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Abstract

The paper addresses primal interior point method for state constrained PDE op-
timal control problems. By a Lavrentiev regularization, the state constraint is trans-
formed to a mixed control-state constraint with bounded Lagrange multiplier. Exis-
tence and convergence of the central path are established, and linear convergence of
a short-step pathfollowing method is shown. The behaviour of the regularizations are
demonstrated by numerical examples.
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1 Introduction

The application of interior point methods to optimal control problems has received a good
deal of interest in the past years. This parallels the fast development of numerical methods
in large scale optimization where interior point methods play an important role. In the
context of PDE control, their performance was carefully tested by Haddoux et al. [5] for
discretized versions of elliptic control problems. Similarly, Grund and Rösch [4] considered
different codes of interior point methods for elliptic control problems with pointwise state-
constraints. Trust-region interior point techniques have been considered by M. Ulbrich,
S. Ulbrich and M. Heinkenschloss in [11] for the optimal control of semilinear parabolic
equations in a function space setting. Moreover, affine-scaling interior-point methods were
presented for semilinear parabolic boundary control in [10].

In [13, 12] primal-dual interior point methods in the infinite dimensional function space
setting for ODE problems have been analyzed and their computational realization by inexact
pathfollowing methods has been suggested. In [14] this method has been enhanced on the
control of elliptic PDE problems with control constrains.

A satisfactory convergence theory, however, had only been obtained for control con-
straints, whereas results for state constraints are scarce. The difficulty arises from the fact
that Lagrange multipliers for state constraints are usually only measures, which hampers
theoretical convergence analysis and affects the numerical solution.

†Supported by the DFG Research Center Matheon ”Mathematics for key technologies” in Berlin.
∗Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, D-10623, Germany
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As concerns the regularity of Lagrange multipliers, the situation changes for mixed
control-state constraints such as constraints of bottleneck type. Under natural assumptions,
their multipliers can shown to be functions in certain Lp-spaces, we only mention [9, 2, 1].
In [6], the idea came up to add a tiny fraction of the control to the state constraint such that
a mixed control-state constraint results. The Lagrange multiplier to this mixed constraint
is a bounded and measurable function. This Lavrentiev-regularization for state constraints
has been analyzed in the context of primal-dual active set methods for elliptic control
problems.

In the current paper, both ideas are combined. We analyze a primal interior point
method applied to a Lavrentiev regularized state constrained optimal control problem de-
fined in §2. We show existence and convergence of the central path defined by the interior
point method in §3 and §4, respectively. In §5, we turn to the linear convergence of an imple-
mentable short-step pathfollowing method. The paper is concluded with a set of numerical
examples in §6.

2 Problem setting

In this paper we consider the optimal control problem

(P) min J(y, u) :=
1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u‖2

L2(Ω) (1)

subject to the elliptic boundary value problem

Ay = u in Ω (2)
∂ny + αy = 0 on Γ (3)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. in Ω. (4)

In this setting, Ω ⊂ RN , N ∈ {2, 3}, is a bounded domain with C0,1−boundary Γ, yc, yd ∈
L∞(Ω) and α ∈ L∞(Γ) are fixed functions, and ν, λ ∈ R, λ > 0, are given constants. By A
we denote the differential operator

(Ay)(x) = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂

∂xj
y(x)

)
+ c0(x)y(x)

with coefficients aij ∈ C1,1(Ω), c0 ∈ L∞(Ω) satisfying aij(x) = aji(x) and the condition of
uniform ellipticity

N∑
i,j=1

aij(x)ξiξj ≥ δ|ξ|2 ∀ξ ∈ RN .

Moreover, we require c0(x) ≥ 0, α(x) ≥ 0 and assume that one of these two functions is
not vanishing identically. We refer to problem (1)–(4) as problem (P). Let us introduce the
following
Notations. By ‖ · ‖ = ‖ · ‖L2(Ω) and (·, ·) we denote the natural norm and the associated
inner product of L2(Ω), respectively. We use ‖A‖Lp→Lq to denote the norm of a linear
continuous operator A : Lp(Ω) → Lq(Ω). In the case p = q = 2, this norm is just denoted
by ‖A‖. For ‖A‖Lp→Lp we write ‖A‖Lp . Throughout the paper, c is a generic constant.
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Moreover we write Lp for Lp(Ω) to shorten the notation. If no confusion is possible, we
write S + v instead of S + vI, although S is an operator and v a function.

If v ∈ L2(Ω) is a given function, then v ≤ 0 means v(x) ≤ 0 for a.a. x ∈ Ω. By ∂n the
co-normal derivative

∂nu =
N∑

ij=1

niaijDju

is denoted.
The main scope of our paper is to discuss the convergence of the standard interior point

method for the problem (P). The simplest and well known idea of introducing this method
is the elimination of the mixed control-state constraint y +λu ≥ yc by a logarithmic barrier
function. We substitute (P) by the problem

(Pµ) minJµ(y, u) :=
1
2
‖y − yd‖2 +

ν

2
‖u‖2 − µ

∫
Ω

ln ((y + λu− yc)(x)) dx (5)

subject to

Ay = u in Ω (6)
∂ny + αy = 0 on Γ (7)

with u ∈ L2.
In our analysis, we transform the state-constrained problem (P) to the problem (11)–

(12) with control constraints. We have two reasons for: The analysis of this transformed
problem is simpler than that for (P), since we are able to prove the necessary regularity of
Lagrange multipliers. Moreover, it is easier to show the existence of the central path for
(11)– (12).

3 Existence of the central path

In this section we establish the existence of unique minima vµ of (Pµ) for all µ > 0. We
refer to the mapping µ 7→ vµ as the central path, even though continuity is proved only in
Section 4. First we recall some known facts about the state-equation (2)–(3).

Theorem 3.1. Under our assumptions, for all u ∈ Lr(Ω) with r > N
2 , equation (2) has a

unique solution y ∈ H1(Ω) ∩ C(Ω̄). There is a constant c(Ω, r) such that

‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c ‖u‖Lr(Ω).

The theorem was shown by Casas [3]. It ensures that, for N ≤ 3, the mapping G : u 7→ y
is continuous from L2 to H1(Ω) ∩ C(Ω̄). In particular, it is continuous in L2. We denote
the associated mapping by S = EG, where E : H1(Ω) → L2 is the embedding operator
from H1 ∩ C(Ω̄) in L2. Therefore, we have S : L2 → L2, continuously.

