNON 689050448.5 687684339.9 48790471.34
SNOPT 689050475.8 687678502.2 48790487.03
KNITRO 689050418.4 687684310.9 48790465.46

Table 4: Results of different solvers with preprocessing

16



Data OneByOne AllInOne Original

marvin data

agg 671261921.1 671261921.2 5.53839e+08
ewh 694472426 694254443.5 6.93879e+08
wh 689050448.4 689050448.5 6.72883e+08

marvin2 data

agg 675214818.7 675214818.9 5.47343e+08
ewh 694117682.5 694117682.5 6.93291e+08
wh 687678500.2 687678500.4 6.71547e+08

ob25 data

agg 46042584.48 46325056.1 4.36723e+07
ewh 48835025.2 48834998.46 4.88349e+07
wh 48790471.32 48790471.5 4.86963e+07

Table 5: Comparison of different algorithms

Alg.A estimated bound
Problem objective t[s] upper bound t[s] gap [%]

marvin data

agg 6.71262e+08 32 6.73807e+08 1017 0.4
ewh 6.94472e+08 22 6.96649e+08 325 0.3
wh 6.89050e+08 23 6.91382e+08 454 0.3

marvin2 data

agg 6.75215e+08 21 6.76789e+08 1367 0.2
ewh 6.94118e+08 22 6.96080e+08 412 0.3
wh 6.87679e+08 19 6.90073e+08 377 0.3

ob25

agg 4.60426e+07 42 4.65771e+07 3770 1.1
ewh 4.88350e+07 58 4.89722e+07 181 0.3
wh 4.87905e+07 23 4.89737e+07 758 0.4

Table 6: Computational results for estimating the upper bound

17



A Implementation

In this appendix, we explain how to handle polynomial constraints in SCIP,
which is the crucial step for implementing the above discussed algorithms.

SCIP, which is implemented in the C programming languages, is cur-
rently one of the fastest non-commercial MIP solvers available. It is also
a framework for Constraint Integer Programming (CIP) and branch-cut-
and-price. It allows total control of the solution process and the access to
detailed information down to the guts of the solver. A detailed description
of SCIP can be found in [1] and web site http://scip.zib.de/.

The standard distribution of SCIP provides all functionalities necessary
to solve constraint and integer linear programs. Via its programming inter-
face, however, SCIP can be easily extended by specialized handlers do deal
with other constraint types as well. In the following, we will explain how to
add a polynomial constraint to SCIP, which is the first nonlinear constraint
handler in SCIP.

Generally speaking, all the information regarding the polynomial con-
straints is included in the polynomial constraint handler. We start by
defining the data structures necessary to represent the polynomials. All
the constraint handlers communicate with SCIP through standard callback
functions. Therefore, we need to specify these callback functions in the
polynomial constraint handler. The main task of the polynomial constraint
handler is to improve the current solution by making the polynomial con-
straints feasible. To do this a nonlinear programming solver is needed. We
choose the open source software IPOPT as the underlying NLP solver and
explain how to interface SCIP with IPOPT.

A.1 Data Structures for Polynomial Constraints

A polynomial is the sum of several monomials. A monomial is composed
of the coefficient, the variables and their corresponding powers. We use the
following code for the data structure of monomials and polynomials:

typedef struct MonomialTag {

int nuses;

int nvars;

SCIP_VAR ** vars;

SCIP_Real * power;

SCIP_Real coefficient;

} Monomial;

typedef struct PolynomialTag {

int nuses;

int nMonomials;

Monomial ** monomials;

18



} Polynomial;

These two data structures provide us a convenient way to represent polyno-
mials. For example, an instance of monomial structure with member vari-
ables nvars = n, coefficient = c and power = {a1, · · · , an} is cxa1

1 · · · xan

n .
Since the constraint handlers in SCIP encapsulate all the data needed to

represent the constraint, SCIP itself does not need to have any knowledge
about the particular data structures used. Only the constraint handler has
the information needed to describe the nonlinear constraints. Tasks that
need detailed knowledge about the constraints, such as feasibility checking,
are invoked by SCIP via callback functions through the constraint handler
itself. These callback functions have to be implemented for the polynomial
constraint handler. Details can be found in the SCIP documentation.

A.2 Functions for Polynomial Constraints

Functions for Monomials

The following six functions are implemented for monomials, to create, free,
capture, release and evaluate the given monomial.

SCIP_RETCODE monomialCreate( SCIP* scip,

Monomial** monomials,

int nvars,

SCIP_VAR** vars,

SCIP_Real* power,

SCIP_Real coefficient )

Creates a monomial when the coefficient and power for each variable are
given.

