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Introduction

The dynamic simulation of constrained mechanical systems is of importance
in application areas such as robotics, vehicle and machinery design, and
biomechanics, see e.g. [23, 29, 31]. The traditional approach to formulating
and numerically solving the equations of motion of multibody systems has
been to use a suitably chosen set of minimal coordinates, in terms of which the
equations of motion become a second–order system of ordinary differential
equations. These are in turn integrated by standard ODE solvers. More
recently, progress in numerical solution techniques for differential–algebraic
equations and the comparative ease of building up descriptor formulations of
mechanical systems (i.e., formulations in non–minimal sets of coordinates)
have spurred the development of numerical methods which directly solve
equations of motion in descriptor form, see e.g. [1, 5, 7, 14, 21, 24, 28, 34].
Methods which automatically determine a local set of minimal coordinates
during integration, such as those based on generalized coordinate partitioning
[36] are widely used in commercial multibody software packages and are in
some respects quite close to differential–algebraic solvers, but certainly differ
in that they are less versatile in handling the linear algebra.

The present paper describes the Fortran code MEXX (short for MEXanical
systems eXtrapolation integrator) and its underlying concepts. MEXX is
suited for direct integration of the equations of motion in descriptor form,
and has the following features:

• Time stepping by a half–explicit extrapolation method, allowing for the
accurate and robust computation of position, velocity, acceleration, and
constraint forces.

• Only position and velocity constraint functions are evaluated, acceler-
ation constraints need not be formulated.

• Both position and velocity constraints remain satisfied throughout the
integration interval.

• Uses well–structured linear algebra, enabling the use of O(n) recursive
elimination, among other full and sparse linear algebra options.

• Time–continuous solution representation (e.g. for graphics)

• Root–finding options (e.g. for unilateral constraints and Coulomb fric-
tion problems)
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MEXX encourages the use of large, sparse descriptor formulations, but can
also efficiently handle near–statespace kinematic formulations of multibody
systems.

In Section 1 we discuss the class of equations that are to be solved by MEXX.
Section 2 describes discretization and related issues, and Section 3 deals with
various linear algebra options. Section 4 gives a survey of implementation
aspects. Finally, in Section 5 some numerical experiments illustrate the per-
formance of MEXX.
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Chapter 1

Problem formulation

1.1 Equations of motion

MEXX is to solve initial value problems for nonstiff equations of motion
in descriptor form. The equations for position p(t), velocity v(t), Lagrange
multipliers λ(t), and (optionally) external dynamics variables u(t), take the
form

a) ṗ = T (t, p)v

b) M(t, p)v̇ = f(t, p, v, λ, u)− G(t, p)T λ

c) 0 = G(t, p) · v + gI(t, p)

d) u̇ = d(t, p, v, λ, u)

(1.1)

with position constraints treated as invariants:

0 = g(t, p) , (1.1e)

and with prescribed initial values

p(t0) = p0, v(t0) = v0, u(t0) = u0 . (1.2a)

If f depends non–linearly on λ, then also an approximation of

λ(t0) = λ0 (1.2b)

should be specified. The dimension and interpretation of the unknown vari-
ables are the following:

p ∈ R
np position variables

v ∈ R
nv velocity variables (nv ≤ np)

λ ∈ R
nλ Lagrange multipliers (nλ ≤ nv)

u ∈ R
nu variables of external dynamics

The functions in (1.1) are assumed to be sufficiently smooth, with the fol-
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lowing (obvious) dimensions:

T : R × R
np → R

np×nv

M : R × R
np → R

nv×nv

G : R × R
np → R

nλ×nv

f : R × R
np × R

nv × R
nλ × R

nu → R
nv

d : R × R
np × R

nv × R
nλ × R

nu → R
nu

gI : R × R
np → R

nλ

g : R × R
np → R

ng

We assume that for all (t, p) in a neighbourhood of the solution the following
conditions are satisfied:

M(t, p) is symmetric and positive semi–definite . (1.3a)

G(t, p) has full row rank . (1.3b)

aT M(t, p)a > 0 for all a ∈ R
nv with G(t, p)a = 0 . (1.3c)

If (1.3a) holds, then (1.3b,c) are equivalent to:

(

M GT

G 0

)

is invertible . (1.4a)

This assumption is sufficient as long as the Jacobian

F :=
∂f

∂λ

is “small” in a neighbourhood of the solution, which is satisfied in many
applications. We note that, physically, the dependence of f on λ models the
effect of dry friction in the joints of the mechanical system.

Otherwise, we have to require the following condition instead of (1.4a):

(

M GT − F
G 0

)

is invertible along the solution . (1.4b)

Under these assumptions, (1.1) is a differential–algebraic system of index
2, and local existence and uniqueness of the solution are guaranteed [7, 19,
21]. Equation (1.1) encompasses a variety of mechanical formulations. The
equations of motion of a single multibody system can be formulated in many
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different ways within the framework of (1.1): formulations in absolute (body)
coordinates with joints modeled by constraints, formulations using relative
(joint) coordinates, or mixed formulations. We refer to [23, 29, 31, 37] for
various possibilities, see also [1, 6, 24, 35]. Here we include a brief discussion
which should serve to clarify the possible physical meanings of the functions
and variables in (1.1). We consider a mechanical systems of nB rigid bodies
interconnected by nJ joints and by force elements.
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1.2 Absolute coordinates

(Implicit joint formulation, see in particular [23])

In a planar mechanical system, the position of body “k” (k = 1, . . . , nB) is
determined by the Cartesian coordinates of its center of gravity (xk, yk), and
by a rotation angle ϕk. Here we have position variables

p = (~pk)
nB

k=1, with ~pk = (xk, yk, ϕk) . (1.5)

Velocity variables are
ṗ = v

and we have np = nv = 3nB. The Newton–Euler equations of motion are
then (1.1b) with the constant diagonal matrix

M = blockdiag (Mk) with Mk =







mk 0 0
0 mk 0
0 0 Ik





 (k = 1, . . . , nB) (1.6)

where mk is the mass of body k, and Ik its inertia. The right–hand side vector
f in (1.1b) is composed of the corresponding applied forces and torques. The
joints imply position constraints (1.1e) with

g = (~gj)
nJ

j=1 where ~gj(t, p) = ~gj(t, ~pk, ~pl) , (1.7)

if joint j is connecting bodies k and l. The number of components in ~gj

equals 3 minus the number of degrees of freedom of joint j. The velocity
constraint equations are obtained by differentiating (1.1e) with respect to
time, yielding (1.1c) with

G =
∂g

∂p
, gI =

∂g

∂t
. (1.8)

Note that gI ≡ 0 if there is no kinematic excitation in the joints. By the
d’Alembert–Lagrange principle, the reaction forces in (1.1b) are orthogonal
to the nullspace of G, hence of the form r = GT λ.

In a spatial mechanical system, the situation is complicated by the fact that
angular velocity is not integrable. The orientation of a body is usually de-
scribed by 3 angles (Eulerian angles, or Tait–Bryan angles) or by 4 Euler
parameters. These taken together with the Cartesian coordinates of the cen-
ter of gravity form the position vector p. On the other hand, it is convenient
to form the velocity vector v from the velocities of the centers of gravity and
the angular velocities of the bodies. Then the Newton–Euler equations give
(1.1b) with a constant, block–diagonal matrix M , whose blocks consist of the
mass times the 3 × 3 identity matrix and the 3 × 3 inertia tensors. However,
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position and velocity variables are then related by (1.1a) where T (t, p) is no
longer the identity. In the case of a formulation with Eulerian or Tait–Bryan
angles, T has 3 × 3 blocks which relate the time derivatives of these angles
to angular velocity. Here np = nv = 6nB. In a formulation with Euler pa-
rameters, T is no longer square but is block diagonal with 4 × 3 blocks and
3 × 3 identity matrices on the diagonal. Here np = 7nB and nv = 6nB. The
normalization constraint of the Euler parameters forms part of the position
constraints (1.1e), whose remaining components are of a form as in (1.7).
The velocity constraints (1.1c) can again be obtained from differentiation of
(1.1e) (and using (1.1a)), in which case one gets (1.1c) with

G =
∂g

∂p
· T, gI =

∂g

∂t
. (1.9)

Especially if ∂g

∂t
≡ 0 (no kinematic excitation), it is often more efficient to

formulate the velocity constraints directly from kinematic considerations.
This yields (1.1c) with a matrix G which has the same null–space as G =
∂g

∂p
· T , but is not necessarily identical to it. This also changes the Lagrange

multipliers λ, but leaves r = GT λ invariant (both for the exact and the
numerical solution).

1.3 Relative coordinates

(Explicit joint formulation).

Traditionally, the use of relative (joint) coordinates has been to reduce the di-
mension of the system, leading to a formulation of the equations of motion as
an ODE system of minimal dimension, at least in the case of tree–configured
systems. For systems with closed kinematic loops, the loop–closing con-
straints might be left as constraints, leading to a system (1.1) with matrices
M and G which are full and usually depend on the variables in a compli-
cated way, but which is of reduced dimension as compared to the previous
subsection. From a computational viewpoint, the reduction process to min-
imal (or near–minimal) dimension can be problematic for large systems for
two reasons:

• Unless there are only few degrees of freedom left in the system, the loss
of sparsity can make linear algebra computations much more expensive
for the reduced system.

• The evaluation of the right–hand side in (1.1b) for the reduced system
requires the evaluation of generalized gyroscopic forces, which may be
costly to compute.
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The use of joint coordinates is nevertheless attractive for the kinematic for-
mulation of joints which have only 1 or 2 degrees of freedom. Consider for
example an elbow joint whose state is definitely easier to describe by one
angle rather than by five constraints.