By S, problem (P) becomes equivalent to

min
1
2
‖Su− yd‖2 +

ν

2
‖u‖2 (8)

subject to

λu + Su− yc ≥ 0 a.e. in Ω. (9)
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Remark. S is known to be a compact operator. By λ > 0, −λ is not an eigenvalue of S,
see the discussion below.

To transform (8)–(9) into a control-constrained problem, we substitute

v := Su + λu.

By our assumption,
D := (S + λI)−1 (10)

exists as a continuous operator in L2. In fact, since λ > 0, we have λu+Su = 0 ⇔ λu+y =
0 ⇔ u = − 1

λy. This means Ay = − 1
λy, hence Ay + λu = 0 and ∂ny + αy = 0. Clearly,

by coercivity this equation has only the trivial solution. After this substitution, (8)–(9) is
equivalent to

min f(v) :=
1
2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 (11)

subject to

v − yc ≥ 0, (12)

where v ∈ L2. This is a control-constrained problem for the new control v that is interesting
in itself. For the special choice D = I our analysis covers problems with simple bounds on
the control v = u. The interior point method for (11) and (12) is equivalent to solving

min
{

f(v)− µ

∫
Ω

ln (v(x)− yc(x)) dx

}
. (13)

Obviously, the quadratic functional f is continuously differentiable in L2. Its derivative is
given by

f ′(vε) v = (p̃ + νD∗Dvε , v)

with p̃ = D∗S∗(SDv− yd). Here, S∗, D∗ : L2 → L2 are the Hilbert space adjoints to S, D,
respectively. If vε(x)− yc(x) ≥ ε > 0 holds a.e. on Ω, then the functional

φ(v) = µ

∫
Ω

ln (v(x)− yc(x)) dx

is differentiable at vε ∈ L2 in any direction v = ṽ − vε, where ṽ(x) − yc(x) ≥ ε a.e. in
Ω. Moreover, it is differentiable in any direction h ∈ L∞(Ω), since v + t h − yc ≥ ε/2 for
sufficiently small t.

Suppose now that (11)–(12) admits a solution vε = vε(µ) ∈ L2 satisfying vε(x)−yc(x) ≥
ε > 0. Then we get from the differentiability properties mentioned above

f ′(vε)− φ′(vε) = 0, (14)

since in this case vε belongs to the L∞-interior of the admissible set. Therefore, it holds

p̃ + νD∗Dvε −
µ

v − yc
= 0 a.e. in Ω.

Define η ∈ L∞(Ω) by
η(x) :=

µ

v(x)− yc(x)
. (15)
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Then we have η ≥ 0, vε − yc ≥ 0 and η(vε − yc) = µ for almost all x ∈ Ω. This function η
will tend to a Lagrange multiplier for (P) as µ ↓ 0. However, we have to show that (11)–
(12) is solvable, i.e. that the central path exists.

To verify this, we consider for fixed µ > 0, ε > 0 the auxiliary problem

(Pε
µ) min

v(x)−yc(x)≥ε
fµ(v) = f(v)− µ

∫
Ω

ln (v(x)− yc(x)) dx

where v ∈ L2. We first prove that this problem is solvable. Next we show that the solution
is not active for all sufficiently small ε > 0. In this way, finally a solution of (Pµ) is found.

Lemma 3.2. For all µ ≥ 0, it holds that fµ(v) →∞ if ‖v‖L2 →∞ and v(x) ≥ yc(x) + ε.

Proof. Since ‖v‖ = ‖D−1Dv‖ ≤ ‖S + λI‖ ‖Dv‖, we have

fµ(v) =
1
2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫
Ω

ln (v − yc) dx

≥ ν

2
‖Dv‖2 − µ

∫
Ω

(v − yc) dx

≥ νδ0

2
‖v‖2 − µ ‖v − yc‖L1 ≥ νδ0

2
‖v‖2 − µ c ‖v − yc‖ (16)

with δ0 = ‖S + λI‖−1 > 0. Obviously, ‖v‖ → ∞ implies fµ(v) →∞.

Theorem 3.3. For all µ ≥ 0 and 0 < ε ≤ 1, problem (Pε
µ) has a unique solution vε(µ).

There is a constant cv < ∞ independent of µ and ε such that ‖vε(µ)‖ ≤ cv.

Proof. Obviously, fµ is convex and continuous on the convex and closed subset Cε ⊂ L2,

Cε = {v ∈ L2(Ω) | v(x)− yc(x) ≥ ε > 0 for a.a. x ∈ Ω} .

Therefore, fµ is lower semicontinuous on Cε. Lemma 3.2 yields the existence of cv > 0 such
that all v ∈ Cε with ‖v‖ > cv can be neglected for the search of the infinimum of fµ: We
take ṽ := yc + 1, then the logarithmic term vanishes and

fµ(v) ≥ fµ(yc + 1) =
1
2
‖SDṽ − yd‖2 +

ν

2
‖Dṽ‖2

for all sufficiently large ‖v‖. On Cε ∩
{
v ∈ L2 | ‖v‖ ≤ cv

}
, the functional fµ is bounded,

hence
j(ε) := inf

v∈Cε

fµ(v)

if finite. Let vn ∈ Cε, ‖vn‖ ≤ cv, be an infimal sequence, i.e. fµ(vn) → j for n →∞.
We can assume w.l.o.g. weak convergence in L2, vn ⇀ vε ∈ Cε. By lower semicontinuity,

a standard argument yields
fµ(vε) = j,

hence vε is the solution of (Pε
µ).

We recall problem (Pε
µ),

min fµ(v) :=
1
2
‖SDv − yd‖2 +

ν

2
‖Dv‖2 − µ

∫
Ω

ln (v − yc) dx

v(x)− yc(x) ≥ ε a.e. in Ω.
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As in the theorem above, we denote the solution of (Pε
µ) by vε, since µ is taken fixed for a

while. Take any other v ∈ Cε and t ∈ [0, 1]. Then vε+t(v−vε) ∈ Cε, hence fµ(vε+t(v−vε)) is
defined. Note that fµ is not Gâteaux-differentiable in L2, since fµ(vε+ht) may be undefined
for h ∈ L2. However, it is directionally differentiable in the direction v − vε. From

0 ≤ fµ(vε + t(v − vε))− fµ(vε)
t

we find by t ↓ 0 for the directional derivative

f ′µ(vε)(v − vε) ≥ 0 ∀v ∈ Cε.