SCIP_RETCODE monomialFree( SCIP* scip,

Monomial** monomials )

Frees the given monomial and sets the corresponding monomial pointer to
NULL.

SCIP_Bool is_monomial_valid( Monomial *monomial )

Validates that the power of each variable in the monomial is non-zero. Re-
turns TRUE if the given monomial is valid and FALSE otherwise.

void captureMonomial( SCIP* scip, Monomial* monomial )

void releaseMonomial( SCIP* scip, Monomial** monomial )

Captures and releases the monomial by increasing and decreasing the refer-
ence counter.

19



SCIP_Real evaluateMonomial( SCIP* scip,

SCIP_SOL* sol,

Monomial* monomial )

Evaluates monomial at the point sol.

Functions for Polynomials

Analogous to the operations for monomials, we implemented the follow-
ing six functions for polynomials: polynomialCreate, polynomialFree,
is_polynomial_valid, capturePolynomial, releasePolynomial, and
evaluatePolynomial.

A.3 Constructing and Solving the Nonlinear Subproblem

The polynomial constraint handler does not contain any information about
the objective function and any linear constraints. When creating the nonlin-
ear subproblem, we access these information via the SCIP functions SCIPgetLPRowsData,
SCIPgetLPColsData, SCIPcolGetObj, SCIProwGetRhs, SCIProwGetLhs and
SCIProwGetNLPNonz. To make sure that the data we get via these functions
is correct and complete, our polynomial constraint handler should be the last
one to be checked by SCIP. For this, the macro property CONSHDLR_CHECKPRIORITY

and CONSHDLR_ENFOPRIORITY should be set to the smallest value.
The data for the nonlinear polynomial constraints are incrementally ob-

tained by the SCIP function SCIPconsGetData.
Creation and solution of the nonlinear subproblem are completely en-

capsulated in the function

SCIP_RETCODE ipoptSolve( SCIP* scip,

SCIP_CONS** conss,

int nconss,

SCIP_SOL* sol,

SCIP_Real * contVarsVals ) .

This function first creates the nonlinear subproblem, then solves it (by call-
ing the function Callipopt of IPOPT), and finally returns the solution
computed by IPOPT and releases all temporary data structures. On the
other hand, function ipoptSolve is called by function

SCIP_RETCODE improveSolByIpopt( SCIP * scip,

SCIP_CONSHDLR * conshdlr,

SCIP_CONS ** conss,

int nconss,

SCIP_SOL* sol ) ,

20



which tries to improve the given solution sol by applying the nonlinear
solver IPOPT and, if successful, returns the improved solution back to SCIP
via the parameter sol.

To interface with IPOPT, the data of the created nonlinear subproblem
is encapsulated in the internal data structure NLP:

typedef struct NLPTag {

int nvars;

int nbinvars;

int nintvars;

int nimplvars;

int ncontvars;

int nactivevars;

int nnonactivevars;

int nfixed;

int naggr;

int nmultaggr;

int nnegation;

int m_LP;

int m_NLP;

int * nnonz;

int ** jCols;

SCIP_Real ** values;

PolynomialIpopt** polynomials;

SCIP_Real * lhs;

SCIP_Real * rhs;

} NLP;

The data type PolynomialIpopt used in this data structure is similar to
the structure Polynomial discussed in SectionA.1 and will be explained in
Section A.4.

A.4 The IPOPT Interface

To pass the nonlinear subproblem to IPOPT, we implemented all call-
back functions that are necessary for the problem representation in the
C–language programming interface of IPOPT. These functions are eval_f,
eval_grad_f, eval_g, eval_jac_g and eval_h, which are the evaluation of
the objective function, objective function gradient, constraint itself, Jacobi
matrix, and Hessian matrix values separately.

21



Then SCIP calls IPOPT via the function Callipopt to solve the current
nonlinear subproblem.

The data of the nonlinear subproblem is passed to IPOPT using two
extra data structures:

typedef struct MonomialIpoptTag {

int nvars;

int * indicies;

SCIP_Real * power;

SCIP_Real coefficient;

} MonomialIpopt;

typedef struct PolynomialIpoptTag {

int nMonomials;

MonomialIpopt ** monomials;

} PolynomialIpopt;

These data structures are similar to the structures Monomial and Polynomial

in SCIP. They explicitly contain the indices of the variables in the monomi-
als, which are hidden by the member SCIP_VAR in the corresponding SCIP
data structures.

