
University of Potsdam

Institute of Computer Science

Zuse Institute Berlin

Master’s thesis

Registration-based Tracking of Regions

Defined by Level Sets of

Time-dependent Scalar Fields

Raphael Badel

March 3, 2021

Priv.-Doz. Dr. Henning Bordihn (University of Potsdam)

Dr. Daniel Baum (Zuse Institute Berlin)



Kurzzusammenfassung

Diese Arbeit befasst sich mit dem weiten Forschungsfeld der Merkmalsverfolgung

in zeitabhängigen Daten. Für eine Verfolgung verschiedenster Merkmale in

skalaren Daten, die in Form von diskreten Zeitschritten vorliegen, existiert

bereits eine Vielzahl von Lösungen. Auf dem Gebiet der Meteorologie geben die

aktuellen Niederschlagsdaten der COSMO-REA2 Reanalysen Anlass zur Unter-

suchung der zeitlichen Entwicklung von konvektivem Niederschlag. Dabei sollen

Niederschlagszellen im zeitlichen Verlauf verfolgt werden. Eine vorangegangene

Studie ergab, dass eine Merkmalsverfolgung, die auf dem häufig verwendeten Kri-

terium der räumlichen Überlappung basiert, keine adäquaten Ergebnisse für die

Reanalysedaten liefert. Basierend auf neuartigen Anforderungen wird im Verlauf

dieser Arbeit ein neuer Ansatz zur Verfolgung von Regionen in zeitabhängigen

Skalarfeldern entwickelt und in einer prototypischen Studie auf Beispield-

atensätze der COSMO-REA2 Reanalysen angewendet. Neben der konkreten

Motivation, die entwickelte Methode auch für nachfolgende Untersuchungen

von Niederschlag nutzbar zu machen, ist der Ansatz so konzipiert, dass er für

beliebige skalare Größen anwendbar ist, die konzeptionell durch uniforme Gitter

beliebiger Dimension diskretisiert sein können. Auf Basis einer detaillierten

Beschreibung der verwendeten Methoden wird in dieser Arbeit eine neuartige

Lösung zur Merkmalsverfolgung vorgestellt, im Rahmen derer Korrespondenzen

anhand von Bildregistrierung zwischen diskreten Zeitschritten identifiziert

werden und unabhängig von den eigentlichen Merkmalen vorausberechnet

werden können. In Kombination mit einer hierarchischen Segmentierung von

Merkmalen durch die Wasserscheidentransformation ermöglicht die vorgestellte

Implementation eine effiziente Lösung für die Verfolgung von Merkmalen sowie

eine schnelle Generierung von Ergebnissen.
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Abstract

This thesis is concerned with the wide field of feature tracking in time-dependent

data. Many solutions already exist for the tracking of various features in scalar

fields that are given as discrete time steps. In the field of meteorology, recently

published precipitation data of the COSMO-REA2 reanalysis system gave rise

to the analysis of precipitation at a convective scale for which a tracking of

precipitation cells over time is desired. A previous study indicated that a

tracking based on the widely used overlap criterion does not perform well for

the reanalysis data. Based on a novel set of requirements, a new approach to

the tracking of regions in time-dependent scalar fields is developed in the course

of this thesis and applied in a prototypical study to example datasets of the

COSMO-REA2 system. Despite the concrete motivation of using the developed

method for subsequent studies of precipitation, the tracking approach is designed

to be applicable for arbitrary scalar quantities that can conceptually be given

on uniform grids of arbitrary dimensions. Based on a detailed description

of the utilized methods, this thesis presents a novel tracking solution whose

correspondence identification is based on image registration of successive time

steps in combination with a hierarchical watershed segmentation by means of

which features are extracted. The proposed implementation allows for an efficient

generation of tracking results under the premise that the registration-based

correspondence information has been precomputed.
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1 Introduction

In many scientific fields, physical quantities are studied that both depend on

spatial location and time. In practice, such quantities are either measured or

the outcome of a mathematical modelling process e.g. by means of a computer

simulation. In both cases, the results are usually available in form of datasets

that store data values over a discretized spatial domain that is recorded for

separate time steps. While a simulation can theoretically produce results in any

resolution, real life scenarios in which data is actually measured are most likely

subject to conditions that constrain the maximal resolution.

This thesis focusses on scalar data that typically represents the intensity

of a physical quantity such as e.g. temperature, pressure or phase. Some

criteria then define individual features that can be extracted for each time

step. This allows for the analysis of spatial properties of features such as

e.g. their size and position in each time step. However, to account for the

temporal dimension of a time-dependent quantity, an obvious application is to

analyse how features and their properties develop over time. For this purpose,

correspondences between features in successive time steps is needed to obtain

feature tracks. On the one hand, the spatio-temporal perspective gives rise to

temporal properties, such as e.g. the life time or length of feature tracks. On

the other hand, the spatio-temporal dynamic of features belonging to one track

can be examined. This includes the joining and splitting of features over time.

This thesis deals with the problem of feature tracking which includes three

mentioned subproblems: (i) feature definition and extraction, (ii) correspondence

identification, and (iii) the representation of feature tracks. For all three

components, different strategies have been developed and implemented, resulting

in various tracking solutions.
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Precipitation In meteorology, the study of precipitation as a time-dependent

quantity is of particular interest. Its temporal development is influenced by

many aspects, such as e.g. other physical processes as well as the underlying

topographic terrain. A common way to examine precipitation is based on cells

which are defined as spatially connected areas that exceed a certain level of

precipitation. Precipitation events can be grouped according to different spatial

and temporal scales. When examining the influence of precipitation on extreme

weather scenarios such as floods, two forms are of particular interest [106].

Convective precipitation occurs from convective clouds in form of rather small

precipitation cells that only exist for a short amount of time. The precipitation

intensity is typically much higher compared to stratiform precipitation. This

form results from the interferences of large-scale high- and low-pressure areas

and the concomitant hot and cold fronts. Those evolve over a long period

of time during which the intensity can be characterized as steady but at a

lower level. Mesoscale precipitation describes a mix of both of the aforenamed

forms [39, 90]. Floods can be the result of an extreme manifestation of either

convective or stratiform precipitation. To be able to better foresee such scenarios

and anticipate changing trends of precipitation due to the changing climate,

stochastic precipitation models are employed [90]. They are based on statistical

properties of precipitation such as the frequency and intensity measured or

simulated at individual locations [156]. It is the subject of current research to

integrate time-aggregate statistics of precipitation cells and a detailed analysis of

their spatio-temporal dynamic to be able to improve these models in the future.

Comprehensive statistics on the number, area, mean and maximal intensities of

precipitation cells as well as comparing these properties to the life-time cycle of

cells yields further insights into precipitation as a time-dependent quantity [39].

Datasets from the reanalysis system COSMO-REA2 [149] have recently

become publicly available including precipitation as a meteorological quantity.

The underlying COSMO model offers a spatial resolution of approximately 2 km

giving rise to the analysis of precipitation at a convective scale. Moreover, the

system offers an hourly temporal resolution spanning the years from 2007 to 2013.

Consequently, the new datasets provide the possibility to gain new information
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about quantitative and qualitative characteristics of precipitation at different

scales. Such information can be obtained by the tracking of precipitation cells.

1.1 Related Work

As of now, there exists a multitude of tracking solutions that have either

been applied for specific applications, e.g. in the field of meteorology, or were

developed for universal purposes. It should be noted that the following overview

only comprises those publications which, from a methodological point of view,

can be applied to any kind of scalar data, even though they might have been

motivated by a concrete application. In order to approach the large amount of

tracking solution, they are divided into two groups.

The first group is based on the strategy of extracting features in every time

step and subsequently identifying correspondences between these features in

successive time steps. On the one hand, the notion of features can be purely

geometrical like connected regions that are defined by a threshold [2, 33, 61,

80, 100, 110, 115, 116, 128, 132, 154]. On the other hand, the definition of

the very same kind of features can be motivated by a topological point of view

namely Morse theory. In Morse theory, the threshold is understood as a level

in the context of level sets. The connected regions mentioned before are then

considered connected components of the sub- or superlevel set whose common

boundary is the level set [17, 88, 126, 146, 155]. The topological point of view

also offers the possibility to define features as connected components of the level

set itself [135] which are known as contours. Further topological features include

critical points [134], persistence pairs [136], nodes and arcs of (topological)

graph structures [103] or the Morse-Smale complex [82]. Since Morse theory

can also be thought of as a theoretically sound foundation of the watershed

transformation [31], which originated in the context of digital pictures, features

defined by watershed regions [81] are also considered topological. Defining

features by means of Morse theory provides elegant and efficient solutions when

it comes to the extraction of features in actual datasets.
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The abovementioned features are mostly regional ones. Moreover, non-

regional features such as contours, critical points or graph entities can also

be associated with regions which is enabled by the topological point of view.

Therefore, the identification of correspondences between features in this group

is predominantly based on geometrical properties of or between regions. This

comprises distance proximity and/or attribute similarity regarding the size of

features as well as other geometric attributes [33, 61, 80–82, 110, 115, 128,

154]. A particular geometric property that is widely used is the spatial overlap

between regional features of successive time steps [2, 17, 81, 88, 100, 116, 126,

132, 134, 135, 146, 154, 155]. In addition to overlap, regions are matched

based on their intensity distributions [126]. After identifying an initial set of

correspondences, thresholds for the used criteria are usually applied to filter out

matches that are unlikely. Alternatively, solutions are proposed that minimize

a cost function that includes the distance between centroids as well as the

difference in size [33] or the distance between centroids in combination with

spatial overlap [81]. Corresponding persistence pairs are identified based on the

assignment of pairs according to the Wasserstein distance between persistence

diagrams [136]. Nodes and arcs of graph structures that represent the topological

relations among connected components of either the sub- or superlevel set for

each time step are considered with respect to their position within the graph.

Correspondences between graph entities are then identified based on graph

transformations [103].

In the majority of publications, the representation of feature tracks is described

as directed acyclic graphs (DAGs). Vertices represent the features in each time

steps and edges symbolize correspondence between features.

In the second group of tracking solutions, time-dependent data are not

regarded as separate time steps that are processed independently of each

other. Instead, time is considered an additional dimension of a spatio-temporal

domain. This perspective gives rise to the definition of contours defined in

4D space-time [16, 59, 60, 150]. As a consequence, features in each time step

can be extracted from slicing the space-time contour [59, 60]. The resulting

contours in each time step can also serve as the domain for the definition of more
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detailed features such as Morse-Smale complexes on these contours [16, 150]. In

both cases, the underlying contours in 4D space-time determine correspondence

implicitly.

The representation of feature tracks is once more based on DAGs. The

temporal coordinates of vertices are either ‘snapped’ to the original discrete

time steps [59, 60] or resemble the assumption of continuous time [16, 150]. A

representation of the latter is gained from considering time as a Morse function

over each of the space-time contours and computing the respective Reeb graphs.

All tracking solutions that have been proposed in the context of meteorology,

fall into the first group. To improve the correspondence identification, additional

information about the estimated motion between time steps is injected into

the tracking approach. The level of detail at which the motion is estimated

varies strongly across different approaches. In the prominent SCIT algorithm,

Johnson et al. [61] use the already identified tracks in past time steps to predict

the position of each feature in the next time step. Weusthoff & Hauf [154]

compute a single motion vector based on the cross correlation between features

of successive time steps to estimate the average motion and predict the motion

of each feature. Peleg & Morin [110] attempt to compute a more robust average

motion by means of a number of slight rotations of the time steps considered

in the cross correlation analysis. Moseley et al. [100] compute a coarse set

of motion vectors representing the average motion in local sub-regions of the

domain by means of downsampling. A similar approach was used by Kyznarová

& Novák [80] but for multiple sampling stages. The information is gathered

to generate a dense motion field. Finally, Valsangkar et al. [146] use optical

flow [56] to estimate the detailed motion of features.

1.2 Scope of Thesis

Common to all existing approaches is that the information being used for

correspondence identification is restricted to the features that ought to cor-

respond. This thesis presents a new approach to tracking that does not rely

on correspondences between features but computes detailed information about
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how one time step in its entirety transitions into the next one. In turn, this

information is the basis for the identification of correspondences between features.

The approach is motivated by physical quantities such as precipitation, the

temporal development of which is influenced by interactions with other physical

processes. Even if these processes are known, data describing those processes

cannot be assumed to be available. However, the (unknown) interactions

generally take place at different scales and determine how precipitation as

a whole develops over time. Therefore, the identification of correspondence

should be determined by all information of two successive time steps. More

precisely, the intensities of two time steps are used for a fine-grained and dense

motion estimation that describes the transformation from one time step to

the next one. The fundamental assumption underlying this thesis is that the

estimated motion appropriately represents the temporal development of the

quantity at all scales such that a tracking based on that universal information

produces adequate results. Since the motion estimation between time steps is

carried out independently of the actual definition or extraction of features, the

correspondence information can be precomputed.

Furthermore, an independent correspondence identification is also freed from

implicit assumptions that are part of criteria such as shape similarity, distance

proximity or even overlap. Shape similarity assumes that a feature’s shape

does not change significantly from one time step to the next one. Distance

proximity assumes that no ‘false’ features appear within a radius equal to the

velocity of the feature in question. Overlap entails even more assumptions than

distance proximity since the shape and extent of features in close proximity can

lead to wrong correspondences as well. From a temporal perspective, all three

criteria assume that the temporal resolution is sufficient, such that potential

disadvantages do not take effect. In the case of the precipitation data of the

COSMO-REA2 system, the temporal resolution of one hour is relatively low

compared to other data sources that are typically consulted when analyzing

precipitation. Moreover, a prior study by Fischer [39] approaching a tracking

solution for the same datasets struggled with the fact that there are in general

many small features in close proximity.

13



As mentioned before, in the field of meteorology, many tracking solutions

already exist that consider motion estimation in addition to the aforementioned

criteria with the particular aim to improve the tracking results. However, the

level of detail at which motion is estimated is rather coarse. The approach that

stands out is the work of Valsangkar et al. [146] in which optical flow [56] is

employed to compute a dense motion estimation for each feature evaluating

the underlying intensities. The approach proposed in this thesis is similar

in the sense that dense motion is estimated as well. However, in contrast to

Valsangkar et al. [146], the motion is estimated for the entire domain based

on all intensities. Moreover, instead of relying on optical flow whose motion

estimation is by definition limited to short distances an image registration

method is employed.

When it comes to the definition of features, a topological approach based on

level sets seems reasonable since it enables an efficient extraction of features for

different levels. This generally benefits an explorative analysis of the temporal

development of precipitation which is typically characterized by inspecting

the tracking results while varying the level. At first, a definition by means of

level sets, more precisely, connected components of the superlevel set, seems

appropriate. In two dimensions, this meets the common understanding of what

precipitation cells are. However, the tracking approach should support a feature

extraction of precipitation cells with respect to the different precipitation scales.

Large frontal cells that exhibit a fairly homegeneous distribution of average

intensities exist alongside small convective cells with high maximal intensities.

In particular, precipitation at a mesoscale is characterized by both kind of cells

such that convective cells are nested in frontal cells. Regarding the definition

and extraction of features, a more appropriate representation of features might

result from splitting precipitation cells into sub-cells each of which resembles

a dominant local maximum. Therefore, features are defined as by means of a

hierarchical watershed segmentation which allows to control what is considered

locally dominant. For the definition of storm cells, a similar approach but with

far-reaching extensions was proposed by Lakshmanan et al. [81].
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The representation of feature tracks should be such that properties of

precipitation cells like their number, size, mean and maximal intensities in

each time step as well as their lifetime and distance travelled can be accessed

easily. The spatio-temporal dynamic should be represented such that join and

split events that might occur during the life-time of a feature track can be

detected.

The purpose of this thesis is to develop a tracking approach for time-dependent

scalar fields with an exemplary focus on the tracking of precipitation cells. The

question should be answered under which methodological conditions and to

which extent regarding the aforementioned requirements precipitation cells can

be tracked in the available COSMO-REA2 datasets. The outcomes of this thesis

should enable a subsequent and systematical analysis of precipitation obtained

from the tracking of precipitation cells carried out by domain experts. At the

same time, the tracking approach developed here should be universal since, in

the long run, it should also be used for other meteorologic datasets that might

share additional requirements. This also concerns quantities that are resolved

on a three-dimensional domain in each time step. Hence, the theoretical results

of this thesis are not restricted to 2D+time but applicable to nD+time. In

particular, the following contributions are made in this thesis:

• Correspondence identification among features that builds upon a dense

registration-based motion estimation.

• Definition of a spatio-temporal digital space that allows for feature

extraction with built-in correspondence information.

• Parametrization for the registation of precipitation data that enables

adequate tracking results in a prototypical and qualitative study.
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2 Time-dependent Data

For the course of this thesis, time-dependent data is given as finite sets of scalar

values over a discretized two-dimensional spatial domain that is recorded for

separate time steps.

2.1 Precipitation Data

Precipitation is a real-valued non-negative meteorological scalar quantity that –

for the course of this thesis – is available as one variable among others from an

atmospheric reanalysis system called COSMO-REA2.

Meteorological reanalyses generate physical consistent and realistic state

estimates of the atmospheric system for a past time span ranging from years to

decades. The states of an atmospheric system are determined by a multitude

of numerical variables. A reanalysis provides a synthesis of heterogeneous

observational systems and various model simulations using a physical numerical

weather prediction (NWP) model in combination with a data assimilation

scheme. The output of the model are spatiotemporal meteorological fields in

discretized form according to a spatial and temporal resolution. Due to its

physical formulation, the model is able to estimate states between observations

in a physically consistent fashion. In this way, the model is kept as close to the

observed atmospheric states as possible [4, 13, 149].

The regional reanalysis system COSMO-REA6 for Europe is based on the

NWP model COSMO by the German Meteorological Service (DWD)1 and

features a spatial resolution of 0.055°, which is approximately 6 km [13]. Recently,

the regional reanalysis system COSMOA-REA2 was developed by the Hans

1Deutscher Wetterdienst
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(a) (b)

Figure 1: The yellow border in (a) highlights the spatial domain of COSMO-
REA6. In comparison, the domain of COSMO-REA2 is framed by the
red border in (a) and (b). Images reproduced from Wahl et. al [149].

Ertel Centre for Weather Research (HErZ)2 for Central Europe. Due to a higher

spatial resolution of 0.018°, which is about 2 km, COSMO-REA2 enables an

improved representation of precipitation at a convective-scale [149]. Figure 1

shows the different domains of COSMO-REA6 and -REA2. The COSMO-REA2

system spans the years from 2007 to 2013 with the years 2014 to 2016 being

currently in production. A subset of often requested parameters is publicly

available provided by the Meteorological Institute of the University of Bonn.3

The reanalysis is carried out over a subdomain of the earth’s surface. Instead

of the earth’s intrinsic coordinate system of latitudes and longitudes, the

reanalysis makes use of spherical coordinates with a rotated pole. The position

of the pole is chosen such that the equator runs through the middle of the

subdomain in order to minimize the convergence of the meridians. Under the

assumption of a small subdomain, hence a negligible impact of the curvature of

the earth’s surface, the domain can be parametrized by a Cartesian coordinate

system [12, 13]. Figure 2 illustrates this situation for the COSMO-REA6 model.

2Hans-Ertel-Zentrum für Wetterforschung
3https://reanalysis.meteo.uni-bonn.de/?Download_Data___COSMO-REA2
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(a) (b)

Figure 2: The highlighted area in (a) shows the spatial domain of COSMO-
REA6. In (b), the domain is shown in a rotated Cartesian coordinate
system with the unrotated spherical coordinates in red. Images
adapted from Bollmeyer [12] and Bollmeyer et al. [13].

2.2 COSMO Grid

The spatial domain is discretized by a two-dimensional grid consisting of vertices

and edges. While vertices specify points in two-dimensional Euclidean space,

edges can be thought of as straight line segments each of which connects two

vertices. The grid has a regular structure and partitions the domain into

rectangular cells. When all cells are equal in size, the grid is called a uniform

grid (see Figure 3b) because it has uniform spacings between the vertices in

each respective dimension [83]. The dotted black lines in Figure 2b can be

regarded as the edges of a grid that is exemplary for reanalysis systems that

use the COSMO model. The grid of the COSMO-REA2 system has a spatial

resolution of 0.018° in both dimensions [149]. For each hourly4 recording of

the domain, the vertices of the grid are associated with a precipitation value

enabling a discretization of the meteorological field in space in time.

4There exists a temporal discretization of precipitation at a 15-minute resolution as well.
However, this data is not directly available to the public without further ado.