In terms of our transformation, this can be written as(
D∗S∗(SDvε − yd) + νD∗Dvε −

µ

vε − yc
, v − vε

)
≥ 0 ∀v ∈ Cε. (17)

Define pε := D∗S∗(SDvε − yd). Then we can re-write (17) as(
pε + νD∗Dvε −

µ

vε − yc
, v − vε

)
≥ 0 ∀v ∈ Cε. (18)

We shall show that ‖pε‖∞ is bounded, independently of ε: The operator S is known to be
self-adjoint, S = S∗. Moreover, as S = EG, S is even linear and continuous from L2 to
L∞. The same holds for S∗.

Let us discuss the form and the regularity properties of the operator D. We have
D = (S + λI)−1. Put w = Dz. Then z = Sw + λIw. It follows λw = z − Sw = z − SDz
and w = λ−1z − λ−1SDz. Therefore D admits the form

D = λ−1(I − SD). (19)

From this representation we get the additional regularity property D : L∞ → L∞, con-
tinuously. This follows from D : L2 → L2 and S : L2 → L∞. Moreover, we have D∗ =
(λI + S∗)−1. With the same argument, D∗ = λ−1(I − S∗D∗), hence also D∗ : L∞ → L∞

since S∗ = S : L2 → L∞ as well. Notice, that S and D commute, S∗ and D∗ as well.
We know from Lemma 3.2 that ‖vε‖ is bounded by a constant cv that does not depend

on ε. Now we estimate ‖pε‖∞ by

‖pε‖∞ = ‖D∗S∗(SDvε − yd)‖∞
≤ ‖D∗‖L∞→L∞ ‖S∗‖L2→L∞ ‖SDvε − yd‖ ≤ cp, (20)

where cp does not depend on ε, since ‖SDvε−yd‖ ≤ ‖S‖L2→L2‖D‖L2→L2‖cv‖+‖yd‖. Next
we evaluate (17). Let us define the sets

M+(ε) :=
{

x ∈ Ω
∣∣∣ pε(x) + ν(D∗Dvε)(x)− µ

vε(x)− yc(x)
> 0
}

M0(ε) :=
{

x ∈ Ω
∣∣∣ pε(x) + ν(D∗Dvε)(x)− µ

vε(x)− yc(x)
= 0
}

.

Due to (17), M+(ε) ∪ M0(ε) cover Ω up to a set of measure zero. Clearly, the variational
inequality (17) implies vε(x)− yc = ε for almost all x ∈ M+(ε).

Theorem 3.4. There exist constants a, b > 0 such that the set M+(ε) has measure zero
for all ε < a(

√
1 + bµ− 1).
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Proof. For almost all x ∈ M+(ε), the constraint is active, i.e. vε(x) − yc(x) = ε. Thus
by (20) we have for almost all x ∈ M+(ε)

cp + ν (D∗Dvε)(x)− µ

ε
≥ pε(x) + ν(D∗Dvε)(x)− µ

vε(x)− yc(x)
> 0. (21)

By (19),
D∗D = λ−2(I − S∗D∗)(I − SD) = λ−2I + K

with K : L2 → L∞

K = A−2 {−(S∗D∗ + SD) + S∗D∗DS}

bounded. Moreover, we know almost everywhere on M+(ε) that vε(x) = yc(x) + ε, hence

cp + ν (D∗Dvε)(x) = cp + ν (λ−2(yc(x) + ε) + (K vε)(x)).

With the left-hand side of (21), Theorem 3.3 yields

cp + ν(λ−2(yc(x) + ε) + ‖K‖L2→L∞cv) >
µ

ε
.

It is visible that the right hand side tends to zero as ε ↓ 0 while the left hand side
remains bounded. Therefore, the inequation can not be satisfied for small ε.

Solving this quadratic inequality for ε establishes the existence of constants a, b > 0
such that

ε > a(
√

1 + bµ− 1).

For smaller ε, M+(ε) must therefore have measure zero.

Corollary 3.5. For all ε < a(
√

1 + bµ− 1), the solution vε of (Pε
µ) is the unique solution

to (Pµ).

Proof. For these ε, the set M+(ε) has measure zero. Therefore, it holds

pε(x) + ν(D∗Dvε)(x)− µ

vε(x)− yc(x)
= 0

almost everywhere on Ω, hence vε satisfies the first order necessary optimality conditions
for the optimization problem (Pµ). This is a problem with convex objective functional;
the necessary conditions are sufficient for optimality. Strong convexity yields uniqueness
(notice that ν > 0). Therefore, vε is the unique solution of (Pµ).

Corollary 3.6. There exists a constant cµ > 0 such that for µ ≤ 1 the unique solution vµ

of (13) satisfies vµ ≥ yc + cµµ a.e. on Ω.

4 Convergence of the central path

Having established the existence of the central path µ 7→ vµ for all µ > 0, we can proceed
with proving continuity of the path and convergence towards a solution.

The unique minimizer of (13) can be characterized by (14) as

F (vµ;µ) = (D∗S∗SD + νD∗D)vµ −
µ

vµ − yc
= 0 a.e.
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Since vµ − yc ≥ cµµ holds for µ ≤ 1 by Corollary 3.6, F is directionally differentiable in
all directions v ∈ L∞. We denote the partial derivatives w.r.t. v and µ by ∂vF and ∂µF ,
respectively. The derivative ∂vF is

∂vF (v;µ) = (D∗S∗SD + νD∗D) +
µ

(v − yc)2
(22)

= (D∗S∗SD + νK) +
(

ν

λ2
+

µ

(v − yc)2

)
= K̄ +

(
ν

λ2
+

µ

(v − yc)2

)
, (23)

where
K̄ = D∗S∗SD + νK

is a bounded operator from L2 to L∞. Let γ = ‖K̄‖L2→L∞ . From (22) and (10) we see
immediately that, for all v ≥ yc + ε, ∂vF (v;µ) ∈ L(L2, L2) is a symmetric positive definite
operator with

〈ξ, ∂vF (v;µ)ξ〉 ≥ ν〈Dξ, Dξ〉 ≥ ν‖S + λI‖−2‖ξ‖2.

