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Abstract

In [7, 8, 12] homogenization techniques are applied to derive an anisotropic
variant of the bio-heat transfer equation as asymptotic result of boundary value
problems providing a microscopic description for microvascular tissue. In view of
a future application on treatment planning in hyperthermia, we investigate here
the homogenization limit for a coupling model, which takes additionally into ac-
count the influence of convective heat transfer in medium size blood vessels. This
leads to second order elliptic boundary value problems with nonlocal boundary
conditions on parts of the boundary. Moreover, we present asymptotic estimates
for first order correctors.
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1 Introduction

Homogenization problems are typically studied in the context of local boundary condi-
tions. Here, we investigate a family of second order elliptic partial differential equations
on periodically perforated domains, where on the inner boundaries Robin boundary
conditions and on part of the outer boundary nonlocal boundary conditions, which are
related to convective heat transfer, are posed.

The present paper emerges to a certain extent from problems arising in the patient-
specific therapy planning for the cancer therapy regional hyperthermia – see [9, Chap.
1] for a general survey or [10] for details concerning applied adaptive multilevel meth-
ods. The underlying medical and mathematical problem is to tune radiowave antennas
optimally in such a way that heat is concentrated within the patient’s tumor, but
nowhere else in healthy tissue, see [9, 10, 23] for further details. Up to now, for quanti-
tatively modeling of the distribution of the temperature T within an individual human
body, the rather simple so–called bio-heat transfer (BHT) equation

−∇κ∇T + ρtρbcbm(T − Tb) + S = 0 (1.1)

is mostly used, where κ denotes the thermal conductivity, ρt/b the density of tis-
sue/blood, cb the specific heat capacity, m the perfusion, Tb the arterial temperature,
and S some external thermal source – which in regional hyperthermia is the heating
by radiowave absorption. This elliptic PDE dates back to an early suggestion by the
neurologist Pennes [20] from 1948, see also [3].

Stepping back to the original problem, we are facing a true multiscale situation. As
shown in Fig. 1, we will have to deal in parallel with large blood vessels (a), medium
size blood vessels (b), and small capillaries (c).

(c)
(b)

(a)

Figure 1: Multiscales in blood vessels: (a) large blood vessels, (b) medium size blood
vessels, (c) capillaries.

The main topic of this paper is to present a first step towards a coupling of b) and
c). Models for the temperature in medium size blood vessels are characterized by the
assumption that the blood is locally thoroughly mixed to a uniform temperature and
is dominated by convection. Consequently, see [4, 14, 17, 21, 22], the basic governing
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equation for the mean blood temperature Tm at any position along a transiting medium
size blood vessel is given by

Mcb
dTm

dz
= hP (Tw − Tm) + Qap, (1.2)

where M is the mass flow rate, cb is the specific heat of blood, h is the convective heat
transfer coefficient, P is the perimeter of the vessel, Tw is the wall temperature of the
vessel and Qap is the external power deposition applied in the vessel, see [15].

In [4, 14, 17, 21] the influence of medium size blood vessels in vascularized tissue
during hyperthermic treatment is modeled by combining Pennes BHT equation (1.1)
with equation (1.2) via Newtons cooling law and by setting Tw = T . In [8, 12] it is
shown that the BHT equation (1.1) might be understood as the homogenization limit
of a certain class of micromodels. Coupling now those micromodells with equation
(1.2) via Newton’s cooling law, taking care of the influence of medium size vessels,
gives micromodells with nonlocal boundary conditions. In the following we prove in
particular, that the “ad hoc” coupling of the BHT equation (1.1) with (1.2) gives in
fact the asymptotic limit.

The paper is organized as follows: In Section 2 we introduce microscale coupling
model problems with nonlocal boundary conditions. After considering their unique
solvability, we analyze their asymptotic limit via homogenization in Section 3. In
Section 4, we prove asymptotic estimates with respect to first order corrector terms.

Throughout the paper, we use the notation a <∼ b as an abbreviation of a ≤ Cb
with some constant C > 0, a >∼ b equivalent to b <∼ a and a ∼ b for a <∼ b <∼ a.