18



3 Methodology

In this chapter, the methodological background is provided that is necessary

for the development of the tracking approach with respect to the requirements

identified in the introduction. Throughout this chapter, the set of the first k

non-negative integers {x ∈ Z | 0 ≤ x < k} is denoted as Nk.

3.1 Graph Theory

A simple, undirected graph is defined by the pair G = (V,E) with vertex set V

and edge set E ⊂ [V ]2. Edges are 2-element subsets of V and determine the

adjacency between two vertices. The vertex set of a graph G is referred to as

V (G), its edge set as E(G). The number of vertices of a graph G is denoted as

|G| with |G| = |V (G)| [14, 32, 50].

For the course of this thesis, G is assumed to be finite with |G| = k.

An alternative specification of the edge set E is by a binary adjacency relation

ε on V that is irreflexive and symmetric. In contrast to the edge set E ⊂ [V ]2,

ε = {(u, v) | u, v ∈ V ;u 6= v} is a subset of the Cartesian product V ×V and each

2-element subset {u, v} ∈ E corresponds to two ordered pairs (u, v), (v, u) ∈ ε.
If (u, v) ∈ ε, u is said to be adjacent to v and v is said to be adjacent from

u [55]. When the edges of a graph are specified as ordered pairs, a graph is

called a directed graph (or digraph). A simple undirected graph G, whose edge

set is specified by an irreflexive and symmetric adjacency relation, is referred to

as a simple symmetric digraph [50, 105].

19



Cartesian Product of Graphs

The Cartesian product of two graphs G�H is defined as a graph on V (G)×
V (H), i.e. the set {(g, h) | g ∈ V (G), h ∈ V (H)} [46, 50, 58, 125]. The edge set

E(G�H) is defined as

E(G�H) = (E(G)× V (H)) ∪ (V (G)× E(H))

or alternatively as all pairs [(g1, h1), (g2, h2)] of vertices with [g1, g2] ∈ E(G)

and h1 = h2 or [h1, h2] ∈ E(H) and g1 = g2 [58].

Since the Cartesian product of graphs is commutative and associative [46, 58,

125], the product of n graphs can be written as G1�G2� ...�Gn and is a graph

on n-tuples (v1, v2, ..., vn) where vi ∈ V (Gi). Two n-tuples, (u1, u2, ..., un) and

(v1, v2, ..., vn), are adjacent if there exists an index j such that {uj , vj} ∈ E(Gj)

and ui = vi for i 6= j.

Path Graphs

Path graphs are a family of simple, undirected and 1-connected graphs on m

vertices and with m − 1 edges denoted as Pm for m > 1 [46]. In distinction

from trees, two vertices of a path graph are of degree one while the other m− 2

vertices are of degree two. In other words, a path graph can be drawn so that

all of its vertices and edges lie on a single straight line [46]. Due to the linearity,

V (Pm) can be considered a sequence 〈vi〉i∈Nm ordered in such a way that

E(Pm) = {{vi, vi+1} | i ∈ Nm−1}.

Formally, 〈vi〉i∈Nm is the image of an injective function fv : I → V (Pm), where

I = Nm, that maps elements i of the index set I to elements of the indexed set

V (Pm) [49].

Grid Graphs

Grid graphs are a family of simple, undirected, n-connected and n-partite graphs

that are also referred to as n-dimensional k1-k2-...-kn-grids [19] or k1-k2-...-kn-
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meshes [46]. An n-dimensional grid graph5 is defined as the Cartesian product

of n path graphs

G = Pk1 �Pk2 � ...�Pkn

resulting in a graph on k vertices with k =
∏n

i=1 ki. As mentioned earlier, each

vertex is an n-tuple, which is henceforth denoted by a bold letter. Similar

to path graphs, V (G) can be considered an indexed family 〈vp1,p2,...,pn〉pi∈Nki

ordered in such a way that

E(G) = {{vp1,p2,...,pn ,vq1,q2,...,qn} |
∑n

i=1 |pi − qi| = 1}. (3.1)

Formally, 〈vp1,p2,...,pn〉pi∈Nki
is the image of an injective function fv : I →

V (G), where I = Nk1 ×Nk2 × ...×Nkn , that maps index tuples (p1, p2, ..., pn) of

the index set I to elements v of the indexed set V (G) [49]. To avoid additional

definitions, the vertex set is confused with the indexed family throughout

this thesis and both are referred to as V (G). Hence, in situation when the

indexation of vertices is not relevant, elements of V (G) are conveniently written

without indicies and distinct elements are referred to with different letters, e.g.

u,v ∈ V (G).

Spatial Representation

In general, the perspective on graphs is abstract and they are regarded as

combinatorial structures that capture the adjacency between elements of a

given set. Their specification is independent of any spatial properties such as

the positions of vertices or edge crossings [46].

A spatial graph [6] is a spatial representation of a graph in n-dimensional

Euclidean space. Vertices are specified by n-dimensional coordinate vectors

and edges represent arcs between two vertices. For the course of this thesis,

edges of a spatial graph are assumed to be straight line segments that span the

Euclidean distance between its two endpoints.

5Imrich et al. [58] mention grid graphs only for the Cartesian product of two path graphs.
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3.2 Grid Data

A real-valued scalar quantity that is given over a manifold can mathematically

be represented by a scalar field. Let f : D → R be an at least continuous scalar

field that assigns a real number to each point in D . In the context of this

thesis, the domain D ⊂ Rn is assumed to be a simply connected subset of the

n-dimensional Euclidean space, i.e. an n-manifold with boundary.

Usually, the original function f is unknown but instead represented in

discretized form as grid data. For the extend of this thesis, such a discrete

representation is defined by the pair6 (U,F ), i.e. an n-dimensional uniform

grid U and an accompanying finite set of real data values F . A uniform grid

is considered a simple, undirected, connected spatial graph whose edges are

pairwise oriented either orthogonal or parallel to each other and whose vertices

specify points in n-dimensional Euclidean space that are uniformly spaced in

each dimension of the grid. For a discrete representation of f , the vertices form

a subset of D and are each associated with a data value in F . A two-dimensional

example of grid data is illustrated in Figure 3a.

Uniform Grid Formally, an n-dimensional uniform grid U = (V,E) can

be defined as a spatial representation of an n-dimensional grid graph U =

Pk1 �Pk2 � ...�Pkn , i.e. the Cartesian product of n path graphs. As a result,

the vertices vp1,p2,...,pn ∈ V , indexed by tuples of the index set IU = Nk1 ×
Nk2× ...×Nkn , can be parametrized by their indices p1, p2, ..., pn and real-valued

constants s1, s2, ..., sn that determine the uniform spacing between vertices.
v1

v2
...

vn


p1,p2,...,pn

=


s1

s2
. . .

sn

×

p1

p2
...

pn

 (3.2)

6The pair constituting grid data is referred to as a height graph by Carr et al. [21] and more
general as a scalar graph by Wenger [153].
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Figure 3: A two-dimensional example of grid data that will recur throughout
this thesis is illustrated in (a). The vertices of the uniform grid are
mapped to circles and anotated by integer values. In (b), only the
uniform grid with vertex indices is shown. When it comes to the
visualization of a grid, vertices are usually not plotted. Instead, they
can be identified indirectly as the intersection points of edges.

For the sake of simplicity, the parametrization assumes that edges are oriented

either orthogonal or parallel to the Cartesian coordinate axes and that v0,0,...,0

is located at the origin. The number of vertices k1, k2, ..., kn in each dimension

and their spacings s1, s2, ..., sn determine the resolution as well as the extent of

the grid. The indexation of

Figure 3b shows an example of a uniform grid which is a spatial representation

of P4�P5. It becomes immediately apparent how a 2-dimensional uniform grid

indicates rectangular subspaces in R2 that are all equal in size. For an arbitrary

n, the spatial arrangement of an n-dimensional uniform grid can be used to

determine subspaces in Rn called n-orthotopes [29] which is the generalization

of rectangles also known as n-rectangles [75] or hyperrectangles [153]. The edge

lengths of n-orthotopes are determined by the uniform spacings s1, s2, ..., sn.

Although the partition of the domain into subspaces is not intrinsic to the

definition of a grid or more specifically to a spatial graph, they will be referred

to as grid cells. For this thesis, an intuitive notion of those cells is sufficient

and a formal definition is omitted.
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(a) Bilinear (b) Nearest-Neighbour

Figure 4: Multivariate interpolation on a cell of a 2-dimensional uniform grid.
The position of the black bar within the blue cell indicates the point
being interpolated and its height corresponds to the interpolated value.
Yellow and green bars represent vertices and their height corresponds
to the associated data values. Illustration adapted from CMG Lee
under the CC BY-SA 4.0 license.

A data value associated with a vertex vp1,p2,...,pn ∈ V is denoted as fp1,p2,...,pn ,

hence F = {fp1,p2,...,pn | (p1, p2, ..., pn) ∈ IU}. For a spatial representation

of a grid graph with vertices parametrized as in Equation 3.2, each index pi

references a spatial dimension in n-dimensional Euclidean space.

3.2.1 Grid Cell Interpolation

When grid data (U,F ) is given, it can be thought of as a sampling of the

unknown continuous scalar field f assuming that f(vp1,p2,...,pn) = fp1,p2,...,pn .

Since numerous functions can exhibit the same values located at the grid vertices,

f is obviously not uniquely defined by grid data [153]. However, another scalar

field f̃ : D→ R, where D ⊆ D is the subset of n-dimensional Euclidean space

that is spanned by the grid, can be build based on multivariate interpolation on

the n-orthotope grid cells [92, 153]. For n = 2, two cell interpolants are shown

in Figure 4. When applied to all grid cells, data values can be queried not only

at vertex positions but for the entire continuous domain D.
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Figure 5: In (a), the same data values as in Figure 3a are given over a simplicial
grid. The grid in (b) results from subdividing all rectangular cells of
the original uniform grid in Figure 3b following a regular pattern.

Continuous Scalar Fields

A common approach to reconstruct a continuous scalar field is based on

multilinear interpolation [5, 86, 153] denoted as f̃ML. The term multilinear

refers to the product of n linear interpolations for functions of n variables.

For an n-orthotope cell, a multilinear interpolant is in general n-polynomial

for arbitrary paths through the cell. However, it is linear along edge-aligned

cross-sections. Hence, it is linear in the values to be interpolated which means

that the range of the interpolant is bounded by the data values associated with

the cell vertices. A multilinear interpolant for n = 2 is called bilinear (see

Figure 4a) and for n = 3 trilinear [152].

Another possibility is to subdivide the grid cells into n-simplices [34, 92] for

which an interpolant that is linear over the entire cell exists [152]. A certain class

of subdivisions, known as the Coxeter-Freudenthal-Kuhn triangulations [28, 42,

78], can be applied implicitly when the original uniform grid or more specifically

the vertices of each n-orthotope are processed following a regular pattern [11,

97]. A simplicial grid resulting from one particular triangulation is shown in

Figure 5b.

Reconstructions that make use of linear interpolation on simplicial grids are

continuous and piecewise linear scalar fields denoted as f̃PL. Note, that in

general the topology of f̃ML is different from f̃PL [108, 158]. This is due to
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the subdivision of n-orthotopes into n-simplices being ambiguous [158]. For

n = 2, simply flipping all diagonal edges in Figure 5b would result in a different

simplicial grid. Any subdivision implies a new vertex connectivity which in turn

causes some vertices of the original n-orthotope to be separated and grouped

into different n-simplices. As mentioned earlier, f̃ML is in general n-polynomial

within each cell which admits the occurrence of saddle points [108]. In case a

saddle point is present, any subdivision of that cell will induce a topology that

is immanent in the resulting piecewise linear n-simplices and distinct from that

of the original n-orthotope [158]. If the topology of f̃ML should be retained,

switching to a simplicial grid is not an option [108].

Discontinuous Scalar Fields

Yet another option is to build a discontinuous scalar field from a nearest-

neighbour interpolant that is applied to each grid cell. The result is a piecewise

constant scalar field denoted as f̃NN . The nearest-neighbour interpolant assigns

the data value associated with the nearest neighbouring vertex to the points

within a grid cell. The case of n = 2 is illustrated in Figure 4b. Applied to all

n-orthotopes of the grid, the domain D can be partitioned into n-dimensional

intervals for which f̃NN is constant. Those intervals are exactly the Voronoi

regions of grid vertices within which f̃NN takes the value associated with the

corresponding vertex. A Voronoi region of a vertex is the set of all points in

D which are at least as close to the vertex as to any other points [72]. For a

uniform grid, those regions have the shape of n-orthotopes as well. While a

continuous scalar field like f̃ML can be thought of as a reconstruction of the

original but unknown continuous scalar field f , f̃NN reflects the discrete nature

of grid data on its continuous domain.

3.2.2 Digital Picture

In the last section, grid data (U,F ) was interpreted as a sampling of a continuous

scalar field f . For this purpose, the n-dimensional uniform grid U was utilized

for its geometric aspects that allowed for reconstructions f̃ by means of various

cell interpolants.
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A conceptually different approach is to interpret grid data as a digital

picture [55, 70]. On the one hand, grid data can result from an actual digitization

of an analogue signal: The domain of a continuous scalar field f is discretized by

a uniform grid and the data values associated with vertices represent function

values of f within the Voronoi regions of each vertex [55, 70, 144]. The generated

grid data is eventually stored on a digital medium with finite precision [70, 109,

119]. On the other hand, when grid data is given in digital form, it can be

interpreted as a digital picture even if it is a sampling of a continuous scalar

field f . In this case, data values in F are simply reinterpreted from function

values sampled at vertex positions to representatives of function values within

Voronoi region of vertices. In resemblance to f̃NN , a digital picture is a function

f̂ that assigns data values fp1,p2,...,pn ∈ F to the Voronoi regions of vertices

vp1,p2,...,pn ∈ V [55, 70]. However, the difference between both functions is

in their conceptual backgrounds: f̃NN is defined as the result of a nearest

neighbour interpolant applied to each grid cell indepently. It solely appears

that vertices are conceptually associated with their Voronoi regions. On the

contrary, those Voronoi regions are in fact the basic units of f̂ [55, 70, 72].

An everyday encounter of the aforementioned Voronoi regions, that most

people are well acquainted with, is when scalar data given on an equally spaced

two-dimensional uniform grid is interpreted as a digital picture and visualized

on a screen. The two-dimensional Voronoi regions are known as pixels7. In

three dimensions, the Voronoi regions are called voxels8 in analogy to pixels [41].

When grid data is interpreted as a digital picture, the grid is no longer

considered a spatial graph but a graph whose vertices represent continuous

subspaces of Rn which are the Voronoi regions of vertices vp1,p2,...,pn ∈ V [55].

For an n-dimensional uniform grid, the Voronoi regions are defined independently

of the construction of a Voronoi diagram. Instead, they are regarded as a set

of uniform n-orthotopes, henceworth referred to as spels9 [51, 144]. Spels are

space-filling elements that are centered at vertices and a generalization of pixels

7The term pixel is a portmanteau of ‘pix’ (for picture) and ‘el’ (for element) [41].
8The term voxel is a portmanteau of ‘vox’ (for volume) and ‘el’ (for element) [41].
9The term spel is a portmanteau of ‘space’ and ‘element’ [144].
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Figure 6: When the two-dimensional example of grid data is interpreted as
a digital picture, vertices represent spels which are shown by the
rectangles with black boundaries. In two dimensions, spels are
commonly known as pixels.

and voxels for arbitrary dimensions [3, 43, 51, 84, 85, 109, 122, 137, 145]. A spel

corresponding to a vertex (v1, v2, ..., vn)p1,p2,...,pn ∈ V is defined as the closed

subset Pp1,p2,...,pn [84, 137]

Pp1,p2,...,pn = {(x1, x2, ..., xn) ∈ Rn | vi −
si
2
≤ xi ≤ vi +

si
2
}

The digital counterpart of the vertex set V is the set of all spels S.

S = {Pp1,p2,...,pn | (p1, p2, ..., pn) ∈ IU} (3.3)

Naturally, the digital counterpart of the edge set E is the set W of 2-element

subsets of S.

W = {{Pp1,p2,...,pn , Pq1,q2,...,qn} |
∑n

i=1 |pi − qi| = 1}.

In summary, the digital counterpart of the n-dimensional uniform grid U =

(V,E) is an n-dimensional grid graph (S,W ). Since each spel in S is a continuous

subspace of Rn, each edge in I defines two spels to be adjacent if and only

if they have an intersection in continuous space which is (n−1)-dimensional [55].
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As stated in Section 3.1, the edge set W can alternatively be specified as an

irreflexive and symmetric adjacency relation ω which yields an orientation of

those intersections [55].

ω = {(Pp1,p2,...,pn , Pq1,q2,...,qn) |
∑n

i=1 |pi − qi| = 1}

According to Herman [52–55], the pair (S, ω) defines a digital space. The

adjacency relation ω is called proto-adjacency [55] and elements of ω are referred

to as surfels10 [51]. As stated by the same author [52, 53, 55], a digital space

is essentially a connected symmetric digraph in which a vertex is adjacent to

another vertex if and only if it is also adjacent from the other vertex [50]. Hence,

the term ‘surfel’ is simply a synonym for a directed edge. It should be noted

that the definition of a digital space is much more general than it is necessary

for the definition of digital pictures. Basically, a digital space is a pair consisting

of an arbitrary nonempty set and a symmetric adjacency relation on that set

such that it is connected. Even though a digital space was introduced with a

geometrical interpretation in mind, its graph-based definition can be regarded

independently from any such interpretation. From a mathematical point of

view (V, V × V ) would be a legitimate example of a digital space as well [55].

However, the concrete digital space (S, ω) implies a geometrical interpretation

indeed. The union of its spels defines a subset of n-dimensional Euclidean

space, denoted as D, to which a digital picture assigns values. Formally,

a digital picture is defined by the triple (S, ω, f̂), where f̂ : S → R with

f̂(Pp1,p2,...,pn) = fp1,p2,...,pn [55]. The interpretation of grid data given the

concept of a digital picture is shown exemplarily for two dimensions in Figure 6.

3.3 Image Registration

Image registration is the process of finding a spatial relation between two

images [44, 67, 94, 129]. For the course of this thesis, an image is the

interpretation of grid data (U,F ) with U = (V,E) as a digital picture (S, ω, f̂).

Conceptually, image registration can be applied to digital pictures of arbitrary

10The term surfel is a portmanteau of ‘surface’ and ‘element’ [51].
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(a) (b) (c)

Figure 7: The image in (b) is spatially aligned to the image in (a). The result
is a third image shown in (c). Images adapted from Modersitzki [94].

dimensions.

Registration is commonly used for images of a scene that come from different

perspectives. These could be different points of view and/or different sensors

with which the scene is observed [44, 94]. If the spatial relation is known, it

is possible to compare the images as if they were taken from a common point

of view. However, registration can also be applied to images of a scene from

the same perspective but at different time steps [94]. In this case, the spatial

relation gives information about how the scene changes between the time steps

at which the images are obtained [44]. Either way, the spatial relation can

be used to align one image to the other as shown in Figure 7. A prominent

application of image registration is the field of medical imaging, where it is

typically used to compare images from different devices that due to technical

reasons produce images with different modalities. At the same time, it offers

the possibility to compensate for the inevitable movements of patients when

image data is obtained in a series of scans [94, 129].

3.3.1 Directed Deformation

The registration of two images is a directed process. While one image is the

fixed image If , the other one is the moving image Im that is deformed to fit the
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(a) Fixed image If (b) Moving image Im (c) Vector field d (d) I ′m

Figure 8: Academic example of image registration in which the moving image
in (b) is deformed to fit the fixed image in (a). The vector field
in (c) constitutes a transformation that maps pixel center of the fixed
image domain to positions in the moving image domain. The resulting
deformed moving image in (d) is defined over the fixed image domain
and is expected to be spatially aligned to the original fixed image.
In this constructed example, an exact alignment is achieved. Images
adapted from Schwarz [129].

fixed image. The deformation is a mapping from the fixed image to the moving

image. It can be defined by means of a vector field d : Vf → Rn that maps spel

centers11 of the fixed image domain to positions in the moving image domain.12

The deformed moving image I ′m is then defined as I ′m(v) = Im(v + d(v)) for

all v ∈ Vf . During the registration process, the deformation is considered

a transformation T : Vf → Rn, where T (v) = v + d(v). The deformed

moving image I ′m is equivalently defined as I ′m(v) = Im(T (v)) for all v ∈ Vf .

Hence, registration is the problem of finding a transformation T such that

I ′m is optimally aligned to If . Figure 8 shows an academic example of image

registration in which the deformed moving image fits the fixed image exactly.