The above mentioned difficulties can be avoided if one uses joint coordinates
together with body coordinates, without explicitly performing the reduction
process. This leads to a system (1.1) in the following way, cf. [24, 35]. Let
p denote absolute coordinates of the system in the same way as in Section
1.2, and let q = (~qj)

nJ

j=1 denote joint coordinates where ~qj is composed of the
degrees of freedom of joint j. In the case of a tree–configured system, p can
be expressed in terms of q. This relation is generally implicit in p:

k(p, q, t) = 0 , (1.10)

where ∂k/∂p is invertible, and ∂k/∂q has full column rank. Let v denote the
velocity variables, related to the derivatives of the absolute position variables
by (1.1a), where for simplicity we now assume T (t, p) to be square and in-
vertible (thus excluding Euler parameters for the moment). Differentiating
(1.10) and using (1.1a) gives

Kv + Jq̇ +
∂k

∂t
= 0 , (1.11)

where we have denoted

K =
∂k

∂p
· T, J =

∂k

∂q
. (1.12)

By d’Alembert’s principle, the dynamic equations of motion are

Mv̇ − f = r with (K−1J)T r = 0 . (1.13)

Typically, K and J are sparse matrices, but K−1 is not. To avoid expressions
with K−1, we introduce µ by setting r = KT µ. Then JT µ = 0, and (1.13)
can be written as

(

M 0
0 0

)(

v̇
q̈

)

=

(

f
0

)

−
(

KT

JT

)

µ . (1.14)

If we put

p =

(

p
q

)

, v =

(

v
q̇

)

, λ = µ

M =

(

M 0
0 0

)

, G = (K, J), T =

(

T 0
0 I

)

, g = k

(1.15)
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then the equations (1.14), (1.11), (1.10) are exactly of the form (1.1) in bold
letters. This DAE formulation does not suffer from the difficulties with large
systems mentioned in the beginning of this subsection, yet makes the poten-
tial advantages of using joint coordinates in the formulation of the kinematic
equations accessible. We remark that the reduction process to small dimen-
sion, when it is efficient, can still be mimicked in the linear algebra to be
used in the numerical solution of the augmented system considered here, see
Section 3.1.

In the presence of closed kinematic loops, loop–closing constraints have yet
to be added to the above system. This again leads to a system of the form
(1.1).

1.4 Further remarks on (1.1)

Equation (1.1) also admits the treatment of nonholonomic constraints, which
lead to ng < nλ. The variable u is an additional dynamic variable, needed
for modeling non–mechanical elements interacting with the multibody sys-
tem (e.g. a motor driving a joint) or a control variable. A system of the
form (1.1) is also obtained with elastic instead of rigid bodies, after discrete
modelization of elastic components.
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Chapter 2

Discretization

In this section we describe the extrapolation method implemented in MEXX.
This is a variant of a method in [24].

2.1 Basic discretization

To get at tn = t0 + nh approximations

pn ≈ p(tn), vn ≈ v(tn), an ≈ v̇(tn), λn ≈ λ(tn), un ≈ u(tn) ,

we have chosen the following half–explicit Euler method:

pn+1 = pn + hṗn, ṗn = T (tn, pn)vn (2.1a)

(

Mn+1 GT
n+1

Gn+1 0

)(

vn+1

hλn+1

)

=

(

Mn+1vn + hfn

−gI
n+1

)

(2.1b)

an+1 = (vn+1 − vn)/h (2.1c)

un+1 = un + hu̇n, u̇n = d(tn+1, pn+1, vn+1, λn+1, un) (2.1d)

with Mn = (tn, pn), Gn = G(tn, pn), fn = f(tn, pn, vn, λn, un), gI
n = gI(tn, pn).

We note that all steps in (2.1) are explicit, with exception of the solution of
the linear system (2.1b) which will be discussed in Section 3. The matrix is
invertible by (1.4a).

The above discretization is to be used as long as

‖F‖ ≪ 1, where F =
∂f

∂λ

that is, unless there is substantial dry friction in the system. If F is large,
then the linear system (2.1b) is replaced by (cf. (1.4b))
(

Mn+1 GT
n+1 − F0

Gn+1 0

)(

vn+1

hλn+1

)

=

(

Mn+1vn + hfn − F0 · hλn

−gI
n+1

)

(2.2)

where F0 is ∂f/∂λ evaluated at the starting values of the extrapolation step.
This modified system is more costly to solve. The Jacobian F0 has to be
supplied, and the symmetry of the matrix is lost.
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2.2 Extrapolation

We denote the numerical solution of method (2.1) by

xn = (pn, vn, an, λn, un)
T . (2.3)

If ∂f/∂λ ≡ 0, then there exists an unperturbed h–expansion of the error:

xn − x(tn) = he1(tn) + h2e2(tn) + . . . + hNeN(tn) + O(hN+1) . (2.4)

Otherwise, there exists a perturbed h–expansion

xn − x(tn) = h
(

e1(tn) + ε(1)
n

)

+ . . . + hN (eN(tn) + ε(N)
n ) + O(hN+1) (2.5a)

where ε(j)
n are independent of h and decay geometrically, bounded by

‖ε(j)
n ‖ ≤ C · ρn (2.5b)

where, roughly, ρ is proportional to the size of F = ∂f/∂λ. The modified
scheme (2.2) also has an unperturbed h–expansion (2.4). Detailed proofs of
these expansions are given in [15], cf. also [19].

Richardson extrapolation (see e.g. [8, 20]) successively eliminates the error
terms ej(t), and it also effectively reduces the error caused by geometrically
decaying perturbation terms ε(j)

n , cf. [18]. The algorithmic description is as
follows: Given a basic step size H , one constructs approximations to x(t0+H)
using the discretization method (2.1) (or (2.2), if necessary) with step sizes
hj = H/nj, where {nj} = {2, 3, 4, 5, 6, 7, 8, 10, 12, . . .} is the step number
sequence. We denote by x(t0 + H, hj) = xnj

the approximation obtained
with step size hj . The h–extrapolation tableau is given by the formulas

Tj,1 = x(t0 + H, hj)

Tj,k+1 = Tj,k +
Tjk − Tj−1,k

(nj/nj−k) − 1
, k + 1 ≤ j .

(2.6)

Error estimates are obtained for all solution components from the subdiag-
onal differences Tj,j − Tj,j−1 [8]. An adaptive order and step size control is
based on the error estimates for the variables p, v, and u using the scaled
norms

‖(∆p, ∆v, ∆u)T‖TOL =
√

‖∆p‖2
TOL + ‖∆v‖2

TOL + ‖∆u‖2
TOL (2.7)

where

‖∆p‖2
TOL =

1

np

np
∑

i=1

(

∆pi

wi

)2

(2.8a)
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and, essentially,
wi = RTOLi ·|pi| + ATOLi . (2.8b)

The corresponding norms for ∆v and ∆u are defined analogously. The
“index–2 variables” a and λ are not used for error control, cf. [27, 19]. Our
implementation of the error and stepsize control is patterned after that of
the code ODEX in [20].

The computational cost for one basic integration step, using (2.1) and j lines
in the extrapolation tableau, is thus as follows:

number of M, G, GI − evaluations: n1 + n2 + . . . + nj

number of f, ṗ, u̇ − evaluations: 1 + (n1 − 1) + . . . + (nj − 1)
linear systems (decomposition and solution): n1 + n2 + . . . + nj

number of matrix–vector multiplications with M : 2(n1 + . . . + nj) .

In addition, there is a number of vector operations in the discretization
scheme and in building the extrapolation tableau.

2.3 Projection

An approximation x0 of x(t) obtained by extrapolation does not, in general,
satisfy the position and velocity constraints. After every successful extrapo-
lation step, we therefore include a projection onto the constraint manifold.

(a) Projection onto g(t, p) = 0 : Let an approximation p0 of p(t) be given.
This is projected via

p = p0 + T0 · ν
M0ν + CT

0 µ = 0
0 = g(t, p) .

(2.9)

Here (p, ν, µ) are the unknowns, and

T0 = T (t, p0), M0 = M(t, p0), C0 = C(t, p0)

with

C =
∂g

∂p
· T . (2.10)

Note that C = G in many formulations, cf. Section 1. We remark that
this special projection is invariant under affine coordinate transformations,
p̃ = Ap + a. The nonlinear system (2.9) is solved by modified Newton
iterations:

(

M0 CT
0

C0 0

)

·
(

∆νk

µk+1

)

= −
(

M0ν
k

g(t, pk)

)

(2.11a)
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νk+1 = νk + ∆νk , ν0 = 0
pk+1 = pk + T0∆νk (2.11b)

until ‖T0∆νk‖TOL ≤ 10−2 with the scaled norm of (2.8). Then we accept
p = pk+1.

(b) Projection onto G(t, p)v + gI(t, p) = 0 : An approximation v0 of v(t) is
projected via the linear system

(

M GT

G 0

)(

v
µ

)

=

(

Mv0

−gI

)

(2.12)

with M = M(t, p), G = G(t, p), gI = gI(t, p). This projection is again
invariant under affine transformations of variables, ṽ = Av + a.

We emphasize that (2.9) is the only nonlinear system which appears in the
overall integration algorithm. Projection is done only after every complete
extrapolation step. Moreover, p0 is an approximation whose error has been
found to be less than the prescribed error tolerance by the local error control
of the extrapolation method. Therefore 1 or at most 2 iterations in (2.11)
are usually sufficient.