2 Nonlocal Coupling Models

First, we introduce a specific periodic twodimensional setting, which will keep the
technical problems as few as possible: Let Y ⊂ R2 denote the bounded square (0, 1)×
(0, 1). For a bounded domain B with B ⊂ Y we define Y ∗ := Y \ B, θ := |Y ∗|

|Y | ∈ (0, 1)

and θB := |∂B|
|Y ∗| ∈ (0, 1). The boundary of B is assumed to be at least C2. For ε > 0

let τ(εB) := ∪k∈Z3ε(k + B). Then for Ω := (0, 1)× (0, 1) ⊂ R2 and ε ∈ {1/n | n ∈ N}
such that ∂Ω ∩ τ(εB) = ∅ we set Bε := Ω ∩ τ(εB) and Ωε := Ω \Bε.

With respect to the underlying problem of heat-transfer in microvascular tissue we
think of Bε as small regions of blood of certain temperature. The domains Ωε describe
solid tissue parts where heat-transfer by conduction takes place. For simplicity, we
assume that heat transfer in the solid tissue is described by thermal conductivity with
conductivity coefficient equal to 1. Taking into account some external thermal sources
Sε the temperature distribution is then modeled by the diffusion equation −∆Tε = Sε.
Furthermore, we shall assume that on the inner boundary ∂Bε the transition between
blood regions and solid tissue is governed by Newtons cooling law with respect to an ε
dependent heat transfer coefficient. For a discussion of the ε scaling in Newtons cooling
law see [8].

On two sides of the outer boundary ∂Ω we couple Newtons cooling law, thinking of
a branching medium size vessel, with equations of type (1.2). More precisely, see Fig.
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2, we consider on Γ1 := (0, 1)× {0} and Γ2 := {0} × (0, 1) for admissible ε > 0, γi > 0
and for given thermal sources Qi the ordinary differential equations

∂Tε

∂n
= κs(Ts − Tε)

Γ3

∂Tε

∂n
= κ2(T

2
ε − Tε)
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∂n
= κ1(T

1
ε − Tε) Γ1

−∆Tε = Sε
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Figure 2: Geometry of the model problem




dT i
ε

dxi

= γi(Tε,i − T i
ε ) + Qi, on Γi,

T i
ε (0) = 0.

(2.1)

In (2.1) T i
ε represents the temperature of the blood in the medium size vessel Γi and

Tε,i the temperature of the corresponding vessel wall Γi.
For the following, we introduce the bounded linear operators

Pi : H1/2(Γi) → H1/2(Γi)

f 7→ e−γit

∫ ·

0

f(τ)eγiτ dτ.

Then, for sufficiently smooth Tε,i and Qi solutions to (2.1) are given by

T i
ε (t) = e−γit

∫ t

0

(γiTε,i(τ) + Qi(τ))eγiτ dτ = Pi(γiTε,i + Qi)(t). (2.2)

Applying next Newtons cooling law and setting Tε,i = Tε|Γi
gives for the thermal

problem in Ωε on Γi the nonlocal boundary conditions

∂Tε

∂n
= κi(T

i
ε − Tε) = κi(Pi(γiTε|Γi

+ Qi)− Tε)
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with respect to some κi > 0.
Thus, see again Fig. 2, we end up for given Sε, T

ε
b , Ts, Q

i and ε, α, κi, γi, κs > 0 with
the boundary value problems





−∆Tε = Sε in Ωε,
∂Tε

∂n
= εα(T ε

b − Tε) on ∂Bε,

∂Tε

∂n
= κi(Pi(γiTε|Γi

+ Qi)− Tε) on Γi, i = 1, 2,

∂Tε

∂n
= κs(Ts − Tε) on Γ3.