The direction of the deformation might be confusing since a ‘deformation of

the moving image’ is intuitively thought of as ‘moving’ spels from its coordinates

in the moving image to new coordinates in the fixed image. The problem with

this intuitive notion is that not every spel in the deformed image will be

11According to the definition of spels in Section 6, spel centers are exactly those points in
n-dimensional Euclidean space that are specified by vertices.

12From a technical point of view it should be noted that the vector field may also point to
positions outside of the domain of the moving image.
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necessarily assigned a value and some spels can be assigned several times. To

overcome this issue, the deformation is indeed defined in the opposed direction,

as stated above, from fixed to moving image. Instead of moving spels to new

coordinates, the opposed direction can be thought of as follows: For every spel

center v ∈ Vf of the fixed image, the transformation defines a position x = T (v)

in the moving image, where the intensity value ‘originates from’. Since x ∈ Rn

is a point in continuous space, the intensity value at x in the moving image is

obtained using interpolation [67, 94, 129].

3.3.2 Overview

The following section introduces the mathematical formulation of the registration

process and gives an overview of the components of which a universal registration

framework consists.

Already mentioned components are the fixed image If and the moving

image Im of which the latter is deformed by a transformation T . It should be

noted that the registration process does not result in arbitrary deformations.

This is due to the number of possible deformations being constraint since the

transformation is actually assumed to be a parametrized transformation Tµ.

The vector µ contains the parameters that are immanent in a transformation

model. For example, when the transformation is modelled as a two-dimensional

rigid transformation, µ comprises three parameter, one for the rotation angle

and two for the translations in x and y direction [66].

The quality of the alignment is defined by a distance measure D. In the

context of image registration, a distance measure is a function D(If , Im,Tµ)

that takes as inputs both images as well as the parametrized transformation

and computes a numerical value that quantifies the extent to which the fixed

image If and the deformed moving image I ′m are dissimilar. It should be noted

that a distance measure is the inverse of a similarity measure. The latter might

be a more suitable term for those concrete examples that have been proposed

originally to quantify similarity. However, every similarity measure can simply

be turned into a distance measure by multiplication with −1 [62]. A distance
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function decreases as the alignment of both images is improved, and reaches a

global minimum if I ′m is aligned to If in the best possible way [129].

In general, the problem of finding such an alignment is ill-posed. On the

one hand, small changes of the input images can lead to completely different

registration results. Furthermore, it can be shown that for simple academic

examples the solution is not unique [94]. On the other hand, not all types of

deformations allowed by a chosen transformation model are physically plausible.

Depending on the domain of application of the images to be registered, only

certain deformations are likely or desired to occur [129]. To circumvent

the problems related to ill-posedness and privilege more likely solutions, a

regularization term R is usually added to the distance measure [94]. The

regularization term is a function R(Tµ) that takes as input the parametrized

transformation and penalizes undesired deformations [38]. As a result, the

alignment is constraint such that the function

g(µ) = w0D(If , Im,Tµ) + w1R(Tµ)

reaches a minimum if the parameter vector µ defines a transformation such

that I ′m is aligned to If in the optimal way [67]. The coefficients w0 and

w1 are fixed parameters that weight the influence of distance measure and

regularization term on the constraint alignment. Commonly, the registration

problem is formalized as an optimisation problem µ̄ = argmin g(µ) in which g

is the objective function to be minimized w.r.t. the parameters in µ.

3.3.3 Components

The abovementioned components of a registration framework can be considered

the backbone of any implementation of a registration method. However, when

a concrete image registration method should be applied to given data, a lot

of choices have to be made regarding the parameters of the chosen method.

Some of them belong to the universal components presented before, others are

immanent in the concrete implementation and might control additional features

or technical details.
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For the course of this thesis, the elastix registration method [67, 130] was

used. It can be considered a sophisticated implementation that offers many

choices regarding the abovementioned components. Moreover, it provides many

options to control the registration process in terms of peformance and offers

many parameters for technical aspects. Besides its rich support of features,

elastix’ implementation progressed over a long period of time (since 2003) and

proved useful in many publications. Lastly, it is still under active development

and the latest release to date is version 5.0.1 released on October 5th 2020.

In the following, well-known examples of already mentioned components

like transformation model, similarity measure and regularizer are presented all

of which are supported by elastix. An hierarchical scheme as an additional

feature provided by elastix is presented as well. For a concrete application of a

registration framework, many more parameters need to be set. However, the

majority of them is important from a technical and performance point of view

and do not affect the overall registration result fundamentally. Some of them

can even be estimated automatically by the registration method. However,

choices regarding the following components need to be set explicitly and do

have a fundamental influence on the registration result which is why a detailed

look at the available options is presented hereinafter.

Transformation Models

A global approach is to model the deformation by means of affine transformations

such as scaling, translation, rotation and shearing [18]. Global transformation

models are parametrized only by a few variables which has the advantage of

fast computation times [139]. However, this is only advantageous if the field of

application allows for the assumption that the deformation of the entire image

can be defined globally. In many physical contexts, local deformations or local

deviations from a global deformation are explicitly desired, which cannot be

captured by such models [94, 129]. As a consequence, local transformation mod-

els are needed where deformations can manifest itself in subregions of the image,

and thus, offer even more flexibility [124, 139]. This gain of flexibility comes

at the cost of increased complexity due to significantly more parameters [67,
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(a) Fixed image (b) Moving image (c) Translation

(d) Rigid transformation (e) Affine transformation (f) B-spline transformation

Figure 9: Illustrations of the characteristics of different transformation models.
Images adapted from Klein & Staring [66].

129]. In the following, three global and one local transformation models are

presented in order of increasing flexibility. Their different characteristics are

depicted qualitatively in Figure 9.

Translation The simplest transformation model only allows an image to be

translated (see Figure 9c) defined by the translation vector t between two images,

and thus, µ = t.

Tµ(v) = v + t
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Rigid Transformation In case of a rigid transformation model the image is

treated as a rigid-body that can be translated and rotated (see Figure 9d).

Tµ(v) = R(v − c) + c+ t

The rotation is defined by the rotation matrix R as well as the center of rotation

c. The latter is either set by the user or by default is the geometric center

of the fixed image. In 2D, the paramter vector µ = (tx, ty, θz) comprises the

translation vector and the angle of rotation around the axis normal to the

image.

Affine Transformation The affine transformation model differs from the rigid

one by the matrix A having no restriction in contrast to the rotation matrix R.

Tµ(v) = A(v − c) + c+ t

As a result, the image can be translated, rotated, scaled and sheared (see

Figure 9e). The parameter vector µ contains the translation vector and the

matrix elements aij ∈ A. In 2D, this gives µ = (tx, ty, a11, a12, a21, a22).

B-Spline Transformation A well-known type of transformation describing

local deformations, also known as free-form-deformations [124, 129], is enabled

by the B-spline transformation model (see Figure 9f). In 2D, it can be stated

as follows:

Tµ(v1, v2) =
N∑
i=1

M∑
j=1

Bi,d(v1)Bj,d(v2) · ci,j (3.4)

The general idea is to deform the moving image by manipulating a regular grid

of control points cij ∈ R2 that are distributed across the fixed image at an

arbitrary resolution (see Figure 10a) [129]. The control points can be moved

and are effectively interpreted as positions in the moving image. The influence

of the displacement of each control point on the transformation of an individual

spel center (v1, v2) is modelled by means of B-spline basis functions, Bi,d and

36



Bj,d. Although the B-spline transformation is only queried for spel centers, the

right hand side of Equation 3.4 can be evaluated for all points of the continuous

domain that is spanned by a two-dimensional image. Hence, the B-spline

transformation actually describes the deformation of a continuous domain (see

Figure 10b). This continuous perspective on the transformation can also be

used to visualize the transformation by means of the deformation of orthogonal

curves that originally ran through the domain as straight lines (see Figure 10c).

In the two-dimensional case, the two (univariate) basis function, Bi,d and

Bj,d, corresponding to a control point cij , form a single bivariate B-spline basis

function [129, 143]. Each bivariate function can be thought of as a circular

region of influence centered at control point cij . Outside the circle, the function

is zero and the control point has no influence (local support) [139]. Within

the circle, the influence is defined by a polynomial function of degree d which

monotonically increases as the radius decreases. The range of the local support

is determined by the degree d of the B-spline polynomials, which is a parameter

of the transformation model. However, a choice of d = 3 can be considered a

general recommendation, since cubic B-splines offer a good compromise between

local flexibility and a reasonable computational efficiency. Additionally, cubic

B-splines provide the property of C2-smoothness for the deformation due to

the differentiability of the transformation model [66, 129]. In case of d = 3, the

transformation of each spel is determined only by a small number of surrounding

control points in its neighbourhood [139]. This neighbourhood consists of e.g.

16 control points in the 2D case [129].

Equation 3.4 can be regarded as a weighted sum of B-spline basis functions [67],

where the weighting is determined by the distance between the coordinate of

the spel in question and each control point. To account for the local support,

B-spline basis functions can be rephrased, such that an equivalent definition

of Equation 3.4 can be found that only loops over the control points in the

neighbourhood of a spel [129]. Although this enables fast computation, the

main computational complexity is determined by the resolution of the control

point grid which is reflected by the parameter vector µ that comprises the

positions of control points. Varying the spacing between control points offers a

flexible way of controlling the precision of the deformation [129].
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(a) (b) (c)

Figure 10: The B-spline transformation is determined by the displacement of
control points (red crosses). In (a), the original image with the
initial control point grid is shown. After the displacement of control
points in (b), the underlying image is transformed. In (c), curves
that originally ran through the domain as horizontal and vertical
straight lines are used to indicate the local impact of a single control
point that is displaced. Images adapted from Schwarz [129].

Distance Measure

While the transformation model defines the parameter space during the regis-

tration process, the distance measure is the characteristic part of the objective

function over the parameter space. The optimal parameter vector is a point in

the parameter space and estimates a global minimum of the objective function.13

Hence, the choice of distance measure is fundamental, since it determines which

solutions can potentially be found by the optimization. Popular choices of

distance measures to be discussed in the subsequent sections are based on image

intensities, the statistical relationship of image intensities or even more general

the amount of information shared between images. The choice of an appropriate

distance measure depends on the context of the images to be registered. However,

distance measure can be ordered according to their strictness regarding what

is considered similar. In the following, the measures are presented in order of

decreasing strictness.

13An estimate of a global minimum is most likely a point of the parameter space that is close
to a local minimum.
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Mean Squared Distance A straightforward approach relies on the assumption

that similar structures share similar intensity values in the two images to be

registered. The distance between both images is quantified based on the intensity

differences at each spel center [129]. This leads to a simple distance measure

called mean squared distance (MSD) that is well-known from many other fields

of applications under the name mean squared error.

DMSD(If , Im,Tµ) =
1

|Vf |
∑
v∈Vf

(If (v)− Im(Tµ(v)))2

Normalized Cross Correlation If the assumption that similar structures have

similar intensities is not valid, the field of statistics provides a similarity measure

that is based on the correlation between image intensities instead. The normal-

ized cross-correlation (NCC) (which is a Pearson correlation coefficient [44]) is

sensitive to a linear relationship between two random variables. The negated

NCC can be used as a distance measure

DNCC(If , Im,Tµ) = (−1) ·

∑
v∈Vf

(If (v)− If )(Im(Tµ(v))− I ′m)√ ∑
v∈Vf

(If (v)− If )2
√ ∑
v∈Vf

(Im(Tµ(v))− I ′m)2

with mean intensities If = 1
|Vf |

∑
v∈Vf

If (v) and I ′m = 1
|Vf |

∑
v∈Vf

Im(Tµ(v)).

Dividing the numerator and denominator by |Vf | unveils that the NCC is

effectively the covariance over the product of standard deviations [44].

The NCC is dimensionless and varies between −1 and +1. While a value

of +1 indicates a perfect positive linear relationship (correlation), a value of

−1 signifies a perfect negative linear relationship (anticorrelation). The closer

the coefficient is to zero, the less two random variables are correlated. In case

of NCC = 0, two random variables are totally uncorrelated with respect to a

linear relationship [35].

If two images of the same scene are obtained under different lighting conditions

such that corresponding intensities in the images are almost linearly related,

a low value of DNCC will indicate a high correlation between the intensity

distributions of both images. In contrast, if the intensities are nonlinearly
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related, the same two images may not produce a sufficiently low distance

measure [44].

Mutual Information Another example of a similarity measure that can be used

to represent a statistical relation between two images is mutual information (MI).

It was first defined by Shannon [131] as the ‘rate of transmission’ in his seminal

paper that constituted the field of information theory. Mutual information is an

entropy-based measure and quantifies the amount of information obtained from

a random variable through observing another one [94]. Multiplication with −1

results in a distance measure

DMI(If , Im,Tµ) = (−1) ·
(

H(If ) + H(Im,Tµ)−H(If , Im,Tµ)
)

where H(If ) and H(Im,Tµ) denote the entropies of the fixed image If and

the deformed moving image I ′m, and H(If , Im,Tµ) denotes their joint entropy.

The application of MI in the context of image registration was first proposed

independently by Collignon [25] and Viola [148] for medical images and has

been used since then by many authors [94]. The reason for its success is due to

MI neither relying on the values of intensity nor on a linear relationship between

their distributions [129]. Hence, MI can be used to determine the similarity

between images of different modalities [44].

While entropy refers to the average amount of information held in a random

variable, the joint entropy measures the average amount of information associ-

ated with the combination of two random variables. If two random variables are

totally unrelated, their joint entropy is equal to the sum of individual entropies.

The more similar two random variables are, the lower is their joint entropy

compared to the sum of individual entropies [48].

H(If , Im,Tµ) ≤ H(If ) + H(Im,Tµ)

In the context of images, where the random variables are image intensities,

registration can be thought of as reducing the joint entropy of the two images

about to be aligned. The addition of individual entropies H(If ) and H(Im,Tµ)
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(a) (b)

Figure 11: A similarity measure is prone to many local minima. The addition
of a regularization term as shown in (a) should eliminate small
minima that represent irrelevant solutions and at the same time
promote those solutions that are more likely to occur. In (b), a local
deformation results in a fold, which is considered implausible in many
physical contexts. By means of e.g. a bending energy regularizer,
deformation like the one that is depicted should be prohibited.
Image in (a) adapted from: https://www.inference.vc/notes-on-
imaml-meta-learning-without-differentiating-through. Im-
age in (b) reproduced from Ozeré [104].

is necessary to compensate for the dependence of the joint entropy H(If , Im,Tµ)

on the alignment which is known to be an important limitation [48]. Mutual

information can qualitatively be thought of as a measure of how much informa-

tion is shared between two images. The lower the value of DMI is, the better is

the alignment of two images with respect to their shared information.

Regularization Term

As mentioned before, finding the best alignment between two images by means

of a distance measure alone is an ill-posed problem. An objective function that

is solely defined by a distance measure is characterized by many local minima

since the input data can be expected to be noisy in general. The regularization

term penalizes certain properties of the transformation and since it only depends

on the transformation, it is generally considered to exhibit less local minima

compared to the similarity measure. On the one hand, the regularization term
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is added to the similarity measure in order to ‘smooth away’ a number of small

local minima, which is illustrated in Figure 11a, and to pick out solution that

are more likely. On the other hand, regularization can be considered another

possibility to inject domain knowledge into the registration process [94]. This

applies particularly to the B-spline transformation model which allows for local

deformations that may exhibit sharp deviations such as strong compression

with a nearby high expansion [38, 117]. Despite the local deformation being

generally favoured in many applications, the aforenamed extreme manifestations

as shown in Figure 11b are disregarded since they are considered physically

implausible in most of the cases [94, 129].

A commonly used regularizer that penalizes the aforenamed sharp deviations

of local deformations is known as the bending energy regularizer [117]. In 2D, it

can be stated as

S(Tµ) =
1

N ·M

N ·M∑
i

2∑
j=1

(∂2Tj
∂x21

(c̃i)
)2

+ 2
( ∂2Tj
∂x1∂x2

(c̃i)
)2

+
(∂2Tj
∂x22

(c̃i)
)2

where N and M are number of control points along each dimension and c̃i

denotes the displacement of a control point in relation to its original position [66].

Optimization Strategy

The optimal parameter vector µ̄ = argmin g(µ) is usually estimated by means

of an iterative optimization strategy. In every iteration k, the current parameter

vector µk is updated by taking a step in the search direction dk where ak ∈ R is

a real-valued scalar that determines the step size along the search direction [67,

94].

µk+1 = µk − akdk, k = 0, 1, 2, ...

A wide range of optimization methods can be formulated in this way, each

having different definitions of ak and dk [67]. In principle, any minimization

technique can be used for the computation of the optimal parameter vector µ̄.

However, Newton-type methods based on second order derivatives are not stable

for real-life applications. This is due to the derivatives of images that need to be
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approximated from the discrete data. Since image data is typically corrupted

by noise, the estimation of derivates is a delicate matter [94]. Therefore, a

common choice for the search direction dk is the derivative of the objective

function ∂g
∂µ evaluated at the current position µk. In this case, the iterative

optimization strategy is equivalent to a gradient descent method. To enable a

reasonable computation time, experimental results indicate that a stochastic

gradient descent method is a good choice for many applications. It reduces

the computation time of the derivatives of the objective function g by using

only a subset of spels. For the stochastic method to converge, new samples

must be selected randomly in each iteration [67, 68]. Despite ensuring that

the optimization converges, many additional paramters needs to be set for an

iterative strategy. In the case of a (stochastic) gradient descent optimization,

solutions exists to estimate the accompanying parameters automatically [65,

113].

Hierarchical Scheme

In order to be able to capture structures at different scales in the images to be

registered and at the same time to improve the convergence of the optimization,

two hierarchical strategies are supported by elastix. What is common to both

strategies is the approach to iterate the full registration process at different

resolution levels. A hierarchical scheme starts the registration at the coarsest

resolution level and progresses to higher levels until the finest resolution is

reached. After each iteration, the registration results are propagated to the

next level and used as initial conditions. This scheme ensures that structures

at larger scales can be recovered early at a coarse resolution and details at

smaller scales are accounted for at increasingly finer resolutions [94, 129]. A

hierarchical scheme as mentioned above can be used to consider the data of

both time steps at different resolutions and/or consider different degrees of

freedom of the transformation models [67].

Data resolution Different resolutions of the data result from smoothing with

or without downsampling. A series of images with increasing amount of
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smoothing is called a scale space. If the images are not only smoothed, but

also downsampled, the data is not only less complex, but the amount of data is

actually reduced, which is known as a Gaussian pyramid.

Transformation resolution Another possibility is to consider different degrees

of freedom within the transformation model. For the B-spline transformation,

this means to start the registration with a coarse control point grid, only

capable of modelling deformations between large-scale structures. In subsequent

resolutions, the B-spline grid is gradually refined, thereby introducing the

capability to match smaller structures.

3.4 Level Sets & Regions

As mentioned in the beginning of the last section, the fundamental assumption

of grid data is that it is a discrete representation of an unknown continuous

scalar field f : D → R. A direct approach to defining regions of such a

function is by means of level sets. Given a value h ∈ R, the level set of

f is the set Lh = {x | f(x) = h} also denoted as f−1(h). A level set

separates its complement D \Lh into two open subsets, the strict sublevel set

L −
h = {x | f(x) < c} and the strict superlevel set L +

h = {x | f(x) > c}.
A connected component of some set L is a maximally connected subset of

L, i.e. a connected subset of L that is not contained in any other connected

subset of L [153]. Connected components of Lh are referred to as contours [20,

108, 153]. In this thesis, connected components of L −
h and L +

h are called strict

sub-components and strict super-components, respectively.

For now, contours are assumed to be regular, i.e. they do not contain critial

points [153].14 Then, each contour λ is an (n − 1)-manifold that divides its

complement D \ λ into two connected components [153] such that every path

from a point in the one component to a point in the other component must pass

through λ [20]. It should be noted that contours may be cut at the boundary

of D , and therefore, a contour can be an (n− 1)-manifold with boundary [24].

14Critical points are introduced in Section 3.5.
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Moreover, each contour defines the boundary between a strict sub-component

and a strict super-component.

When it comes to the actual definition of regions, the closure of strict

sub-components and strict super-components is usually considered, which is

expressed by omitting the term ‘strict’. Technically, sub-components and

super-components are connected components of the sublevel set L −
h ∪Lh =

{x | f(x) ≤ h} and the superlevel set L +
h ∪ Lh = {x | f(x) ≥ h}. It is a

common approach to define regions either as sub- or as super-components.

However, the original scalar field f is unknown and only represented in

discretized form as grid data. In analogy to the two interpretations of grid data,

there are two approaches how to derive level sets from the discrete representation.