The projections (2.9) and (2.12) are also done in the very first step before
the integration is started, in order to ensure consistent initial values. MEXX
does not start from “highly inconsistent” initial data which are such that
(2.11) does not converge.

2.4 Dense output

Extrapolation does not only provide accurate solution approximations at the
grid points t0, t0 + H , etc., but can further be used to yield a continuous
approximation of about the same accuracy over the whole integration inter-
val. This is used in the root–finding option of MEXX, and is of course also
important for the graphical representation of the solution. The basic idea
here is to first compute accurate approximations of solution derivatives at the
endpoints of the interval [t0, t0 + H ] by extrapolation of divided differences
of solution approximations (2.1), and then to construct a polynomial having
the same endpoint values and derivatives. Approximation properties and
implementation of this approach have been studied in [22]. For mechanical
systems (1.1), the algorithm reads as follows.

We split the solution vector into its “differential” and “algebraic” compo-
nents:

y =







p
v
u





 , z =

(

a
λ

)

. (2.13)
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In the very first step, a starting value for y is readily available (using the
projected values of p0 and v0 according to Section 2.3, and u0 as given).
However, a starting value of z is not known a priori. When the first extrap-
olation step is completed, we obtain consistent approximate values of both y
and z at t0 +H . An approximation of z(t0) is obtained by h–extrapolation of
the values z1 of (2.1) already computed with the step sizes of the extrapola-
tion tableau. For the differential components we then also get the derivative
values ẏ at both endpoints, using a function evaluation for ṗ and u̇ at t0 +H
which anyway has to be done in the next extrapolation step. We are thus
left with the task of finding accurate approximations of

ÿ, y(3), y(4), . . .

ż, z̈, z(3), . . .

at both endpoints.

Let us assume that κ lines of the extrapolation tableau (2.6) have been
computed in the step, using step size h1 > . . . > hκ with hj = H/nj, and
n1 ≥ 2. At the left endpoint we form the divided forward differences

l
(k)
j =

1

hk
j

(

∆kẏ0

∆kz1

)

for k = 1, . . . , λ ≤ κ and j = k, . . . , κ (2.14)

where ∆ denotes the forward difference operator (∆xn = xn+1 − xn), and
ẏn = (yn+1−yn)/h. In (2.14), we have not indicated the obvious dependence
on the step size hj in the notation of ∆kẏ0 and ∆kz1. Similarly, at the right
endpoint we use the divided backward differences

r
(k)
j =

1

hk
j

(

∇kẏnj−1

∇kznj

)

for k = 1, . . . , ρ ≤ κ and j = k, . . . , κ . (2.15)

Our choice of λ and ρ is such that λ + ρ = κ − 1, and ρ − 1 ≤ λ ≤ ρ.
These divided differences represent approximations of the solution derivatives
y(k+1) and z(k) at the endpoints and again have an asymptotic h–expansion.
Extrapolating (κ−k)–times therefore gives improved approximations l(k) and
r(k) of the derivatives of ẏ and z at the endpoints of the interval. With the
help of Newton’s interpolation formula, we then construct a polynomial Y of
degree λ+ρ whose derivatives at the endpoints coincide with the approximate
solution derivatives y, ẏ, and y(k+1) as computed above, and the polynomial
Z of degree λ + ρ − 1 with endpoint derivatives z, z(k) as computed above.
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2.5 Event location

MEXX has an option for locating zeros of switching functions

φi(t, p(t), v(t), a(t), λ(t), u(t)) = 0 for some i = 1, . . . , s . (2.16)

This uses the dense output and the projection of the foregoing sections. If
at least for one index i, the sign of φi is not the same at both endpoints of
an integration interval [t0, t0 + H ], then a special scalar Newton method is
used to find the zeros ti in the interval. First, heuristically damped Newton
iterations are started, taking the values of the dense output as arguments in
φi. These ti are then taken as starting iterates in modified Newton methods
for φi = 0 which now use the projected dense output (with projections as in
Section 2.3) as solution approximation in the evaluations of φi. Depending on
the user’s choice, MEXX either stops the current integration at the left–most
ti or continues the integration at t0 + H after reporting all zeros ti.
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Chapter 3

Linear algebra

The integration method (2.1) requires in every step the solution of a linear
system

(

M GT

G 0

)(

w
λ

)

=

(

f
g

)

(3.1)

where M and G satisfy (1.3). Linear systems of this form arise in a variety
of applications, notably in constrained least squares [3] and constrained op-
timization [16]. A variety of algorithms has been proposed for their solution,
see e.g. [3] and references therein, and [13]. Various linear algebra options
have also been included in MEXX, depending on the substructure or spar-
sity of the matrices in (3.1). We proceed by describing some options which
have been incorporated into MEXX (or will possibly be included in the near
future.)

3.1 Direct matrix algorithms

• The zero option is to use the general LU–decomposition/substitution
routines DGEFA/DGESL from LINPACK [10].

• In order to exploit the symmetry of (3.1) we offer the symmetric in-
definite decomposition/substitution routines DSIFA/DSISL from LIN-
PACK.

• When M is positive definite, one may compute the Choleski decom-

position M = LLT and the QR–decomposition L−1GT = Q

(

R
0

)

to

obtain the decomposition

(

M GT

G 0

)

=

(

L 0
GL−T RT

)(

Inv
0

0 −Inλ

)(

LT L−1GT

0 R

)

.

(3.2)

Solving (3.1) in this way corresponds to an algorithm analysed in [26].
It appears well–suited for mechanical formulations with full matrices,
with a few (e.g. loop–closing) constraints, see the beginning of Section
1.3.
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• Linear equations of the special form







M 0 KT

0 0 JT

K J 0













v̇
q̈
µ





 =







f
0
h





 (3.3)

with positive definite M , invertible K, and J of full column rank arise
when one uses a minimal coordinate formulation without prior elimi-
nation of absolute coordinates, see Section 1.3. Their elimination and
the reduction to minimal form can be mimicked in the solution of (3.3).
Block Gaussian elimination gives a system of the form of the ODE that
describes the motion in minimal coordinates:

Aq̈ = b ,

with A = JT K−T MK−1J

b = −JT K−T (f − MK−1h) .

(3.4)

This system is solved for q̈. Then v̇ is obtained from the last line of
(3.3), and KT µ is obtained from the first line. In mechanical terms,
the symmetric positive definite matrix A represents a generalized mass
matrix, and the first term of the expression defining b represents the
generalized gyroscopic forces. While M , K, and J are usually sparse,
A is in general a full matrix, because sparsity is lost in K−1. Unless
there are only few degrees of freedom in the mechanical system (whose
number equals the dimension of A), the above reduction to minimal
dimension is not recommended.

• To account for sparsity in (3.1), we have an option in MEXX which
uses the public domain general sparse system solver MA28 from the
Harwell library [12]. A more suitable choice would be the recent code
MA47 of [13], which is tailored to sparse systems of the very form (3.1)
satisfying (1.3). This code, however, is not in the public domain.

• When the Jacobian F of dry friction forces has to be taken into account,
then symmetry in the matrix is lost, see (1.4b), (2.2). For this case
we only provide DGEFA/DGESL of LINPACK for full matrices, and
MA28 as a sparse solver.

3.2 Recursive elimination algorithms

Mechanical engineers have developed algorithms which solve the system of
equations (3.1) at a computational cost which grows only linearly with the
number of bodies in the system, at least in the case of tree–configured systems
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Figure 3.1: Tree–configured system

or systems with just a few closed kinematic loops, see e.g. [2, 4, 32, 36] and
references therein. These algorithms, which are applicable to both absolute
and absolute/relative coordinate formulations (see Section 1), can be viewed
as body–oriented block Gaussian elimination on (3.1). We consider first the
case of a multibody system with kinematic tree structure: Consider the graph
whose nodes correspond to the bodies, and whose edges represent the joints
in the system. When there are no closed loops, then the graph consists of
trees. In each tree one body is singled out as the root. Every other body
then has a unique father in the tree, which is its neighboring body on the
path to the root. We formally introduce a node “0” as father of the roots.
We assume that the tree is given a monotone labelling, that is, bodies are
numbered from 1 to nB such that the number of a body is always greater
than that of its father. Joints are numbered such that a joint connecting a
father and a son has the number of the son. See Figure 3.1, where e.g. 2 =
father(4), and these two bodies are connected by joint 4.

In the linear system (3.1), we split the unknowns w = (wk)
nB

k=1 and λ = (λk),
where the subvector wk corresponds to body k, and λk to joint k.

Formulation of joints by constraints: In a kinematic formulation as
described in Section 1.2, the constraint equations in (3.1) of a joint connecting
bodies k and j = father (k) are of the form

Gkwk + Ckwj = gk .

Here the dimension of wk is 3 or 6 for planar or spatial mechanical systems,
respectively. The mass matrix M is block–diagonal with 3×3 or 6×6 blocks
Mk which are symmetric positive definite. Gk is assumed to have full row
rank.
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Consider now the equations of a terminal body k in the tree (one which has
no sons):

Mkwk + GT
k λk = fk

Gkwk = gk − Ckwj .
(3.5)

We can eliminate λk in this equation:

λk = −(GkM
−1
k GT

k )−1(gk − Ckwj − GkM
−1
k fk) . (3.6)

Now consider the equation for body j:

Mjwj + GT
j λj +

∑

k:j=father (k) CT
k λk = fj

Gjwj = gj − Cjwi .
(3.7)

where i = father (j). Inserting (3.6), this becomes

M̂jwj + GT
j λj = f̂j

Gjwj = gj − Cjwi

(3.8)

where

M̂j = Mj +
∑

k:j=father (k) CT
k (GkM

−1
k GT

k )−1Ck

f̂j = fj +
∑

k:j=father (k) CT
k (GkM

−1
k GT

k )−1(gk − GkM
−1
k fk) .