Generally speaking, it is not an easy task to implement the functions
to evaluate the gradient and Hessian (IPOPT callback functions for prob-
lem representation). However, in our case, except for the polynomial con-
straints, all the other parts are linear. So this information can be formal-
ized analytically and evaluated efficiently. The gradient of a linear function
can be obtained directly from its coefficient vector and the Hessian is the
zero matrix. Therefore, for the Jacobian of the constraints and the Hessian
of the Lagrangian function, we only need to consider the polynomial con-
straints (computePolynomialGradientElement, computeHessPolynomial

in our code). As a polynomial is the sum of several monomials, the main job
is to compute the gradient and Hessian of the monomials. These operations
are implemented in through functions like computeHessMonomial,
computeMonomialGradientElement, etc.

IPOPT was designed for optimizing large sparse nonlinear programs.
Because of problem sparsity, the required matrices (like the constraints Ja-
cobian or Lagrangian Hessian) are not stored as dense matrices, but rather
in a sparse matrix format. IPOPT can be customized for a variety of matrix
formats, the triplet format was chosen in our implementation. In triplet
format only the nonzero entries are stored. The matrix is encoded in two
integer arrays and one double array, all of which have length equal to the
number of non-zeros in the matrix. (In the case of a symmetric matrix, only
the lower triangle of the matrix is stored.) By defining nnz to be the number
of stored non-zero, we define the three arrays as follows,

22



irow[nnz]

jcol[nnz]

A[nnz]

meaning that for any k in the range 0, · · · ,nnz-1 the elements at row
irow[k] and column jcol[k] have value A[k].

B AMPL files

B.1 Aggregated Model

1 # Model f i l e f o r the min ing problem − reduced v a r i a b l e s
2 # parameter s e c t i o n beg in
3 param N := 85 ;
4 param T := 17 ;
5 param BP := 20 ;
6 param BM := 60 ;
7 param CM := 900000;
8 param CP := 4000000;
9 param Pr i c e := 10380000;

10 param r a t i o := 1 . 1 ;
11

12 # code s e c t i o n beg in
13 param g u n d e r l i n e ;
14 param g o v e r l i n e ;
15 param g o v e r l i n e 2 ;
16

17 l e t g u n d e r l i n e := −1;
18 l e t g o v e r l i n e := −1;
19 l e t g o v e r l i n e 2 := −1;
20

21 s e t S I := 1 . . N;
22 s e t ST := 1 . . T ;
23 s e t ST 2 := 2 . . T ;
24 s e t ST T := 1 . . T−1;
25

26 param t h r e s h o l d := 0 .00000001 ;
27 param a l p h a r o c k { SI } >= 0 ;
28 param a l p h a o r e { SI } >= 0 ;
29 param a l p h a me t a l { SI } >= 0 ;
30 param f i r s t {SI } >= 0 ;
31 param l a s t {SI } >= 0 ;
32 param d e l t a {SI } ;
33

34 param i n i t f m {SI , ST} >= 0 ;
35 param i n i t f p {SI , ST} >= 0 ;
36 param i n i t f s {SI , ST} >= 0 ;
37

38 param i n i t o r e o { ST } >= 0 ;
39 param i n i t m e t o { ST } >= 0 ;
40 param i n i t o r e q { ST } >= 0 ;
41 param i n i t m e t q { ST } >= 0 ;

23



42

43 param EPSILON ;
44 param LOWER IND ;
45 l e t LOWER IND := T−1;
46

47 # aux s e t d e f i n e
48 s e t St{ k i n ST } := { i i n ST : i <= k } ;
49 s e t SPred{ SI } ; # Pred s e t i n i t i a l i z e d i n data f i l e
50

51 # window s e t
52 s e t SReduce x a rc { k i n S I } := { i i n ST : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
53 s e t SReduce x a rc 2 { k i n S I } := { i i n ST 2 : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
54

55 # ind ex s e t f o r v a r i a b l e
56 s e t IND = { i i n SI , t i n SReduce x a rc [ i ] } ;
57

58 va r f p { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f p [ i , t ] ;
59 va r f m{ i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f m [ i , t ] ;
60 va r f s { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f s [ i , t ] ;
61

62 va r met o{ t i n ST 2} >= 0 , := i n i t m e t o [ t ] ;
63 va r o r e o { t i n ST 2} >= 0 , := i n i t o r e o [ t ] ;
64

65 va r met q{ t i n ST T} >= 0 , := i n i t m e t q [ t ] ;
66 va r o r e q { t i n ST T} >= 0 , := i n i t o r e q [ t ] ;
67