On the one hand, when grid data is assumed as a sampling of f , level sets can

be approximated by a set of (n − 1)-dimensional simplices embedded in the

continuous domain that is spanned by the grid [153]. On the other hand, when

interpreted as a digital picture (S, ω, f̂), digital level sets are defined by subsets

of ω [55].

3.4.1 Approximations of Level Sets

A well-known algorithm that approximates level sets [11, 86, 153] given a three-

dimensional uniform grid is Marching Cubes [87]. Although the algorithm

operates on the uniform grid alone and does not depend on a reconstructed

scalar field, it shows resemblance to the multilinear interpolant. This is due to

computing intersection points on grid edges where a linear interpolant takes on

the isovalue h. For each cell of the grid, the intersection points on its edges

are connected to form one or more triangles. The key aspect of Marching

Cubes – more precisely, after it was revised by Montani et al. [96] and Zhou et

al. [157] – is that the possible combinations of a cell’s edge intersections can be

reduced to a finite number of configurations that determine the generation of

triangles within the cell. Triangles that share an edge are stitched together and

eventually build piecewise linear 2-manifolds that are commonly referred to as

isosurfaces.
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For two-dimensional uniform grids, a similar algorithm is known as Marching

Squares. It proceeds just as its three-dimensional equivalent but has less

and simpler configurations for the generation of line segments within each cell.

In two dimensions, this results in piecewise linear 1-manifolds referred to as

isolines. The geometry of both, isolines and isosurfaces are determined by a

finite number of piecewise linear elements. Since it is impossible to interpolate

linearly within the original cells of a uniform grid, isocurves and isosurfaces are

approximations of a level set f̃−1(h) of any continuous scalar field f̃ .

Both Marching Squares and Marching Cubes make use of a precomputed

lookup table, that stores different configurations of how dummy intersection

points on edges of a generic cell can be triangulated. For each actual grid

cell, actual edge intersections are computed by means of linear interpolation

and subsequently triangulated according to the lookup table. Bhaniramka

et al. [9, 10] proposed an algorithmic approach to the generation of lookup

tables for n-orthotopes that specify the generation of (n− 1)-simplices. Their

work generalizes the hand-made lookup tables of Marching Squares and

Marching Cubes which can be reproduced by their algorithm for n = 2

respectively n = 3. Later, Wenger [153] extended the algorithm to n-polytopes.

The final set of (n− 1)-simplices represents the approximated level set whose

connected components are piecewise linear (n− 1)-manifolds called isocontours.

Topological Correctness of Approximations

Despite isocontours being piecewise linear manifolds, they are not necessarily

topologically correct with regard to a specific interpolant. As mentioned earlier,

the choice of cell interpolant determines the scalar field f̃ that is reconstructed

on the basis of the given grid. An approximated level set Lh is topologically

correct if its topology coincides exactly with the topology of the level set

f̃−1(c) [23], or more formally, if it is homeomorphic to f̃−1(c) [30, 153].

Topological correctness for isocurves in 2D, regarding the bilinear interpolant,

can be achieved easily by incorporating an Asymptotic Decider that was

originally proposed by Nielson & Hamann [102] in 3D as an extension of the

original Marching Cubes algorithm [153]. In 3D, due to more complex
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triangulations within a cell, it took 26 years after the initial publication of

Marching Cubes [87] to achieve topological correctness with regard to the

trilinear interpolant. Key publications of this progress are the Asymptotic

Decider algorithm [102], the Marching Cubes 3315 algorithm [23] and at

long last the work of Custiodio et al. [30], who revised Marching Cubes 33

to be finally topologically correct.16

3.4.2 Digital Topology and Geometry

As mentioned in the last subsection, Marching Cubes and its variants process

the grid on the basis of linear interpolation along grid edges. The results are

piecewise linear (n− 1)-manifolds composed of (n− 1)-simplices whose union

defines a subset of the continuous domain that is spanned by the grid.

When grid data is interpreted as a digital picture (S, ω, f̂), the domain of f̂

is not a continuous subspace of Rn, but a discrete set of spels S each of which is

associated with its own continuous subspace of Rn (see Figure 12a) [55]. To be

able to relate topological concepts of Euclidean space to the domain of a digital

picture, the set of spels S is considered with respect to the proto-adjacency ω.

As stated in Section 6, the pair (S, ω) defines a digital space which is essentially

a connected digraph. Therefore, digital versions of continuous concepts like

connectedness, connected components and level sets make use of graph-theoretic

concepts. The definition of topological concepts for digital pictures falls within

a scope called digital topology and geometry [55, 70, 84] and this section presents

a graph-based approach17 towards it [74, 84]. Prominent contributions were

made by Rosenfeld et al. [70, 72, 73, 98, 120, 121, 123]. However, their work

only considers the cases when n = 2 and n = 3, but Herman [55] generalized

the basic ideas to arbitrary dimensions. Moreover, he proposed an edge-based

definition of boundaries in digital pictures that serves as a basis for the thesis

at hand.

15The name Marching Cubes 33 refers to the extended number of 33 different configurations
for the generation of triangles, instead of 15 as with Marching Cubes.

16A related work was published earlier by Weber et al. [151].
17Other approaches towards digital topology and geometry such as the work of Khalimsky [63,

64], Kovalesvsky [76] and Kong [71] involve the definition of topologies based on cell
complexes [1, 69] and are called axiomatic or topological approaches [74, 84].
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Spel Adjacencies and Connectedness

For a graph-based approach towards digital topology and geometry as proposed

by Herman [55], a notion of connectedness in a digital space is necessary in the

first place. Based on the proto-adjacency ω, spel adjacencies can be defined.

An irreflexive and symmetric adjacency relation ρ on S such that ρ ⊇ ω (ρ

contains ω) is called a spel adjacency. Trivially, ω itself can be regarded as a

spel adjacency, which considers two spels to be adjacent if their intersection in

D is (n− 1)-dimensional [55].

ω = {(Pp1,p2,...,pn , Pq1,q2,...,qn) |
∑n

i=1 |pi − qi| = 1} (3.5)

For n = 2, ω-adjacency is the well-known 4-adjacency [118], where two pixels

are adjacent if they share an edge. The equivalence for n = 3 is the classical

6-adjacency [120], where two voxels are adjacent if they share a face. Another

spel adjacency α can be defined that considers two spels to be adjacent, if their

intersection in D is at least 0-dimensional, i.e. if they at least share a point.

α = {(Pp1,p2,...,pn , Pq1,q2,...,qn) | |pi − qi| ≤ 1}. (3.6)

For n = 2, α-adjacency is the well known 8-adjacency [118] and for n = 3 it is

the classic 26-adjacency [120].

Let ρ be a spel adjacency on S and let K ⊆ S be a subset of S. If (u,v) ∈ ρ,

u is said to be ρ-adjacent to v and v is said to be ρ-adjacent from u. A

sequence 〈v(0), ...,v(n)〉 of elements of K such that v(i) is ρ-adjacent to v(i−1),

for 1 ≤ i ≤ n, is called a ρ-path in K. In such a case, v(0) and v(n) are said to be

ρ-connected in K. Evidently, ρ-connectedness is symmetric, because the reversal

of a ρ-path from u to v is a ρ-path from v to u. It is also transitive, because

if there are paths from u to v and from v to w, a ρ-path from u to w can be

obtained by concatenating the two individual ρ-paths. A vertex is also said to

be trivially connected to itself by a path of length zero. Hence, ρ-connectedness

in K is an equivalence relation18 defined as the reflexive, transitive closure of ρ

applied to the subset K. A subset of K is ρ-connected in K if and only if every

18An equivalence relation is a binary relation that is reflexive, symmetric and transitive.
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pair of vertices is ρ-connected in K. Maximally ρ-connected subsets of K define

(connected) components of K with respect to ρ. K is said to be ρ-connected, if

it is composed of only one component [55, 70].

Digital Level Sets

Due to the discrete nature of a digital space, the concept of level sets does not

translate directly to digital pictures: A set of spels that separates the rest of a

digital space does not exist in general for every possible level. However, given a

threshold at level h, S can always be partitioned into two ‘clopen’ subsets19, the

strict lower level set SLh = {Pp1,p2,...,pn | f̂(Pp1,p2,...,pn) < h} and the upper level

set Uh = {Pp1,p2,...,pn | f̂(Pp1,p2,...,pn) ≥ h}. Alternatively, S can be partitioned

into the lower level set Lh = {Pp1,p2,...,pn | f̂(Pp1,p2,...,pn) ≤ h} and the strict

upper level set SUh = {Pp1,p2,...,pn | f̂(Pp1,p2,...,pn) > h} [57, 95]. Connected

components of SLh and Lh are called (strict) lower-components and connected

components of SUh and LU are referred to as (strict) upper-components.

For the purpose of defining digital level sets and contours, the partition

of S into the sets SLh and Uh is henceforth assumed. Intuitively, a binary

picture can be employed to represents a partition into two disjoint-sets. To be

precise, a level h gives rise to a thresholded picture, which is a binary picture

(S, ω, f̂h) [55].

f̂h(Pp1,p2,...,pn) =

0, if Pp1,p2,...,pn ∈ SLh
1, if Pp1,p2,...,pn ∈ Uh

(3.7)

An example of thresholding a digital picture as defined in Equation 3.7 is

illustrated in Figure 12a and 12b.

In contrast to a spel-based definition, a digital level set can be defined by a set

of surfels (Pp1,p2,...,pn , Pq1,q2,...,qn) ∈ ω such that Pp1,p2,...,pn ∈ Uh and Pq1,q2,...,qn ∈
SLh. Transferred to the continuous domain D that is spanned by a digital

picture, a digital level corresponds to a set of (n− 1)-dimensional intersections

19The term clopen is a portmanteau of ‘closed’ and ‘open’ and a subset that is both open and
closed. In a digital space, which is a discrete topological space, every subset is clopen.
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Figure 12: In (a), the digital picture of Figure 6 is shown without the original
grid. Thresholding at level h = 19 results in the binary picture in (b).
The bold line segments in (c) indicate the corresponding digital level
set.

of spels as exemplarily illustrated in Figure 12c. The aforementioned condition

ensures the orientation of those intersections to be consistent.20

When it comes to the identification of individual digital contours, the concept

of connected components of a digital level set does once again not translate

directly. A digital level set is formally a set of directed edges for which there

is no straightforward notion of connectivity. However, the digital counterpart

of contours can be defined subsequently to the identification of strict lower-

components and upper-components. In the context of binary pictures, Rosenfeld

& Pfaltz [123] as well as Duda et al. [36] postulate the necessity of considering

different adjacency relations for connected components of 0s and 1s. More

specifically, this requires α-adjacency to be taken into account for strict lower-

components and ω-adjacency for upper-components or vice versa [55]. It

should be noted that each of the two options induces a different composition of

components which is illustrated for the recurring two-dimensional example in

Figure 13. Given a level h, SLih denotes the ith (strict) lower-component such

that SLih is α-connected (ω-connected) and U j
h denotes the jth upper-component

such that U j
h is ω-connected (α-connected). A digital contour is a digital

boundary between a strict lower-component SLjh and an upper-component U j
h

defined by all surfels (Pp1,p2,...,pn , Pq1,q2,...,qn) ∈ ω such that Pp1,p2,...,pn ∈ U
j
h

and Pq1,q2,...,qn ∈ SLih [55, 93]. The digital concept of a boundary is defined

20The ‘inverted’ condition, that Pp1,p2,...,pn ∈ SLh and Pq1,q2,...,qn ∈ Uh leads to a consistent
orientation as well.
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(a) Digital level set (h = 19)
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Figure 13: Different compositions of components induced by considering α-
adjacency for strict lower-components and ω-adjacency for upper-
components in (b) or vice versa in (c). The colouring of spels
indicates different components whereas the colouring of bold line
segments gives information on the concomitant digital contours. In
two dimensions, α- and ω-adjacency are commonly referred to as 8-
and 4-adjacency.

thoroughly by Herman [55]. Essentially, the combination of α- and ω-adjacencies

is called a Jordan pair of spel adjacencies that defines properties of digital

boundaries that resemble properties of boundaries in a continuous setting.

Transferred toD, a digital contour corresponds to an oriented (n−1)-dimensional

surface between a strict lower-component and an upper-component. Since either

strict lower- or upper-components are α-connected, digital contours may touch

themselves. Hence, they are not generally (n− 1)-manifolds in contrast to the

output of Marching Cubes and its variants. The number of digital contours

a digital level set is composed of depends on the level h as well as the spel

adjacencies considered for strict lower- and upper-components.

Digital Regions Similiar to the definition of continuous regions as the closure

of strict sub- or super-components, digital regions are commonly defined either

as lower-components or as upper-components. However, for continuous regions,

approximated level sets define the extent of sub- and super-components, while

in a digital picture, a level set solely defines the lower level set or the upper level

set. The actual digital regions are determined by the choice of spel adjacencies

with respect to which lower- and upper-components are defined. For the sake of

simplicity, α-connected lower-components and ω-connected upper-components
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Figure 14: The schematic of a terrain (top) is shown with cross-sections of
constant height. The topography of the terrain is visualized by means
of contour lines in a topographic map (bottom). Image reproduced
from: https://www.greenbelly.co/pages/contour-lines.

are assumed for the rest of this thesis. Data structures that are able to capture

the topological relations among lower- and upper-components, respectively, of

all possible levels will be presented in the next section.

3.5 Contour Tree

A familiar two-dimensional application of level sets can be found in topographic

maps where several height levels visualize the topography of the corresponding

terrain (see Figure 14). A single level set can be conceived of as a cross-section

of the topographic surface at constant height. In cartography, connected

components of a level set are called contour lines. The evolution of contour

lines can be thought of intuitively by means of a variation of the height level:
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sweep of the cross-section from high to low height levels, which is illustrated in

Figure 15a and 15b: While the height level is varied, contour lines appear at

peaks, disappear at pits and may join and/or split in between at passes. At

these points, topological changes of level sets occur that allow for a compact

description of the topography of the terrain. In fact, computer cartography is

the discipline in which algorithms for the computation of contour trees were

developed for the first time. The following section outlines the history of these

developments by means of key publications and thereby introduces the contour

tree as a graph, as shown in Figure 15c, that represents the evolution of contours.

Historic Overview

Originally, the contour tree was considered to be a graph whose nodes represent

the contours of a finite set of height levels and whose arcs represent the adjacency

relations among them.21 The earliest publication is the work of Boyell &

Ruston [15], who refer to the contour tree as an enclosure tree22, followed by

the publications of Morse [99], who uses the term contour map graph. Contours

are computed independently from discrete elevation data in a preprocessing

step [133] which is why the height levels have not been chosen necessarily with a

full topological analysis of level sets in mind. Kweon & Kanade [79] propose to

compute contours from discrete elevation data defined by a constant increment

between height levels. The resulting contour tree is called topographic change

tree and is used to extract topographic features of the terrain. Still, relying on

a finite set of height levels does not guarantee that all topological changes of

level sets are captured.

21The entities of the contour tree are referred to as nodes and arcs to not confuse them with
the graph-based definition of the grid, where the corresponding entities are referred to
as vertices and edges. Furthermore, it is assumed that each node of the contour tree is
associated with the parameter value h ∈ R of the corresponding level set f−1(h) to be able
to refer back to the level of the contour.

22The notion of enclosure relations assume that contours are nested inside each other. This
poses additional constraints on contours. In particular, the nesting property requires
all contours to be closed manifolds such that the ‘inside’ and ‘outside’ of a contour is
well-defined [20]. In other words, contours would not be allowed to be cut at the boundary
of the domain. Since contours are explicitly allowed to be manifolds with boundary as
stated in Section 3.4, the notion of adjacency relations among contours is favoured in this
thesis.
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Mark [89] presents a new concept of the contour tree, called the surface tree,

that utilizes the surface network by Pfaltz [111] to yield all height levels of

a smooth23 2-dimensional scalar field at which level sets undergo topological

changes. This gain of topological information is due to the surface network

whose definition is based on the identification of critical points [89]. At critical

points, the gradient of a function vanishes. According to Morse theory, critical

points24 of smooth scalar fields are the points where the topology of level sets

changes [91].25 The function values associated with critical points are called

critical values [24, 108]. Under the assumption that a critical value is swept

across from a higher to a lower level, critical points can be characterized as

follows [20, 24, 107]:

• At a maximum, a contour appears.

• At a minimum, a contour disappears.

• At a saddle, two (or more) contours join and/or a contour splits into two

(or more) contours.

Takahashi et al. [140] relate the new approach to the contour tree to the more

general concept of the Reeb graph [114]. The Reeb graph is a tool in Morse

theory that reflects the evolution of contours of smooth scalar fields on arbitrary

manifolds [20]. When the domain of such a function is simply connected, the

Reeb graph is a tree [20, 140]. A formal definition of the contour tree by

means of Morse Theory that generalizes the ideas of Mark [89] for arbitrary

dimensions is presented by Carr et al. [22] based on equivalence classes of

contours. In essence, nodes of the contour tree represent critical points of a

function f : D → R and arcs represent f -monotone paths of points in D such

that contours passing through these points do not contain any critical point [20].

23For the course of this thesis, a function is considered smooth if it is at least twice differentiable.
24Morse theory requires that the critical points are isolated, i.e. that they occur at distinct

points and values [20].
25Morse theory not only approaches topological changes of level sets but also of individual

contours (changes of topological genus) based on a superset of critical points called Morse
critical points [20, 107].
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(a) Set of contour lines lifted to 3D (b) Set of contour lines

(c) Contour Tree (d) Critical contour lines

Figure 15: In (a) and (b), the evolution of contour lines is illustrated while the
level is varied. The contour lines in (a) are lifted to 3D to support
the idea of cross-sections of a topographic surface. The critical points
are also shown such that contours degenerated to or passing through
critical points can be identified easily as nodes in the contour tree
shown in (c). These critical contours are shown separately in (d).
Images adapted from Wenger [153].

Intuitive Perspective

For the course of this thesis, a more intuitive perspective on the ‘new’ approach

to the contour tree is presented that builds on the original conception where

nodes represent contours and arcs represent the adjacency relations among

them. Although not limited to two dimensions, this perspective can initially

be thought of as the limit of the contour tree of Kweon & Kanade [79] as the

increment between levels approaches zero. The result is a graph whose nodes

represent the contours of all levels including those that are function values of
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critical points. More specifically, critial points are represented in the tree by

nodes whose corresponding contours contain the critial points. These nodes can

be identified based on their number of incident arcs. Taking up the intuitive

description of a sweep from high to low levels, the arcs between nodes are

assumed to be directed from nodes corresponding to contours of higher levels

to those of lower levels. Subsequently, nodes can be grouped according to their

in-degree din and out-degree dout. The in-degree of a node is the number of

incoming arcs. The out-degree of a node is the number of outgoing arcs.

• Nodes with din + dout = 1 correspond to contours that are degenerated to

local maxima or local minima. While din = 0 indicates the appearance

of a contour at a maximum, dout = 0 indicates the disappearance of a

contour at a minimum.

• Nodes with din > 1 or dout > 1 correspond to contours that pass through

saddles. While din > 1 indicates the join of din contours, dout > 1 indicates

the split into dout contours. It should be noted that splitting and joining

is not necessarily mutually exclusive, such that contours can join and at

the same time split into contours at a saddle.

• Nodes with din = dout = 1 correspond to contours that evolve without

being involved in any of the aforenamed topological changes of level sets.

As already mentioned in Section 3.4, a contour that does not contain a

critical point is called a regular contour and divides its complement into

two connected components [153]. In contrast, the complement of contours

degenerated to extrema or passing through saddles exhibit either one or more

than two connected components. Therefore, they are referred to as critical

contours [153] (see Figure 15d). Analogously, nodes that fall in the first two

categories are called critical and those of the third category are called regular [20].

The parameter values associated with critical nodes are the levels at which

topological changes of level sets occur. If all regular nodes are removed from the
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tree by a series of homeomorphic contractions26, the reduced tree is equivalent

to the contour tree defined by Carr et al. [21] by means of Morse theory [89].

A visualization of the contour tree as in Figure 15c is usually a planar straight-

line graph27 such that the vertical positions of nodes reflect the associated levels.

If the tree is then cut horizontally, the intersections correspond to the contours

that belong to a particular level, which is illustrated for two exemplary cuts in

Figure 16a and 16b.

3.5.1 Join and Split Trees

As stated in Section 3.4, the definition of regions is inherently related to

contours as contours are connected components of the level set Lh and regions

are connected components of either the sublevel set L −
h ∪Lh or the superlevel

set L +
h ∪Lh. However, while the level is varied, topological changes of the

sublevel set and the superlevel set occur each at different subsets of critical

points [20, 24]. More intuitively, given a level set Lh, the number of sub- and

super-components is generally not equal to the number of contours. Imagine

two horizontal cuts through the contour tree as indicated by the two dashed

lines in Figure 16a. At the magenta level, there are two intersections with

the tree corresponding to the two magenta contours highlighted in Figure 16b.