(3.9)

We can now eliminate λj , and so on, climbing down the tree recursively.
When method (3.2) is used to solve the subsystems (3.8), this leads to the
following algorithm:

Decomposition: for k = nB, nB − 1, . . . , 1 do

Mk = LkL
T
k Choleski decomposition

GT
k := L−1

k GT
k

GT
k = Q

(

Rk

0

)

QR–decomposition

Ck := R−T
k Ck

Mj := Mj + CT
k Ck with j = father (k) ( omit if j = 0)

(3.10a)

Forward substitution: for k = nB, nB − 1, . . . , 1 do

fk := L−1
k fk

gk := R−T
k (Gkfk − gk)

fj := fj − CT
k gk with j = father (k) (omit if j = 0)

(3.10b)
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Back substitution: for k = 1, . . . , nB do

gk := gk + Ckwj with j = father (k) (omit if j = 0)

λk := R−1
k gk

wk := L−T
k (fk − GT

k λk) .

(3.10c)

Formulation using joint coordinates: In the kinematic formulation of

Section 1.3, upon splitting wk =

(

yk

zk

)

in components yk ∈ R
6 (or R

3) and

zk ∈ R
dk (dk = number of degrees of freedom of joint k) which contain body

and joint variables, respectively, the equations (3.1) take the following form:











Mk 0 KT
k

0 0 JT
k

Kk Jk 0

















yk

zk

µk





 =







fk

0
hk − Hkyj





−
∑

l:k=father (l)







HT
l µl

0
0





 (3.11)

with j = father (k). Here Mk, Kk, Hk are 6× 6 (or 3× 3) matrices, with Mk

symmetric positive definite and Kk invertible. The 6× dk matrix Jk has full
column rank.

For a terminal body k, the last sum in (3.11) does not appear, and the cor-
responding variables can be eliminated using the reduction procedure (3.4).
With the notation

J̄k = K−1
k Jk, H̄k = K−1

k Hk, h̄k = K−1
k hk , (3.12)

and (cf. (3.4))
Ak = J̄T

k MkJ̄k , (3.13)

this yields

zk = −A−1
k J̄T

k (fk − Mkh̄k + MkH̄kyj)

yk = h̄k − H̄kyj − J̄kzk

KT
k µk = (I − MkJ̄kA

−1
k J̄T

k )(fk − Mkh̄k + MkH̄kyj) .

(3.14)

Substituting µk into the equations (3.11) of father j thus gives











M̂j 0 KT
j

0 0 JT
j

Kj Jj 0

















yj

zj

µj





 =







f̂j

0
hj − Hjyi





 (3.15)
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with i = father (j), and

M̂j = Mj +
∑

k:j=father(k)

H̄T
k (Mk − MkJ̄kA

−1
k J̄T

k Mk)H̄k

f̂j = fj −
∑

k:j=father(k)

H̄T
k (I − MkJ̄kA

−1
k J̄T

k )(fk − Mkh̄k) .
(3.16)

We note that M̂j is again symmetric positive definite. We can now eliminate
the variables of body j, and so on recursively down to the root of the tree.
When one assumes that the last equation in (3.11) has been premultiplied
by K−1

k a priori and µk replaced by KT
k µk (so that (3.11) now holds with

Kk = I for all k), then this gives the following algorithm:

Decomposition: for k = nB, nB − 1, . . . , 1 do

(

Ak BT
k

Bk Ck

)

:=





JT
k

HT
k



Mk(Jk, Hk)

Ak = LkL
T
k Choleski decomposition

(JT
k , BT

k ) := L−1
k (JT

k , BT
k )

Mj := Mj + Ck − BkB
T
k with j = father (k) (omit if j = 0) .

(3.17a)

Forward substitution: for k = nB, nB − 1, . . . , 1 do

fk := fk − Mkhk

gk := JT
k fk

fj := fj − HT
k fk + Bkgk with j = father (k) (omit if j = 0) .

(3.17b)

Back substitution: for k = 1, . . . , nB do

gk := gk + BT
k yj with j = father (k) (omit if j = 0)

zk := −L−T
k gk

yk := Jkgk − Hkyj

µk := fk − Mkyk

yk := yk + hk .

(3.17c)

In a multibody system with few closed kinematic loops, one may first formu-
late the equations for a subtree obtained by cutting loops, and then add the
loop–closing constraints. This leads to a system matrix of the form





T CT

C 0
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where T is the system matrix of the tree configured system. Block Gaussian
elimination then leads to a linear system with matrix CT−1CT of the dimen-
sion of the loop–closing constraints. Here the product T−1CT is formed by
applying the recursive elimination algorithm to the columns of CT .

3.3 Preconditioned iterative solvers

In the integration routine, a sequence of linear systems (3.1) has to be solved,
where the system matrices differ only slightly between successive iteration
steps. This suggests the use of iterative techniques preconditioned by using
a matrix decomposition which is redone only at the beginning of a basic
(integration and extrapolation) step, but not in the intermediate steps.

Formulation of joints by constraints: A system (3.1) with positive def-
inite matrix M can be solved by first computing λ from

GM−1GT · λ = GM−1f − g (3.18a)

and then determining w from

w = M−1f − GT λ . (3.18b)

When, as usual, M is block–diagonal (and constant), then the interest is in
the iterative solution of (3.18a). An efficient obvious choice is to use con-
jugate gradients preconditioned by a neighboring matrix G0M

−1
0 GT

0 . The
algorithm requires to form matrix vector products GM−1GT λ (without ex-
plicitly forming GM−1GT ). Also G0M

−1
0 GT

0 is not formed and decomposed
explicitly, since the solution of G0M

−1
0 GT

0 λ = r can be obtained from a
system of the form (3.1),

(

M0 G0

GT
0 0

)(

w
λ

)

=

(

0
−r

)

. (3.19)

This is solved by using a decomposition from Section 3.1 or 3.2.

Formulation using joint coordinates: A similar approach is also feasi-
ble when the system matrix is of the form (3.3). Here (3.4) is solved using
preconditioned conjugate gradients. The matrix A need not be formed explic-
itly, and the solution of A0z = r with A0 = (K−1

0 J0)
T M0(K

−1
0 J0) is obtained

from










M0 0 KT
0

0 0 JT
0

K0 J0 0

















y
z
µ





 =







0
r
0





 , (3.20)
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which is solved by a straightforward modification of algorithm (3.17).

At present, iterative procedures are not available within MEXX.
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Chapter 4

Implementation

This section gives a short introduction in how to use the code MEXX. A
detailed documentation including all technical details is part of the code and
not reproduced here. Rather, the relation of the software to the underlying
algorithms is pointed out and some general remarks are made. The code is
written in ANSI standard FORTRAN77 (double precision) and belongs to
the numerical software library CodeLib of the Konrad–Zuse–Zentrum Berlin,
thus it is available for interested users.

Except for the special linear algebra methods of Section 3.2 and 3.3, all al-
gorithms described in the preceding sections are realized in only one piece
of numerical software – the package MEXX (Revision 1.1). The whole pack-
age consists of a set of subroutines, where the user interface subroutine
MEXX must be called from a user written driver program. All commu-
nication between the package and the user is done via the arguments of the
calling sequences of MEXX and four user supplied subroutines, respectively.
There are calls from MEXX to a subroutine, say FPROB, which has to sup-
ply the problem describing functions and matrices T, M, f, G, g, gI, d, C –
cf.(1.1,2.11). Strictly speaking, instead of providing the matrix T (t, p) the
routine FPROB must return the matrix vector product ṗ = T (t, p) · v(t). If
the modified discretization (2.2a) is used, FPROB must provide the Jaco-
bian matrix F := ∂f/∂λ additionally. There may be calls to a subroutine,
say FSWIT, which has to return the values of the switching functions φi –
cf. (2.16).

Finally, the current solution at the internally selected integration points is
passed to a subroutine, say SOLOUT, whereas the current solution at (even-
tually) prescribed dense output points is passed to another subroutine, say
DENOUT. In order to have the software as flexible as possible all four sub-
routines are input arguments for MEXX. A dummy routine FSWIT and
example routines SOLOUT and DENOUT are part of the package.

Besides the communication mentioned above, MEXX may write special out-
put to some FORTRAN units. For example, MEXX offers the feasibility to
dump the continuous representation of the solution. With that, an easy and
efficient way of postprocessing the solution, e.g. for graphical purposes, is
given.

At the end, we would like to mention a special characteristic of the software.
The code which performs the numerical integration and the code which per-
forms the matrix manipulations, e.g. linear system solution and matrix vector
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products, is separated as far as technically possible. Therefore, the package
is open for an adaptation or extension of the currently implemented linear
algebra software.

An overview on the current program structure is given in the appendix.