68 param x{SI , ST} b i n a r y ;
69

70 # o b j e c t i v e
71 maximize NPV:
72 sum { i i n SI , t i n SReduce x a rc [ i ] } r a t i o ∗∗(− t ) ∗ ( ( P r i c e ∗ a l p h a me t a l [ i ] −

CP ∗ a l p h a o r e [ i ] ) ∗ f p [ i , t ] − CM ∗ a l p h a r o c k [ i ] ∗ f m [ i , t ] ) +
73 sum { t i n ST 2 } r a t i o ∗∗(− t ) ∗ ( P r i c e ∗ met o [ t ] − CP ∗ o r e o [ t ] ) ;
74

75 # c o n s t r a i n t s
76 # c o n s t r a i n t on c o n s e r v a t i o n o f ma t e r i a l
77 s u b j e c t to C1{ i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 1 } :
78 f p [ i , t ] + f s [ i , t ] <= f m [ i , t ] ;
79 # c o n s t r a i n t on s a f e min ing 1−2
80 s u b j e c t to C2{ i i n S I } : sum{ t i n ST : t i n SReduce x a rc [ i ] } f m [ i , t ] = 1 ;
81

82 # c o n s t r a i n t on min ing c a p a c i t y r e s p e c t e d
83 s u b j e c t to C4{ t i n ST } :
84 sum{ i i n S I : t i n SReduce x a rc [ i ] } a l p h a r o c k [ i ] ∗ f m [ i , t ] <= BM;
85 # c o n s t r a i n t on o re i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
86 s u b j e c t to C5 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a o r e [ i ] ∗ f s [ i , 1 ] = o r e q [ 1 ] ;
87 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
88 s u b j e c t to C6 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , 1 ] = met q [ 1 ] ;
89 # c o n s t r a i n t o r e on i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
90 s u b j e c t to C7{ t i n ST 2 : t i n ST T } :
91 o r e q [ t − 1 ] − o r e o [ t ]
92 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f s [ i , t ] = o r e q [ t ] ;
93 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
94 s u b j e c t to C8{ t i n ST 2 : t i n ST T } :

24



95 met q [ t − 1 ] − met o [ t ]
96 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , t ] = met q [ t ] ;
97

98 # c o n s t r a i n t on we shou ld not borrow t h i n g s from the next p e r i od
99 s u b j e c t to c73{ t i n ST T : t< T−1}: o r e q [ t ] >= ore o [ t +1] ;

100 s u b j e c t to c83{ t i n ST T : t< T−1}: met q [ t ] >= met o [ t +1] ;
101 s u b j e c t to c74 : o r e q [T−1] = o r e o [T ] ;
102 s u b j e c t to c84 : met q [T−1] = met o [T ] ;
103

104 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n p e r i od 1
105 s u b j e c t to C9 : sum{ i i n S I : 1 >= f i r s t [ i ] } a l p h a o r e [ i ] ∗ f p [ i , 1 ] <= BP;
106 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n o t h e r p e r i o d s
107 s u b j e c t to C10{ t i n ST 2 } :
108 sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f p [ i , t ] + o r e o [ t ] <= BP;
109 # c o n s t r a i n t on ma t e r i a l taken o f f s t o c k p i l e a t s t a r t o f p e r i od has the same
110 # compos i t i on as ma t e r i a l i n s t o c k p i l e a t end o f p r e c ed i n g p e r i od
111 s u b j e c t to C11{ t i n ST 2 : t i n ST T and t >= LOWER IND } :
112 o r e o [ t ] ∗ met q [ t − 1 ] = met o [ t ] ∗ o r e q [ t − 1 ] ;
113 # c o n s t r a i n t on upper and lowe r bounds 1−2
114 s u b j e c t to C12{ t i n ST T } : g u n d e r l i n e ∗ o r e q [ t ] <= met q [ t ] ;
115 s u b j e c t to C13{ t i n ST T } : g o v e r l i n e 2 ∗ o r e q [ t ] >= met q [ t ] ;
116 s u b j e c t to C14{ t i n ST 2 } : g u n d e r l i n e ∗ o r e o [ t ] <= met o [ t ] ;
117 s u b j e c t to C15{ t i n ST 2 } : g o v e r l i n e 2 ∗ o r e o [ t ] >= met o [ t ] ;
118

119 s u b j e c t to C16 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f p [ i , t ] = 0 ;
120 s u b j e c t to C17 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f s [ i , t ] = 0 ;
121

122 # c o n s t r a i n t on o t h e r s
123 # s p e c i f i e d i n the d e c l a r a t i o n
124