(2.3)

The variational formulation of (2.3) looks as follows: Find Tε ∈ H1(Ωε) such that for
all v ∈ H1(Ωε) holds

∫

Ωε

∇Tε · ∇v dx + εα

∫

∂Bε

Tεv dσ +
2∑

i=1

κi

∫

Γi

(Tε − γiPi(Tε|Γi
))v dσ + κs

∫

Γ3

Tεv dσ

=

∫

Ωε

Sεv dx + εα

∫

∂Bε

T ε
c v dσ + κs

∫

Γ3

Tsv dσ +
2∑

i=1

κi

∫

Γi

Pi(Q
i)v dσ.(2.4)

The corresponding bilinear form aε(·, ·) defined by

aε(u, v) :=

∫

Ωε

∇u ·∇v dx+ εα

∫

∂Bε

uv dσ +
2∑

i=1

κi

∫

Γi

(u− γiPi(u|Γi
))v dσ +κs

∫

Γ3

uv dσ

(2.5)
is H1(Ωε)-coercive, i.e. up to compact perturbation H1(Ωε)-elliptic. Therefore, notice
that the right hand side in (2.4) gives a bounded linear form, the Fredholm alternative
holds for the variational problem (2.4).

Theorem 1 The variational problems (2.4) are uniquely solvable in H1(Ωε).

Proof. Let u ∈ H1(Ωε) satisfy aε(u, v) = 0 for all v ∈ H1(Ωε). Then in particular
holds

∫
Ωε
∇u∇v dx = 0 for all v ∈ C∞

0 (Ωε). Since Ωε is connected we have u = C ∈ R.

Take next Γ ⊂ Γ3 with |Γ| > 0, dist(Γ, Γ1 ∪ Γ2) > 0 and χ ∈ H1(Ωε) with χ ≥ 0,
χ|Γ = 1, χ|Γ1∪Γ2∪∂Bε = 0, then for v = Cχ holds

aε(C, v) = κs

∫

Γ3

C2χdσ > 0,

which gives u = C = 0.

Notice, that for given T i
ε ∈ L2(Γi) the variational solutions Tε ∈ H1(Ωε) to the

boundary value problems described in Fig. 2 possess at least the regularity Tε ∈
H3/2(Ωε), i.e. (2.2) is satisfied.
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3 The Asymptotic Limit

For proving the uniform boundedness of the variational solutions Tε ∈ H1(Ωε), we need
a little bit more than the coerciveness of the bilinear form aε(·, ·) for each single ε > 0.
More precisely, we assume in the following, that the bilinear forms aε(·, ·) are uniformly
elliptic, i.e., there is a constant c > 0 independent of (the admissible) ε > 0 such that

aε(u, u) ≥ c‖u‖2
H1(Ωε)

, u ∈ H1(Ωε). (3.1)

For analyzing sufficient conditions for (3.1) let γ∗ denote the root of the equation
γ(1− e−2γ) = 2. Approximately, it is γ∗ ≈ 2.03476.

Theorem 2 If γi ≤ γ∗, then (3.1) holds.

Proof. For u ∈ H1(Ωε) and i ∈ {1, 2}, we set f := u|Γi
and γ := γi. By the definition

of Pi follows

|Pi(f)(t)| = |
∫ t

0

f(τ)eγ(τ−t) dτ | ≤
(∫ 1

0

f 2(τ) dτ

)1/2 (∫ t

0

e2γ(τ−t) dτ

)1/2

≤
(

1− e−2γ

2γ

)1/2 (∫ 1

0

f 2(τ) dτ

)1/2

.

Therefore

∫

Γi

(f − γPi(f))f dσ ≥
∫

Γi

f 2 dσ − γ

(∫

Γi

P 2
i (f) dσ

)1/2 (∫

Γi

f 2 dσ

)1/2

≥
∫

Γi

f 2 dσ − γ

(
1− e−2γ

2γ

)1/2 ∫

Γi

f 2 dσ

≥ 0,

since for γ ≤ γ∗ holds 1− γ
(

1−e−2γ

2γ

)1/2

≥ 0. Thus (2.5) gives for γi ≤ γ∗

aε(u, u) ≥
∫

Ωε

(∇u)2 dx + εα

∫

∂Bε

u2 dσ + κs

∫

Γ3

u2 dσ

and therefore for a suitable c > 0 the ellipticity (3.1).