4.1 Interfaces

The calling sequence of the user interface routine MEXX reads:

SUBROUTINE MEXX (NP, NV, NL, NG, NU,

FPROB, T, TFIN, P, V, U, A, RLAM,

ITOL, RTOL, ATOL,

H, MXJOB, IERR, LIWK, IWK, LRWK, RWK,

SOLOUT, DENOUT,

NSWIT, FSWIT, ISWIT)

Within this calling sequence one may distinguish two groups of arguments:
one group for the problem definition and another which refers to the algo-
rithm and its implementation. The arguments of the first group are:

NP,NV,NL,NG,NU – integer, input

the dimensions np, nv, nλ, ng, nu

P,V,U,A,RLAM – real arrays, in–out:

in: the initial values p(t0), v(t0), u(t0), (a(t0), λ(t0))

out: the current values p(t), v(t), u(t), a(t), λ(t)

T,TFIN – real, in-out/in:

in: the starting(t0)/final(tend) point of integration

out: the current point of integration

FPROB – external subroutine, input:

evaluation of the problem functions ṗ, M, f, G, g, gI, d, C

FSWIT – external subroutine, input:

evaluation of the switching functions φi, i = 1, ..., s

NSWIT – integer, input:

number of switching functions (the dimension s in (2.16))

ISWIT – integer array, output

indicates for which switching function the zero was found

SOLOUT – external subroutine, input:

output routine, called at integration points

DENOUT – external subroutine, input:

25



output routine, called at intermediate dense output points

ITOL,RTOL,ATOL – integer, real arrays/scalars, input:

required accuracy of the solution

In order to make a proper setting of the above arguments, recall that for the
discretization (2.1) a(t0) is not required and λ(t0) only, if the functions f
or d depend non–linearly on λ. However, if dense output is required, these
vectors should contain consistent initial values or the corresponding option
for an internal approximation should be switched on (MXJOB(22)=1).

The prescribed values for RTOL and ATOL enter via (2.8a,b) into the inter-
nal error estimate (2.7). The integer flag ITOL is used to indicate whether
these values are scalars (ITOL=0) or arrays (ITOL=1) of dimension np +
nv + nu. Further details can be found in the code documentation.

For a precise description of the arguments of the external subroutines FPROB,
FSWIT, SOLOUT, DENOUT we refer again to the documentation in the
code. However, some features of the function evaluation are worth mention-
ing. Self–evident, FPROB must provide the function values for that argu-
ments t, p, v, λ, u which are input to FPROB. But, observe that constant
functions have to be set within each call again.

Due to the special discretization and the additional projection step, not all
functions must be provided simultaneously at each call of FPROB. Rather,
one can distinguish 7 different types of calls. First, for given input arguments
t, p, v, λ, u the functions ṗ, f must be provided. Second, for given (new)
values t, p the functions M, G, gI must be provided. Third, for given input
arguments t, p, v, λ, u the function d has to be computed. These types of calls
are needed to perform the discretization steps (2.1). The second type of call
is also used in the projection step for the velocity (2.12). Furthermore, for
varying p the functions M, C, g – cf. (2.10,2.11a) are required, for varying
p the function g (for (2.11a)) and for fixed p but varying v the function
ṗ = T (t, p) · v(t) (for (2.11b)). Finally, if the modified discretization (2.2a)
is used, then for given t, p, v, λ, u the functions ṗ, f and, in addition, the
Jacobian F have to be computed. This type of call replaces some of the
calls of the first type. The information which function(s) has(have) to be
evaluated at a specific call of FPROB is passed to FPROB via its argument
list (an array of logical flags).

An alternative implementation would have been to separate totally the differ-
ent function calls. However, if the functions share common terms (expensive
to evaluate), a multiple recomputing can easily be avoided by exploiting the
special design of the function evaluation within MEXX.

The second group of arguments is:

H – real, in–out:
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in: the initial stepsize

out: the current stepsize guess

MXJOB – integer array, in–out:

in: the first 50 elements may be used to specify special options

out: the elements 51 up to 150 contain performance information

IERR – integer, output:

error indicator

LIWK,LRWK – integer, input:

declared lenghts of integer and real workspace arrays

IWK,RWK – integer/real arrays, in–out

workspace arrays, partially used for further optional input and output.

Besides providing workspace (arrays IWK, RWK), all these arguments may
be used to control, modify and monitor the performance of MEXX. This can
be done by assigning special values to (part of) the first elements of MXJOB,
IWK and RWK. Note that a zero initiation forces an internal assignment with
default values. On output, some of the elements will hold helpful information,
e.g. the minimal required lengths of IWK and RWK.

4.2 Options

Discretization and linear algebra mode

The most essential variants and modifications which can be selected by the
user of MEXX are certainly the type of the basic discretization and the lin-
ear algebra mode. For the standard discretization (2.1) the most appropriate
mode for the linear system solution may be chosen according to the problem
formulation in hand – cf. Section 3.1. If no specification is made by the user,
a general full mode solution is done in order to solve the systems of type (3.1).
We ignore the symmetry of the system, as our numerical experiments revealed
that the general decomposition/solve routines DGEFA/DGESL from LIN-
PACK are mostly faster than their symmetric counterparts DSIFA/DSISL –
cf. Section 5.

Using the modified discretization (2.2), however, the choice is anyway re-
stricted as the matrix to be decomposed is no longer symmetric. Here, only
the full or sparse mode LU–decomposition/substitution may be selected.

The following Table 4.1 shows how to choose the discretization and the linear
algebra mode. We allow also to prescribe the maximum order kmax of the
method as this may be a helpful tool for problems with a restricted order of
differentiability.
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Option Selection Value Consequence
Discretization MXJOB(1) 0 standard discretization

1 modified discretization
solution mode for MXJOB(2) 0 full mode LU
linear systems 1 full mode UDUT

2 full mode LLT + QR
3 special block Gaussian

elimination
10 sparse mode LU

storage mode for MXJOB(3) 0 full mode
matrix M 1 block diagonal
storage mode for MXJOB(6) 0 full mode
matrix G (and F ) 1 sparse mode
kmax MXJOB(9) 3 . . . 13 order restriction≤ kmax

Table 4.1: Options for the main variants of MEXX

Sparse Linear System Solution

If the general sparse linear algebra mode is switched on, the user has to
provide the matrix G (and the matrix F = ∂f

∂λ
if the modified discretization

is used) in sparse form, i.e. besides the numerical values (only the nonzero
elements) the pattern of the matrix (matrices) must be provided additionally.
The mass matrix M should be given in a special storage mode which exploits
the block diagonal structure of this matrix. As pointed out above the sparse
linear system solution is done by means of the MA28 package from Harwell.
The compilation of MEXX and MA28 follows the lines presented in [11] .
Thus we give only a short summary.

Within the MA28 package there are two routines to factor a given matrix.
The expensive Analyse/Factorize routine MA28A analyses the matrix
and tries to minimize the number of fill–in elements in its LU–decomposition.
Besides, there is the fast Factorize routine MA28B which factors a matrix
with the same nonzero pattern as from a previous call to MA28A. But the
values may have changed, thus the now prescribed pivot sequence may be-
come not appropriate. This is internally checked and one may restart with a
factorization by MA28A, if numerical instability is indicated. Provided that
the structural nonzero pattern of the matrix to be decomposed is known ex-
actly and does not change within the course of the integration, after a first
decomposition with MA28A, the fast factor routine may be used, in principle,
throughout the whole integration. Numerical experience shows, that during
an integration quite often just 1–3 expensive Analyse/Factorize calls are
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necessary. All other decompositions can be done by the fast Factorize
routine.

But this technique can be applied in MEXX only if the standard discretiza-
tion is used and the matrix required for the projection step of the position
vector, cf. (2.11a), is of the same type as for the discretization steps, cf. (2.1b).
Otherwise, the matrix must be factored by the Analyse/Factorize rou-
tine MA28A whenever a new type arises. However, even in the worst case
(modified discretization and C 6= G) just 3 calls of MA28A are required per
basic step – one at the very beginning of the discretization steps, one for the
projection steps (2.11a) and one for the projection step (2.12). As the dom-
inating part of the decompositions is required to perform the discretization,
where one can mostly apply the fast Factorize routine, the sparse linear
system solution works still quite efficiently.

Monitor Output

In critical applications it is often helpful to monitor the performance of a code
by studying characterizing quantities. Based on this information, optional
variants and modifications of the basic method can be selected. The amount
of monitor output produced by MEXX is controlled by some output flags and
directed to associated FORTRAN units. In order to monitor the algorithmic
performance of the code, the internal flag INTMON can be modified by
setting the associated element of the MXJOB array (INTMON corresponds
to MXJOB(13) and the associated output unit LUINT to MXJOB(14)).
An user assignment of INTMON=0 produces no monitor output, whereas
a setting INTMON=3 will generate a detailed integration monitor, e.g. the
current integration point, stepsize and order as well as the error estimates of
the extrapolation tableau and of the projection step. Similar flag/unit pairs
are available for error messages, general printout, and time monitor printout
– see Table 4.2.

Solution and Dense Output

Recall that two output routines, SOLOUT and DENOUT, must be passed to
MEXX. These routines may be user written routines or the example routines
added to the package. But, as long as the standard options are in use, these
routines are not called by MEXX.

Specifying MXJOB(30)=1 entails that SOLOUT is called, first of all at t0,
the starting point of integration, and then after each successful integration
step. To be precise, the extrapolated and projected solution approximations
p(t), v(t) and the extrapolated values u(t), a(t), λ(t) are passed to SOLOUT.
As projection is done also at t0, the projected values p(t0), v(t0) must not
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necessarily coincide with the user given starting values.

Option Selection Range Default Unit
error/general printout MXJOB(11) 0–2 0 MXJOB(12)
integration monitor MXJOB(13) 0–5 0 MXJOB(14)
contin. solution dump MXJOB(17) 0–1 0 MXJOB(18)
time monitor MXJOB(19) 0–1 0 MXJOB(20)
type of SOLOUT calls MXJOB(30) 0–1 0 —
type of DENOUT calls MXJOB(31) 0–4 0 —
No. of interpol. points MXJOB(32) ≥ 0 0 —
component selection MXJOB(33) 0–1 0 —

Table 4.2: Options for output generation

The dense output routine DENOUT is called only if the associated flag (MD-
OUT=MXJOB(31) is set to a positive value. Within the current implemen-
tation of MEXX, four dense output modes are available.

