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Abstract
Periodic timetable optimization problems in public transport can be modeled as mixed-integer
linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep
the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We
examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing
the theory of these bases, we describe the construction of an integral forward cycle basis on a
line-based event-activity network. Adding turnarounds to the instance R1L1 of the benchmark library
PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and
come up with significant improvements concerning dual bounds.
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1 Introduction

As any mathematical optimization problem, periodic timetable optimization is about detecting
a feasible solution with the best possible objective value. To solve the mixed integer programs
that arise from the Periodic Event Scheduling Problem (PESP) [25], a standard model for
periodic timetable optimization, to optimality, it is of interest to focus on those parts of the
feasible region that allow for good objective values in particular. Hence, quite an amount
of research has been dedicated to identifying valid inequalities for the PESP polytope, and
making use of them as cutting planes in a branch-and-cut context [2, 15, 16, 19, 20, 21, 23].
Following the general goal of describing the convex hull of the integer points as sharp as
possible, these approaches focus on the entire feasible region. Yet, as we deal with an
optimization problem, it is of particular interest to examine those parts of the feasible region
that allow for good objective values.

Most of the known successful cutting planes for PESP can be derived from oriented
cycles in the underlying event-activity network. However, as these cycles contain in general
both forward and backward arcs, it is hard to establish a link between constraints from
cycles, typically containing coefficients with different signs, and the objective function, whose
coefficients are all non-negative.

We therefore propose to focus on forward cycles, i.e., oriented cycles that contain ex-
clusively forward arcs. Then the classical cycle inequalities by Odijk [23] have entirely
non-negative coefficients for the travel time variables, so that tight constraints directly relate
to the objective function.

In the area of periodic timetabling, there is one collection of reference instances publicly
available, the so-called PESPlib [6]. To date, for all of its instances their best known solutions
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2 Forward Cycle Bases and Periodic Timetabling

still show relatively large duality gaps. Having a closer look to the railway-motivated instances
RxLy, providing some feasible solution is trivial, because when removing all free arcs, i.e.,
arcs for which any travel time modulo the period time is feasible, these instances essentially
decompose into paths [7, 17]. Hence, the main challenge for the RxLy instances of the PESPlib
is about the actual optimization process rather than feasibility. We want to support this
process better by seeking in particular those valid inequalities which have a significant impact
on the objective function.

We propose to modify the instances RxLy slightly: We match the paths mentioned above
to lines, and add turnaround arcs at the line ends. It then becomes possible to find a cycle
basis consisting of forward cycles only. Moreover, turnarounds allow for an investigation of
vehicle rotations, so that we can discuss optimality in the Pareto sense with respect to both
the minimum passenger travel time and the minimum number of vehicles. Varying minimum
turnaround times and turnaround weights, it turns out that the forward cycles approach is
fruitful, and we can compute a new dual incumbent for the instance R1L1.

We formally describe the Periodic Event Scheduling Problem in Section 2. In Section 3,
we motivate the use of forward cycles in detail, review the theory of forward cycles bases,
and provide a construction for an integral cycle basis for timetabling networks with a specific
structure. Analyzing the PESPlib benchmark instance R1L1, we describe in Section 4 how to
add turnaround arcs in a meaningful way, which allows to compute forward cycle bases on
a modified instance R1L1v. Section 5 presents computational results, evaluating passenger
travel time slack and the number of required vehicles for different choices of cycle bases,
minimum turnaround times, and turnaround weights. We conclude the paper in Section 6.

2 Periodic Event Scheduling

2.1 Problem Definition
The Periodic Event Scheduling Problem (PESP) has been introduced by Serafini and Ukovich
[25]. A PESP instance consists of a 5-tuple (G, T, ℓ, u, w), where

G = (V, A) is a directed graph, often called event-activity network,
T ∈ N is a period time,
ℓ ∈ RA

≥0 is a vector of lower bounds with 0 ≤ ℓ < T ,
u ∈ RA

≥0 is a vector of upper bounds such that 0 ≤ u− ℓ < T ,
w ∈ RA

≥0 is a vector of weights.
For an instance (G, T, ℓ, u, w), a vector π ∈ [0, T )V is called a periodic timetable if there is a
periodic tension x ∈ RA such that

∀ij ∈ A : ℓij ≤ xij ≤ uij and xij ≡ πj − πi mod T.