125 data ;
126

127 # c a l c u l a t e g u n d e r l i n e and g o v e r l i n e
128 f o r { i i n S I } {
129 i f a l p h a o r e [ i ] > 0 then {
130 i f g u n d e r l i n e = −1 or a l p h a me t a l [ i ] / a l p h a o r e [ i ] < g u n d e r l i n e then {
131 l e t g u n d e r l i n e := a l p h a me t a l [ i ] / a l p h a o r e [ i ] ;
132 }
133 i f a l p h a me t a l [ i ] / a l p h a o r e [ i ] > g o v e r l i n e then {
134 l e t g o v e r l i n e := a l p h a me t a l [ i ] / a l p h a o r e [ i ] ;
135 }
136 }
137 # i n i t i a l i n d i c a t o r v a r i a b l e d e l t a to 0
138 l e t d e l t a [ i ] := 0 ;
139 }
140

141 # t i g h t the the under and ove r l i n e
142 i f CP / P r i c e > g u n d e r l i n e then {
143 l e t g u n d e r l i n e := CP / P r i c e ;
144 }
145

146 f o r { i i n S I } {
147 # re−a s s i g n i n d i c a t o r v a r i a b l e d e l t a
148 i f a l p h a o r e [ i ] > 0 then {

25



149 i f a l p h a me t a l [ i ] / a l p h a o r e [ i ] > g u n d e r l i n e then {
150 l e t d e l t a [ i ] := 1 ;
151 }
152 }
153

154 # p r i n t f ” d e l t a [%3d]=%d \n” , i , d e l t a [ i ] ;
155 # c a l c u l a t e the second l a r g e o v e r l i n e
156 i f a l p h a o r e [ i ] > 0 then {
157 i f a l p h a me t a l [ i ] / a l p h a o r e [ i ]
158 < g o v e r l i n e and a l p h a me t a l [ i ] / a l p h a o r e [ i ]
159 > g o v e r l i n e 2 then {
160 l e t g o v e r l i n e 2 := a l p h a me t a l [ i ] / a l p h a o r e [ i ] ;
161 }
162 }
163 }
164

165 p r i n t f ” g u n d e r l i n e = %8.6 f , g o v e r l i n e = %8.6 f , g o v e r l i n e 2 = %8.6 f \n” ,
166 g u n d e r l i n e , g o v e r l i n e , g o v e r l i n e 2 ;

B.2 Extended Warehouse Model

1 # Model f i l e f o r the min ing problem − reduced v a r i a b l e s
2 # parameter s e c t i o n beg in
3 param N := 85 ;
4 param T := 17 ;
5 param BP := 20 ;
6 param BM := 60 ;
7 param CM := 900000;
8 param CP := 4000000;
9 param Pr i c e := 10380000;

10 param r a t i o := 1 . 1 ;
11

12 # code s e c t i o n beg in
13 param g u n d e r l i n e ;
14 param g o v e r l i n e ;
15 param g o v e r l i n e 2 ;
16

17 l e t g u n d e r l i n e := −1;
18 l e t g o v e r l i n e := −1;
19 l e t g o v e r l i n e 2 := −1;
20

21 s e t S I := 1 . . N;
22 s e t ST := 1 . . T ;
23 s e t ST 2 := 2 . . T ;
24 s e t ST T := 1 . . T−1;
25

26 param t h r e s h o l d := 0 .00000001 ;
27 param a l p h a r o c k { SI } >= 0 ;
28 param a l p h a o r e { SI } >= 0 ;
29 param a l p h a me t a l { SI } >= 0 ;
30 param f i r s t {SI } >= 0 ;
31 param l a s t {SI } >= 0 ;
32 param d e l t a {SI } ;
33

26



34 param i n i t f m {SI , ST} >= 0 ;
35 param i n i t f p {SI , ST} >= 0 ;
36 param i n i t f s {SI , ST} >= 0 ;
37

38 param i n i t o r e o { ST } >= 0 ;
39 param i n i t m e t o { ST } >= 0 ;
40 param i n i t o r e q { ST } >= 0 ;
41 param i n i t m e t q { ST } >= 0 ;
42

43 param EPSILON ;
44 param LOWER IND ;
45 l e t LOWER IND := T−1;
46

47 # aux s e t d e f i n e
48 s e t St{ k i n ST } := { i i n ST : i <= k } ;
49 s e t SPred{ SI } ; # Pred s e t i n i t i a l i z e d i n data f i l e
50