MDOUT = 1 Interpolation at NDOUT points which are uniformly dis-
tributed between t0 and tend. Additionally t0, tend are con-
sidered. DENOUT is called NDOUT+2 times

MDOUT = 2 Interpolation at NDOUT points within each integration in-
terval [t, t + H ]. Additionally all integration points are
considered. DENOUT is called NSTEP*(NDOUT+1) + 1
times.

MDOUT = 3 Interpolation such that the maximum interval between two
successive interpolation points is less than or equal to a value
∆tIP

max. This means, if the current integration interval is
greater than ∆tIP

max it is uniformly subdivided such that the
required condition holds. Additionally all integration points
are considered. DENOUT is called at least at all integration
points.

MDOUT = 4 Interpolation at NDOUT user prescribed output points
tIP
i , i = 1, ..., ndout. All integration points may be ignored.

DENOUT is called exactly NDOUT times.

The required number NDOUT can be prescribed via MXJOB(32). The re-
quested output points are input to MEXX via RWK(51), ...,
RWK(50+NDOUT). The latter values must be in increasing order, i.e. tIP

i <
tIP
i+1. For MDOUT = 3, ∆tIP

max must be set via RWK(51).
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In general, the additional amount of work to perform the continuous output
within an extrapolation method is comparatively small. In special situations,
however, things may change. Thus, MEXX offers the chance to select only
part of the the vectors p, v, u, a, λ for the dense output generation. This
information is passed to MEXX by prescribing the selected components in
special positions of IWK. This selection can additionally be switched on/off
by setting MXJOB(33)=1/0. If the continuous output is only requested for
graphical purposes, there is another way of reducing computing time – as
well as storage. The user may prescribe a maximum order (via MXJOB(34))
for the interpolating polynomial.

Finally, the internal representation of the continuous output, i.e. the coeffi-
cients of the interpolating Hermite polynomial, can be dumped to a special
FORTRAN unit. This option is switched on by setting MXJOB(17)=1 (as-
sociated unit: MXJOB(18)). This allows an easy, cheap and flexible postpro-
cessing. An example program, which realizes such a postprocessing is added
to the MEXX package. Note that this option only works if the simultaneous
dense output option (MXJOB(31)) is switched on also. Furthermore, only
the data for the thereby selected (or all) components are dumped.

Root finding

In the standard case, the event location option of MEXX is switched off.
Thus, the input arguments NSWIT, ISWIT and FSWIT are ignored and
may be dummy.

The root finding algorithm is switched on by setting MXJOB(35) to a valid
positive value. The choice MXJOB(35)=1 forces MEXX to return to the
calling program after having located the first (nearest to t0) root in one of
the switching functions φi – cf. (2.16).

The choice MXJOB(35)=2 allows MEXX to continue the integration. In
both cases, the output routine SOLOUT is called as if the root points would
be integration points. Except for these additional calls of the output routine
SOLOUT, the performance of MEXX solving the problem up to tend is not
changed – compared to an integration without root finding.

Recall that for the current integration interval [t, t + H ] the root finding
algorithm is activated only, if the sign of at least one switching function φi

has changed, i.e.
φi(t) · φi(t + H) < 0 (4.1a)

holds. But in this form the check is not suited for implementation. Rather,
this check is performed only, if the condition

φi(t) ≥ φres ∧ φi(t + H) ≥ φres, φres ≥ 0 (4.1b)
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holds additionally. With that, a switching function φi where φi ≈ 0 holds for
a certain period of time will cause no trouble. The maximal allowed residual
φres may be specified by the user.

Locating a zero requires the continuous representation of all components
of the vectors p, v, u, a, λ. First, as φi is allowed to depend on all these
unknowns. Second, as the output of these values at the root point(s) or
the return to the calling program, respectively, requires the computation of
solution values for all the unknowns. But this representation is only necessary
for such integration intervals where the check for a sign change indicates the
occurrence of a root. For all other intervals, in order to avoid computational
overhead, the dense output values are determined only for the user selected
components. In any case, only the user selected components are passed to
DENOUT, even if the other values are available due to a zero location.

In the very special situation where a switching function possesses an even
number of zeros or a zero with even multiplicity in one integration interval
[t, t+H ] – a case typical for constructed test problems – the indicator (4.1a/b)
is not appropriate. Thus, we offer the option to perform the sign check not
only at the endpoint of the current integration interval but at some checking
points, say tcl

, tcl
:= t + l H

nc
, l = 0, 1, . . . , nc, by

φi(tcl−1
) · φi(tcl

) < 0

combined with a condition of type (4.1b). The number of checking points
nc may be prescribed by the user. Note that a choice nc > 1 requires the
computation of the dense output representation throughout the whole inte-
gration.

Time Monitor

In order to get detailed information concerning the performance of MEXX a
time monitor package, which is designed for time measurements of different,
possibly nested program parts, is added to MEXX. It may be used to get the
information which parts of the algorithm are the most time consuming ones.
The monitor is turned on by setting IOPT(19)=1. Its output will be written
to the FORTRAN unit IOPT(20).

Because of machine dependence the user has to adapt the subroutine ZIBSEC
in such a way that on output the only argument of this routine contains a
“time stamp”, measured in seconds. As distributed, ZIBSEC is a dummy
routine which always returns zero to this argument.
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Chapter 5

Numerical Experiments

In this section we present some numerical results illustrating the performance
of MEXX. All experiments have been carried out on a SUN SPARC1+ Work-
station using the Sun FORTRAN Compiler Version 1.4.1 with standard op-
tions except for the optimization which had to be switched off due to buggy
CPU timing for optimized code. Unless stated otherwise, the standard op-
tions and parameters of MEXX are active, i.e. no root finding, no dense
output and full mode linear algebra, neglecting any symmetry. For all prob-
lems we have chosen an initial stepsize of Hinit = 10−3.

It is not the purpose of this section to make a comparison to other codes,
such as ODASSL by Führer, DAESOL by Eich, or HEM by Brasey and
Hairer. Rather, we would like to compare some of the algorithmic variants
available in the software package MEXX.

Sensible measuring units for MEXX are the number of linear system solu-
tions and the number of problem function evaluations. Recall that a linear
system solution mostly means a matrix decomposition followed by a for-
ward/backward substitution. Only in the projection step the matrix is fixed
and one decomposition may be followed by more than one substitution – if
more than one Newton iteration is required.

Concerning the counting of problem functions, recall that the number of calls
for the various functions (M, f, G, g, ..) differ from each other. But, counting
those number calls of the problem routine FPROB where the simultaneous
evaluation of M, G, gI is requested, one has a quite good indicator. The
number of FPROB evaluations where the user has to provide f, ṗ or d is
slightly less, but directly coupled with the (M, G, gI) count.

All other function evaluations, e.g. those needed to perform the projection
step, can be neglected in most cases.

5.1 Cable Drum with Dry Friction

The equations of this simple test problem model a rotating cable drum with
connected load, cf. [30], p. 121. The model includes dry friction and a linear
damping of the load. The whole configuration is depicted in Figure 5.1.
Herein, y1, m1 denote the height and mass of the load and x2, y2, α2, m2, I2

the position, mass and inertia of the cable drum. With that the constrained
equations of motion to be integrated read
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Figure 5.1: Cable drum with dry friction

ṗ = v
M(t, p) · v̇ = f(t, p, v, λ) − G(t, p)T λ

0 = G(t, p) · v + gI(t, p)
0 = g(t, p)

(5.1)

where

p = (y1, x2, y2, α2)
T , v = (ẏ1, ẋ2, ẏ2, α̇2)

T

M = diag(m1, m2, m2, I2)
f = (−m1ggrav − cdampẏ1, −µλ2, −m2ggrav,−µr2λ2)

T

g = (x2, y2 − r2, y1 − y2 − α2r1)
T

gI = ∂g/∂t = 0
G = ∂g/∂p .

(5.2)

For the problem parameters we use the values

m1 = 10 , m2 = 1 , I2 = 1 , r1 = 1 , r2 = 1
ggrav = 1 , cdamp = 1 , µ = 0.25 .

(5.3)
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Consistent initial conditions are given by

p1 to be chosen (≤ 1)
p2 = 0 , p3 = r2 , p4 = (p1 − r2)/r1

v1 to be chosen
v2 = 0 , v3 = 0 , v4 = v1/r1

λ3 =
(−m1I2ggrav − cdampẏ1I2 − m1M2r1r2ggrav · µ)

I2 + m1r
2
1 − m1r1r2µ

λ2 = λ3 − m2ggrav

λ1 = −µλ2

a1 = (−ggravm1 − cdampẏ1 + λ3)/m1

a2 = 0 , a3 = 0 , a4 = a1/r1 .

(5.4)

For the numerical experiments presented in this paper we take:

p1 = 0 , v1 = 0, (5.5)

and as simulation interval we choose [t0, tend] = [0, 4]. Within this time, the
cable drum performs approximately one rotation if friction is absent.