The Lax-Milgram theorem guarantees the existence of a bounded inverse ∂vF (v;µ)−1 :
L2 → L2 with

‖∂vF (v;µ)−1‖ ≤ 1
ν

(‖S‖+ |λ|)2. (24)

In the next lemma we prove a further regularity property of ∂vF .

Lemma 4.1. The derivative ∂vF (v;µ) : L∞ → L∞ with v > yc is a bijective operator with
bounded inverse ∂vF (v;µ)−1 : L∞ → L∞, where ‖∂vF (v;µ)−1‖L∞→L∞ ≤ ci is bounded
independently of µ.

Proof. Due to (24), for each z ∈ L∞ ⊂ L2 there is a solution ξ ∈ L2 to ∂vF (v;µ)ξ = z with

‖ξ‖ ≤ 1
ν

(‖S‖+ |λ|)2‖z‖ ≤
√
|Ω|
ν

(‖S‖+ |λ|)2‖z‖∞. (25)

Now we have by (23) (
ν

λ2
+

µ

(v − yc)2

)
ξ = z − K̄ξ

and hence by (25)

‖ξ‖∞ ≤ λ2

ν

(
‖z‖∞ + ‖K̄‖L2→L∞‖ξ‖

)
≤ λ2

ν

(
1 + γ

√
|Ω|
ν

(‖S‖+ |λ|)2
)
‖z‖∞

=: ci‖z‖∞.

Thus, ξ ∈ L∞ holds, such that ∂vF (v;µ) : L∞ → L∞ is bijective and has a bounded inverse
‖∂vF (v;µ)−1‖L∞→L∞ ≤ ci.

With the invertibility of ∂vF at hand we make use of the implicit function theorem in
order to justify the notion of a central path. We obtain the

Corollary 4.2. The mapping µ 7→ vµ is continuously differentiable from R+ to L∞.
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Now we turn to convergence of the central path towards a solution of (8).

Theorem 4.3. For µ → 0, the central path converges towards a KKT point v0 of (8).
There exists a constant c0 < ∞ such that the following error estimate holds for all µ ≤ 1:

‖v0 − vµ‖L∞ ≤ c0
√

µ (26)

The proof is somewhat technical, for which we give a sketch of its main ideas beforehand.
For this purpose we assume for now that K̄ = 0, such that ∂vF (v;µ) = ν/λ2 + µ/(v − yc)2

is a Nemyckii operator. By the implicit function theorem, the derivative v′µ of the central
path is given by

v′µ = −∂vF (vµ;µ)−1∂µF (vµ;µ) (27)

=
(

ν

λ2
+

µ

(vµ − yc)2

)−1 1
vµ − yc

=
(

ν(vµ − yc)
λ2

+
µ

vµ − yc

)−1

Using the fact that

ax +
b

x
≥ 2

√
ab (28)

holds for arbitrary a, b, x > 0, we see immediately that

v′µ ≤
(

2
√

νµ

λ2

)−1

≤ c
√

µ
.

Integrating the slope of the central path from 0 to µ yields the length of the central path
and therefore an error bound of

‖vµ − v0‖∞ ≤ c
√

µ.

However, the operator K̄ is compact but nonzero, and introduces a nonlocal coupling across
the domain Ω. Bounding this coupling requires a more involved proof as given below.

Proof. First we will establish an L2-bound on v′µ and infer an L∞-bound from that. From
this we will determine the existance of and distance to the limit point v0, and finally check
the first order necessary conditions for v0.
(i) L2-estimate. We set out to construct a splitting of the domain Ω into two different
regions, such that the nonlocal coupling introduced by K̄ is dominated by purely local
effects in each subdomain and is in a certain sense sufficiently small across the subdomains.
To this extend we define T = D∗S∗SD+νD∗D = K̄+ν/λ2 and the characteristic functions
of the almost active and almost inactive sets by

χA =

{
1, vµ − yc ≤ C

0, otherwise
and χI = 1− χA, (29)

respectively, with

C =
√

µ

2‖T‖(1 + ‖T‖ ‖T−1‖)
. (30)

Notice that multiplication by χA and χI acts as a projection onto two orthogonal subspaces
of L2 with disjoint support.
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We may reformulate (27) as

∂vF (vµ;µ)v′µ =
(

T +
µ

(vµ − yc)2

)
v′µ =

χA + χI

vµ − yc
a.e., (31)

such that we can obtain individual bounds for each summand of the right hand side. First
we consider

∂vF (vµ;µ)vI =
χI

vµ − yc
.

By (24) we readily obtain some constant cI < ∞ such that

‖vI‖ =
∥∥∥∥∂vF (vµ;µ)−1 χI

vµ − yc

∥∥∥∥ ≤ 1
ν

(‖S‖+ |λ|)2 1
C
≤ cI√

µ
. (32)

Now we turn to the remaining part of (31) on the almost active set, which we write as

(χA + χI)∂vF (vµ;µ)(χA + χI)vA =
χA

vµ − yc
.

Expanding the left hand side and separating the terms according to the subspaces L2(supp χA)
and L2(suppχI) generated by the projections χA and χI , respectively, yields

χA∂vF (vµ;µ)χAvA + χA∂vF (vµ;µ)χIvA =
χA

vµ − yc

χI∂vF (vµ;µ)χAvA + χI∂vF (vµ;µ)χIvA = 0.

In the upper left block of the equation system, completely defined on the almost active set,
the interior point regularization dominates, such that we shift the remaining parts to the
right hand side. The antidiagonal blocks contain only the nonlocal coupling introduced by
K̄ and are moved to the right hand side in both equations. We end up with[

χA
µ

(vµ − yc)2
χA

]
χAvA =

χA

vµ − yc
− χATχAvA − χATχIvA (33)[

χI

(
T +

µ

(vµ − yc)2

)
χI

]
χIvA = −χITχAvA. (34)

Notice that the restriction

χI

(
T +

µ

(vµ − yc)2

)
χI ∈ L(L2(supp χI), L2(supp χI))

is a symmetric positive definite operator with bounded inverse∥∥∥∥∥
(

χI

(
T +

µ

(vµ − yc)2

)
χI

)−1
∥∥∥∥∥ ≤ ‖T−1‖.

