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Abstract
We propose a new mixed integer programming based heuristic for computing new bench-
mark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances
for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling prob-
lems inspired by real-world railway timetabling settings, and attracting several international
research teams during the last years. We describe two strategies to merge a set of good peri-
odic timetables. These make use of the instance structure and minimum weight cycle bases,
finally leading to restricted mixed integer programming formulations with tighter variable
bounds. Implementing this timetable merging approach in a concurrent solver, we improve
the objective values of the best known solutions for the smallest and largest PESPlib in-
stances by 1.7 and 4.3 percent, respectively.
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1 Introduction

In periodic event scheduling, we consider a set of events, where each event repeats after
the very same period time T . A periodic timetable is then an assignment of time values
within the interval [0, T ) to all the events, subject to the condition that the (periodic) time
differences between certain pairs of events meet a feasibility interval.

This type of problem arises in particular in the context of computing cyclic timetables
in public transport (aka fixed-interval timetables), where one may think of a periodic event
as either arrival or departure of a directed traffic line at some station, and in coordinat-
ing the traffic lights at several road intersections (Hassin, 1996; Wünsch, 2008). In the
context of timetabling in public transport, the Periodic Event Scheduling Problem (PESP)
introduced by Serafini and Ukovich (1989) has been the core model for computing the first
optimized railway timetable in practice Liebchen (2008), and also for the timetabling part
of the company-wide success story of Operations Research at Dutch Railways (Kroon et al.,
2009).



In order to attract researchers in developing more powerful solution methods for peri-
odic event scheduling, Goerigk (2012) composed a collection of instances (PESPlib), most
of which are motivated from railway timetabling. This library attracted several international
research teams, however, none of the PESPlib instances has been solved to proven optimal-
ity. The current incumbent solutions stem from the concurrent PESP solver by Borndörfer
et al. (2020), in which a variety of algorithms and heuristics are used as subroutines. In
particular, the most common local search procedures are implemented, such that the best
solutions constitute local minima for all of these heuristics.

We present a strategy to escape local minima. We follow the spirit of by Cook and
Seymour (2003): Their tour merging heuristic constructs the union of ten heuristically de-
termined tours for the Traveling Salesman Problem (TSP), applies a branch-decomposition-
based dynamic program to this restricted instance, and is able to produce even better TSP
tours.

Our philosophy is to merge a small set of good quality timetables. But we do not copy
two half timetables and simply compile their parts. Rather, we do so by restricting the
bounds of the periodic tension or cycle offset variables in the cycle-based mixed integer
programming formulation of PESP. We exploit the similarities of the input timetables, and
take into account the special characteristics of a periodic timetabling problem in public
transport. This leads to two timetable merging heuristics, one for each variable type.

From the perspective of mixed integer programs, our method can be understood as a
generalization of the well-known crossover heuristic (Rothberg, 2007). We tighten the vari-
able bounds such that all the solutions in the selected small set of good quality timetables
remain feasible. However, our approach is more general, as we consider more than two
initial solutions and allow bound restrictions of arbitrary variables instead of merely fixing
integer variables with the same solution value. Moreover, the crossover heuristic for general
mixed integer programs is supposed to run very fast for the purpose of solution polishing,
but we spend a considerable amount of time on solving the restricted problem, as solution
quality is our main goal, and PESP is notoriously hard.

It turns out that applying this tailored timetable merging heuristic can make better solu-
tions accessible. Invoking the concurrent PESP solver that computed the current PESPlib
incumbents, we find several timetables improving the best known primal bounds, and end
up with a 1.7 and 4.3 percent lower objective value for the smallest and largest PESPlib
instance, respectively.

We define PESP in Section 2, where we also review some problem features, and in-
troduce the cycle-based mixed integer programming formulation. Our timetable merging
heuristic is discussed in Section 3. Section 4 presents computational results, on the one
hand on the structure of the restricted scenarios from the merging heuristic, and on finding
better periodic timetables for the PESPlib instances on the other. We conclude this paper in
Section 5.

2 The Periodic Event Scheduling Problem

In this section we first define the combinatorial optimization problem for which we are about
to propose our merging heuristics, provide a short review of other solution techniques that
have been applied earlier, and on some of which we are going to build on, and formulate
the mixed-integer linear programming (MIP) formulation that constitutes the basis of our
computational study.