The main difficulty for the numerical solution of this problem is the occur-
rence of dry friction. The question is, how long the usual discretization (2.1)
can be used as the friction coefficient µ increases. Thus, we have to study
the Jacobian F := ∂f/∂λ. For the cable drum problem there are only two
nonzero elements in the Jacobian, F2,2 = −µ, F4,2 = −µr2. According to the
considerations made in Section 2, the basic discretization is only applicable
as long as ‖F‖ ≪ 1, i.e. as long as µ ≪ 1 (as r2 = 1).

We illustrate the effect of increasing dry friction by the following experiment.
The problem is solved for different values of µ with both discretizations,
the standard (std) discretization (2.1) and the modified (mod) discretization
(2.2). The tolerances are set to RTOL = ATOL = 10−5. As the main
indicators for the performance we report the CPU time (CPU), the number
of integration steps (nstep), the number of linear system solutions (nsol)
and the number of function (M, G, gI) – evaluations (nfcn). The results are
summarized in Table 5.1. The fail runs of standard MEXX for µ > 1 are due
to minimum permitted stepsize reached.

5.2 Seven Body Mechanism

The seven body mechanism or “Andrews squeezing mechanism” has become
a popular benchmark problem. For a detailed problem description see [21, 31]
and references therein. The equations, even part of the FORTRAN code, can
be found in [21].
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discr. dry friction
mode coefficient nstep nfcn nsol CPU
std 0.0 7 99 107 0.23

0.125 8 102 111 0.23
0.25 9 112 122 0.22
0.5 10 162 173 0.34
0.75 23 273 297 0.66
1.0 76 1082 1159 2.37
1.25 47 – – –
1.5 23 – – –

mod 0.0 7 99 107 0.24
0.125 7 99 107 0.20
0.25 7 99 107 0.22
0.5 7 99 107 0.20
0.75 7 105 114 0.25
1.0 7 87 95 0.25
1.25 9 149 159 0.29
1.5 8 114 123 0.27

Table 5.1: Performance of MEXX for different dry friction coefficients (stan-
dard versus modified discretization)

First, we report the results of solving this problem with MEXX for different
required tolerances RTOL = ATOL. Recall that the standard option for the
linear system solution is the general full mode LU–decomposition/substitution
(DGEFA/DGESL of LINPACK). The surprising fact that the symmetric
variant (DSIFA/DSISL from LINPACK) does not work faster, is now exem-
plified by presenting the CPU times of MEXX runs for both variants. We
present the usual indicators (nstep, nfcn, nsol, CPU) for the standard ver-
sion only, but the portion of CPU time, which is needed by the linear algebra
routines is given for both variants – see Table 5.2.

The result given in the last row of this table is no contradiction to the above
statement as, due to the different roundoff errors of the linear algebra meth-
ods, the performance of the integration is affected for the tolerances 10−9

and 10−11. With the symmetric mode switched on, MEXX requires about
3% and 11% respectively less function evaluations and solves.

Concerning the general performance of MEXX, the results nicely show the
typical behaviour of an extrapolation method. More stringent tolerance re-
quirements result, mainly, in an increase of the order. So, the number of
solves and function evaluations (again the (M, G, gI) – evaluation) increases
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Required lin. alg. CPU
Tolerance nstep nfcn nsol CPU(s) LU UDUT

10−3 17 488 511 3.2 2.1 2.3
10−5 26 925 957 6.2 3.8 4.1
10−7 23 1530 1563 10.3 6.7 7.4
10−9 32 2533 2571 17.3 11.0 11.1
10−11 37 3554 3611 25.5 15.9 14.2

Table 5.2: Results of Standard–MEXX solving the Standard–Problem

by a factor of 7 whereas the number of steps is just doubled (comparing 10−11

vs. 10−3).

Now, as an additional experiment, we solve the problem with the dense
output option switched on (for all components). As expected, the overall
CPU time increases, but the additional amount of work (19 % for the run
with RTOL = ATOL = 10−5) is quite modest.

Finally, in order to illustrate the performance of the root finding algorithm,
we switch on this option but allow MEXX to continue the integration up to
tend = 0.03. As a simple switching function we use

β̈ = 0 .

Herein, β denotes the angle of that body which is connected to the motor of
the mechanism. MEXX reports all five roots

troot = 1.124 , 1.602 , 2.147 , 2.462 , 2.998

without any problems. Although the acceleration vector does not enter into
the error control of MEXX, the maximum relative error of the root values
turns out to be 3·10−4. Compared to the above mentioned standard run (with
RTOL = ATOL = 10−5) the overall CPU time is only slightly increased
(13%). This increase is less than the increase for the run with the dense
output option switched on, as the dense output values are required in 5 (of
26) integration intervals only. The additional amount of work needed to
perform the Newton iterations (3 steps to get the root of the unprojected
solution, 1 step for the projected solution – on average) is less than the work
to perform an overall dense output representation.
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5.3 Nonlinear Truck Model

Recently a planar vertical truck model with nonlinear suspension elements for
the interconnection of the axle and the chassis was proposed [33] – cf. Figure
5.2 for an illustration.

⊕

• •

•
•

•

•
•

masspoints•

constrained joint⊕
linear spring/damper joint

nonlinear suspension joint

Figure 5.2: Planar truck model

This test problem has been used to study the response of the chassis and of
the driver seat to excitations of the road. In [33], two road profiles have been
used. First, a simple sine excitation and second, more realistic, a Fourier
approximation of a driveway measurement. First, we solve both problems
in the index–2 formulation with the standard MEXX code. The dimensions
are np = nv = 11 , ng = nλ = 1. In Table 5.3 the results for some
required tolerances are summarized. Furthermore, for the tolerance RTOL =
ATOL = 10−5, we solve additionally with the symmetric and sparse linear
algebra option switched on. Again, as for the seven body mechanism, the
integration is slightly affected by the different roundoff in the linear system
solution. Although the dimension of the linear system is comparatively small,
there is no efficiency loss due to the sparse mode solution.

Analysing the performance of MEXX in more detail reveals that for this
problem the explicit discretization (2.1) is at the limit of its applicability.
The stiff spring/damper elements used in this model make the equations of
motion, at least, mildly stiff. Within the course of integration this can be
observed especially in the last phase of the realistic excitation, where the
excitation becomes smaller and smaller and, finally, vanishes totally. To
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maintain stability, the integrator is forced to make small time steps also in
this region, although there is no longer dynamics in the system. Depend-
ing on the length of such a “smooth” phase, the application of an implicit
discretization may be more efficient.

This can be seen by solving the set of reduced equations of motion where
the constraint equation is removed. This implicit system of ODEs, again
from [33], can be solved with a standard stiff ODE solver. We used the ex-
trapolated semi–implicit Euler discretization (code EULSIM [9]). A straight-
forward application (e.g. standard numerical differentiation for the Jacobian
evaluation) shows the following results. For the sine excitation, where the
dynamics of the problem forces small steps for the whole integration interval,
the stiff integrator is faster only for TOL = 10−3. For the realistic excitation,
however, EULSIM is more efficient for the tolerances TOL = 10−3/10−5.

Excitation Required Linear
Tolerance Algebra nstep nfcn nsol CPU(s)

measure 10−3 full 692 9492 10185 142.4
10−5 full 552 16489 17042 186.8

symm. 553 16491 17045 171.8
sparse 551 16387 16939 168.2

10−7 full 511 32772 33284 331.0
10−9 full 595 53904 54500 545.9
10−11 full 766 81473 82240 817.3

sine 10−3 full 301 5749 6051 62.3
10−5 full 274 13540 13815 84.5

symm. 274 13540 13815 82.6
sparse 277 13341 13619 78.9

10−7 full 304 25200 25505 144.2
10−9 full 349 38282 38632 218.2
10−11 full 492 54255 54748 310.8

Table 5.3: Results of MEXX solving the model with measured excitation and
with sine excitation
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5.4 Insulator Chain

To ensure sufficient safety in overland high voltage lines, the conducting
cables have to be suspended on the poles by two chains of insulators. If one
chain breaks, then the remaining one has to withstand the increased stress.
The safe design of insulator chains is aided by dynamic simulation of the
motion and the constraint forces occurring after fracture of one part of a
double (or possibly triple) chain of insulators [17, 25].

Consider the double chain of cap insulators as sketched in Figure 5.3.

x  , y00

x  , y1 1

d1

c1

c i

id

φ1

a

x  , yi i

i=2,3,... φi

Figure 5.3: Chain of cap insulators

When the configuration breaks, e.g. at the joint between one of the chains
and the triangular distance–holder, then the force exerted by the cable leads
to a rapid movement of the remaining chain and a sudden increase of the
constraint forces in the joints. Under the modelling assumptions of [17,
25], we get the following equations of motion which are most conveniently
formulated as a set of differential–algebraic equations of the type (5.1).
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To fix notation, let N denote the number of connected insulators. The coordi-
nates of their centers and the position angles are given by
xi, yi, ϕi, i = 2, . . . , N + 1. We denote the position and orientation of the
triangle by x1, y1, ϕ1. Finally, the force application point (at the triangle
body) is denoted by x0, y0. Then, the dynamical equation (without reaction
forces GT λ) read:

For the force application point

(

0 0
0 0

)(

ẍ0

ÿ0

)

= F

(

sin β
− cos β

)

(5.6)

where
F = F0 + ẏ0 · EA/CL

β = − arctan 1
CQ

ẋ0 .
(5.7)

For the insulators and the triangle body







mi

mi

Ii













ẋi

ẏi

ϕ̇i





 =







0
0
0







i = 1, . . . , N + 1 .