As shown in Figure 16c, there are in fact two super-components but only one

sub-component. The opposite situation occurs at the purple level. Again, there

are two intersections with the tree corresponding to the two purple contours

highlighted in Figure 16b. However, there is only one super-component albeit

there are two sub-components as shown in Figure 16d.

When the focus is not on contours but on regions, a representation similar

to the contour tree but for the evolution of sub- and super-components would

be handy. Fortunately, the necessary information is contained within the

26When removing a regular node, the connectivity of the tree is preserved by contracting the
two incident arcs into a single one. A homeomorphic contraction can be regarded as a
reduction to distinguish it from the simple removal of a vertex [22].

27A planar straight-line graph is an embedding of a planar graph in the plane such that its
edges are straight line segments [112].
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(a) (b)

(c) (d)

Figure 16: In (a), two horizontal cuts through the contour tree are indicated
by the two dashed lines in magenta and purple. The corresponding
contours are highlighted in (b). The coloured regions in (c) and (d)
are the super-components of the magenta and violet level respectively,
whereas the strict sub-components are shown in grey in both cases.
Images adapted from Wenger [153].

contour tree and can be extracted easily. In essence, the contour tree can be

decomposed into a join and a split tree. Conversely, the join and split trees

can be merged to reconstruct the contour tree. In case of the join tree, the

splitting of contours is disregarded. Symmetrically, the joining of contours is

disregarded in the split tree. In Figure 17, the contour tree is shown with its

corresponding join and split trees. The different subsets of topological changes

captured by both trees actually represent the evolution of super-components

and sub-components. In particular, the join tree represents the appearances

and joinings of super-components and the split tree represents the splittings and
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(a) Contour tree (b) Join tree (c) Split tree

Figure 17: The contour tree in (a) can be decomposed into a join tree in (b) and
a split tree in (c). The grey nodes are not part of the respective trees
since they do not represent topological changes that are captured
each. Still, they are included to indicate which topological changes
are disregarded compared to those contained in the contour tree.

disappearances of sub-components while sweeping from high to low levels [20,

24, 153]. The root node takes a separate role, since it does not necessarily

correspond to a topological change at an extremum. Instead, it generally marks

the level for which a single sub- or super-component covers the entire domain

under consideration. It should be noted that in contrast to the contour tree,

the join and split tree actually represent a nesting relations among sub- and

super-components respectively.

3.5.2 Contour Tree for Discrete Data

The intuitive perspective of the contour tree in Section 3.5 has the advantage

that it is very close to actual algorithms that compute the contour tree from

discrete scalar data. It is assumed that such discrete data is given in the form

of grid data (see Section 3.2), allowing for reconstructions of continuous scalar

fields or its interpretation as a digital picture. In both cases, algorithms rely

on an ordered processing of vertices according to their associated data values.

However, since the data values are not guaranteed to be unique, the order of

vertices is ambiguous. A solution to this problem is to simulate unique data

values by means of perturbation [37]. For the course of this thesis, a simple
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symbolic perturbation is employed that defines a lexicographic order [20, 24,

108, 153]: If two vertices vp1,p2,...,pn ,vq1,q2,...,qn ∈ V have equal scalar values

fp1,p2,...,pn = fq1,q2,...,qn , the indexation of both vertices breaks the tie. Therefore

each index tuple (p1, p2, ..., pn) is converted into a linear index

plinear(p1, p2, ..., pn) = p1 + k1 · (p2 + k2 · (...+ nn−1 · pn)...)

which is guaranteed to be unique among all vertices. Hence, vp1,p2,...,pn <

vq1,q2,...,qn if plinear(p1, p2, ..., pn) < plinear(q1, q2, ..., qn). A processing of vertices

according to their lexicographic order is equivalent to an actual slight variation

of all data values which otherwise would have been necessary as a preprocessing

step.

Contour Tree for Piecewise Linear Scalar Fields

Under the assumption of a simplicial grid (see Figure 5), the critical points of a

reconstructed piecewise linear scalar field f̃PL are located at the vertices of the

grid. This is due to the cell interpolant being linear across each grid cell which

excludes the occurence of critical points in its interior [108, 153].28 Consequently,

levels at which the topology of level sets changes are among the data values

associated with the vertices of the grid. In the intervals between those values,

all contours are guaranteed to evolve linearly. Hence, a processing of vertices is

sufficient, since all topological changes are guaranteed to be captured [20, 108].

Moreover, a processing of vertices in descending lexicographic order reflects the

aforementioned sweep from high to low levels in a discrete sense.

Algorithm by Carr et al. In fact, the algorithm presented by Carr et al. [21]

computes the contour tree by means of two sweeps through the vertex set. One

sweep processes the vertices in descending lexicographic order and constructs

a preliminary join tree (see Figure 18a) which is described by Algorithm 1.

Another sweep processes the vertices in ascending lexicographic order and

28Morse theory requires all critical points to be isolated regarding their position as well as
their values. When a piecewise linear scalar field is reconstructed from a simplicial grid,
an isolation regarding the position is implicitly given. Due to the simulation of unique
data values, critical points are virtually isolated regarding their values as well.
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(a) Join Tree
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(b) Split Tree
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(c) Contour Tree

Figure 18: The (augmented) join and split trees for the piecewise linear scalar
field induced by data values given over a simplicial grid as in Figure 5
are depicted in (a) and (b). Critical nodes in black are augmented
by regular nodes in grey. Merging both trees yields the (augmented)
contour tree in (c).

constructs a preliminary split tree (see Figure 18b) in a completely symmetric

procedure.29 Each preliminary tree comprises nodes for all grid vertices. In case

of the join tree, nodes that correspond to topological changes of the superlevel

set are critical ones. Symmetrically, critical nodes in the split tree correspond

to topological changes of the sublevel set. The remaining nodes in each tree

are regular ones. The preliminary trees are called the augmented join and split

tree since critical nodes are augmented by regular nodes. Eventually, both trees

are merged to form the augmented contour tree as depicted in Figure 18c. Its

nodes represent all contours that pass through the vertices of the grid which

includes critical as well as regular contours. The final (unaugmented) contour

29It should be noted that the name split tree is tied to the idea of sweeping from high to low
levels while capturing splittings and disappearances of sub-components. When constructed
algorithmically by processing the vertices in ascending lexicographic order, sub-components
actually appear and join instead. In fact, from an algorithmic point of view, join and
split trees both capture appearances and joinings of connected components. Due to the
opposite directions in which the vertices are processed, connected components correspond
to sub-components in the split tree and to super-components in the join tree.
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Algorithm 1 Construction of the Join Tree

Input: Grid data with vertices sorted in lexicographic order v0,v1, ...,vk−1
Output: Join tree

1: initialize disjoint-set structure SC // keeps track of super-components
2: initialize array LowestNodeOfComp of length n
3: initialize graph JoinTree with nodes w0, w1, ..., wk−1
4: for i← k − 1 to 0 do
5: SC.createSet(i)
6: LowestNodeOfComp[i] ← wi

7: for each vertex vj adjacent to vi in any order do
8: if j < i or SC.find(j) = SC.find(i) then
9: skip iteration

10: else
11: SC.merge(i, j)
12: add edge between LowestNodeOfComp[j] and wi to JoinTree
13: LowestNodeOfComp[j] ← wi

14: end if
15: end for
16: end for

tree results from the removal of all regular nodes by a series of homeomorphic

contractions. The augmented join and split trees can be reduced in the same

way to yield their unaugmented versions.

The assumption of a simplicial grid manifests itself during the computation of

the join and split tree. More precisely, in line 7 of Algorithm 1, the loop iterates

over all vertices that are adjacent to the currently processed vertex. Despite

the adjacent vertices that are inherent in the uniform grid, additional vertices

are considered adjacent, which reflects the implicit Coxeter-Freudenthal-Kuhn

triangulation [28, 42, 78] (see Section 3.2.1).

While the vertices are processed, a disjoint-set data structure [142] is utilized

to keep track of connected components of vertices. Therefore, it maintains the

partition of an abstract set into disjoint subsets by means of storing different

labels for each subset. In the context at hand, the labels come from the range

of indices that determine the lexicographic order of vertices. The data structure

provides methods for creating new sets (createSet, see line 5), merging the
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sets of two elements (merge, see line 11) and finding the label of a set containing

a given element (find, see line 8). The last operation allows for an efficient

query if two elements are in the same set [26, 142]. createSet adds a new

element to the partition. More precisely, the element is placed into a new

elementary set30 and this set is added to the data structure. The label of an

elementary set is its only element. merge replaces two sets by their union. For

the sake of simplicity, the label repesenting the merged sets is assumed to be

the label of the set passed to the method as the second argument.

The relationship between the disjoint-set data structure, the connected

components of vertices as well as the evolution of super-components – which

only holds under the assumption of a simplicial grid – can be explained by how

often the else-branch is entered during the for-each loop in Algorithm 1.

• When the else-branch is not entered for any of the adjacent vertices, the

current vertex represents a maximum and a new set is created priorly

due to line 5. The corresponding node in the join tree is destined to be a

critical node, more precisely a leaf, that represents the appearance of a

new super-component.

• When the else-branch is entered only once for all adjacent vertices, this

means that an existing set is extended by one element. In this case, the

corresponding node in the join tree is a regular node.

• When the else-branch is reached for two (or more) adjacent vertices, this

means that the current vertex is the joining element between two priorly

disjoint-sets. The corresponding node is a critical node that represents

the joining of two (or more) super-components.

At the end of the outer loop, all vertices are processed and likewise merged into

one set. The join tree can be thought of as a visualization of different snapshots

of the disjoint-set data structure, and thus, represents the evolution of connected

components of vertices. The equivalence to the evolution of super-components

only holds under the assumption of a simplicial grid [20, 24, 108, 153].

30An elementary set is a set that only contains a single element.
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Figure 19: Between the two levels h = 19 in (b) and h = 18 in (c) a topological
change of the upper level set as well as the digital level set occurs.
The red and orange coloured upper components and digital contours
undergo a critical transition, i.e. a join when imagining a sweep from
high to low levels.

Prior Work Prior to the work of Carr et al. [21], de Berg & van Kreveld [7]

were the first who published a computation of the ‘new’ approach to the contour

tree based on Morse theory directly from discrete elevation data without the

interim computation of the surface network as in the work of Takahashi et

al. [140]. De Berg & van Kreveld state a runtime in 2D with O(N logN), where

N is the number of grid cells. A subsequent publication by van Kreveld et

al. [77] simplified the algorithm for 2D while keeping the overall runtime. More

importantly, they proposed an algorithm that can work with discrete data

in arbitrary dimensions which enables the contour tree to be used for many

other applications that go beyond the two-dimensional case. For arbitrary

dimensions, their algorithms performed with a runtime of O(N2). Tarasov &

Vyalyi [141] improved the runtime in 3D to O(N logN). Finally, a universal

and elegant solution to the computation of contour trees in arbitrary dimensions

was presented by Carr et al. [22] that serves as the reference for this thesis. The

authors state a runtime of O(n log n+N) in arbitrary dimensions, where n is

the number of vertices and N is the number of grid cells.

Contour Tree for Digital Pictures

When grid data is interpreted as a digital picture, no assumption regarding

interpolation has to be made. Instead, vertices are understood as spels, which

are defined in Section 6 as uniform space-filling elements centered at the vertex
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positions (see Figure 19a). Given a partition of a digital space into a strict lower

and an upper level set, a digital level set represents the oriented intersections of

spels from both sets whereas digital contours correspond to (n− 1)-dimensional

surfaces between strict lower- and upper-components. In Section 3.4.2, a binary

picture as defined in Equation 3.7 is employed for an intuitive idea of digital

level sets. All possible states of digital level sets can then be described by

a finite number of binary pictures each of which defined by a threshold that

induces a different composition of 0s and 1s.

In contrast to a continuous setting, digital contours as well as (strict) lower-

components and (strict) upper-components do not evolve continuously while

the level is varied. Instead they undergo discontinuous transitions whenever the

level sweeps across a data value that is associated with a spel. Hence, topological

changes of the respective set manifest itself in form of those transitions before

and after which its topology differs [27, 93]. For the sake of consistency, such

transitions are referred to as critical transitions whereas the others are called

regular transitions. As described in the last sections, topological changes of level

sets are intrinsically linked to topological changes of the sublevel set and/or

the superlevel set. Likewise, critical transitions of the strict lower and/or the

upper level set induce critical transitions of digital level sets. An example of

a critical transition is depicted in Figure 19b and 19c. Under the assumption

that a data value involved in a critical transition is swept across from a higher

to a lower level, critical spels in digital pictures can be characterized as follows:

• A digital maximum is a spel that constitutes the appearance of an upper-

component as well as a digital contour.

• A digital minimum is a spel that constitutes the disappearance of a

lower-component as well as a digital contour.

• A digital saddle is a spel that constitutes the join of two (or more)

upper-components and/or the split of a lower-component into two (or

more) lower-component. Likewise, two (or more) digital contours join

and/or a digital contour splits into two (or more) digital contours.
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(a) Join Tree
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(b) Split Tree
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6

(c) Contour Tree

Figure 20: In (a), (b) and (c), the ‘digital’ versions of the trees in Figure 18 are
shown. They result from the algorithm of Carr et al. [22] applied to
the digital picture shown in 19a.

Algorithm Mizuta & Matsuda [93] define the necessary digital counterparts of

those concepts in Morse theory that are necessary to apply the algorithm of Carr

et al. [21] to digital pictures.31 Besides the interpretation of vertices as spels, the

only modification of the algorithm concerns the aforementioned assumption of

α-connected lower-components and ω-connected upper-components. As stated

in Section 3.5.1, the join and split trees represent the evolution of sub- and

super-components. Transferred to digital pictures, the ‘digital’ join and split

trees represent the evolution of lower- and upper-components. Hence, the

‘digital’ version of the algorithm of Carr et al. [21] operates under the premise of

using α-adjacency during the construction of the augmented join tree (see line 7

of Algorithm 2) and ω-adjacency during the construction of the augmented split

31Prior to the work of Mizuta & Matsuda [93], Cox et al. [27] presented a similar but more
extensive approach to a digital equivalent of Morse theory under the name Digital Morse
Theory (DMT). It should be noted that from the perspective of DMT, data values are
not required to be unique. However, to keep a straightforward analogy to the continuous
setting and at the same time avoid those tedious cases that arise from the admission of
duplicates, unique data values are assumed still.
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Algorithm 2 Construction of the ‘Digital’ Join Tree

Input: Grid data with vertices sorted in lexicographic order v0,v1, ...,vk−1
Output: Digital join tree

1: initialize disjoint-set structure UC // keeps track of upper-components
2: initialize array LowestNodeOfComp of length n
3: initialize graph JoinTree with nodes w0, w1, ..., wk−1
4: for i← k − 1 to 0 do
5: UC.createSet(i)
6: LowestNodeOfComp[i] ← wi

7: for each spel Pj ω-adjacent to Pi in any order do
8: if j < i or UC.find(j) = UC.find(i) then
9: skip iteration

10: else
11: UC.merge(i, j)
12: add edge between LowestNodeOfComp[j] and wi to JoinTree
13: LowestNodeOfComp[j] ← wi

14: end if
15: end for
16: end for

tree [93]. Figure 20 depicts the (augmented) join, split and contour trees for

the exemplary digital picture shown in Figure 19a.

As stated for the algorithm by Carr et al. [21], the augmented join and

split trees each comprise nodes for all vertices. When grid data is interpreted

as a digital picture, this means that each node corresponds to a particular

spel. In case of the digital join tree, nodes that correspond to critical spels

that are involved in a critical transition of the upper level set are critical ones.

Symmetrically, critical nodes in the digital split tree correspond to critical spels

that are involved in a critical transition of the lower level set. The remaining

nodes in each digital tree are regular ones corresponding to regular transitions

of the respective set. In Figure 21, critical nodes in the respective trees and the

corresponding critical spels in the digital picture are highlighted.

In the field of digital image processing, the augmented join and split trees

are already known independently from their contribution to the contour tree

as min and max trees [127]: Although each node in a ‘digital’ augmented tree
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(c) Join tree
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(d) Split tree

Figure 21: In (a), spels corresponding to critial nodes of the join tree (excluding
the root node) are highlighted as maxima (◦) and saddles (�). In
(b), spels corresponding to critial nodes of the split tree (excluding
the root node) are highlighted as minima (◦) and saddles (�).

represents a single spel, each node can be thought of to logically represent a

lower- or upper-component. Starting from a node, the component its spel is

connected to grows out of the recursive union of spels represented by child

nodes [57].

3.6 Segmentation of Regions

For the further course of this thesis, the interpretation of grid data as a digital

picture is assumed. Hence, regions are defined by levels that either determine

the extent of lower-components or upper-components. In the context of digital

pictures, segmentation is regarded as the assignment of numerical labels to the

spels of a digital space. Under this premise, a binary picture is a simple example

of a segmentation only comprising two different labels. Usually, the assignment

of 0s and 1s is chosen such that the subset of spels labelled as 0 defines the

background while the subset labelled as 1 defines the foreground. However, in
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(e) Join tree

Figure 22: CCLs of the upper level set in (b)–(c) for three different levels. In (a),
spels are highlighted as in Figure 21a. Moreover, the colouring of the
join tree in (e) intuitively represents how labels of upper-components
evolve over CCLs for all possible level sets.

many situations, a labelling of spels that expresses more information than fore-

and background is used.

Connected Components Labelling (CCL) A more advanced segmentation,

given a threshold at some level h, results from a labelling either of lower-

components or upper-components. For this task, multiple algorithmic strategies

exist that all fall under the term connected component labelling (CCL). Figure 23

and 22 show CCLs of the upper and lower level set, each for the same three

levels. In Figure 23e and 22e, the unaugmented trees are coloured to intuitively

represent how labels of upper- and lower-components evolve.

3.6.1 Watershed Segmentation

Another option for a segmentation of a digital picture is to additionally

incorporate the concept of watersheds that will result in a finer segmentation of

regions into subregions. In the context of a watershed segmentation (WS) those
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(e) Split tree

Figure 23: CCLs of the lower level set in (b)–(c) for three different levels. In (a),
spels are highlighted as in Figure 21b. Moreover, the colouring of the
split tree in (e) intuitively represents how labels of lower-components
evolve over CCLs for all possible level sets.

subregions are called catchment basins. For an intuitive understanding of a WS,

the field of topography can be taken up once more. A two-dimensional digital

picture can be thought of as a terrain that is constituted by rectangular plateaus

of constant altitudes. For the purpose of illustration, holes are supposed to

be pierced in this topographic surface at the locations of each minimum. The

algorithm simulates the effect of gradually immersing the surface into a bath of

water: Starting from the minima of lowest altitude, the water will progressively

fill up the catchment basins corresponding to different minima. Wherever water

from two adjacent catchment basins would mix, a dam is erected to keep the

basins separate. At the end of this immersion process, the whole surface is

flooded and each minimum can be associated with its own catchment basin.

The dams constitute the dividing lines of water also known as watersheds.

In the well-known publication by Vincent & Soille [147], that paved the way

for many WS-based applications as well as implementations, watersheds are

introduced as a subset of pixels. The result of a WS is then a segmentation of
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Figure 24: A digital picture in (a) with the corresponding full IWS in (b) and full
WS in (c). Extrema and saddles are highlighted as in the previous
figures.

catchment basins as well as watersheds by means of different labels assigned to

pixels. However, in the same publication, the authors introduce the use case of

partitioning the entire digital space into catchment basins. Transferred to the

idea of a digital picture describing a terrain that is constituted by plateaus of

constant altitude and immersed into water, a mixing of waters from two basins

would take place by flooding certain pixels as a whole and at once. Instead of

labelling each of these pixels as being part of a watershed, but to actually get a

partition of all pixels into regions, the pixel in question is labelled according to

either of the two catchment basins involved. Different strategies to optimally

decide to which of the two regions the vertex is assigned are feasible. Since

the different segmentations resulting from different strategies do not determine

the resulting segmentation conceptually, the different options are not covered

in this thesis. For the sake of simplicity, it is henceforth assumed that a pixel

is assigned to the regions of the adjacent vertex with the highest data value.