Hence, (34) has a unique solution which is bounded in terms of the right hand side. On the
almost active set, (33) can be solved pointwise. Solving both equations yields

‖χAvA‖ ≤
∥∥∥∥χA

vµ − yc

µ

∥∥∥∥+
∥∥∥∥χA

(vµ − yc)2

µ

∥∥∥∥ ‖T‖‖χAvA‖

+
∥∥∥∥χA

(vµ − yc)2

µ

∥∥∥∥ ‖T‖‖χIvA‖ (35)
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and

‖χIvA‖ ≤

∥∥∥∥∥
(

χI

(
T +

µ

(vµ − yc)2

)
χI

)−1
∥∥∥∥∥ ‖χITχAvA‖

≤ ‖T−1‖‖T‖‖χAvA‖. (36)

Inserting (36) into (35) and using (29) and (30) we obtain

‖χAvA‖ ≤
C
√
|Ω|

µ
+

C2

µ
‖T‖(1 + ‖T−1‖‖T‖)‖χAvA‖ =

C
√
|Ω|

µ
+

1
2
‖χAvA‖.

By (30) this verifies the existence of some constant c̄ < ∞ such that ‖χAvA‖ ≤ c̄√
µ . Finally,

‖χIvA‖ ≤ ‖T−1‖‖T‖ c̄√
µ holds, such that by (32) there is a constant ĉ < ∞ with

‖v′µ‖ ≤ ‖χAvA‖+ ‖χIvA‖+ ‖vI‖ ≤
ĉ
√

µ
. (37)

(ii) L∞-estimates. Returning to (31) we obtain

‖v′µ‖L∞ ≤

∥∥∥∥∥
(

ν

λ2
+

µ

(vµ − yc)2

)−1 1
vµ − yc

∥∥∥∥∥
L∞

+

∥∥∥∥∥
(

ν

λ2
+

µ

(vµ − yc)2

)−1

K̄v′µ

∥∥∥∥∥
L∞

≤

∥∥∥∥∥
(

ν(vµ − yc)
λ2

+
µ

vµ − yc

)−1
∥∥∥∥∥

L∞

+

∥∥∥∥∥
(

ν

λ2
+

µ

(vµ − yc)2

)−1
∥∥∥∥∥

L∞

γ‖v′µ‖.

Using (28) we proceed with

‖v′µ‖L∞ ≤

∥∥∥∥∥
(

2
√

νµ

λ2

)−1
∥∥∥∥∥

L∞

+
λ2

ν
γ

ĉ
√

µ
≤ c0√

µ

for some c0 < ∞.
(iii) Distance to the limit point. The distance between two points on the central path is
therefore bounded by

‖vµ1 − vµ2‖L∞ ≤
∫ µ2

µ1

‖v′µ‖L∞ dµ ≤ c0

2
(
√

µ2 −
√

µ1). (38)

Since for any sequence µk → 0 the corresponding sequence vµk
of central path points forms

a Cauchy sequence, the path converges towards some limit point v0. Performing the limit
process µ1 → 0 verifies the error bound (26).
(iv)First order necessary conditions. Recalling the Lagrange multiplier approximations ηµ

from (15) we write (14) as f ′(vµ) = ηµ. Due to the continuity of f ′ and the convergence
of vµ → v0 in L2, the multiplier approximations converge towards η0 = f ′(v0) in L2. Since
ηµ ≥ 0 and ηµ(vµ−yc) = µ for almost all x ∈ Ω and therefore 〈ηµ, vµ−yc〉 = µ|Ω|, the same
holds by continuity for η0, i.e. η0 ≥ 0 and 〈η0, v0 − yc〉 = 0. Since the first order necessary
conditions are satisfied, v0 is a KKT point for (11).

5 Convergence of a short step pathfollowing method

For the analysis of interior point methods, local norms are an invaluable tool. Here we use
the scaled norm

‖v‖µ = ‖zµv‖L∞ ,
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with the scaling

zµ =
√

ν

λ2
+

µ

(vµ − yc)2
,

which is closely connected to the energy norms used in the theory of self-concordant barrier
functionals [7, 8].

We consider a short-step pathfollowing method with classical predictor. Since we are in-
terested in actually implementable algorithms, we have to use an inexact Newton corrector,
which replaces the infinite dimensional Newton equation

∂vF (vk;µk+1)∆vk = −F (vk;µk+1)

for the exact correction ∆vk by a suitably discretized finite dimensional counterpart

∂vF (vk;µk+1)∆vk
h = −F (vk;µk+1) + rk.

for the inexact correction ∆vk
h, such that an inner residual rk remains. The iteration index

is denoted by a superscript. Another source of inexactness is e.g. the iterative solution of
the state equation. The algorithm reads as follows.

Algorithm 5.1.
Choose 0 < σ < 1, δ > 0, µ0 > 0, and v0 > yc

For k = 0, . . .
µk+1 = σµk

solve ∂vF (vk;µk+1)∆vk
h = −F (vk;µk+1)

up to a relative accuracy of ‖∆vk
h −∆vk‖µk+1 ≤ δ‖∆vk‖µk+1

vk+1 = vk + ∆vk
h

The remainder of the section is devoted to proving that for suitable choices of σ, δ, µ0,
and v0, all iterates of this algorithm are well defined and converge towards the solution
point v0. First we derive the analogue of Lemma 4.1 for the scaled norm.

Lemma 5.2. There is some constant cz < ∞ independent of µ, such that

‖zµ∂vF (v;µ)−1ζ‖L∞ ≤ cz(1 + ϑ)2‖z−1
µ ζ‖L∞

for all v ∈ Bµ(vµ;ϑ
√

µ) = {v ∈ L∞ : ‖v − vµ‖µ ≤ ϑ
√

µ} with ϑ < 1.