(5.8)

The constraints are:

Force application point at triangle corner

0 =

(

g1

g2

)

=

(

x0

y0

)

−
((

x1

y1

)

− d1

(

− sin ϕ1

cos ϕ1

))

. (5.9)

Connection triangle corner with bottom insulator

0 =

(

g3

g4

)

=

(

x1

y1

)

+ d1

2

(

cos ϕ1 − sin ϕ1

sin ϕ1 cos ϕ1

)( √
3

1

)

−
((

x2

y2

)

− c2

(

− sin ϕ2

cos ϕ2

))

.

(5.10)

Connections between the insulators

0 =

(

g2i+1

g2i+2

)

=

(

xi

yi

)

+ di

(

− sin ϕi

cos ϕi

)

−
((

xi+1

yi+1

)

− ci+1

(

− sin ϕi+1

cos ϕi+1

))

i = 2, . . . , N .
(5.11)

Connection of top insulator with suspension point

0 =

(

g2N+3

g2N+4

)

=

(

xN+1

yN+1

)

+ dN+1

(

− sin ϕN+1

cos ϕN+1

)

. (5.12)
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Thus, with the position vector

p := (x0, y0, x1, y1, φ1, ...xN+1, yN+1, ϕN+1)
T (5.13)

we have again a constrained mechanical system of the form (5.1) with di-
mensions

np = nv = 3 · (N + 1) + 2 , nλ = ng = 2 · (N + 1) + 2 (5.14)

and functions

M = diag(0, 0, m1, m1, I1, . . . , mN+1, mN+1, IN+1)
f = (f0,x, f0,y, 0, 0, 0, . . . , 0, 0, 0)T

g = (g1, g2, . . . , g2N+3, g2N+4)
T

gI = ∂g/∂t = 0
G = ∂g/∂p .

(5.15)

Fairly realistic values of the physical parameters are as follows: N = 32

m1=34, I1=3.1, d1=0.37
mi=15, Ii=0.35, di=0.12, ci=0.08, i = 2, . . . , N
mj=9.8, Ij=0.05, dj=0.16, cj=0.08, j = N + 1

CL=
√

E/ρ, CQ=
√

F0/(Aρ)

E=8 · 109, A=3.4 · 10−4, ρ=3325, F0=230000 .

(5.16)

Consistent initial values for position and velocity are

ϕ1 = 0 , xi, yi such that (5.9–5.12) holds
v = ṗ = 0 .

(5.17)

Recall that it is not necessary to derive consistent initial values for the accel-
eration vector or for the Lagrange multipliers, respectively, as they are not
needed for the integration. Sufficiently correct values (for dense output) may
be computed within MEXX by switching on the corresponding option.

Figure 5.4 shows the simplified shape of the remaining insulator chain after
breaking–off between one chain and the triangle.

The original number of insulators to be simulated is given by N = 32. Now,
in order to check the performance of the linear algebra routines, we also
present results for a system with, approximately, the “halfed” and “doubled”
dimension, i.e. we also use N = 16 or N = 64 respectively. All interesting
dimensions are summarized in Table 5.4. Herein, “dim(A)” indicates the
dimension of the matrix to be decomposed,

A =

(

M GT

G 0

)

, (5.18)
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Figure 5.4: Shape of the remaining insulator chain at 0.0 up to 0.15 seconds
after breaking–off in steps of 0.01 seconds

N np = nv nλ = ng dim(A) nne(A)
16 53 36 89 327
32 101 68 169 631
64 197 132 329 1239

Table 5.4: Dimensions for the different insulator problems

whereas in the last column “nne(A)” the number of structural nonzero ele-
ments is given. For all comparison runs a final time tend = 0.1 was chosen.

The interesting question is whether the sparse matrix mode for the linear
system solution does now pay off. A summary of solving the three systems
(halfed, standard and doubled) is given in Table 5.5.

Again, we show the required CPU time for the different linear algebra modes.
Confirming the observations made so far, the symmetric full mode variant
is less efficient than the general full mode variant. As expected, the general
sparse mode LU–decomposition/substitution is drastically faster than the
full mode variants. For all runs presented in the table the performance of
the integration is not disturbed by the different roundoff errors of the linear
algebra computation.

A quite interesting result shows the comparison of the increased CPU time
with the increased dimension of the problem. As the absolute numbers of
Table 5.5 cannot be compared directly due to the different behaviour of
MEXX solving the different problems, one may look to the CPU time which
is required on an average for one decomposition or solution respectively.
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Required steps F-eval Solves CPU(s) lin. alg. CPU(s)
Tolerance nstep nfcn nsol sparse sparse full symm.

10−3 13 583 597 20.1 16.9 89.5 108.9
10−5 13 846 862 28.5 24.3 128.9 155.7
10−7 17 1396 1414 47.0 39.6 211.9 265.1
10−3 13 473 488 30.4 25.5 258.2 314.2
10−5 12 759 774 47.8 40.7 410.2 496.7
10−7 15 1204 1220 75.3 63.8 653.2 784.3
10−3 13 444 460 61.5 52.8 935.4 1116.0
10−5 15 890 906 121.5 104.1 1856.4 2212.4
10−7 15 1164 1180 145.0 124.9 2418.9 2907.0

Table 5.5: Results for MEXX simulating 16/32/64 insulators

These numbers are given in Table 5.6. The values show, that doubling the
dimension increases the average CPU time by a factor less or equal to 2
for the sparse mode routines. As expected, the increase for the full mode
substitution is about a factor of 4. But, surprisingly, the increase factor is
not cubed for the n3 process of a full mode LU–decomposition. Rather, the
factor is again approximately 4.

mode subrout. 16 32 64
full DGEFA 0.131 0.466 1.800

DGESL 0.019 0.068 0.248
symm DSIFA 0.163 0.582 2.242

DSISL 0.018 0.060 0.209
sparse MA28AD 0.068 0.132 0.287

MA28BD 0.022 0.041 0.086
MA28CD 0.0041 0.0074 0.016

Table 5.6: Average CPU time for decomposition and solution

This linear increase of computing time for the sparse linear algebra mode with
respect to the dimension of the matrix may be compared to the amount of
work needed for a simulation in minimal coordinates. Hereby the dimension
of the matrices to be decomposed is smaller than in the descriptor formulation
but the sparse structure is lost. The matrices are dense, thus the amount
of work for the linear system solution is now proportional to N3, where N
denotes the number of bodies.
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As a final experiment, the problem is now solved up to a final time tend = 0.2
and with both, the dense output option and the root finding option, switched
on. For the dense output requirements we choose only the position vector to
be interpolated at 5 equidistant output points within each integration interval
[t, t + H ]. Concerning the root finding option, the following requirement was
made. Find (and stop at) that time point where the top insulator shows its
(first) maximal displacement. Thus we choose

v̇101 = ϕ̇N+1 = 0

as our switching function. Note that during the first phase of the simulation
this condition holds, at least within the frame of the required tolerance –
again RTOL = ATOL = 10−5. But, as pointed out in the preceding section,
the root finding algorithm is started only, if at both endpoints of the current
interval the value of the switching function is “not small”.

Compared to a run with both options switched off and tend := troot = 0.1283
(overall CPU time: 71.0s) the required CPU time (83.7s) increases by 18
%. The main part of this additional time is needed for the dense output
generation, i.e. for the generation of the extrapolated divided differences,
cf. Section 2.4. The root finding process is nearly for free, as only one root
has to be determined. The evaluation of the interpolating polynomial turns
out to be quite cheap (0.45s), although 101 components at 80 interpolation
points (and all 338 components at some points for root finding) have to be
evaluated.
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Program Structure

- MXDDU1

- MXDENS

-
MXDOUT

- MXRTSC

- MXRTFD

- MXPRJC -

�

�

-MEXXEX-

MXPROB

-

�

MXHERM

- MXIPOL

�DENOUT

FSWIT �

User MEXX Package Linear Algebra Package

FPROB
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�

DRIVER

?

MEXX21

MEXX -

-

MEXX Linear
Algebra

Routines

MXMAT0

MMULTF

MMULT

ADEC

ASOL

-

-

M
A
2
8
P
A
C
K

L
I
N
P
A
C
K
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Routine Purpose
MEXX the user interface routine with input check, workspace dis-

tribution, and initialization of the linear algebra
MEXX21 controls the numerical integration, the projection, and the

dense output generation
MXPROB an interface routine between the MEXX package and the

user written problem routine
MEXXEX performs one integration step with extrapolation and error

check
MXPRJC performs the projection step
MXRTFD root finder
MXRTSC checks for sign change in the user written switching

function
MXDOUT generates the dense output solution values according to the

selected options
MXDENS computes extrapolated divided differences
MXDDU1 dumps data for dense output postprocessing
MXIPOL computes interpolating values
MXHERM computes the coefficients for hermite interpolation
MXMAT0 performs linear algebra for MEXX

Table A.1: Purpose of MEXX subroutines

Entry Purpose
MXMAT0 initialize workspace for linear algebra
MMULTF computes a matrix vector product
MMULT computes another matrix vector product
ADEC interface to matrix decomposition, calls appropriate LIN-

PACK or MA28 subroutines
ASOL interface to linear system solution based on the decomposi-

tion done by ADEC, calls appropriate LINPACK or MA28
subroutines

Table A.2: Entries of the linear algebra subroutine MXMAT0
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Routine Purpose
DRIVER main program
FPROB called to evaluate the different functions describing the

problem
SOLOUT called at integration points and at switching points provid-

ing the solution values
FSWIT the user may define one or more functions and MEXX will

detect its/their zeros and provide interpolated solution val-
ues at those zeros

DENOUT called with interpolated solution values at user selected
points of time

Table A.3: Routines to be supplied by the user of MEXX
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