The crucial aspect is that two regions are kept separate due to the concept

of watersheds instead of merging them and therefore becoming one connected

component. Based on the terminology of spels and surfels and at the same

time generalizing the WS to arbitrary dimensions, watersheds can be defined

by sets of surfels that determine a partition of spels into regions. It should be

noted that under the assumption of ω-connected (α-connected) regions, a single

watershed is a digital boundary between a region and α-connected (ω-connected)

components of a region’s complement.
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(e) Join tree

Figure 25: IWS in (b)–(c) for three different levels. In (a), spels are highlighted
as in Figure 21a. The nodes of the augmented join tree in (e) are
coloured according to their label assigned by the full IWS shown in
Figure 24b.

The WS as explained above implies a progressive labelling of spels from the

lower level set while the level is varied from low to high levels. Despite the

topographic analogy of a rising water level not applying anymore, it is from

an algorithmic point of view unproblematic to define an inverse watershed

segmentation (IWS) that progressively labels spels from the upper level set

while the level is varied from high to low levels. The non-topographic analogy

can be resolved as the IWS can be imagined as if the water level would flood

a topographic surface that results from the multiplication of the original data

values with −1 such that peaks become pits and vice versa. Moreover, the

explanation above implies a partition of the whole domain into regions which

is depicted for both IWS and WS in Figure 24. Usually, IWSs and WSs are

computed with respect to a threshold at some level within the range of data

values such that some parts of the digital space are left unsegmented. Taking

up the metaphor of immersing a topographic surface into a bath of waters, this
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(e) Split tree

Figure 26: WS in (b)–(c) for three different levels. In (a), spels are highlighted
as in Figure 21b. The nodes of the augmented split tree in (e) are
coloured according to their label assigned by the full WS shown in
Figure 24c.

would mean that the water rises only to a certain level. Figures 25 and 26 show

the result of an IWS and a WS, each for three different levels.

It should be noted how for the exemplary two-dimensional grid data, IWS and

WS in Figures 25 and 26 generally result in a segmentation of lower and upper

level sets into additional subregions in constrast to the CCLs in Figures 22

and 23. Consequently, the watersheds for a given level comprise additional

boundaries between spels compared to the digital level set which is indicated

by dashed lines in Figures 25 and 26.

The main purpose of Figures 25e and 26e is to illustrate that the join and split

trees do not represent the evolution of catchment basins. In contrast to a CCL,

two upper-components do not join at a digital saddle. Hence, the common edge

in the join tree after two edges joined at a saddle does not represent a single

upper-component but the parallel evolution of multiple catchment basins that

are kept separate by means of watersheds. The parallel evolution is indicated
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by the colouring of nodes in the augmented join and split trees in contrast to

the colouring of the unaugmented join tree in Figures 22e and 23e.

Hierarchical Watershed Segmentation A typical problem of a classical wa-

tershed segmentation is that the resulting segmentation is too fine, which is

called oversegmentation. Obviously this is due to the data typically comprising

noise, such that many small local extrema exist, each of which will get its own

associated regions in the final segmentation. To overcome this problem, many

strategies exist to allow for a coarser partition of regions. A particular group of

strategies falls under the name hierarchical watershed segmentation [8, 40, 101].

A segmentation is hierarchical if a criterion defines different detail levels in

which the segmentations at coarser levels can be produced from simple merges

of (adjacent) regions from segmentations at finer levels. Attributes of each

two adjacent regions can be evaluated to decide on the merge. Examples are

geometrical attributes [45] such as e.g. the size of regions [81] or related to

the intensities belonging to regions [45, 101]. The labelling at a coarser level

results from the merge of adjacent regions that afterwards share the same label.

Therefore, the regions at finer levels are nested in relation to those at coarser

levels [47]. In that sense does a hierarchical watershed segmentation not prevent

an oversegmentation but instead supresses irrelevant watersheds [8]. One can

imagine the hierarchical watershed segmentation as if dams would be tiered

down such that waters from adjacent catchment basins can mix.

3.6.2 Hierarchical Implementation

In this thesis, the focus is on an algorithmic solution for the hierarchical WS

and IWS that is based on the ‘digital’ join and split trees. Note that the

algorithms for the hierarchical WS and IWS are completely symmetrical since

the computation of join and split trees is symmetrical as well.32 Therefore, only

the algorithm and hierarchical IWS is presented in the following.

32From the perspective of an actual implementation, a single algorithm can be implemented
that is parametrized by a flag variable that decides whether the result is a WS or an IWS.
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Algorithm 3 Inverse Watershed Segmentation (IWS)

Input: Grid data with vertices sorted in lexicographic order v0,v1, ...,vk−1
Output: IWS by means of disjoint-set structure

1: initialize disjoint-set structure CB // keeps track of catchment basins
2: for i← k − 1 to 0 do
3: CB.makeSet(i)
4: for each spel Pj ω-adjacent to Pi in descending order do
5: if j < i then
6: skip iteration
7: else
8: CB.merge(i, j)
9: leave inner loop

10: end if
11: end for
12: end for

Referring to Algorithm 2, in particular the case where the else-branch is

reached for two (or more) adjacent vertices, the vertex currently processed is

the joining element between two (or more) upper-components. Transferred to

the idea of a watershed segmentation, this leads to a mixing of waters from two

catchment basins taking place at the earliest possibility. In fact, with respect

to the idea of watersheds separating catchment basins, Algorithm 2 results in

a segmentation where no catchment basins are ever separated by watersheds.

Accordingly, at the end of the algorithm the disjoint-set data structure only

comprises a single set representing all spels. If the purpose is not to construct

the ‘digital’ join tree but instead to respect the concept of watersheds during

updates of the disjoint-set data structure, this means particularly that two or

more merges during the inner for-loop are prohibited. A modified version of

Algorithm 2 that gives rise to an IWS is presented in Algorithm 3.33

As mentioned before, a hierarchical segmentation constructs segmentations

at coarser detail level depending on some criterion that controls the merging of

regions from segmentation at finer levels. A fast implementation of a hierarchical

33It should be noted that for the purpose of visualization, the segmentation shown in Figure 24b
results from an alternative order in which adjacent spels are processed compared to what
is assumed in line 4 of Algorithm 3.
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Algorithm 4 Prerequisites for a Fast IWS

Input: Grid data with vertices sorted in lexicographic order v0,v1, ...,vk−1
Output: Prerequisites for a fast IWS

1: initialize disjoint-set structure UC // keeps track of upper-components
2: initialize disjoint-set structure CB // keeps track of catchment basins
3: initialize array LowestNodeOfComp of length k
4: initialize array MaxOfBasin of length k
5: initialize graph JoinTree with nodes w0, w1, ..., wk−1
6: for i← k − 1 to 0 do
7: UC.createSet(i)
8: LowestNodeOfComp[i] ← wi

9: CB.createSet(i)
10: MaxOfBasin[i] ← f(Pi)
11: assignedToBasin ← false
12: for each spel Pj ω-adjacent to Pi in descending order do
13: if j < i or UC.find(j) = UC.find(i) then
14: skip iteration
15: else
16: UC.merge(i, j)
17: add edge between LowestNodeOfComp[j] and wi to JoinTree
18: LowestNodeOfComp[j] ← wi

19: if not assignedToBasin then
20: CB.merge(i, j)
21: assignedToBasin ← true
22: end if
23: end if
24: end for
25: end for

IWS is based on the precomputation of the segmentation at the finest detail level

as produced by Algorithm 3 as well as the construction of the join tree by means

of Algorithm 2. The place where the waters from two basins would mix at the

earliest possibility is a saddle of the digital space [101]. Hence, it is sufficient to

evaluate attributes of adjacent regions at a saddle nodes of the ‘digital’ join tree

to decide if both regions are merged. A processing of saddle nodes in descending

lexicographic order (or ascending lexicographic order for a WS) guarantees

that the segmentations at different detail levels are in fact nested inside of
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Algorithm 5 Fast IWS

Input: Threshold p defining detail level of hierarchical IWS
Output: Fast IWS by means of disjoint-set data structure

1: create local copy of CB
2: for each saddle node wi in JoinTree in descending order do
3: for each spel Pj ω-adjacent to Pi in descending order do
4: if j < i or CB.find(j) = CB.find(i) then
5: skip iteration
6: else
7: saddleBasin ← CB.find(i)
8: saddleDepth ← MaxOfBasin[saddleBasin] − f(Pi)
9: adjacentBasin ← CB.find(j)

10: adjacentDepth ← MaxOfBasin[adjacentBasin] − f(Pi)
11: if min(saddleDepth, adjacentDepth) < p then
12: if adjacentDepth < saddleDepth then
13: CB.merge(i, j)
14: else
15: CB.merge(j, i)
16: end if
17: end if
18: end if
19: end for
20: end for

each other. As a criterion that controls the merging at saddles, the absolute

difference between the maximal intensity value within a region and the intensity

value associated with a saddle is used. More intuitively, this criterion can be

thought of as the depth of a catchment basin. A threshold p then determines to

merge adjacent basins if either of its depths is below the threshold. Fortunately,

all the information that is necessary can be precomputed within a loop over

all vertices as presented in Algorithm 4 which is basically a combination of

Algorithm 2 and 3. The fast IWS making use of the precomputed information

is presented in Algorithm 5.

The essential aspect of Algorithm 5 is that – given a watershed segmentation

at the finest detail level – it is sufficient to revisit the saddle nodes of the join

tree, which correspond to those spels at which two upper-components could
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have been joined at the earliest possibility. The conditions in line 4 ensure that

only distinct regions that have emerged at higher levels are considered adjacent.

According to line 11, a merge depends on the depth of either of the two regions

which must fall under a certain threshold p defining the level of detail.

Fast IWSs that are constrained by thresholds at different levels as in Fig-

ure 25b–25d can be achieved by iterating the outer for-loop in Algorithm 5

only for saddle nodes whose associated data values are below the specified level.

Finally, only the labels associated with spels whose data values exceed the level

are exported to the final output image while the others are set to zero. A fast

IWS with respect to a given threshold and for the coarsest detail level becomes

a CCL.
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4 Tracking Approach

In this chapter, the individual requirements that were identified in the in-

troduction are adressed and it is shown how the components of a tracking

method, which are (i) feature definition and extraction, (ii) correspondence

identification, and (iii) the representation of feature tracks are implemented. As

introduced in the beginning, time-dependent scalar data is given as temporal

recordings of a spatial domain that is discretized by an n-dimensional uniform

grid U = (V,E). For each time step i ∈ Nt, a finite set of scalar values Fi is

associated with the vertices of the grid. The combination of the uniform grid

with each set of data values (U,Fi) defines each time step in the form of grid

data as described in Section 3.2. In the following, the tracking approach is

described for arbitrary dimensions but exemplified for the case of 1D+time.

Therefore, the two-dimensional example of grid data that repeatedly served as

an illustration, is now altered for the purpose of representing four separate time

steps of grid data each of which being one-dimensional as shown in Figure 27a.

4.1 Correspondence Identification

As pointed out in the introduction, the correspondence should be determined

by all information of two successive time steps. In particular, this information

should be used to estimate a fine-grained and dense motion between time steps

that can be used universally for the identification of corresponding features at

different levels. In that sense, the identification of correspondence is related to

the approach of Valsangkar et al. [146]. However, in contrast to their approach,

the motion of the entire domain is estimated independently of the actual

extraction of features allowing for the motion estimation to be precomputed.

Therefore, a fundamental assumption under which this tracking approach will
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(a) Time steps of grid data
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(b) Time steps of digital pictures

Figure 27: The former two-dimensional example of grid data is now used to
represent four separate time steps of grid data in (a). Its interpreta-
tion as four one-dimensional digital pictures with a two-dimensional
visualization of spels is shown in (b).

be presented is that the grid data of each time step (U,Fi) is interpreted as a

digital picture (S, ω, f̂i) (see Section 6). Under this premise, spels – which are

the basic units of a digital space – are the building blocks of which regional

features in digital pictures are composed. Although the grid data in Figure 27a

is one-dimensional, the spels in Figure 27b are visualized intentionally as if

the digital picture would be two-dimensional with the length of the second

dimension set to one. The extent in the second dimension is chosen such that

it mimics the former two-dimensional example for the purpose of a consistent

visual impression throughout this thesis.

4.1.1 Use Case for Image Registration

Under the assumption of interpreting grid data as a digital picture, an image

registration method (see Section 3.3) can be employed to yield the spatial rela-

tions between each pair of successive digital pictures, (S, ω, f̂i) and (S, ω, f̂i+1)

for i ∈ Nt−1. It should be noted that the two registration processes for each pair

are independent of each other such that deformation fields dforwi and dbacki+1 are

independet as well. For the purpose of tracking, the actual deformed moving

image is not relevant but instead the deformation itself, which “is the focal point

of any registration algorithm” [129]. The general idea underlying this thesis

is that the deformation between two successive digital pictures, in form of a

vector field henceforth referred to as deformation field, serves as an appropriate
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motion estimation. Since image registration is a directed process, an unbiased

motion estimation results from the combination of deformation fields in both

directions. More specifically, for each pair of digital images, the registration

process needs to be carried out twice to yield one deformation field pointing

forward in time and another one pointing backwards in time. This can simply

be achieved by switching the roles of the moving and fixed image in a second

registration process. Hence, the registration of each pair results in 2 ∗ (t− 1)

deformation fields, dforwi and dbacki+1 for i ∈ Nt−1.

Contrary to the interpretation of the deformation during registration as

pointing towards positions in the moving image where the intensity values orig-

inate from, for the purpose of tracking, the forward and backward deformation

fields are utilized to estimate the motion of each spel, i.e. the position where

a spel moves to in the next and previous time step, respectively. Therefore,

the deformation fields are snapped to the nearest neighbouring spel centers.

Effectively, this turns the deformations into mappings between vertex centers

which is utilized to establish correspondences between spels of successive time

steps. In Figure 28, possible deformation fields for the exemplary four time steps

are shown that are already snapped to pixel centers. In turn, the correspondences

between spels are used as a basis for identifying correspondences among regional

features which – in the context of digital pictures – are constituted by sets of

spels.

Tracking-related Properties of the Deformation

As mentioned in Section 3.3, the deformation might also point to positions

outside of the domain that is spanned by a picture, which is depicted in

Figure 28a. Since these local manifestations of the deformation field do not

result in any correspondences between spels, they are simply ignored for the

purpose of tracking. Although the exemplary deformation fields in Figure 28

can be regarded as overall sufficient with respect to an intuitive notion of

which spels ‘belong’ together, cases such as those indicated by the green arrows

can nevertheless arise. The reason for such unintuitive correspondences is

simple: The deformation fields resulting from image registration are dense by
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(a) Forward deformation fields

i = 3i = 2i = 1i = 0

24

19

6

10

12

14

23

20

9

7

22

25

13

18

11

21

17

15

16

8

(b) Backward deformation fields

Figure 28: Possible deformation fields for the four time steps of digital pictures
that are snapped to the spel centers. Effectively, the forward
deformations in (a) and the backward deformations in (b) describe
correspondences between spel of successive time steps.

definition and represent the spatial relation between two images that minimizes

an objective function for the entire image. For each spel center, a vector will

be computed that points into the domain of the other image involed in the

registration process. The spatial relation described in this way is optimal

with respect to the entire image, yet it allows for local manifestations of the

deformation field that are unintuitive if considered individually. This also

applies to local deformations as enabled by the B-spline transformation model

which is supposed to be the underlying model of the deformation fields in

Figure 28. While local deformations are immanent in a B-spline transformation,

the model also ensures a certain degree of smoothness of the entire deformation

depending on the degree of B-spline basis functions. Additionally, a B-spline

transformation is usually constraint by a regularization term that penalizes

strong compression and stretching. Overall, the deformation of an individual

spel is influenced by the deformation of spels in its surrounding. As a result,

unintuitive deformations as those represented by the green arrows can simply

considered to be natural phenomena arising from image registration.
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4.2 Feature Definition & Extraction

To account for the fact that features belonging to different scales might be nested

inside of each other, features are defined and extracted as connected regions by

means of a fast IWS. For the sake of simplicity, a presentation of the alternative

approach defining and extracting features by means of a WS is ommitted since

this case is completely symmetric to the one expounded hereinafter. As stated

in Section 3.6.1, in the context of a watershed segmentation, connected regions

are called catchment basins. To determine the scale up to which features are

considered separate in contrast to merging them, the depth of catchment basins

is used as a criterion to control the detail level of the segmentation. As a

consequence, thresholding the criterion yields a hierarchical IWS which can

be implemented efficiently as proposed in Section 3.6.1. In that sense, the

definition and extraction of features is similar to the approach of Lakshmanan

et al. [81], who described storm cells by means of regions related to catchment

basins.

However, in the approach at hand, the concept of the watershed segmentation

is combined with the strategy to consider time-dependent data not as separate

time steps of grid data each of which interpreted as an individual digital

picture but as ‘one piece’ of grid data that is interpreted as a spatio-temporal

digital picture that can be used conveniently for the purpose of tracking. More

specifically, the underlying spatio-temporal digital space is defined in such a way

that the correspondence information resulting from image registration is used

to define the adjacency among spels in the temporal dimension. As a result,

features of different levels can be extracted and implicitly tracked simply by

computing a fast IWS for the spatio-temporal digital picture. The assignment

of labels to the spels of the spatio-temporal digital space then defines regions

in each time step as well as feature tracks over time by means of regions from

different time steps sharing the same spatio-temporal label.

4.2.1 Spatio-Temporal Digital Picture

As a general requirement for the construction of a spatio-temporal digital space,

time-dependent data given as separate time steps each of which in the form
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Figure 29: Combined visualization of forward and backward deformation fields.
In (a), symmetric correspondences between spels are indicated
by double-headed arrows while asymmetric correspondences are
represented by normal arrows. In (b), heads are added to the normal
arrows highlighted in green to indicate the gain if all correspondences
would be symmetric.

of n-dimensional grid data, (U,Fi) where i ∈ Nt, is considered ‘one piece’ of

(n+1)-dimensional grid data (U ′, F ′). The data values in F ′ associated with the

vertices of the (n+ 1)-dimensional uniform grid U ′ = Pk1 �Pk2 � ...�Pkn �Pt

represent the data not as separate recordings of an n-dimensional Euclidean

space but as recordings over an (n + 1)-dimensional Euclidean space whose

last dimension actually represents time. The number of time steps t and the

interval sn+1 between time steps determine the resolution as well as the extent

of the temporal dimension of the grid. Therefore, the neighbourhood of each

vertex can be considered to contain vertices that are adjacent not only in

space but also in time. For the purpose of tracking, the interpretation of the

(n+1)-dimensional grid data as a digital picture slightly deviates from Section 6:

In the spatial dimensions of the spatio-temporal digital space, the adjacency

of spels coincides with the original ω-adjacency. In the newly added temporal

dimension, the results of the precomputed registrations are integrated.

Formally, the spatio-temporal space that serves for the purpose of tracking

is defined by the pair (S′, ω′) with the set of spels S′ defined as stated in

Equation 3.3.

S′ = {Pp1,p2,...,pn,pn+1 | (p1, p2, ..., pn) ∈ IU ′}
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The adjacency relation of spels in spatial dimensions resembles the definition of

ω in Equation 3.5.

ωspace = {(Pp1,p2,...,pn,pn+1 , Pq1,q2,...,qn,qn+1) |
∑n

i=1 |pi − qi| = 1}

To determine the adjacency among spels in the temporal dimension, the

correspondences between spels are utilized. Therefore, the forward and backward

deformations must be considered with respect to the digital space (S, ω) that

served as the basis for the digital pictures in each time step. Since the

deformation fields dforwi and dbacki+1 are assumed to be snapped to spel centers,

they can be effectively regarded as binary relations δforwi and δbacki+1 on the index

set IU (see Section 3.1) for i ∈ Nt−1. The union of all binary relations resulting

from registration is yet another binary relation R.

R =
n−2⋃
i=0

δforwi ∪ δbacki+1

However, the relation R is not symmetric. A spel in time step i corresponding

to a spel in time step i + 1 by means of a forward deformation does not

imply that the same spels correspond by means of the opposed backward

deformation. Many such ‘asymmetries’ can be identified in Figure 29a. In a

digital space however, the adjacency relation is symmetric by definition which

means that a spel is adjacent to another spel if it is also adjacent from the other

spel. Therefore, every asymmetric correspondence must be transformed into a

symmetric adjacency by means of the symmetric closure C of R.

C = R ∪ {
(
(q1, q2, ..., qn), (p1, p2, ..., pn)

)
|
(
(p1, p2, ..., pn), (q1, q2, ..., qn)

)
∈ R}

In Figure 29b, the additional correspondences gained from the symmetric closure

of R are indicated by green arrow heads. Finally, the adjacency between spels in

the temporal dimensions, τ , can be defined by means of the symmetric relation

C.