51 # window s e t
52 s e t SReduce x a rc { k i n S I } := { i i n ST : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
53 s e t SReduce x a rc 2 { k i n S I } := { i i n ST 2 : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
54

55 # ind ex s e t f o r v a r i a b l e
56 s e t IND = { i i n SI , t i n SReduce x a rc [ i ] } ;
57

58 va r f p { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f p [ i , t ] ;
59 va r f m{ i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f m [ i , t ] ;
60 va r f s { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f s [ i , t ] ;
61

62 va r met o{ t i n ST 2} >= 0 , := i n i t m e t o [ t ] ;
63 va r o r e o { t i n ST 2} >= 0 , := i n i t o r e o [ t ] ;
64

65 va r met q{ t i n ST T} >= 0 , := i n i t m e t q [ t ] ;
66 va r o r e q { t i n ST T} >= 0 , := i n i t o r e q [ t ] ;
67

68 param x{SI , ST} b i n a r y ;
69

70 # o b j e c t i v e
71 maximize NPV:
72 sum { i i n SI , t i n SReduce x a rc [ i ] } r a t i o ∗∗(− t ) ∗ ( ( P r i c e ∗ a l p h a me t a l [ i ] −

CP ∗ a l p h a o r e [ i ] ) ∗ f p [ i , t ] − CM ∗ a l p h a r o c k [ i ] ∗ f m [ i , t ] ) +
73 sum { t i n ST 2 } r a t i o ∗∗(− t ) ∗ ( P r i c e ∗ met o [ t ] − CP ∗ o r e o [ t ] ) ;
74

75 # c o n s t r a i n t s
76 # c o n s t r a i n t on c o n s e r v a t i o n o f ma t e r i a l
77 s u b j e c t to C1{ i i n SI , t i n SReduce x a rc [ i ] :
78 d e l t a [ i ] = 1 } : f p [ i , t ] + f s [ i , t ] <= f m [ i , t ] ;
79 # c o n s t r a i n t on s a f e min ing 1−2
80 s u b j e c t to C2{ i i n S I } : sum{ t i n ST : t i n SReduce x a rc [ i ] } f m [ i , t ] = 1 ;
81

82 # c o n s t r a i n t on min ing c a p a c i t y r e s p e c t e d
83 s u b j e c t to C4{ t i n ST } :
84 sum{ i i n S I : t i n SReduce x a rc [ i ] } a l p h a r o c k [ i ] ∗ f m [ i , t ] <= BM;
85 # c o n s t r a i n t on o re i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
86 s u b j e c t to C5 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a o r e [ i ] ∗ f s [ i , 1 ] = o r e q [ 1 ] ;

27



87 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
88 s u b j e c t to C6 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , 1 ] = met q [ 1 ] ;
89 # c o n s t r a i n t o r e on i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
90 s u b j e c t to C7{ t i n ST 2 : t i n ST T } :
91 o r e q [ t − 1 ] − o r e o [ t ]
92 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f s [ i , t ] = o r e q [ t ] ;
93 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
94 s u b j e c t to C8{ t i n ST 2 : t i n ST T } :
95 met q [ t − 1 ] − met o [ t ]
96 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , t ] = met q [ t ] ;
97

98 # c o n s t r a i n t on we shou ld not borrow t h i n g s from the next p e r i od
99 s u b j e c t to c73{ t i n ST T : t< T−1}: o r e q [ t ] >= ore o [ t +1] ;

100 s u b j e c t to c83{ t i n ST T : t< T−1}: met q [ t ] >= met o [ t +1] ;
101 s u b j e c t to c74 : o r e q [T−1] = o r e o [T ] ;
102 s u b j e c t to c84 : met q [T−1] = met o [T ] ;
103

104 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n p e r i od 1
105 s u b j e c t to C9 : sum{ i i n S I : 1 >= f i r s t [ i ] } a l p h a o r e [ i ] ∗ f p [ i , 1 ] <= BP;
106 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n o t h e r p e r i o d s
107 s u b j e c t to C10{ t i n ST 2 } :
108 sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f p [ i , t ] + o r e o [ t ] <= BP;
109 # c o n s t r a i n t on ma t e r i a l taken o f f s t o c k p i l e a t s t a r t o f p e r i od has the same
110 # compos i t i on as ma t e r i a l i n s t o c k p i l e a t end o f p r e c ed i n g p e r i od
111 s u b j e c t to C11{ t i n ST 2 : t i n ST T and t >= LOWER IND } :
112 o r e o [ t ] ∗ met q [ t − 1 ] = met o [ t ] ∗ o r e q [ t − 1 ] ;
113 # c o n s t r a i n t on upper and lowe r bounds 1−2
114 s u b j e c t to C12{ t i n ST T } : g u n d e r l i n e ∗ o r e q [ t ] <= met q [ t ] ;
115 s u b j e c t to C13{ t i n ST T } : g o v e r l i n e 2 ∗ o r e q [ t ] >= met q [ t ] ;
116 s u b j e c t to C14{ t i n ST 2 } : g u n d e r l i n e ∗ o r e o [ t ] <= met o [ t ] ;
117 s u b j e c t to C15{ t i n ST 2 } : g o v e r l i n e 2 ∗ o r e o [ t ] >= met o [ t ] ;
118