Proof. First we see that∥∥∥∥ v − vµ

vµ − yc

∥∥∥∥
L∞

≤
∥∥∥∥zµ

v − vµ√
µ

∥∥∥∥
L∞

≤ ‖v − vµ‖√
µ

≤ ϑ < 1

and therefore

v − yc ≥ (1− ϑ)(vµ − yc) and v − yc ≤ (1 + ϑ)(vµ − yc), (39)

such that ∂vF (vµ;µ) is invertible. Define ξ = ∂vF (vµ;µ)−1ζ.
Analogously to Lemma 4.1 we distinguish two cases and first assume that

‖z−1
µ ‖L∞‖ξ‖L2 ≥ α‖zµξ‖L∞
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for some arbitrary α > 0. Then we obtain

‖z−1
µ ∂vF (v)ξ‖L∞ ≥ ‖z−1

µ ‖L∞‖∂vF (v)ξ‖L∞

≥ 1√
|Ω|

‖z−1
µ ‖L∞‖∂vF (v)ξ‖L2

≥ 1√
|Ω|

‖z−1
µ ‖L∞ν(‖S‖+ |λ|)−2‖ξ‖L2

≥ να√
|Ω|

(‖S‖+ |λ|)−2‖zµξ‖L∞ . (40)

Otherwise we have by (39)

‖z−1
µ ∂vF (v)ξ‖L∞ =

∥∥∥∥z−1
µ K̄ξ + z−1

µ

(
ν

λ2
+

µ

(v − yc)2

)
ξ

∥∥∥∥
L∞

≥ −‖z−1
µ ‖L∞‖K̄ξ‖L∞ +

∥∥∥∥z−1
µ

µ

(1 + ϑ)2(vµ − yc)2
ξ

∥∥∥∥
L∞

≥ −‖z−1
µ ‖L∞γ‖ξ‖L2 + (1 + ϑ)−2‖zµξ‖L∞

≥ −γα‖zµξ‖L∞ + (1 + ϑ)−2‖zµξ‖L∞

= ((1 + ϑ)−2 − γα)‖zµξ‖L∞ . (41)

Choosing

ρ =

(
ν√

|Ω|(‖S‖+ |λ|)2
+ γ

)−1

and α = ρ(1 + ϑ)−2,

the claim is verified for cz = (1− γρ)−1 < ∞.

Next we prove a continuity result for the scaled norm.

Lemma 5.3. There is a constant cσ < ∞ independent of µ such that

‖v‖σµ ≤ (1 + cσ(1− σ)‖v‖µ (42)

holds for all v ∈ L∞ and
cz

cz + 1/2
≤ σ ≤ 1.

Proof. We begin with estimating the derivative of the central path in the scaled norm.
Lemma 5.2 applied to (27) results in

‖v′µ‖µ ≤ cz‖z−1
µ ∂vF (vµ;µ)v′µ‖L∞ = cz‖z−1

µ (vµ − yc)−1‖L∞ ≤ cz√
µ

. (43)

We proceed with introducing the monotonically decreasing majorant Θ(σ) for the expression

f(σ) =
∥∥∥∥ vµ − yc

vσµ − yc

∥∥∥∥
L∞

≤ Θ(σ)
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by

Θ(σ) = f(1) +
∫ 1

σ

f ′(τ) dτ

≤ 1 +
∫ 1

σ

∥∥∥∥ vµ − yc

(vτµ − yc)2
v′τµµ

∥∥∥∥
L∞

dτ

≤ 1 +
∫ 1

σ

∥∥∥∥ vµ − yc

vτµ − yc

∥∥∥∥
L∞

∥∥∥∥ √
τµ

vτµ − yc
v′τµ

∥∥∥∥
L∞

µ
√

τµ
dτ

≤ 1 +
∫ 1

σ

Θ(τ)‖v′τµ‖τµ
µ

√
τµ

dτ

≤ 1 +
∫ 1

σ

Θ(σ)
cz√
τµ

µ
√

τµ
dτ

≤ 1 + Θ(σ)
cz

σ
(1− σ).

Solving for Θ yields ∥∥∥∥ vµ − yc

vσµ − yc

∥∥∥∥
L∞

≤
(
1− cz

σ
(1− σ)

)−1

.

Now from

‖v‖σµ =
∥∥∥∥zµ

zσµ

zµ
v

∥∥∥∥
L∞

≤ ‖v‖µ

√
σ

∥∥∥∥ vµ − yc

vσµ − yc

∥∥∥∥
L∞

≤
√

σ
(
1− cz

σ
(1− σ)

)−1

‖v‖µ

the constant cσ is easily established.

Lemma 5.4. There exists some constant ω < ∞ such that the Lipschitz condition∥∥∂vF (v;µ)−1(∂vF (v;µ)− ∂vF (v̂;µ))(v − v̂)
∥∥

µ
≤ ω
√

µ
‖v − v̂‖2

µ (44)

holds for all v, v̂ ∈ Bµ(vµ, ϑ
√

µ) with ϑ < 1.

Proof. Using Lemma 5.2 we have∥∥∂vF (v;µ)−1(∂vF (v;µ)− ∂vF (v̂;µ))(v − v̂)
∥∥

µ

≤ cz(1 + ϑ)2
∥∥z−1

µ (∂vF (v;µ)− ∂vF (v̂;µ))(v − v̂)
∥∥

L∞

= cz(1 + ϑ)2
∥∥∥∥z−1

µ

(
µ

(v − yc)2
− µ

(v̂ − yc)2

)
(v − v̂)

∥∥∥∥
L∞

≤ cz(1 + ϑ)2
∥∥∥∥z−1

µ µ
v − v̂

((1− ϑ)(vµ − yc))3
(v − v̂)

∥∥∥∥
L∞

= cz
(1 + ϑ)2

(1− ϑ)3

∥∥∥∥ µ

z3
µ(vµ − yc)3

z2
µ(v − v̂)2

∥∥∥∥
L∞

≤ cz
(1 + ϑ)2

(1− ϑ)3

∥∥∥∥ µ

z3
µ(vµ − yc)3

∥∥∥∥
L∞

‖v − v̂‖2
µ

≤ cz(1 + ϑ)2
√

µ(1− ϑ)3
‖v − v̂‖2

µ,

which proves the claim for ω = cz
(1+ϑ)2

(1−ϑ)3 .
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We can now prove the convergence of the pathfollowing method.