If x is a periodic tension, then y := x− ℓ is called periodic slack.
Interpreting the vertices in V as events and the arcs in A as activities, a periodic timetable

π fixes event timings, and a periodic tension x is an assignment of activity durations, both
modulo the period time T . In the context of periodic timetabling, events are typically arrivals
or departures of vehicles at stations, and activities model driving between stations, dwelling
or transferring at a station, turnarounds, etc. [13].

▶ Definition 1 ([25]). Given (G, T, ℓ, u, w), the Periodic Event Scheduling Problem (PESP)
is to find a periodic timetable π along with a periodic tension x such that the weighted slack∑

a∈A waya is minimum or to decide that no periodic timetable exists.



N. Lindner and C. Liebchen and B. Masing 3

As the arc weights w often reflect the number of passengers using a specific activity,
and periodic tensions correspond to activity durations, the PESP objective then amounts
to minimize the total passenger travel time. It is also possible to shift the focus onto the
number of vehicles by introducing large weights on turnaround activities [13].

2.2 Cycle-Based Mixed-Integer Program
We will use the following cycle-based mixed-integer programming formulation for PESP
throughout this paper:

Minimize w⊤y

s.t. Γ(y + ℓ) = Tz,

0 ≤ y ≤ u− ℓ,

z ∈ ZB .

(1)

In (1), B is an integral cycle basis of G with cycle matrix Γ. We refer to Section 3.2 or
[12] for details. The integer z-variables model the modulo T conditions, we will call them
cycle offset variables. Periodic timetables are only implicit in this formulation, for a feasible
periodic slack y, a timetable can be recovered by a graph traversal.

We conclude this section by recalling a class of valid inequalities. An oriented cycle in G

is a vector γ ∈ {−1, 0, 1}A such that {a ∈ A | γa ̸= 0} constitutes a cycle in the undirected
graph arising from G by forgetting the arc orientations. We can decompose γ = γ+ − γ−
into its positive (forward) and negative (backward) part γ+ ∈ {0, 1}A and γ− ∈ {0, 1}A,
respectively.

▶ Theorem 2 ([23]). Let (G, T, ℓ, u, w) be a PESP instance. Let γ ∈ {−1, 0, 1}A be an
oriented cycle in G. Then the cycle inequalities⌈

γ⊤+ℓ− γ⊤−u

T

⌉
≤ γ⊤(y + ℓ)

T
≤

⌊
γ⊤+u− γ⊤−ℓ

T

⌋
(2)

are valid for all feasible periodic slacks y.

Since the rows of Γ are composed of oriented cycles, the cycle inequalities (2) may also
be used to determine bounds on the cycle offset variables z in (1).

3 Forward Cycle Bases

3.1 Motivation
Let us first highlight a few observations about the mixed-integer program (1) and the cycle
inequalities (2):

The overall objective function in (1) is composed of the objective values that arise on the
individual arcs.
The contribution of one individual arc a to the objective function is a monotonic increasing
function of the slack ya.
The cycle inequalities (2) are defined for oriented cycles and involve the slack variables of
their forward arcs with coefficient +1, and the slack variables of their backward arcs with
coefficient −1.
As a consequence, along a forward arc, the rounding benefit in the lower bound in (2)
can force the slack ya to increase and hereby immediately contribute to increasing the
objective value. This is the right direction when the dual bound is supposed to increase.
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Figure 1 Example event-activity network with period time T = 10 and labels [ℓa,ua],wa−−−−−−−→
xa

.

In contrast, along a backward arc, increasing its slack is relative to the upper bound ua: If
the value ua − (ℓa + ya) increases, then ya decreases – and so does the objective function,
which is not the actual intention.
Hence, if a lower bound cycle inequality (2) enforces slack to be added, this risks to stay
without any effect on the dual bound, whenever slack values along forward and backward
arcs cancel out due to their opposite signs.