τ = {(Pp1,p2,...,pn,pn+1 , Pq1,q2,...,qn,qn+1) |
(
(p1, p2, ..., pn), (q1, q2, ..., qn)

)
∈ C}
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(d) Join tree

Figure 30: In (a), the spatio-temporal digital picture is shown with the underly-
ing proto-adjacency ω′ indicated in grey. Since the two-dimensional
spatio-temporal digital picture exhibits a different adjacency relation
compared to the former two-dimensional example, the corresponding
join tree in (d) differs as well. In (b), spels corresponding to critial
nodes of the join tree (excluding the root node) are highlighted once
more as maxima (◦) and saddles (�). A spatio-temporal watershed
segmentation is shown in (c).

The proto-adjacency ω′ constituting the spatio-temporal digital space then

results from the union of the spatial and temporal adjacency.

ω′ = ωspace ∪ τ

The triple (S′, ω′, f̂ ′) then defines a spatio-temporal digital picture which is

shown for the recurring example in Figure 30a.

4.2.2 Spatio-Temporal Watershed Segmentation

A fast IWS applied to the spatio-temporal digital picture (S′, ω′, f̂ ′) operates

based on using ω′ as a spel adjacency (see Section 3.4.2) during Algorithm 4 and 5.

Hence, regions that have been assigned a common label by the segmentation are
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Figure 31: In (a), the spatio-temporal labels resulting from a IWS are considered
in each time step separately. The first time step can be taken as
an example showing that the spatio-temporal labels cannot be used
to extract ω-components in each time step. Therefore, subsequent
CCLs must be applied to those spels in each time step that share
the same spatio-temporal label. The results are shown in (b) by
means of a new labelling. At the same time, the colouring of spels
represents the original spatio-temporal labels.

either connected with respect to the ωspace-adjacency in the spatial dimensions,

or ‘connected’ regarding the τ -adjacency in the temporal dimension. Figure 30c

shows an IWS at the finest detail level for the spatio-temporal digital picture

in Figure 30a. If the spatio-temporal labels are then considered separately for

each time step, the labelling only represents which spels belong to a common

feature track (see Figure 31a). To extract the actual regional features in each

time step, subsequent CCLs with respect to ω-connectedness must be applied to

those spels in each time step that share the same spatio-temporal label. These

components are henceforth referred to as track components. In Figure 31b,

track components can be identified by a new labelling while the colouring of

spels still indicates which track components share the same spatio-temporal

label. When the watersheds, indicated by the dashed lines in Figure 30c, are

considered in each time step separately, they are in fact digital boundaries

between an ω-connected track components and α-connected components of a

track-component’s complement. Unfortunately, in the case of n = 1 used for

the illustrations, ω- and α-adjacency coincide as simple 2-adjacencies. Without

giving proof it is claimed that, for arbitrary dimensions, the track components

in each time step are bounded by digital boundaries as defined by Herman [55].
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Figure 32: In (a), the labelling of track components from Figure 31b is shown
in combination with the symmetric correspondences between spels.
Based on this information, the resulting tracking graph with a
connected component for each spatio-temporal label is illustrated
in (b).

4.3 Representation of Feature Tracks

The labelling of track components as shown in Figure 31b can be used directly

to examine properties such as the number, area, mean and maximal intensities

of features. Furthermore, due to the spatio-temporal labels resulting directly

from the IWS, properties such as those mentioned before can be aggregated

and compared over the life-cycle of feature tracks. In addition, the spatio-

temporal dynamic can be described by a spatial tracking graph embedded

in the spatio-temporal digital space that represents the evolution of features

and captures changes in their topological structure. Each track-component is

represented by a single node whose position is chosen to be the spel center

of a track-component’s maximum. The nodes of two track components that

share a common spatio-temporal label are connected by an arc if the track

components are connected by means of correspondences among their spels (see

Figure 32). The resulting connected components of the tracking graph indicate

the appearances and disappearances of features as well as their spatio-temporal

dynamic during their lifetime exhibiting joins and splits. Particular topological

events can be identified based on the degree of tracking graph nodes.
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5 Results

The tracking method developed in this thesis and described in Chapter 4 is

applied to the precipitation data of the COSMO-REA2 system introduced in

Chapter 2.1. In this chapter, the results are presented. As pointed out in the last

chapter, the tracking results are determined fundamentally by the deformation

fields which in turn result from image registration. In fact, finding a sufficient

set of parameters for the registration of precipitation data can be considered

a task on its own which is independent of the tracking approach in the first

place. This independence is also stressed by the fact, that the registration-based

motion estimations are expected to be precomputed. They are intended to be

universally usable within the tracking method with regard to feature tracking

at different levels.

Therefore the results are twofold: First, the parametrization of elastix that

was found to be sufficient for the considered datasets is presented in Section 5.1.

Subsequently, the results of the tracking approach are adressed in Section 5.2

with respect to the requirements that were mentioned in the introduction.

Datasets

The first dataset considered is publicly available with an hourly temporal

resolution and spans the entire month March 2007 in form of 744 time steps

(dataset A). Originally, the spatial extent covers the entire domain of the

COSMO-REA2 system discretized by a uniform grid with 724 x 780 vertices.

Preliminary studies by the Institute of Meteorology of the Free University

of Berlin identified strong artifacts of the precipitation intensities appearing

consistently near the border of the domain. Therefore, the uniform grid is

cropped by 20 vertices at each side, resulting in 684 x 740 vertices representing a

slightly smaller subdomain. The second dataset features a 15-minute resolution
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and covers the period from March 25, 2007 at 6:30 to March 26, 2007 at 24:00

in a total of 167 time steps (dataset B). The spatial extent represents only a

subset of the original domain which is mostly Germany discretized by a uniform

grid with 291 x 321 vertices. This dataset was provided by the meteorologists

of the Free University of Berlin.

5.1 Registration Results

The first step of the tracking approach presented in Section 4 is the registration

of each pair of successive time steps of the aforenamed datasets. As mentioned

before, the tracking results depend heavily on the outcomes of these registration

processes. Therefore, a sufficient set of parameters must be found to yield

deformation fields that represent an appropriate motion estimation. It should

be noted that there is no universal way of finding a best set of parameters

automatically for a given dataset. Instead, knowledge about the concrete field

of application as well as experience with image registration and its components

itself enable the identification of parameters that suit the underlying purpose

which in the case at hand are adequate tracking results based on motion

estimation.

5.1.1 Empirical Parameter Estimation

The parametrization presented in the following is determined empirically for

the considered datasets. In fact, a single set of parameters that was found to

be sufficient is identified for both hourly as well as 15-minute resolutions. The

process of the empirical parameter estimation is based on a manual identification

of sections in the datasets where the deformations react sensitively to a variation

of the parameters in question. Among these sections, a subjective selection

is made for which a ground truth is assumed to be identifiable without any

additional domain knowledge. Subsequently, the tracking results are investigated

manually for different parameter choices. The parameters presented hereafter are

found to produce adequate tracking results in the majority of cases. However,

they are not claimed to be the best-possible choice for precipitation data
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in general. Instead, the parametrization should rather be considered a first

suggestion for the concrete case of precipitation.

Transformation Model To account for the fact that precipitation as a physical

quantity does not evolve globally but is obviously affected by local interactions,

a B-spline transformation model is used. To allow for fine-grained local

transformations, the resolution of the control point grid (at the finest level)

is defined by a spacing of 4 pixels in both dimensions. The default setting of

B-spline basis functions of degree 3 is adopted.

Distance Measure On the one hand, the extents as well as the shapes of

precipitation cells vary greatly. On the other hand, a variation of the intensities

within cells over time is a natural phenomenon. Therefore, the process of finding

a spatial relation between two images should be flexible such that structures

can be aligned even if they exhibit different intensities. To be independent

of the assumption of a linear relationship between intensities as well, mutual

information (MI) is chosen as a similarity measure.

Regularization Term In addition to the degree of smoothness that is inherent

in the B-spline transformation, the transformation is constrained as it is generally

recommended for local deformation models. More specifically, the bending

energy regularizer is used to privilege deformations that do not exhibit strong

compression accompanied by high expansion in close proximity.

Weights The weights w0 and w1 control the influence of the distance measure

and the regularization term. This weighting is largely responsible to which

extent local deformation will manifest itself in the final deformation. A desired

pair of weights is expected to allow only for local deformations that can still

be considered physically plausible. At the same time, the weights have a

direct impact on which spels are adjacent in the temporal dimension of the

spatio-temporal digital space utilized for the purpose of tracking. Despite the

fact that a weighting with w0 = 0.8 and w1 = 0.2 is found to be appropriate for

the datasets considered, the weighting parameter should generally get special
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attention during a parameter estimation, even across datasets of the same

quantity.

Optimization Strategy As an optimization strategy, an adaptive stochastic

gradient descent optimizer is chosen. On the one hand, gradient descent is a

strategy that is well-understood. To overcome the performance issues that are

immanent in the computation of the gradient over a high-dimensional parameter

space, elastix offers sophisticated solutions in form of a stochastic variant. For

the number of random pixels drawn in each iteration, 1% of the overall number

of pixels was found to be a compromise between computation time and accuracy

of the final deformation. For dataset A, this results in 5100 samples while for

dataset B the correspondingly smaller number is 1200 samples. Moreover, to

prevent the optimal solution from being trapped in a local minimum of a single

optimization run, the entire optimization is repeated 500 times and the final

solution is the minimum of all 500 runs.

Hierarchical Scheme The parametrization so far describes the fundamental

components of a registration method. In addition, elastix provides the possibility

to iterate the whole process at different resolution levels while propagating the

(intermediate) registration results from coarse levels up the the finest level. This

hierarchical scheme is used for the datasets in form of four resolution levels

regarding the data in each iteration as well as the transformation model. In

particular, in each resolution level i ∈ [0, 1, 2, 3], where level 0 represents the

finest resolution and level 3 the coarsest resolution, the images are smoothed with

a Gaussian blur with σ = 2i

2 and the resolution of the B-spline transformation’s

control point grid is defined by a spacing of 4× 2i in both dimensions.

5.1.2 Example Parameter File

In the following, the actual parameter file used for the registration process

of each pair of successive images is presented.34 If not set explicitly in the

following, parameters are left at their defaults.

34Since the number of random pixels drawn in each iteration of the optimization process must
be specified as an absolute number, the listed parameter NumberOfSpatialSamples refers
specifically to dataset A.
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// GENERAL

(MovingImageDimension 2)

(FixedImageDimension 2)

(MovingInternalImagePixelType "float")

(FixedInternalImagePixelType "float")

(ResultImagePixelType "float")

(ResultImageFormat "mha")

// HIERARCHICAL SCHEME

(Registration "MultiMetricMultiResolutionRegistration")

(NumberOfResolutions 4)

(MovingImagePyramid "MovingSmoothingImagePyramid")

(FixedImagePyramid "FixedSmoothingImagePyramid")

// TRANSFORMATION MODEL

(Transform "RecursiveBSplineTransform")

(BSplineTransformSplineOrder 3)

(FinalGridSpacingInVoxels 4.0 4.0)

// SIMILARITY MEASURE & REGULARIZATION TERM

(Metric "AdvancedMattesMutualInformation"

"TransformBendingEnergyPenalty")

(Metric0Weight 0.8)

(Metric1Weight 0.2)

// OPTIMIZER

(Optimizer "AdaptiveStochasticGradientDescent")

(MaximumNumberOfIterations 500)

(ASGDParameterEstimationMethod "Original")

(ImageSampler "Random")

(NumberOfSpatialSamples 5100)

(NewSamplesEveryIteration "true")
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5.2 Tracking Results

Based on the parametrization of the registration method presented in the

previous section, the tracking results are shown for an example section of

dataset A. On the one hand, the example is used to convey a qualitative notion

of hourly precipitation as well as the corresponding deformation fields. On the

other hand, the purpose is to get a qualitative impression of how the tracking

approach presented in Section 4 (method A) performs for a quantity such as

precipitation. To be able to assess the possible gain enabled by the novel

correspondence identification developed in this thesis, the results of method A

are shown alongside the results of a second tracking solution, method B, that

uses spatial overlap to identify correspondence.

The actual implementation of the developed tracking method, as well as

its variation based on overlap, was implemented within the visualization

software Amira [138]. Additionally, the entire tracking pipeline as well as

the visualizations depicted hereinafter are based on the possibilities provided

by Amira.

Tracking Example

An example section by means of which the tracking results are shown is chosen

that comprises many aspects of the tracking approach. Hence, it is claimed to

be representative on a qualitative basis for the datasets considered in this thesis.

The example covers a small section in the south-east of the COSMO-REA2

domain on March 27, 2007 between 18:00 and 21:00 in the form of four time

steps. While Figure 33 shows the precipitation intensities, Figures 34 and 35

additionally show the corresponding forward and backward deformation fields.

It should be noted that the deformation fields are sampled such that the

visualization is not cluttered by an extensive number of vector arrows. In all

following figures where the intensities are visualized, a linear mapping from

black to white is used such that the smallest intensity value of 0 is mapped

to black and intensity values of 20 or higher are mapped to white. Values in

between are interpolated linearly.
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(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 33: Precipitation data

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 34: Forward deformation fields

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 35: Backward deformation fields

The depicted time steps in Figure 33 show small structures of high precip-

itation in the center as well as more extensive structures of average and low

precipitation that either comprehend the central high-precipitation structures or

evolve independently on the left. The dominant apparent motion seems to point

towards the top. The corresponding deformation fields in Figures 34 and 35

visualize the spatial relations between successive time steps. As mentioned in

Section 4.1.1, the registration processes resulting in the forward and backward

deformations for a pair of time steps are independent of each other. This becomes
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apparent by comparing the three forward deformation fields in Figure 34 each

with the corresponding and opposed backward deformation field in Figure 35.

The middle pair of deformations (Figures 34b and 35c) describe relations

that are ‘almost symmetrical’. The right pair of deformations (Figures 34c

and 35d) exhibit strong differences in the lower left area while the relations

in the other areas can still be described as ‘almost symmetrical’. The left

pair (Figures 34a and 35b) shows strong differences between both relations

due to local manifestations describing an expansion to the right in the forward

deformation and an expansion to the left in the backward deformation.

Segmentation & Tracking Graph

In the following, the results of both considered tracking methods are applied

to the aforementioned example section in order to assess qualitatively how

the registration-based tracking approach (method A) performs for a quantity

such as precipitation compared to a tracking solution that builds upon overlap

(method B). The spatio-temporal IWS of method A is carried out for three

precipitation levels, h ∈ [18, 15, 12], at the coarsest detail level, p = max,

such that all adjacent regions that arise during the spatio-temporal IWS are

merged. Effectively, this results in a CCL of the spatio-temporal digital picture

for the three specified levels. In Figures 36–38, the resulting segmentation is

shown separately in each time step together with the underlying precipitation

data. In Figure 39, the same segmentation but for the entire three-dimensional

spatio-temporal digital space is shown by means of an orthographic projection

along the third dimension together with the corresponding tracking graph. The

same visualizations are generated for method B in which spatial overlap is used

to identify correspondences between features instead (see Figures 40–42 and

Figure 43).

For the first level, h = 18, as shown in Figures 39a and 43a, there are two

overlapping components of successive time steps such that method B produces

a single feature track. Method A identifies many corresponding components

even for large distances resulting in two feature tracks. At the same time,

components that are close are not necessarily found to be corresponding. In

96



(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 36: Method A; spatio-temporal IWS with h = 18 and p = max

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 37: Method A; spatio-temporal IWS with h = 15 and p = max

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 38: Method A; spatio-temporal IWS with h = 12 and p = max

(a) h = 18, p = max (b) h = 15, p = max (c) h = 12, p = max

Figure 39: Method A; spatio-temporal IWS shown as an orthographic projection
along the third dimension overlayed with the corresponding tracking
graph.
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(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 40: Method B; spatio-temporal IWS with h = 18 and p = max

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 41: Method B; spatio-temporal IWS with h = 15 and p = max

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 42: Method B; spatio-temporal IWS with h = 12 and p = max

(a) h = 18, p = max (b) h = 15, p = max (c) h = 12, p = max

Figure 43: Method B; spatio-temporal IWS shown as an orthographic projection
along the third dimension overlayed with the corresponding tracking
graph.
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(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 44: Method A; plausibility visualization for h = 12 and p = max

(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 45: Method A; plausibility visualization for h = 12 and p = max

particular, the two components that overlap do not correspond. Even for a

high precipitation level, method A produces a complex tracking graph. The

main reason for this is that a single pair of corresponding spels is sufficient to

generate an edge between two components in the final tracking graph.

For the second level, h = 15, the components of the segmentation in

Figures 39b and 43b obviously increase in size. However, this does not lead to a

higher number of overlapping components such that the number of feature tracks

found by method B does not change and only the tracked area increases slightly.

In contrast, due to the already high number of correspondences identified by

method A, the tracked area scales well. In addition, the now larger components

give rise to new correspondences between spels such that new corresponding

components are found. However, since some components that have been distinct

for h = 18 have merged for h = 15, some arcs of the tracking graph collapse.

For the lowest level, h = 12, a second feature track is identified by method B

as shown in Figure 43c. Although the same track components are also found

to belong to a common feature track by method A in Figure 39c, the tracking
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(a) h = 12, p = 14 (b) h = 12, p = 13 (c) h = 12, p = 12

Figure 46: Method A; hierarchical spatio-temporal IWS shown as an ortho-
graphic projection along the third dimension overlayed with the
corresponding tracking graph.

graphs of method A and method B show that the particular correspondences

between track components in Figure 43c are not present in Figure 39c. Overall,

method A identifies almost all depicted components (except a few smaller ones)

to belong to a common feature track. Therefore, almost the entire visible area

is tracked over time. In contrast, method B identifies correspondences only

among five components, and hence, tracks a significantly lower area over time.

What becomes noticeable once more, is that many arcs are generated in the

tracking graph of method A due to small track components. The fact that track

components are assumed to be ω-connected, which resolves to a 4-connectedness

in two dimensions, potentially supports the generation of additional nodes and

arcs which can be seen in the top area of Figure 39c. In Figures 44 and 45,

the previous visualizations are combined to yield a plausibility visualization for

method A and method B for the precipitation level of h = 12.

Hierarchical Tracking

So far, the tracking results are shown at the coarsest detail level p = max.

In the following, the spatio-temporal IWS of method A is carried out once

more for the lowest precipitation level, h = 12, but for three detail levels,

p ∈ [14, 13, 12] as shown in Figure 46. In Section 3.6.1, the hierarchical watershed

segmentation was introduced from the perspective of the finest detail level
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(a) Time step 1 (b) Time step 2 (c) Time step 3 (d) Time step 4

Figure 47: Method A; plausibility visualization for h = 12 and p = 12

with the segmentations at coarser levels resulting from merges of regions from

segmentations at finer levels. For real datasets such as the precipitation example,

the segmentation of the finest detail level would imply an extensive number

of feature tracks due to the vast number of local maxima. Therefore, the

hierarchical tracking for h = 12 is carried out from coarse to fine detail levels.

For p = 14, the single feature track shown in Figure 39c splits in two as

depicted in Figure 46a. The two new feature tracks represent subregions of

the spatio-temporal IWS that correspond to the two most dominant maxima.

Contrary to intuition, the two new connected components of the tracking graph

are not subgraphs of the tracking graph just before the split in Figure 39c. The

reason for this is that the generation of the tracking graph is based on subsequent

CCLs with respect to ω-connectedness, i.e. 4-connectedness in two dimensions,

applied to the pixels in each time step that share the same spatio-temporal

label. As shown in Figure 46a, this fact is also prone to the generation of

additional nodes and arcs due to potentially many small track components.

The new feature track that emerged in Figure 46a splits once more into two

feature tracks for p = 13 as shown in Figure 46b. The same procedure repeats

for p = 12 as shown in Figure 46c. It should be noted that the hierarchical

segmentation for p = 12 locally resembles the segmentation in Figure 39a for

h = 18 and p = max but with respect to the lower threshold. Figure 47 shows

a plausibility visualization for method A for the precipitation level h = 12 and

detail level p = 12. It can clearly be seen how the track components on the

right hand side represent local maxima in each time step, while on the left hand

side, the regions of local maxima already merged for the specified detail level.
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6 Discussion

In the last chapter, the results of the tracking approach that has been developed

in this thesis are presented for the case of precipitation data. The development

is motivated by concrete requirements mentioned in the introduction. These

requirements can be summarized as follows:

Requirement A The correspondence identification between features should

be determined by all information of two successive time steps in form of

dense motion estimations that are expected to be usable for the tracking

of features at different levels in a universal way.

Requirement B Features should be able to be split into sub-features depend-

ing on dominant local extrema such that a tracking of sub-structures is

supported.