Remark. Let us shortly discuss the assumption γi ≤ γ∗ ≈ 2.03476. If Qi = 0, Tε =
Tconst, T (0) = 0, one gets

T (1) = γe−γTconst

∫ 1

0

eγτ dτ = (1− e−γ)Tconst ≤ (1− e−γ∗) · Tconst ≈ 0.869288 · Tconst,

which means that there is an approximately 87% temperature transfer allowed. In
the interesting applications, i.e. regional and local hyperthermia, this is sufficiently
general. For further related remarks on the heat transfer from tissue to blood vessels,
see [16].
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Theorem 3 Under the assumption (3.1) holds

‖Tε‖H1(Ωε)
<∼ 1

Proof. The coerciveness implies

‖Tε‖2
H1(Ωε)

<∼ aε(Tε, Tε)

=

∫

Ωε

SεTε dx + εα

∫

∂Bε

T ε
c Tε dσ + κs

∫

Γ3

TsTε dσ +
2∑

i=1

κi

∫

Γi

Pi(Q
i)Tε dσ.

The only term which has to be considered in detail is the second one: However, pro-
ceeding analogously to [12] one gets

|ε
∫

∂Bε

T ε
b Tε dσ| <∼ ‖Tε‖H1(Ωε).

Next we need for ε > 0 extension operators Eε : H1(Ωε) → H1(Ω) such that uniformly
in ε holds

‖Tε‖H1(Ωε)
<∼ 1 =⇒ ‖Eε(Tε)‖H1(Ωε)

<∼ 1. (3.2)

Such extension operators can easily be described in the given geometrical situation:
First, take the usual bounded extension operator from H1(Y ∗) to H1(Y ). Then take
with respect to each Y ∗

ε,k = ε(k+Y ∗), k ∈ Z2, the related one from H1(Y ∗
ε,k) to H1(Yε,k),

where Yε,k := ε(k + Y ). Finally, the near by hand combination of those local operators
gives extension operators Eε : H1(Ωε) → H1(Ω), such that (3.2) holds. Consequently,
under the assumption (3.1) follows for the extensions Eε(Tε)

‖Eε(Tε)‖2
H1(Ωε)

<∼ 1.

Consequently, there exists T ∈ H1(Ω) with

Eε(Tε) ⇀ T in H1(Ω).

In the following, we denote for an arbitrary function ϕ on Ωε by ϕ̃ its zero-extension
on Ω, i.e., it is ϕ̃ = ϕ in Ωε and ϕ̃ = 0 in Ω \ Ωε.

Theorem 4 If Sε ∈ L2(Ωε), S ∈ L2(Ω) with S̃ε ⇀ θS in L2(Ω) and T ε
b ∈ W 1,∞(Ω), Tb ∈

H1(Ω) with ‖T ε
b ‖W 1,∞(Ωε)

<∼ 1, T̃ ε
b ⇀ θTb in L2Ω), then, under the assumption (3.1),

there exists T ∈ H1(Ω) with

Eε(Tε) ⇀ T in H1(Ω)

and T is the variational solution of the nonlocal boundary value problem




−div(A∇T ) + αθQ(T − Tb) = S in Ω,
∂T

∂nA
= κi(Pi(γiT |Γi

+ Qi)− T ) on Γi, i = 1, 2,
∂T

∂nA
= κs(Ts − T ) on Γ3.

(3.3)
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The coefficients of the constant and positive definite matrix A = (aij)ij are given by

aij = δij − 1

|Y ∗|
∫

Y ∗

∂χj

∂yi

dy (3.4)

where the functions χj are solutions to the cell problems




−∆χj = 0 in Y ∗
∂(χj−yj)

∂n
= 0 on ∂Q,

χj Y -periodic.