Thus, in order to identify strong lower bounds for the objective function – hence impose
lower bounds on the slack values of groups of “expensive” arcs – we propose to also strive in
particular for such cycle inequalities that prevent large slack values to just cancel out, hereby
not contributing to the objective values. This is the case if the slack values of all arcs of the
cycle γ appear in the valid inequality with the same sign, i.e., if the arcs of the cycle γ are
forward arcs, i.e., if γ is a directed circuit.

We illustrate the possible benefit of considering the cycle inequalities for directed circuits
in the example in Figure 1. Here, we set the period time T = 10. The graph G is planar and
we consider the three oriented circuits γ1, γ2, and γ3 that constitute the three finite faces
of G (thus, a 2-basis or planar basis [11]), where all of them are oriented counter-clockwise.
Moreover, we are going to deal with linear combinations of them, e.g., γ1 + γ2 + γ3 is the
outer oriented circuit, which is marked in green in Figure 1. This directed circuit represents
the circulation of the trains of one line: One direction consists of the three bottom arcs, the
opposite direction of the three top arcs. The two arcs in the terminus stations having the
feasible interval [1, 10] model the turnaround activities of the trains.

The two remaining arcs in the center region could, for instance, model single-track
requirements [13]. Notice that such a configuration of single tracks close to both endpoints
of a line could, e.g., be found at Line S2 of the Berlin S-Bahn network.

In order to ensure efficient operations, a major goal for a timetable in this example
network is to operate the line with as few train units as possible. Equivalently, we minimize
each slack time of any arc that models an activity of a vehicle. This applies to the arcs
of γ1 + γ2 + γ3 and we put weight wa = 10 to these vehicle arcs. Moreover, slack time on any
of the six non-turnaround vehicle arcs also involves extra waiting time for the passengers on
board the train. Hence, for these six arcs, we even slightly increase their weights to wa = 11.
The two single-track arcs do not show any penalty weight, thus wa = 0.

Now, let us consider the mixed-integer program (1) as well as its LP relaxation. On the
one hand, in the integer optimum solution in particular the tension values x = y + ℓ along
the outer cycle γ1 + γ2 + γ3 have to sum up to an integer multiple of the period time. Indeed,
one optimal solution reads

xa =
{

ℓa + 8 = 9 for the westernmost arc a,

ℓa otherwise.
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Oriented lower bound upper bound integer forward minimum
circuits values arc weight
γ1, γ3

⌈
1+1+1−7

10

⌉
= 0 1 =

⌊
2+10+2−1

10

⌋
2 no 0

γ2
⌈

3+1+3+1
10

⌉
= 1 2 =

⌊
6+7+6+7

10

⌋
2 yes 0

γ1 + γ2, γ2 + γ3
⌈

1+1+3+1+3+1
10

⌉
= 1 3 =

⌊
10+2+6+7+6+2

10

⌋
3 yes 0

γ1 + γ2 + γ3
⌈

12
10

⌉
= 2 4 =

⌊
40
10

⌋
3 yes 10

Table 1 Overview of the bounds of the cycle inequalities of the PESP instance in Figure 1

On the other hand, for the LP relaxation it is well-known that its trivial optimal solution is
just x = ℓ and z = 1

T · (Γx). Hence, we want to add valid inequalities in order to cut off this
trivial fractional solution – and get as close as possible to the integer optimal solution.

One immediate way of doing so is to carefully select the cycle basis B in (1), and then
to add the cycle inequalities (2) for the basic cycles. Traditionally, the choice of the cycle
basis has been mainly motivated by the goal to keep as few as possible values for the integer
variables z [14].

On this particular instance, it turns out that the three oriented cycles γ1, γ2, and γ3
are the only ones that constrain their corresponding integer variables to only two values,
see Table 1. Hence, these are the most attractive cycles in the well-established approach
of allowing only few integer values for the integer variables. But when adding their cycle
inequalities to the LP relaxation, its trivial optimum solution value persists. The same holds
for five further valid inequalities. Only when adding the lower bound cycle inequality (2)
for the directed circuit γ1 + γ2 + γ3, the trivial optimum solution is cut off – and the dual
bound is even pushed immediately to the integer optimum value. However, well-established
separation heuristics [2, 16] are not guaranteed to consider this specific cycle, but we want
to profit from its impact on the dual bound.