119 s u b j e c t to C16 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f p [ i , t ] = 0 ;
120 s u b j e c t to C17 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f s [ i , t ] = 0 ;
121

122 data ;

B.3 Warehouse Model

1 # Model f i l e f o r the min ing problem − reduced v a r i a b l e s
2 # parameter s e c t i o n beg in
3 param N := 85 ;
4 param T := 17 ;
5 param BP := 20 ;
6 param BM := 60 ;
7 param CM := 900000;
8 param CP := 4000000;
9 param Pr i c e := 10380000;

10 param r a t i o := 1 . 1 ;
11

12 # code s e c t i o n beg in
13 param g u n d e r l i n e ;
14 param g o v e r l i n e ;
15 param g o v e r l i n e 2 ;

28



16

17 l e t g u n d e r l i n e := −1;
18 l e t g o v e r l i n e := −1;
19 l e t g o v e r l i n e 2 := −1;
20

21 s e t S I := 1 . . N;
22 s e t ST := 1 . . T ;
23 s e t ST 2 := 2 . . T ;
24 s e t ST T := 1 . . T−1;
25

26 param t h r e s h o l d := 0 .00000001 ;
27 param a l p h a r o c k { SI } >= 0 ;
28 param a l p h a o r e { SI } >= 0 ;
29 param a l p h a me t a l { SI } >= 0 ;
30 param f i r s t {SI } >= 0 ;
31 param l a s t {SI } >= 0 ;
32 param d e l t a {SI } ;
33

34 param i n i t f m {SI , ST} >= 0 ;
35 param i n i t f p {SI , ST} >= 0 ;
36 param i n i t f s {SI , ST} >= 0 ;
37

38 param i n i t o r e o { ST } >= 0 ;
39 param i n i t m e t o { ST } >= 0 ;
40 param i n i t o r e q { ST } >= 0 ;
41 param i n i t m e t q { ST } >= 0 ;
42

43 param EPSILON ;
44 param LOWER IND ;
45 l e t LOWER IND := T−1;
46

47 # aux s e t d e f i n e
48 s e t St{ k i n ST } := { i i n ST : i <= k } ;
49 s e t SPred{ SI } ; # Pred s e t i n i t i a l i z e d i n data f i l e
50

51 # window s e t
52 s e t SReduce x a rc { k i n S I } := { i i n ST : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
53 s e t SReduce x a rc 2 { k i n S I } := { i i n ST 2 : f i r s t [ k ] <= i and i <= l a s t [ k ] } ;
54

55 # ind ex s e t f o r v a r i a b l e
56 s e t IND = { i i n SI , t i n SReduce x a rc [ i ] } ;
57

58 va r f p { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f p [ i , t ] ;
59 va r f m{ i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f m [ i , t ] ;
60 va r f s { i i n SI , t i n SReduce x a rc [ i ] } >= 0 , <= 1 , := i n i t f s [ i , t ] ;
61

62 va r met o{ t i n ST 2} >= 0 , := i n i t m e t o [ t ] ;
63 va r o r e o { t i n ST 2} >= 0 , := i n i t o r e o [ t ] ;
64

65 va r met q{ t i n ST T} >= 0 , := i n i t m e t q [ t ] ;
66 va r o r e q { t i n ST T} >= 0 , := i n i t o r e q [ t ] ;
67

68 param x{SI , ST} b i n a r y ;
69

29



70 # o b j e c t i v e
71 maximize NPV:
72 sum { i i n SI , t i n SReduce x a rc [ i ] } r a t i o ∗∗(− t ) ∗ ( ( P r i c e ∗ a l p h a me t a l [ i ] −

CP ∗ a l p h a o r e [ i ] ) ∗ f p [ i , t ] − CM ∗ a l p h a r o c k [ i ] ∗ f m [ i , t ] ) +
73 sum { t i n ST 2 } r a t i o ∗∗(− t ) ∗ ( P r i c e ∗ met o [ t ] − CP ∗ o r e o [ t ] ) ;
74