(3.5)

Proof. Setting ξε := ∇Tε, there is ξ ∈ [L2(Ω)]2 with ξ̃ε ⇀ θξ in [L2(Ω)]2 for ε → 0.
Proceeding as in [8], see also [2, 5, 11], we obtain in Ω

−divξ = S + αθQ(Tb − T ) (3.6)

as well as
ξ = A · ∇T in Ω, (3.7)

where A is given by (3.4) and (3.5). Moreover, the identities (3.6) and (3.7) gives the
first identity in (3.3).

Considering now the variational problem (2.4) with respect to v ∈ H1(Ωε) and
taking into account the identity (3.6), we obtain in the limit and by partial integration

∫

∂Ω

vξ·n dσ+
2∑

i=1

κi

∫

Γi

(T−γiPi(T |Γi
))v dσ+κs

∫

Γ3

Tv dσ = κs

∫

Γ3

Tsv dσ+
2∑

i=1

κi

∫

Γi

Pi(Q
i)v dσ,

i.e. with (3.7)

∫

∂Ω

∂T

∂nA
v dσ = κs

∫

Γ3

(Ts − T )v dσ +
2∑

i=1

∫

Γi

κi(Pi(γiT |Γi
+ Qi)− T )v dσ,

which gives the second and third identity in (3.3).

4 First Corrector Analysis

It is well-known from general homogenization theory, cf. [1, 6], that the solution to
the homogenized equation is not the strong, but only the weak limit of the solutions
to the periodic problems. Therefore correctors are introduced, i.e. ε-dependent func-
tions, such that the sum of the solutions to the periodic problems and those corrector
functions converge strongly. Moreover, for many periodic problems it could be shown
that the convergence is of some order εs for s > 0 with respect to appropriate norms.
Generally, correctors can be understood as smoothing operators, because they suppress
the fast oscillations in the gradient of Tε − T . For the role of correctors in numerical
homogenization see [13].
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In the following we additionally assume that T ∈ H3(Ω), Sε = S ∈ H1(Ω) and
T ε

b = Tb ∈ H1(Ω), which requires e.g. Ts ∈ H3/2(Γ3).
The formal derivation of first and second order correctors follows the standard

approach, cf. [1, 6, 18], and is completely analogous to [8]: Starting point is the
asymptotic ansatz

Tε(x) = T0(x, y) + εT1(x, y) + ε2T2(x, y) + . . . ,

with y = x/ε and where Ti are Y -periodic functions defined on Ω×Y ∗. Then, applying

∆ = ε−2∆y + 2ε−1∆xy + ∆x,

where ∆y =
∑3

i=1
∂2

∂y2
i
, ∆xy =

∑3
i=1

∂2

∂xi∂yi
, ∆x =

∑3
i=1

∂2

∂x2
i
, as well as

∂

∂n
= ε−1 ∂

∂n(y)
+ n(y) · ∇x,

we obtain in Ωε

−∆Tε = −ε2∆yT0 − ε−1(∆yT1 + 2∆xyT0)− (∆xT0 + 2∆xyT1 + ∆yT2) + . . .

= S, (4.1)

and on the boundary ∂Ωε

∂Tε

∂n
= ε−1 ∂

∂n(y)
T0 +

∂

∂n(y)
T1 + n(y) · ∇xT0 + ε(

∂

∂n(y)
T2 + n(y) · ∇xT1) + . . .

=





εα(Tb − T0)− ε2αT1 − . . . on ∂Bε

κi(Pi(γiT0|Γi
+ Qi)− T0) + εκiPi(γiT1|Γi

)− εκiT1 + . . . on Γi, i = 1, 2,
κs(Ts − T0)− εκsT1 − . . . on Γ3.

Comparing the coefficients shows, that one can choose

T0(x, y) = T (x)

and

T1(x, y) = −
3∑

j=1

χj(y)
∂

∂xj

T (x).

By χ ∈ H1(Y ∗) we denote the unique solutions to



−∆yχ = −θQ in Y ∗,
∂χ
∂n

= 1 on ∂Q,
χ Y -periodic with vanishing mean value.