Hence, we propose to consider in particular the following simple oriented cycles for the
separation of cycle inequalities, and for finding an integral cycle basis for (1):

1. heavy cycles, whose smallest weight is maximum,

2. forward cycles, i.e., without any backward arcs.
Let us shortly discuss why these two properties seem to be promising. Imagine that a lower
bound of a cycle inequality implies a certain amount of slack to be distributed among the
arcs of the cycle. Then there might be only little effect on the dual bound for the objective
value if the slack can be concentrated on arcs that have only very small weight – there, the
unavoidable slack somehow escapes1 the objective function. Similarly, in the presence of
backward arcs, on these, slack is relative to the upper bounds ua of these arcs. Rounding
effects in the cycle inequalities (2) thus tend to push the slack away from its upper bound,
hence increase ua − (ℓa + ya), decrease ya, and finally do not immediately support the dual
bound to improve.

We will discuss theoretical properties of cycle bases exclusively composed of forward
cycles in Section 3.2, and we will give a recipe to construct an integral forward cycle basis on
a common type of event-activity networks in Section 3.3.

1 Also during manual planning, it is a common saying that the art of periodic timetabling is to locate any
unavoidable slack on those activities which are least important.



6 Forward Cycle Bases and Periodic Timetabling

3.2 Theory of Forward Cycle Bases
Let G = (V, A) be a digraph. The elements γ ∈ ZA that satisfy flow conservation at every
vertex, i.e.,

∀v ∈ V :
∑

a∈δ+(v)

γa =
∑

a∈δ−(v)

γa,

form an abelian group, the cycle space C of G. In this language, an oriented cycle is an
element γ ∈ C with γa ∈ {−1, 0, 1} for all a ∈ A; we write a ∈ γ iff γa ̸= 0. Arcs a ∈ γ with
γa = 1 and γa = −1 are called forward and backward, respectively. A forward cycle is an
oriented cycle γ containing only forward arcs, i.e., γ ∈ C ∩ {0, 1}A.

The rank of C is the cyclomatic number µ. A set B of µ oriented cycles is called
(1) a cycle basis of G if B is a basis of the R-vector space C ⊗ R,
(2) an undirected cycle basis of G if B is a basis of the F2-vector space C ⊗ F2,
(3) an integral cycle basis of G if B is a basis of the abelian group C,
(4) a weakly fundamental cycle basis of G if the cycles in B can be ordered in such a way

that for i ∈ {2, . . . , µ}, there is an arc a ∈ γi with a /∈ γ1 ∪ · · · ∪ γi−1,
(5) a strictly fundamental cycle basis of G if B is the set of fundamental cycles of some

spanning forest F of G.
In this hierarchy of cycle bases, the implications (5)⇒ (4)⇒ (3)⇒ (2)⇒ (1) hold [11].

▶ Definition 3. A forward cycle basis is a cycle basis consisting exclusively of forward cycles.

We prefer the term forward cycles over directed cycles, as the notion of directed cycle basis
is already taken for a cycle basis consisting of arbitrary oriented cycles [11]. The existence of
forward cycle bases is related to strong connectedness:

▶ Theorem 4 ([26, 5]). A digraph G has a forward cycle basis if and only if each 2-edge-
connected component is strongly connected.

In contrast to the general situation, even a strongly connected digraph does not necessarily
admit a forward strictly fundamental cycle basis:

(a) Graph (b) γ1 (c) γ2 (d) γ3 (e) γ4 (f) γ5

Figure 2 Strongly connected graph without a forward strictly fundamental cycle basis

▶ Example 5. Consider the strongly connected digraph G in Figure 2a. There are five
forward cycles γ1, . . . , γ5 (cf. Figure 2), note that γ2 + γ5 = γ3 + γ4. The cyclomatic number
of G is 4, and the combinations of three of the cycles γ2, . . . , γ5 with γ1 form all forward cycle
bases. A spanning tree F of G has four co-tree arcs, in a strictly fundamental cycle basis for
F , each co-tree arc must appear in exactly one cycle. However, in any forward cycle basis,
we find at most three exclusive arcs, so that no forward cycle basis is strictly fundamental.