Theorem 5.5. Assume that

δ ≤ ρ
1− ρ

1 + ρ
, σ ≥ 1−

(
1− ρϑ + 3cσ + cz

ϑ + 3cσ + cz

) √
ρ− δ(1 + ρ)− ρ

1− ρ
, (45)

and ‖v0−vµ0‖µ0 ≤ ρϑ
√

µ0 for ϑ ≤ (cz +2)−1 and some ρ < 1. Then the iterates vk defined
by Algorithm 5.1 are all well defined and converge linearly towards the limit point v0. More
precisely, ∥∥vk − vµk

∥∥
µk ≤ ρϑ

√
µk. (46)

Proof. By induction, we assume that (46) holds for the current iterate vk. For σ > cz/(cz +
2), Lemma 5.3 and (43) yield

‖vk − vµk+1‖µk+1 ≤ ‖vk − vµk‖µk+1 + ‖vµk − vµk+1‖µk+1

≤ (1 + cσ(1− σ))‖vk − vµk‖µk +
∫ µk

µk+1
‖v′τ‖µk+1 dτ

≤ (1 + cσ(1− σ))ρϑ
√

µk +
∫ µk

µk+1
(1 + cσ(1− σ))‖v′τ‖τ dτ

≤ (1 + cσ(1− σ))

(
ρϑ
√

µk +
∫ µk

µk+1

cz√
τ

dτ

)

≤ (1 + cσ(1− σ))

(
ρϑ
√

µk +
czµ

k(1− σ)√
µk+1

)

≤ (1 + cσ(1− σ))
(

ρϑ√
σ

+
cz(1− σ)

σ

)√
µk+1.

Notice that

σ ≥ σmin =
ρϑ + 3cσ + cz

ϑ + 3cσ + cz
>

cz

cz + 2

implies

‖vk − vµk+1‖µk+1 ≤ 1
σ

(1 + cσ(1− σ))(ρϑ + cz(1− σ))
√

µk+1

=
1
σ

(ρϑ + (cσρϑ + cz)(1− σ) + cσcz(1− σ)2)
√

µk+1

<
1
σ

(ρϑ + (cσρϑ + cz + 2cσ)(1− σ))
√

µk+1 (47)

≤ ϑ
√

µk+1.

Since the estimate (47) is convex, we end up with the error bound

‖vk − vµk+1‖µk+1 <

(
ρϑ +

1− σ

1− σmin
(1− ρ)ϑ

)√
µk+1.

Dropping the fixed argument µk+1 from F we obtain the error of the exact Newton corrector

15



result as

vµk+1 − vk −∆vk = vµk+1 − vk + ∂vF (vk)−1F (vk)

= ∂vF (vk)−1
(
F (vk) + ∂vF (vk)(vµk+1 − vk)

)
= −

∫ 1

0

∂vF (vk)−1
(
∂vF (vk + s(vµk+1 − vk))− ∂vF (vk)

)
(vµk+1 − vk) ds

and by Lemma 5.4

‖vµk+1 − vk −∆vk‖µk+1 ≤
∫ 1

0

ω√
µk+1

s‖vµk+1 − vk‖2
µk+1 ds

<
ω

2
√

µk+1

(
ρϑ +

1− σ

1− σmin
(1− ρ)ϑ

)2

µk+1.

Since by Lemma 5.4 and the assumption on ϑ

ω

2
ϑ =

cz(1 + ϑ)2

2(1− ϑ)3
ϑ ≤ czϑ

1− 2ϑ
≤

cz
1

cz+2

1− 2
cz+2

= 1

holds, we can further estimate

‖vµk+1 − vk −∆vk‖µk+1 <

(
ρ +

1− σ

1− σmin
(1− ρ)

)2

ϑ
√

µk+1.

Here it is apparent that choosing σ = σmin is just sufficient for an exact Newton corrector
iteration to converge. However, we aim at restoring the tolerance ρθ

√
µk+1 in a single

Newton step. With the additional stepsize restriction

σ ≥ 1− (1− σmin)
√

ρ− ρ

1− ρ

we obtain
ρ +

1− σ

1− σmin
(1− ρ) ≤ √

ρ

and thus
‖vµk+1 − vk −∆vk‖µk+1 < ρϑ

√
µk+1.

Up to now, we have considered the exact Newton correction with a length of

‖∆vk‖µk+1 ≤ ‖vµk+1 − vk −∆vk‖µk+1 + ‖vµk+1 − vk‖µk+1

≤ ρϑ
√

µk+1 + ϑ
√

µk+1

= (1 + ρ)ϑ
√

µk+1.

The next iterate vk+1 given by the inexact Newton step has therefore an error bound of

‖vµk+1 − vk+1‖µk+1 ≤ ‖vµk+1 − vk −∆vk‖µk+1 + δ‖∆vk‖µk+1

≤

[(
ρ +

1− σ

1− σmin
(1− ρ)

)2

+ δ(1 + ρ)

]
ϑ
√

µk+1.
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With the accuracy requirement and the final stepsize restriction given by (45), we obtain

‖vµk+1 − vk+1‖µk+1 ≤ ρϑ
√

µk+1,

which completes the induction.
Moreover, together with Theorem 4.3, we obtain

‖v0 − vk‖L∞ ≤ ‖v0 − vµk‖L∞ +
λ√
ν
‖vµk − vk‖µk+1

≤ c0

√
µk + ρϑ

√
µk ≤ (c0 + ρϑ)σk/2

√
µ0,

which proves r-linear convergence of vk to the KKT point v0.

6 Numerical tests

We have tested our method by the following example

min J(y, u) :=
1
2
‖y − yd‖2

L2(Ω) +
ν

2
‖u− ud‖2

L2(Ω) (PT)

subject to

−∆y + y = u inΩ (48)
∂ny = 0 onΓ (49)

and to the pointwise mixed control-state constraints

y + λu ≥ yc a.e. inΩ. (50)

with Ω = (0, 1)× (0, 1).
The function ud is introduced for technical reasons.This does not change the validity of our
theorems.
It is easy to verify, that (PT) fits into the setting of (P). For all λ > 0 the Lagrange
multiplier η belongs to L2(Ω). We consider three different examples. In example 1 and 2
the Lagrange multiplier is in L2(Ω) also for λ = 0. In the third example η ∈ B(Ω) for λ = 0.