(4.2)

Then the following Theorem holds.

Theorem 5 If χ, χj ∈ W 1,∞(Y ∗), there is a constant C > 0 independent of ε > 0 such
that

‖Tε − T + ε

3∑
j=1

χj(
·
ε
)
∂T

∂xj

‖H1(Ωε) ≤ Cε1/2. (4.3)
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Proof. We proceed similar to [12]: Setting Rε := Tε−T−εT1 and taking into account
(3.3), we get in Ωε

−∆Rε = −div(A∇T ) + αθQ(T − Tb) + ∆xT + 2∆xyT1 + ε∆xT1

with ∆xyT1 =
∑3

i,j=1
∂χj

∂yi

∂2T
∂xi∂xj

. It is ∆xT1, ∆xyT1 ∈ L2(Ωε) and therefore ‖∆Rε‖L2(Ωε)
<∼ 1.

On ∂Bε we have
∂Tε

∂n
= εα(Tb − Tε)

and
∂(T + εT1)

∂n
= n · ∇xT +

∂

∂n(y)
T1 + εn · ∇xT1 = εn · ∇xT1,

i.e., it is
∂Rε

∂n
= ε[α(Tb − Tε)− n · ∇xT1].

Thus, we obtain on ∂Bε

∂Rε

∂n
+ εαRε = εα(Tb − T )− εn · ∇xT1 − ε2αT1. (4.4)

On Γi, i = 1, 2, we have

∂Rε

∂n
= κiPi(γi(Tε − T )|Γi

)− κi(Tε − T ) +
∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n

= κiPi(γiRε|Γi
)− κiRε + κiPi(γiT1|Γi

)− κiT1 +
∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n

and on Γ3 holds

∂Rε

∂n
= κs(T − Tε) +

∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n
= −κεTε − κsεT1 +

∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n
.

Integration by parts gives

‖∇Rε‖2
[L2(Ωε)]3

= −
∫

Ωε

∆RεRε dx +

∫

∂Bε

Rε
∂Rε

∂n
dσ +

∫

∂Ω

Rε
∂Rε

∂n
dσ

= −
∫

Ωε

div(A∇T )Rε dx + αθQ

∫

Ωε

(T − Tb)Rε dx +

∫

Ωε

∆xTRε dx

+2

∫

Ωε

∆xyT1Rε dx + ε

∫

Ωε

∆xT1Rε dx− εα

∫

∂Bε

R2
ε dσ

+εα

∫

∂Bε

(Tb − T )Rε dσ − ε

∫

∂Bε

n · ∇xT1Rε dσ − ε2α

∫

∂Bε

T1Rε dσ

−
∫

Γ3

κsR
2
ε dσ +

∫

Γ3

[−εκsT1 +
∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n
]Rε dσ

+
2∑

i=1

∫

Γi

κi(Pi(γiRε|Γi
)−Rε)Rε dσ

+
2∑

i=1

∫

Γi

[κi(Pi(γiεT1|Γi
)− εT1) +

∂T

∂nA
− ∂T

∂n
− ε

∂T1

∂n
]Rε dσ.
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Because of (3.1) and

∫

∂Ω

ε
∂T1

∂n
Rε dσ =

∫

∂Ω

∂T1

∂ny

Rε dσ + ε

∫

∂Ω

n · ∇xT1Rε dσ

we have

‖Rε‖2
H1(Ωε)

<∼ aε(Rε, Rε) (4.5)

= ‖∇Rε‖2
[L2(Ωε)]3

+ εα

∫

∂Bε

R2
ε dσ + κs

∫

Γ3

R2
ε dσ

−
2∑

i=1

κi

∫

Γi

(Pi(γiRε|Γi
)−Rε)Rε dσ

= −
∫

Ωε

div(A∇T )Rε dx + αθQ

∫

Ωε

(T − Tb)Rε dx +

∫

Ωε

∆xTRε dx

+2

∫

Ωε

∆xyT1Rε dx + ε

∫

Ωε

∆xT1Rε dx + εα

∫

∂Bε

(Tb − T )Rε dσ

−ε

∫

∂Ωε

n · ∇xT1Rε dσ − ε2α

∫

∂Bε

T1Rε dσ

+

∫

Γ3

[−εκsT1 +
∂T

∂nA
− ∂T

∂n
− ∂T1

∂ny

]Rε dσ

+
2∑

i=1

∫

Γi

[κi(Pi(γiεT1|Γi
)− εT1) +

∂T

∂nA
− ∂T

∂n
− ∂T1

∂ny

]Rε dσ.