75 # c o n s t r a i n t s
76 # c o n s t r a i n t on c o n s e r v a t i o n o f ma t e r i a l
77 s u b j e c t to C1{ i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 1 } :
78 f p [ i , t ] + f s [ i , t ] <= f m [ i , t ] ;
79 # c o n s t r a i n t on s a f e min ing 1−2
80 s u b j e c t to C2{ i i n S I } : sum{ t i n ST : t i n SReduce x a rc [ i ] } f m [ i , t ] = 1 ;
81

82 # c o n s t r a i n t on min ing c a p a c i t y r e s p e c t e d
83 s u b j e c t to C4{ t i n ST } :
84 sum{ i i n S I : t i n SReduce x a rc [ i ] } a l p h a r o c k [ i ] ∗ f m [ i , t ] <= BM;
85 # c o n s t r a i n t on o re i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
86 s u b j e c t to C5 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a o r e [ i ] ∗ f s [ i , 1 ] = o r e q [ 1 ] ;
87 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n p e r i od 1
88 s u b j e c t to C6 : sum{ i i n S I : 1 >= f i r s t [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , 1 ] = met q [ 1 ] ;
89 # c o n s t r a i n t o r e on i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
90 s u b j e c t to C7{ t i n ST 2 : t i n ST T } :
91 o r e q [ t − 1 ] − o r e o [ t ]
92 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f s [ i , t ] = o r e q [ t ] ;
93 # c o n s t r a i n t on meta l i n s t o c k p i l e c a l c u l a t e d i n o t h e r p e r i o d s
94 s u b j e c t to C8{ t i n ST 2 : t i n ST T } :
95 met q [ t − 1 ] − met o [ t ]
96 + sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a me t a l [ i ] ∗ f s [ i , t ] = met q [ t ] ;
97

98 # c o n s t r a i n t on we shou ld not borrow t h i n g s from the next p e r i od
99 s u b j e c t to c73{ t i n ST T : t< T−1}: o r e q [ t ] >= ore o [ t +1] ;

100 s u b j e c t to c83{ t i n ST T : t< T−1}: met q [ t ] >= met o [ t +1] ;
101 s u b j e c t to c74 : o r e q [T−1] = o r e o [T ] ;
102 s u b j e c t to c84 : met q [T−1] = met o [T ] ;
103

104 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n p e r i od 1
105 s u b j e c t to C9 : sum{ i i n S I : 1 >= f i r s t [ i ] } a l p h a o r e [ i ] ∗ f p [ i , 1 ] <= BP;
106 # c o n s t r a i n t on p r o c e s s i n g c a p a c i t y i s r e s p e c t e d i n o t h e r p e r i o d s
107 s u b j e c t to C10{ t i n ST 2 } :
108 sum{ i i n S I : t i n SReduce x a rc [ i ]} a l p h a o r e [ i ] ∗ f p [ i , t ] + o r e o [ t ] <= BP;
109 # c o n s t r a i n t on ma t e r i a l taken o f f s t o c k p i l e a t s t a r t o f p e r i od has the same
110 # compos i t i on as ma t e r i a l i n s t o c k p i l e a t end o f p r e c ed i n g p e r i od
111 s u b j e c t to C11{ t i n ST 2 : t i n ST T and t >= LOWER IND } :
112 o r e o [ t ] ∗ met q [ t − 1 ] = met o [ t ] ∗ o r e q [ t − 1 ] ;
113 # c o n s t r a i n t on upper and lowe r bounds 1−2
114 s u b j e c t to C12{ t i n ST T } : g u n d e r l i n e ∗ o r e q [ t ] <= met q [ t ] ;
115 s u b j e c t to C13{ t i n ST T } : g o v e r l i n e 2 ∗ o r e q [ t ] >= met q [ t ] ;
116 s u b j e c t to C14{ t i n ST 2 } : g u n d e r l i n e ∗ o r e o [ t ] <= met o [ t ] ;
117 s u b j e c t to C15{ t i n ST 2 } : g o v e r l i n e 2 ∗ o r e o [ t ] >= met o [ t ] ;
118

119 s u b j e c t to C16 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f p [ i , t ] = 0 ;
120 s u b j e c t to C17 { i i n SI , t i n SReduce x a rc [ i ] : d e l t a [ i ] = 0 } : f s [ i , t ] = 0 ;
121

122 data ;

30