We now turn to the minimum weight cycle basis problem: Given arc weights c ∈ RA
≥0,

find a cycle basis B such that its weight c(B) :=
∑

γ∈B

∑
a∈γ ca is minimum. As mentioned

in Section 3.1, finding minimum weight cycle bases has been proven useful for accelerating
the branch-and-cut process in MIP solvers for (1). As C ⊗ R and C ⊗ F2 are vector spaces,
the minimum weight cycle basis and minimum weight undirected cycle bases problems can
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be solved by the greedy algorithm on vector matroids. A polynomial-time algorithm can
be constructed by restricting to a polynomially bounded set of cycles that are guaranteed
to contain a minimum weight cycle basis, this is Horton’s algorithm [10]. Recall that
there are more efficient algorithms known [1]. For integral cycle bases, the complexity is
unclear, whereas APX-hardness is known for the minimum weight weakly [24] resp. strictly
[4] fundamental cycle basis problem .

▶ Definition 6. Given c ∈ RA
≥0, the minimum forward (undirected/integral/. . . ) cycle basis

problem is to find a forward (undirected/integral/. . . ) cycle basis B of minimum weight.

Forward cycles in G together with sets of linearly independent forward cycles in C ⊗ R
and C ⊗ F2 form a vector matroid, so that the greedy algorithm applies. Horton’s algorithm
can be adapted in such a way that it computes a minimum forward cycle basis or minimum
forward undirected cycle basis in polynomial time [5].

However, we require integral cycle bases for the purpose of periodic timetabling. In
practice, we observed that minimum (forward) undirected cycle bases are almost always
integral, so that applying Horton’s algorithm already solves the minimum weight integral
cycle basis problem. We will also use this approach in Section 4.

3.3 ILTY cycles
We indicate the existence of forward integral cycle bases for event-activity networks with
a special structure typical for periodic timetabling instances; we will call these networks
line-based. A line network (N, L) is an undirected graph N = (S, E) together with a set L of
pairwise edge-disjoint simple paths whose union is E. We call S the set of stations, and L

the set of lines.

▶ Construction 7. Given a line network (N, L), we construct a digraph G as follows:
(1) For each line l ∈ L with sequence of stations (s1, . . . , sk), add

(a) driving arcs ((si,
→
l , dep), (si+1,

→
l , arr)) and ((si+1,

←
l , dep), (si,

←
l , arr))

for i ∈ {1, . . . , k − 1},
(b) dwell arcs ((si,

→
l , arr), (si,

→
l , dep)) and ((si,

←
l , arr), (si,

←
l , dep))

for i ∈ {2, . . . , k − 1},
(c) turnaround arcs ((sk,

→
l , arr), (sk,

←
l , dep)) and (s1,

←
l , arr)), ((s1,

→
l , dep).

(2) For each station s ∈ S and each pair (l, l′) of distinct lines containing s, add trans-
fer arcs ((s,

→
l , arr), (s,

→
l′ , dep)), ((s,

→
l , arr), (s,

←
l′ , dep)), ((s,

←
l , arr), (s,

→
l′ , dep)), and

((s,
←
l , arr), (s,

←
l′ , dep)).

Construction 7 implicitly defines the vertices of G, each vertex is a triple consisting of
a station in S, a line in L together with one of the direction markers ← or →, and the
departure/arrival flag dep or arr. In particular, we can speak of the station or the line of a
vertex, and conversely of vertices of a station or line. An example for Construction 7 on a
star-shaped line network is depicted in Figure 3.

▶ Definition 8. A digraph G is called line-based if it arises from a line network (N, L) via
Construction 7.

We will now define particularly simple types of a cycles in line-based digraphs.

▶ Construction 9. Let G be line-based network arising from (N = (S, E), L), let s ∈ S be a
station. Construct the following forward cycles in G:
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(a) Line network (N, L) (b) Line-based event-activity network G

Figure 3 Example of Construction 7

(1) I-cycles at s: forward cycles that contains no transfer arcs and at least one vertex of s,
(2) L-cycles at s: exactly two transfer arcs, both at s, and no dwell arcs at s,
(3) T -cycles at s: exactly two transfer arcs, both at s, and exactly one dwell arc at s,
(4) Y -cycles at s: exactly three transfer arcs, all of them at s, and no dwell arcs at s.