For

αi,j :=
1

|Y ∗|
∫

Y ∗

∂χj

∂yi

dy − ∂χj

∂yi

, i, j = 1, 2, (4.6)

holds ∫

Y ∗
αij(y) dy = 0.

Thus we obtain
∣∣∣∣
∫

Ωε

(div(A∇T )−∆xT −∆xyT1)Rε dx

∣∣∣∣

=

∣∣∣∣∣
∫

Ωε

(
2∑

i,j=1

(
1

|Y ∗|
∫

Y ∗

∂χj

∂yi

dy − ∂χj

∂yi

)
∂2T

∂xi∂xj

)
Rε dx

∣∣∣∣∣
<∼ ε1/2‖Rε‖H1(Ωε), (4.7)

see [19].
Since

∆xyT1 = ε

2∑
i=1

∂

∂xi

(
∂T1

∂xi

|y=x/ε

)
− ε

2∑
i=1

∂2

∂x2
i

T1,

11



it is

∫

Ωε

∆xyT1Rε dx = ε

2∑
i=1

∫

Ωε

(
∂

∂xi

(
∂T1

∂xi

|y=x/ε

))
Rε dx− ε

∫

Ωε

∆xT1Rε dx

= −ε

∫

Ωε

∇xT1 · ∇Rε dx + ε

∫

∂Ωε

n · ∇xT1Rε dσ − ε

∫

Ωε

∆xT1Rε dx.

Therefore we get

∣∣∣∣
∫

Ωε

∆xyT1Rε dx + ε

∫

Ωε

∆xT1Rε dx− ε

∫

∂Ωε

n · ∇xT1Rε dσ

∣∣∣∣ = ε

∣∣∣∣
∫

Ωε

∇xT1 · ∇Rε dx

∣∣∣∣
<∼ ε‖Rε‖H1(Ωε). (4.8)

Furthermore, applying χ ∈ W 1,∞(Y ∗) yields, see [12],

∣∣∣∣εα
∫

∂Bε

(Tb − T )Rε dσ − αθQ

∫

Ωε

(Tb − T )Rε dx

∣∣∣∣

=

∣∣∣∣ε
∫

Ωε

(∇yχ)(x/ε)∇((Tb − T )Rε)(x) dx− ε

∫

∂Ω

n · (∇yχ)(x/ε)(Tb − T )Rε(x) dσ

∣∣∣∣
<∼ ε‖Rε‖H1(Ωε) (4.9)

Next we note that for u ∈ H1(Ωε) holds

‖u‖2
L2(∂Bε)

<∼ ‖u‖2
L2(∂Ω) + ‖u‖L2(Ωε)‖∇u‖[L2(Ωε)]3 + ε−1‖u‖2

L2(Ωε)
(4.10)

see[12] and also [18]. Therefore, we get ‖T1‖L2(∂Bε)
<∼ ε−1/2, ‖Rε‖L2(∂Bε)

<∼ ε−1/2 and

∣∣∣∣ε2α

∫

∂Bε

T1Rε dσ

∣∣∣∣ <∼ ε. (4.11)

Moreover, it is

∣∣∣∣∣−κs

∫

Γ3

εT1Rε dσ +
2∑

i=1

∫

Γi

κi(Pi(γiεT1|Γi
)− εT1)Rε dσ

∣∣∣∣∣ <∼ ε‖Rε‖H1(Ωε). (4.12)

Because of

∂T

∂nA
− ∂T

∂n
− ∂T1

∂ny

=
2∑

j=1

[
2∑

i=1

ni(y)