We solved the regularized problems numerically by a short-step pathfollowing method,
using a conform finite element method to solve the state and adjoint equation, where all
variables were discretised by linear finite elements. Note that due to the linearity of the state
equation, the computational all-at-once approach used here is indeed an implementation of
the inexact Newton method described in §5. Using a primal algorithm, we have calculated
the Lagrange multiplier η by the relation

η =
µ

y − yc + εu
.

We implemented our method using Matlab and the PDE-toolbox for mesh generation,
matrix-assembling etc. The stopping parameter for the outer iteration was µ ≤ ε = 10−6,
except for the calculation of figures 27–30. For our computations we used a Friedrichs-Keller
triangulation with fixed mesh size h = 0.015625. In the following, the numerical solutions
are denoted by (·)h, the exact optimal control, optimal state resp. the optimal adjoint state
are denoted by ū, ȳ and p̄, resp. In some figures these functions are labeled as uopt etc.
Notice, that for fixed mesh size the numerical solutions tend to the projection of the exact
solution onto the finite element space. All computations were performed on a dual Pentium
IV/2.8GHz machine with 1GB RAM running under Linux.
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6.1 Example 1

This example is taken from [6]. We choose ū = 2, p̄ = −2 and ȳ = 2. The desired state is
given by

yd(x1, x2) = 4−max
{
−20

(
(x1 − 0.5)2 − (x2 − 0.5)2

)
+ 1, 0

}
,

yc is given by

yc(x1, x2) = min
{
−20

(
(x1 − 0.5)2 − (x2 − 0.5)2

)
+ 3, 2

}
and the Lagrange multiplier is

η(x1, x2) = max
{
−20

(
(x1 − 0.5)2 − (x2 − 0.5)2

)
+ 1, 0

}
.

Moreover, we have chosen ud = 0. In (PT) we choose ν = 1 and λ = 10−16.
The following figures show the exact functions yd, yc and the Lagrange multiplier η.
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Figure 1: Desired state yd
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Figure 2: State contraint yc
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Figure 3: Multiplier η

The next set of figures show the numerical solutions yh, uh, ph, and ηh of the problem
regularized with λ = 10−16.
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Figure 4: Control uh
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Figure 5: State yh
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Figure 6: Adjoint state ph
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Figure 7: Lagrange multiplier ηh

For a comparsion with results computed by a primal-dual active set strategy we refer to
[6]. Note that the scale for y, u and p is in the span of [1.999999, 2.000001], [1.9995, 2.0005]
respectively [−2.0005,−1.9995]. In contrast to the primal-dual active set strategy in [6],
small values of λ do not influence the convergence rate.

The following figures 8–11 show the differences between the numerical solutions uh,yh

ph and ηh and the exact solutions u, y, p and η, masured in the L2-norm for regularization
parameter λ = 10−16. Both axes are scaled logarithmically. With this choice of the regu-
larisation parameter, the convergence of the path is visible.The behavior of the Lagrange
multiplier for µ → 0 is remarkable, see also figures 12–15.
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Figure 8: Error ‖u− uopt‖
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Figure 9: Error ‖y − yopt‖
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Figure 10: Error ‖p− popt‖
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Figure 11: Error ‖η − ηopt‖

The next figures show the evolution of the Lagrange-multiplier ηh along the central path.
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Figure 12: Multiplier ηh at µ = 0.01
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Figure 13: Multiplier ηh at µ = 10−4
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Figure 14: Multiplier ηh at µ = 10−6
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Figure 15: Multiplier ηh at µ = 10−8

6.2 Example 2

This example is constructed such that ȳ, ū and p̄ are trigonometric functions of the form
c cos (πx1) cos (2πx2). We choose c = 1 for ȳ and c = (−5νπ2) for p̄ . From the state
equation and the optimality condition we get ū = −∆ȳ + ȳ =

(
5π2 + 1

)
ȳ, and ud =

ū + 1
ν p̄ = ȳ, respectively.

Choosing ŷ = 2 sin (2πx1)−1.5, η̄ = max {ŷ − ȳ, 0}, and yc = min {ŷ, ȳ}, the complementary
slackness condition is fullfilled. All these functions are continuous. Therefore the adjoint
equation can be treated in a classical way. From the adjoint equation we get yd = ∆p̄− p̄+
ȳ − η̄ =

((
5νπ2

) (
5π2 + 1

)
+ 1
)
ȳ − η̄. Figures 16–18 show the functions yd yc and η.
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Figure 16: Desired state yd
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Figure 17: State constraints
yc
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Figure 18: Multiplier η

The following figures show the numerical solutions for ν = 10−6 and λ = 10−6.
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Figure 19: Control uh
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Figure 20: State yh
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Figure 21: Adjoint state ph
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Figure 22: Multiplier ηh

Figures 23–26 show the differences (·)h − (·)opt between the numerical solutions and the
optimal solutions at ν = 10−6 and λ = 10−6.

10
−8

10
−6

10
−4

10
−2

10
0

10
−3

10
−2

10
−1

10
0

µ

|| 
u h −

 u
op

t ||

Figure 23: Error ‖u− uopt‖
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Figure 24: Error ‖y − yopt‖ u
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Figure 26: Error ‖η − ηopt‖
The following set of figueres shows the evolution of the control uh along the central path.
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Figure 27: Control uh at µ = 0.01
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Figure 28: Control uh at µ = 0.001
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Figure 29: Control uh at µ = 10−4
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Figure 30: Control uh at µ = 10−5

6.3 Example 3

In this example we consider the problem (PT) in the following setting:

yd = cos(πx1) cos (2πx2) (51)
yc = min {6 sin (πx1) sin (πx2)− 4, 1} (52)

and ud = 0. Here, the optimal control ū is unknown, just as the functions ȳ, p̄ and the
Lagrange-multiplier η. In figures 31 and 32 we show the functions yd and yc.
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Figure 31: Desired state yd
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Figure 32: State contraints yc

For our computations we choose ν = 10−6 and λ = 10−16. The following set of figures
shows the numerical solutions uh, yh, ph and ηh.
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Figure 33: Control uh
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Figure 34: State yh
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Figure 35: Adjoint state ph
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Figure 36: Lagrange multiplier ηh at
ν = 10−6 and λ = 10−16

Obviously the Lagrange-multiplier ηh shown in figure 36 tends to a measure with singular
parts located on two circles in Ω, the points of nondifferentiability of ȳ.
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