Intuitively, an I-cycle contains all driving, dwell and turnaround arcs associated to a
single line. L- and T -cycles connect two lines, and Y -cycles connect three lines, all of them
make use of transfers only at a single station. This family of cycles is depicted in Figure 4.

(a) I-cycle: two dwell arcs (b) L-cycle: two transfer arcs

(c) T -cycle: one dwell arc, two transfer arcs (d) Y -cycle: three transfer arcs

Figure 4 ILT Y cycles for the event-activity network in Figure 3 passing through a fixed vertex
(marked in yellow)

The following is our main theorem about ILTY cycles, due to length restrictions, we
refer to [18] for a proof.

▶ Theorem 10. Let (N = (S, E), L) be a line network, defining G via Construction 7. At
each station s ∈ S, fix a vertex v of G at s, and let Bs denote the set of ILTY cycles at s

passing through v. Then there is a set B′ of forward cycles in G such that:
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(1) B′ projects to a strictly fundamental cycle basis of N ,
(2)

⋃
s∈S Bs is a weakly fundamental basis of the subspace of the cycle space of G generated

by all ITLY cycles,
(3) B′ ∪

⋃
s∈S Bs is an integral cycle basis of G.

4 Turnarounds in R1L1

The railway instances RxLy of the PESPlib are similarly structured [7, 17]. We will analyze
the smallest instance R1L1, and to some extent reverse-engineer an underlying line network.
The outcome is a modified instance R1L1v, where certain turnaround arcs have been added.

After removing four arcs with lower and upper bound 0, the network of R1L1 becomes
bipartite, vertices can hence be partitioned into arrival and departure events. This vertex
labeling can be done in such a way that free arcs, i.e., arcs a with ua − ℓa ≥ T − 1 = 59,
always originate at an arrival and end at a departure. We interpret these arcs as transfer
arcs. The remaining arcs a going from arrivals to departures have all [ℓa, ua] = [1, 5], we take
them as as dwell arcs. We view the arcs from departures to arrivals as driving arcs. In fact,
the network can be seen as a subnetwork of a line-based network as defined in Section 3.3.

If we now remove all transfer arcs, then the network decomposes into 110 directed simple
paths, alternatingly consisting of driving and dwell arcs. We observe that for each such path,
we find a path using exactly the same sequence of lower and upper bounds for the driving
arcs in reverse order. Actually, this complies with the ordering of the activities as given in
the text file describing the instance. This leads to a perfect matching of the directed paths,
which we use to create 55 bidirectional lines. In the spirit of Construction 7, we do this
by adding, in total, 110 turnaround arcs at both ends for each line. We call the resulting
network R1L1v, where v stands for “vehicle”, as vehicle turnarounds at the line ends have
been modeled. R1L1v satisfies the hypothesis of Theorem 4, so that it admits a forward cycle
basis. We will computationally evaluate several combinations of bounds and weights for the
turnaround arcs and compare four cycle bases for R1L1v in Section 5.

5 Computational Results

For the network R1L1v described in Section 4, we compare four minimum turnaround times,
seven weights (see Section 5.1.1), and four cycle bases, three of which are forward (see
Section 5.1.2). Combining these, we obtain 4 · 7 · 4 = 112 scenarios in total. We attack
these scenarios with five primal strategies and one dual strategy (see Section 5.1.3) within
the ConcurrentPESP solver [3] that computed the currently best primal and dual bounds
for all PESPlib instances [6]. ConcurrentPESP invokes Gurobi 9.1 [9] as MIP solver. The
computations were performed on an Intel Xeon E3-1270 CPU running at 3.80 GHz with 32
GB RAM, using up to 8 threads, with a wall time limit of 1 hour for each scenario.