Requirement C The representation of feature tracks is expected to enable

the extraction of properties of features in each time step as well as

over the life-time of each feature track. Moreover, the analysis of the

spatio-temporal dynamic of feature tracks regarding join and split events

should be supported.

In the following discussion, the abovementioned requirements are adressed in

order to indicate in which way and to which extent the developed tracking

approach can be used for a subsequent systematical analysis of precipitation as

well as other (meteorologic) quantities.

Requirement A

The registration-based motion estimation by means of elastix offers many

possibilities regarding the parametrization of the registration process. The
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presented set of parameters results in deformation fields that exhibit local

manifestations and at the same time do not lead to implausibilities in the form

of e.g. folds of the domain due to regularization. Hence, an estimation of motion

that represents the temporal development of precipitation being affected by local

interactions is basically enabled. It should be noted that the parameters that

determine the accuracy of the local deformation (FinalGridSpacingInVoxels,

MaximumNumberOfIterations and NumberOfSpatialSamples) are chosen such

that a practical tradeoff between computation time and accuracy is achieved

that allowed for a reasonable investigation of tracking results in the course

of this thesis. The depicted deformation fields in Figures 34 and 35 indicate

an estimated motion that can mostly be considered plausible. However, the

opposed deformation fields in Figures 34a and 35b show strong differences.

Intuitively, the two registration processes for each pair of time steps are expected

to result in deformation fields that look almost symmetrical. However, the

deformations represent spatial relations between time steps in their entireties.

If the abovementioned forward and backward deformations are considered with

respect to the intensities in the entire image, one can find arguments for both

deformation fields to be appropriate. When the registration-based motion

estimations are utilized within the tracking method, forward and backward

deformations are incorporated in an unbiased way such that, even if there is

a strong difference between a forward and a backward deformation, both are

considered equally.

While the feature tracks in Figure 43 obviously depend on the chosen level

due to the dependence on overlap, the feature tracks depicted in Figure 39 are

first and foremost independent of the actual level which is exactly intented by

the identification of correspondence by means of a motion estimation being

independent of the extraction of features. The estimated motion spans distances

that exceed the spatial extent of precipitation cells at high levels by a multitude.

As a result, feature tracks are identified that simply cannot be found by means of

overlap purely from a conceptional point of view. The plausibility visualization

in Figure 44 indicates that the incorporation of registration-based motion

estimations within a tracking approach produces adequate tracking results while
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(a) (b) (c)

Figure 48: Detailed visualization of the forward deformation for the tracking
results of method A for h = 18 and p = max. The same visualization
as in Figure 39a is show in (a). The forward deformation field of
the first time step is shown for track components in (b) and for
components that are not tracked over time in (c).

the overlap-based tracking identifies the majority of precipitation cells to be

isolated without belonging to any feature track.

Besides the direction of the estimated motion, that is decisive for which

features in each time step can correspond at all, the length of the deformation

is crucial when considering the tracking results at different levels. This fact

is visualized in Figure 48, where the tracking results of method A for h = 18

and p = max are shown once more in combination with the corresponding

dense forward deformation restricted to the segmentation in the first time

step. While Figure 48b shows the forward deformation for the identified track

components, the forward deformation is shown for the components that have

not been tracked in Figure 48c. It can be seen that the forward deformation of

the pixels of the turquoise and pink components – as well as of the blue and

yellow 1-pixel components – actually point in a direction such that they tend

to contribute to a feature track. However, due to the combination of the size

of components being too small and the forward deformation reaching too far,

the abovementioned components are not part of a feature track for the shown

level at h = 18. In lower levels, due to the components of the segmentation

increasing in size, the components in question are in fact corresponding as
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shown in Figure 39. This example shows how the dense motion estimation

failed to be used universally for feature tracking at different levels. However,

due to the accuracy of the B-spline transformation that is parametrized with

respect to a reasonable computation time, the situation depicted above might

be resolved by carrying out the registration with highest accuracy. Another

possibility is to use less resolution levels of the hierarchical scheme to focus the

registration process on structures at smaller scales. However, this would apply

to the registration results overall which is prone to produce undesired results in

other regions of the domain. Instead, subsequent studies regarding the tracking

of precipitation cells are expected to yield more insights into the parametrization

of the registration method for the concrete application of precipitation data,

such that the aforementioned problem can be resolved.

Requirement B

Since the tracking approach builds upon a segmentation of the spatio-temporal

digital space by means of a hierarchical watershed segmentation, thresholding

the criterion that defines different detail levels gives rise to a hierarchy of feature

tracks. The criterion that was employed for the developed tracking method was

described in Section 3.6.1 as the ‘depth of catchment basins’. An alternative

formulation of the depth is the spanned distance between the minimal and

maximal intensities belonging to a region. The results for the detail levels shown

in Figure 46 seem plausible for the depicted example. However, it is difficult to

comprehend from a visual inspection which intensities were decisive for the split

of a feature track and for which parts of a feature track the next splits in the

hierarchy can be expected. Although this is clearly defined from the definition of

the criterion, it is desired to be able to better foresee the hierarchical progression

when varying the detail level during a visual exploration of a dataset. Instead

of relying on the intensity ranges of regions which are only defined by the

minimal and the maximal intensity, additional criteria are feasible that might

consider all intensity values of a region such as e.g. the intensity distribution or

have recourse to domain-specific concepts that are well-known in the field of

application a given dataset is associated with.
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Requirement C

The tracking results are first and foremost based on a segmentation of the

underlying digital space to identify regions that belong to common feature tracks

by means of spatio-temporal labels. In a subsequent step, tracking-components

for each spatio-temporal label are identified in each time step. Based on this

additional labelling in each time step, the tracking graph is generated. Due to

the combination of spatio-temporal labels and the labelling of track components,

properties of precipitation cells in each time step as well as over the life-time of

feature-tracks can be accessed. The corresponding tracking graph yields the

spatio-temporal dynamic of feature tracks such that topologic events such as

the birth, death, join and merge of track components can be identified based

on the degree of tracking graph nodes.

A particular property of feature tracks is the spatial distance that was travelled

over the course of the track. If a feature track neither splits nor joins over

its life-time, its distance travelled could be estimated by the sum of projected

edges that connect track components in successive time steps. However, as

indicated by the multi-branched connected components of the tracking graphs

in Figure 46, feature tracks in general exhibit a high dynamic regarding splitting

and joining track components. Two strategies are feasible to estimate the

length of such tracks. On the one hand, the spatial arrangement of feature

tracks can be analysed to compute a length that minimizes a certain error

with respect to the entire feature track. On the other hand, each connected

components of the tracking graph can be transformed to be linear, and hence,

allowing for the aforementioned estimation. The second option was considered

in particular during the development of the tracking approach. However, a

sufficient solution that generates linear connected components of a tracking

graph that appropriately represents the original multi-branched components in

general has not been found during this thesis. Although the developed solutions

were satisfying for tracking graphs whose connected component are almost

linear, the approaches failed clearly for complex graph components. Overall, the

knowledge gained is that the strategy to transform the connected components

of the tracking graph into linear components is not a viable option and that the
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first option should be considered instead. Unfortunately, an alternative solution

could not be realised in the course of this thesis.

6.1 Conclusion

In this thesis, a new approach to the tracking of regions in time-dependent

scalar fields is presented. The development is motivated by the interest in

analysing precipitation data of the COSMO-REA2 reanalysis system over time

as well as in particular a previous study of the very same data for which an

overlap-based tracking solution did not produce satisfying results. Based on a set

of requirements and the methodological conditions that arise as a consequence

thereof, the design of a tracking method is presented that can be applied to

arbitrary scalar quantities on uniform grids of arbitrary dimensions. For the

course of this thesis, the new tracking method is implemented for the case of

2D+time although it is conceptually applicable to nD+time. The tracking

approach is based on the assumption of interpreting the discrete time steps of

time-dependent grid data as digital pictures. Only this assumption allows for the

computation of a dense motion estimation of the entire digital space by means

of image registration between successive time steps. Based on the resulting

correspondences between pixels, a spatio-temporal digital space is defined over

which the time-dependent data can be labelled according to the concept of a

watershed segmentation. The labelling for different thresholds and detail levels

can be generated fast due to the implementation of a hierarchical watershed

segmentation that employs the topological information captured by digital

join and split trees, respectively. Due to the incorporation of the temporal

dimension within the segmentation process, the resulting spatio-temporal labels

give rise to a tracking over time. In combination with a subsequent identification

of track components in each time step as well as the final generation of the

tracking graph, a representation of feature tracks is enabled that gives access

to tracking-related properties as well as their spatio-temporal dynamic.

Finally, the tracking method is applied to the concrete case of precipitation

data by means of example datasets of the COSMO-REA2 reanalysis system.

The qualitative study of tracking results showed promising results regarding
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almost all requirements that have been identified beforehand. In fact, the

tracking method developed in this thesis is already used by the Institute of

Meteorology of the Free University of Berlin with great satisfaction. Despite

subsequent and more detailed case studies regarding precipitation, the tracking

method is also used to track regions that are defined by thresholding the

integrated vertical updraft. This quantity shows quite different characteristics

compared to precipitation but first preliminary studies indicate that an adapted

parametrization of the registration method yields promising tracking results as

well. What is appreaciated in general, is the fast generating of tracking results

for different thresholds and detail levels.

6.2 Outlook

Due to the various components of the developed tracking method, which

are image registration, the watershed segmentation, join and split trees as

well as the final visualization of the tracking results by means of a spatial

graph, there are many starting points for further improvements that will be

considered in the future. First and foremost, the elastix framework is under

active development and offers – besides new functionality – new possibilities to

accelerate the overall registration process. In particular, various modifications

of the adaptive stochastic gradient descent are available which are planned to

be investigated with the aim to increase the accuracy of the final deformations

without additional computation time. In general, the feedback from subsequent

studies of the meteorologists are expected to yield further insights towards

an optimal parametrization of the registration method for the concrete case

of precipitation. As already mentioned in the discussion, additional criteria

defining the detail level of the hierarchical watershed segmentation are desired.

In particular, domain-specific criteria can be used to inject additional knowledge

of the concrete field of application into the hierarchical segmentation process.

Furthermore, it is planned to investigate to which degree the final tracking

results can be improved by setting a threshold on the minimal size of regions

during the watershed segmentation. The developed tracking method makes use

of the topological information captured by the saddle nodes of the join and
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split trees to decide if two adjacent regions should be merged or not. A further

reaching idea is to use a visual representation of the join and split trees to

decide interactively if two regions should merge or if a merge should be reverted.

At long last, this thesis did not succeed to estimate the travelled distance of

complex feature tracks. Therefore, the development of a consistent solution for

both almost linear as well as highly complex feature tracks will be adressed

directly.
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intégrable ou d’une fonction numérique [On the singular points of a

completely integrable Pfaff form or of a numerical function]”, Comptes

rendus de l’Académie des sciences, vol. 222, pp. 847–849, 1946.

[115] F. Reinders, F. H. Post, and H. J. Spoelder, “Visualization of

time-dependent data using feature tracking”, 1, vol. 17, Springer, 1999,

pp. 55–71.

[116] T. Rigo, N. Pineda, and J. Bech, “Analysis of warm season thun-

derstorms using an object-oriented tracking method based on radar

and total lightning data”, Natural Hazards and Earth System Sciences,

vol. 10, no. 9, pp. 1881–1893, 2010.

121



[117] T. Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. Jacobs,

“Volume-preserving nonrigid registration of MR breast images using

free-form deformation with an incompressibility constraint”, Transactions

on Medical Imaging, vol. 22, no. 6, pp. 730–741, 2003.

[118] A. Rosenfeld, “Adjacency in digital pictures”, Information and Control,

vol. 26, no. 1, pp. 24–33, 1974.

[119] ——, “Digital topology”, The American Mathematical Monthly, vol. 86,

no. 8, pp. 621–630, 1979.

[120] ——, “Three-dimensional digital topology”, Computer Vision Labratory,

University of Maryland, Tech. Rep. TR-936, 1980.

[121] A. Rosenfeld and A. C. Kak, Digital Picture Processing. Academic

Press, 1976.

[122] A. Rosenfeld, T. Y. Kong, and A. Y. Wu, “Digital surfaces”, CVGIP:

Graphical Models and Image Processing, vol. 53, no. 4, pp. 305–312, 1991.

[123] A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital

picture processing”, Journal of the ACM, vol. 13, no. 4, pp. 471–494,

1966.

[124] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach,

and D. J. Hawkes, “Nonrigid registration using free-form deformations:

Application to breast MR images”, Transactions on Medical Imaging,

vol. 18, no. 8, pp. 712–721, 1999.

[125] G. Sabidussi, “Graph multiplication”, Mathematische Zeitschrift,

vol. 72, no. 1, pp. 446–457, 1959.

[126] H. Saikia and T. Weinkauf, “Global feature tracking and similarity

estimation in time-dependent scalar fields”, Computer Graphics Forum,

vol. 36, no. 3, pp. 1–11, 2017.

[127] P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive con-

nected operators for image and sequence processing”, Transactions on

Image Processing, vol. 7, no. 4, pp. 555–570, 1998.

122



[128] R. Samtaney, D. Silver, N. Zabusky, and J. Cao, “Visualizing

features and tracking their evolution”, Computer, vol. 27, no. 7, pp. 20–27,

1994.

[129] L. A. Schwarz, “Non-rigid registration using free-form deformations”,

Ph.D. dissertation, Department of Informatics, Technische Universität

München, 2007.

[130] D. P. Shamonin, E. E. Bron, B. P. F. Lelieveldt, M. Smits, S.

Klein, and M. Staring, “Fast parallel image registration on cpu and

gpu for diagnostic classification of alzheimer’s disease”, Frontiers in

Neuroinformatics, vol. 7, p. 50, 2014.

[131] C. E. Shannon, “A mathematical theory of communication”, The Bell

System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[132] D. Silver and X. Wang, “Tracking and visualizing turbulent 3D

features”, Transactions on Visualization and Computer Graphics, vol. 3,

no. 2, pp. 129–141, 1997.

[133] J. K. Sircar and J. A. Cebrian, “An automated approach for

labeling raster digitized contour maps”, Photogrammetric Engineering

and Remote Sensing, vol. 57, no. 7, pp. 965–971, 1991.

[134] P. Skraba and B. Wang, “Interpreting feature tracking through the lens

of robustness”, in Topological Methods in Data Analysis and Visualization

III, ser. Mathematics and Visualization, Springer, 2014, pp. 19–37.

[135] B.-S. Sohn and C. L. Bajaj, “Time-varying contour topology”, Transac-

tions on Visualization and Computer Graphics, vol. 12, no. 1, pp. 14–25,

2005.

[136] M. Soler, M. Plainchault, B. Conche, and J. Tierny, “Lifted

wasserstein matcher for fast and robust topology tracking”, in Proceedings

of the 8th Symposium on Large Data Analysis and Visualization (LDAV),

IEEE Computer Society, 2018, pp. 23–33.

[137] S. N. Srihari, “Representation of three-dimensional digital images”,

Computing Surveys, vol. 13, no. 4, pp. 399–424, 1981.

123



[138] D. Stalling, M. Westerhoff, and H.-C. Hege, “Amira: A highly

interactive system for visual data analysis”, in The Visualization

Handbook, Elsevier, 2005, pp. 749–767.

[139] R. Szeliski and J. Coughlan, “Spline-based image registration”,

International Journal of Computer Vision, vol. 22, no. 3, pp. 199–218,

1997.

[140] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda,

“Algorithms for extracting correct critical points and constructing topo-

logical graphs from discrete geographical elevation data”, in Computer

Graphics Forum, Eurographics, vol. 14, Wiley, 1995, pp. 181–192.

[141] S. P. Tarasov and M. N. Vyalyi, “Construction of contour trees in

3D in O(n log n) steps”, in Proceedings of the 14th Symposium on

Computational Geometry (SoCG), ACM, 1998, pp. 68–75.

[142] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm”,

Journal of the ACM, vol. 22, no. 2, pp. 215–225, 1975.

[143] N. J. Tustison, B. B. Avants, T. A. Sundaram, J. T. Duda, and

J. C. Gee, “A generalization of free-form deformation image registration

within the ITK finite element framework”, in Proceedings of the 3rd

Workshop on Biomedical Image Registration (WBIR), ser. Lecture Notes

in Computer Science (LNCS), vol. 4057, Springer, 2006, pp. 238–246.

[144] J. K. Udupa, “Multidimensional digital boundaries”, CVGIP: Graphical

Models and Image Processing, vol. 56, no. 4, pp. 311–323, 1994.

[145] J. K. Udupa, S. N. Srihari, and G. T. Herman, “Boundary detection

in multidimensions”, Transactions on Pattern Analysis and Machine

Intelligence, no. 1, pp. 41–50, 1982.

[146] A. A. Valsangkar, J. M. Monteiro, V. Narayanan, I. Hotz, and

V. Natarajan, “An exploratory framework for cyclone identification

and tracking”, Transactions on Visualization and Computer Graphics,

vol. 25, no. 3, pp. 1460–1473, 2018.

124



[147] L. Vincent and P. Soille, “Watersheds in digital spaces: An efficient

algorithm based on immersion simulations”, Transactions on Pattern

Analysis & Machine Intelligence, no. 6, pp. 583–598, 1991.

[148] P. A. Viola, “Alignment by maximization of mutual information”, Ph.D.

dissertation, Massachusetts Institute of Technology, 1995.

[149] S. Wahl, C. Bollmeyer, S. Crewell, C. Figura, P. Friederichs,

A. Hense, J. D. Keller, and C. Ohlwein, “A novel convective-scale

regional reanalysis COSMO-REA2: Improving the representation of

precipitation”, Meteorologische Zeitschrift, vol. 26, no. 4, pp. 345–361,

2017.

[150] G. H. Weber, P.-T. Bremer, M. S. Day, J. B. Bell, and V. Pascucci,

“Feature tracking using reeb graphs”, in Topological Methods in Data

Analysis and Visualization, ser. Mathematics and Visualization, Springer,

2011, pp. 241–253.

[151] G. H. Weber, G. Scheuermann, H. Hagen, and B. Hamann,

“Exploring scalar fields using critical isovalues”, in Proceedings of the

13th Conference on Visualization (VIS), IEEE Computer Society, 2002,

pp. 171–178.

[152] A. Weiser and S. E. Zarantonello, “A note on piecewise linear and

multilinear table interpolation in many dimensions”, Mathematics of

Computation, vol. 50, no. 181, pp. 189–196, 1988.

[153] R. Wenger, Isosurfaces: Geometry, Topology, and Algorithms. CRC

Press, 2013.

[154] T. Weusthoff and T. Hauf, “The life cycle of convective-shower

cells under post-frontal conditions”, Quarterly Journal of the Royal

Meteorological Society, vol. 134, no. 633, pp. 841–857, 2008.

[155] W. Widanagamaachchi, C. Christensen, V. Pascucci, and P.-T.

Bremer, “Interactive exploration of large-scale time-varying data using

dynamic tracking graphs”, in Proceedings of the 2nd Symposium on Large

Data Analysis and Visualization (LDAV), IEEE Computer Society, 2012,

pp. 9–17.

125



[156] D. S. Wilks and R. L. Wilby, “The weather generation game: A review

of stochastic weather models”, Progress in Physical Geography: Earth

and Environment, vol. 23, no. 3, pp. 329–357, 1999.

[157] C. Zhou, R. Shu, and M. S. Kankanhalli, “Handling small features

in isosurface generation using marching cubes”, Computers & Graphics,

vol. 18, no. 6, pp. 845–848, 1994.

[158] Y. Zhou, W. Chen, and Z. Tang, “An elaborate ambiguity detec-

tion method for constructing isosurfaces within tetrahedral meshes”,

Computers & Graphics, vol. 19, no. 3, pp. 355–364, 1995.

126


	Introduction
	Related Work
	Scope of Thesis

	Time-dependent Data
	Precipitation Data
	COSMO Grid

	Methodology
	Graph Theory
	Grid Data
	Grid Cell Interpolation
	Digital Picture

	Image Registration
	Directed Deformation
	Overview
	Components

	Level Sets & Regions
	Approximations of Level Sets
	Digital Topology and Geometry

	Contour Tree
	Join and Split Trees
	Contour Tree for Discrete Data

	Segmentation of Regions
	Watershed Segmentation
	Hierarchical Implementation


	Tracking Approach
	Correspondence Identification
	Use Case for Image Registration

	Feature Definition & Extraction
	Spatio-Temporal Digital Picture
	Spatio-Temporal Watershed Segmentation

	Representation of Feature Tracks

	Results
	Registration Results
	Empirical Parameter Estimation
	Example Parameter File

	Tracking Results

	Discussion
	Conclusion
	Outlook