(
χj(y)

∂yi

− 1

|Y ∗|
∫

Y ∗

χj(y)

∂yi

dy

)]
∂T

∂xj

and, since with respect to σi := {y ∈ Y | yi = 0 or yi = 1}, i = 1, 2, holds

∫

σ2

α2,j(y) dy1 =

∫

σ1

α1,j(y) dy2 = 0, j = 1, 2,

12



see the definitions (4.6) and e.g. the proof of Lemma 2.1 in [19], we have

∫

∂Ω

(
∂T

∂nA
− ∂T

∂n
− ∂T1

∂ny

)Rε dσ

=

∫

∂Ω

Rε

2∑
j=1

∂T

∂xj

[
2∑

i=1

ni(y)

(
χj(y)

∂yi

− 1

|Y ∗|
∫

Y ∗

χj(y)

∂yi

dy

)]
dσ

<∼ ε1/2‖Rε‖H1(Ωε). (4.13)

Finally, combining the estimates (4.7)–(4.13), we are led to

‖Rε‖2
H1(Ωε)

<∼ ε + ε1/2‖Rε‖H1(Ωε)

<∼ max{ε, ε1/2‖Rε‖H1(Ωε)},

which implies
‖Rε‖H1(Ωε)

<∼ ε1/2.

Acknowledgement. The author has been supported by a Konrad-Zuse-Fellowship.
In particular, he is grateful to Peter Deuflhard for stimulating and valuable comments
during the preparation of this paper.

References

[1] Bensoussan, A., Lions, J.-L., Papanicolaou, G., Asymptotic analysis for periodic
structures, Studies in Mathematics and Applications 5, North-Holland, Amster-
dam (1978).

[2] Brillard, A., Asymptotic analysis of two elliptic equations with oscillating terms,
RAIRO Modélisation Math. Anal. Numér. 22 (1988), 187–216.

[3] Chen, M.M., Holmes K.R., Microvascular contributions in tissue heat transfer,
Ann. N. Y. Acad. Sci. 335 (1980), 137–150.

[4] Chen, Z.-P., Roemer, R.B., The effects of large blood vessels on temperature distri-
butions during simulated hyperthermia, J. Biomech. Engrg. 114 (1992), 473–481.

[5] Cioranescu, D., Donato, P., Homogeneisation du probleme de Neumann non ho-
mogene dans des ouverts perfores, Asymptotic Analysis 1 (1988), 115–138.

[6] Cioranescu, D., Donato, P., An introduction to homogenization, Oxford Lecture
Series in Mathematics and its Applications 17, Oxford, University Press (1999).

[7] Deuflhard, P., Hochmuth, R.,On the Thermoregulation in the human microvascu-
lar system, Proc. Appl. Math. Mech. 3 (2003), 378–379

13



[8] Deuflhard, P., Hochmuth, R., Multiscale analysis of thermoregulation in the human
microsvascular system, Math. Meth. in the Appl. Sci. 27 (2004), 971–989.

[9] Deuflhard, P., Seebass, M., Adaptive Multilevel FEM as Decisive Tools in the
Clinical Cancer Therapy Hyperthermia, in: Choi-Hong Lai, Peter E. Bjrstad, Mark
Cross and Olof O. Widlund (eds.), Proceedings Eleventh International Conference
on Domain Decomposition Methods, DDM-org Press, Bergen (1999), 403-414.

[10] Deuflhard, P., Differential Equations in Technology and Medicine: Computational
Concepts, Adaptive Algorithms, and Virtual Labs, in: R. Burkard, P. Deuflhard,
A. Jameson, J.-L. Lions, G. Strang, V. Capasso, H. Engl, J. Periaux (eds.), Com-
putational Mathematics Driven by Industrial Problems, Springer Lecture Notes
in Mathematics, vol. 1739 (2000), 69–126.

[11] Ene, H.I., Sanchez-Palencia, E., Equations et phénomenes des surfaces pour
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