5.1 Detailed Set-up

5.1.1 Bounds and Weights
The arc set of R1L1v consists of the arc set of R1L1 plus 110 new turnaround arcs. For the
turnaround arcs, we choose the same lower bound and the same weight from the values in
Table 2, creating 4 · 7 = 28 PESP instances. All turnaround arcs are introduced as free arcs,
so that we set ua := ℓa + 59. For the other arcs, we keep the bounds and weights as in R1L1.
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Parameter Values
minimum turnaround times ℓa 0, 5, 10, 15
turnaround weights wa 0, 2500, 5000, 10000, 20000, 40000, 80000

Table 2 Parameters for turnaround arcs. The maximum weight in the original R1L1 instance is
72 523, the arithmetic mean weight is 7 388.

However, we also add the turnaround weight to all vehicle-related arcs, i.e., all driving and
dwell arcs, in order to reflect the full vehicle rotation in the objective function.

5.1.2 Cycle Bases
We will consider the following four cycle bases on R1L1v:
(B1) span: a minimum integral cycle basis w.r.t. the cost ca := ua − ℓa for a ∈ A,
(B2) forward span: a minimum forward integral cycle basis w.r.t. ca := ua − ℓa for a ∈ A,
(B3) forward bottleneck: a forward integral cycle basis B maximizing

∑
γ∈B mina∈γ wa,

(B4) ILTY: a forward integral cycle basis consisting of as many ILTY cycles as possible.

The minimum span basis (B1) is the classical approach to minimize the number of values
the integer variables in (1) can attain. We motivated (B2) and (B3) in Section 3.1, (B4)
comes from the construction in Section 3.3. Cycle bases (B1)-(B3) can be computed by
(a modification of) Horton’s algorithm [10], the result always turns out to be not only a
minimum undirected cycle basis, but also integral. Note that unlike the other bases, (B3)
needs to be recomputed for every choice of weight for the turnaround arcs, and we need
to consider bottleneck shortest paths for Horton’s algorithm. For (B4), as R1L1v is only a
subnetwork of a line-based network, we follow an analytic approach instead of the synthetic
one pursued in Construction 9 to construct ILTY cycles: We seek for single lines, pairs
and triples of lines, and construct all possible ILTY -shaped cycles whenever they exist
in the network. This produces a subspace of the cycle space of dimension 2823, however,
its codimension is only 9. We therefore complete the ILTY cycles with 9 cycles from the
forward span basis.

5.1.3 Solution Strategies

Strategy MIP Initial solution Ignore light arcs Other heuristics
complete ✓ ✓ ✓

mip ✓

mip-start ✓ ✓

mip-ignore ✓ ✓

mip-ignore-start ✓ ✓ ✓

dual ✓ ✓

Table 3 Solution strategies for the computational experiments.

As ConcurrentPESP contains a variety of PESP algorithms, we singled out 6 solution
methods, summarized in Table 3. As we want to compare cycle bases, we concentrate on the
MIP component of the solver. For mip-start, mip-ignore-start, and dual, the current
PESPlib incumbent for R1L1 with weighted slack 29 894 745 [6, 17] is given the solver as an
initial solution. Ignoring light arcs means to solve PESP on a subnetwork (with the same
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strategy) as described in [7, 3]. Other heuristics include, e.g., the modulo network simplex
method [22, 8]. The emphasis for mip-start lies on the primal bound, whereas dual focuses
on improving the dual bound, and additionally invokes flip cutting planes [16].

5.2 Results
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S span
F forward span
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Figure 5 Overview of all results for the strategies complete, mip-start, mip-ignore, and
mip-ignore-start. The solid lines depict the Pareto front for the four minium turnaround times.
The marker shape indicates the strategy, the inscribed letter stands for the cycle basis. A higher
resolution version of the chart is available at https://www.zib.de/lindner/R1L1v-hi-res.pdf.

Figure 5 displays the results of our computations in the Pareto sense for the weighted
slack and the number of vehicles as objectives. The weighted slack is computed on the original
instance R1L1, i.e., omitting turnaround arcs, and hence is the passenger-oriented component.
The number of vehicles is obtained as the sum of the driving, dwell and turnaround times
(periodic tensions) for each line divided by the period time T = 60. Clearly, higher turnaround
times require more vehicles.

For the mip strategy, which runs Gurobi without an initial solution and no further help
from other heuristics, all solutions have a weighted slack of more than 48 000 000, so that
the solution quality is much worse than for the other strategies. For the other strategies, the
picture is quite diffuse: Each of the other four primal strategies and each of the cycle bases
produces at least once a non-dominated solution, and this holds even for each minimum
turnaround time individually. However, there is a tendency that starting with the PESPlib
incumbent maintains the small weighted slack, while starting without initial solution brings
the number of vehicles down.

To assess the impact of the cycle bases, we compare these for each strategy with a
hypothetical cycle basis that attains the best weighted slack (or number of vehicles) with
that strategy. Table 4 reports the relative gap in percent, averaged over all 28 combinations
of lower bounds and weights.

It turns out that the traditional minimum span basis, which is allowed to contain backward
arcs, performs best in terms of weighted slack for the strategies that were not given a high

https://www.zib.de/lindner/R1L1v-hi-res.pdf
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strategy span fwd bottleneck forward span ILTY
complete 2.00 0.13 2.16 0.12 2.59 0.14 2.32 0.17
mip 0.12 0.07 5.47 0.44 3.42 0.24 4.19 1.05
mip-start 1.16 0.57 1.73 0.12 0.90 0.43 1.89 0.48
mip-ignore 1.26 0.12 1.49 0.12 2.15 0.05 1.49 0.09
mip-ignore-start 1.32 0.08 1.05 0.06 1.53 0.06 1.27 0.05
dual 17.66 4.81 3.35 1.44
Table 4 Average relative gaps in percent. The first column per basis is for the weighted slack, the

second column is for the number of vehicles. E.g., 2.00 for complete in the leftmost span column
means that the span basis produce a weighted slack that is in average 2% worse than a hypothetical
cycle basis that takes the best slack among all four cycle bases with the complete strategy.

quality timetable as input. For the other strategies, a forward basis was better. However,
with the exception of the mip strategy, the quality differences are mostly only minor, and
the same holds for the number of vehicles. We can conclude that on the primal side, forward
cycle perform similar to the minimum span basis.

What is however striking is the dual side: After the time limit of one hour, the minimum
span basis is far worse than all forward cycle bases, and the ILTY basis is the clear winner.

Note that the best lower bound on the number of vehicles is quickly obtained by summing
up the lower bound of each cycle inequality (2) for the I-cycles of each line.

5.3 A New Dual Incumbent for R1L1

Motivated by the dual performance of the forward cycle basis, we try to compute a new dual
bound for the original PESPlib instance R1L1. When the minimum turnaround time is 0
and the turnaround weights are 0, every timetable for R1L1 is feasible for R1L1v and vice
versa, and the weighted slacks do not change. In this setting, we can hence use the forward
cycle bases on R1L1v to compute dual bounds for R1L1. One can check that forward cycle
bases do not exist on R1L1, as it fails to satisfy the hypothesis of Theorem 4.

instance cycle basis dual bound
R1L1v span 20 638 013
R1L1v forward span 20 609 801
R1L1v forward bottleneck 20 591 564
R1L1v ILTY 20 901 883
R1L1 span 20 693 118

Table 5 A new dual incumbent for R1L1 through R1L1v.

Table 5 compares the dual bounds after 24 hours wall time on up to 6 threads obtained
by the four cycle bases on R1L1v, and additionally by the span basis on R1L1. As bounds
basically stop moving after one hour in Gurobi, we switched to CPLEX 12.10 for this
particular computational experiment, which performs better in the long run. We again use
flip inequalities as source for cutting planes. Although the span basis becomes better, ILTY
on R1L1v produces the best dual bound, although R1L1v is a larger instance and the cycle
space dimension has increased by 110.
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6 Conclusion and Outlook

Minimum forward cycle bases are competitive when seeking high quality solutions to PESP
instances, and superior when computing of dual bounds. The ILTY cycles, that can be
constructed on line-based event-activity networks, are particularly strong: They allow for
better dual bounds on the PESPlib instance R1L1, although the computation is carried out
on the larger R1L1v. The natural question is whether this strength extends to other PESP
instances. So far the PESPlib does not contain instances with specified turnarounds. We
submitted a realization of R1L1v with minimum turnaround time 10 and turnaround weight
5000, and this instance will soon be part of the PESPlib.
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