2.1 Problem Definition

The Periodic Event Scheduling Problem (PESP) dates back to Serafini and Ukovich (1989),
and shows certain similarities to models that were already considered by Rüger (1986).
Formally, the input is a tuple (G,T, `, u, w), where

• G = (V,A) is a directed graph, called event-activity network, whose vertices are
called events and whose arcs are called activities,

• T ∈ N is a period time,

• ` ∈ RA≥0 is a vector of lower bounds such that 0 ≤ ` < T ,

• u ∈ RA≥0 is a vector of upper bounds, 0 ≤ u− ` < T , and

• w ∈ RA≥0 is a vector of weights.

A vector π ∈ [0, T )V is called a periodic timetable if there exists a periodic tension x ∈ RA
such that

` ≤ x ≤ u and ∀a = (i, j) ∈ A : πj − πi ≡ xa mod T.

Intuitively, a periodic timetable π assigns times modulo T to each event in G, and fixes
the duration of any activity a = (i, j) ∈ A to πj − πi modulo T . The actual duration of
a is then chosen to lie within the interval [`a, ua]. Starting from a periodic timetable π, a
corresponding periodic tension x can be computed by

xa := [πj − πi − `a]T + `a for all a = (i, j) ∈ A,

where [·]T denotes the modulo T operator with values in [0, T ). Conversely, given a periodic
tension x, a corresponding periodic timetable π can be reconstructed by a graph traversal.
We further define the periodic slack as y := x− ` ∈ RA≥0.

In a public transport context, an event i is usually modeling either the arrival or the
departure of a directed traffic line at some station, e.g., the departure of the trains from
Berlin to Munich in the city of Erfurt. An arc a = (i, j) models the time duration from
event i to event j. If i and j are two subsequent departure and arrival events of the same
directed line, then a = (i, j) models the trip duration from the station of event i to the station
of event j. In turn, if i and j are the arrival and departure events of the same directed line
within the same station, then a = (i, j) models the dwell duration within this station. To
illustrate many other commercial and operational types of constraints, we refer to Liebchen
and Möhring (2004). If in an hourly service (i.e., T = 60 minutes), for a dwell arc a = (i, j)
we require that `a = 3 and ua = 7, then of course πi = 29 and πj = 33 constitute a feasible
timetable, because 33−29 = 4 ∈ [3, 7]. However, notice that πi = 58 and πj = 3 constitute
a feasible timetable, too, because xa = [3− 58− 3]60 + 3 = 2 + 3 = 5 ∈ [3, 7].

Definition 2.1. Given (G,T, `, u, w) as above, the Periodic Event Scheduling Problem
(PESP) is to find a periodic slack y such that the weighted periodic slack

∑
a∈A waya is

minimum or to decide that no periodic timetable exists.

Alternatively, one may seek to minimize the weighted periodic tension
∑
a∈A waxa,

which differs from the corresponding weighted periodic slack by the constant
∑
a∈A wa`a.

Speaking in application terms, where weights may reflect the number of passengers using



an activity, this amounts to minimizing the total passenger travel time, given that the routes
that the passengers are taking – and thus the activities on which they are showing up – are
known in advance. Notice that recently there have been made advances in relaxing this
assumption (Schiewe and Schöbel, 2020). But the activities’ weights may also model other
practical aspects, as for instance in the context of minimizing the amount of rolling stock
that is required to operate a periodic timetable (Liebchen and Möhring, 2004).

Notice that in the literature, sometimes PESP is regarded as the pure feasibility decision
problem, thus with no weights wa defined on the arcs.

2.2 Complexity and Solution Approaches

For an arbitrary PESP instance, it is not clear at all that a periodic timetable resp. tension
resp. slack exists. In fact, the feasibility problem is NP-complete even if T ≥ 3 is not
regarded as part of the input, because PESP generalizes Vertex Coloring (Odijk, 1994).
Moreover, the feasibility can be checked in linear time if undirecting G results in a forest,
but is already NP-hard for graphs of treewidth or branchwidth ≥ 2 (Lindner and Reisch,
2020).

In particular, in this paper we deal with an NP-hard optimization problem. A lot of
powerful tools stimulated by different viewpoints within discrete optimization have been
developed to solve PESP instances: These tools comprise, e.g., mixed-integer program-
ming (Liebchen, 2006), simplex-style algorithms (Nachtigall and Opitz, 2008; Goerigk and
Schöbel, 2013), satisfiability methods (Großmann et al., 2012), machine learning (Matos
et al., 2020), matching heuristics (Pätzold and Schöbel, 2016), and graph partitioning ap-
proaches (Lindner and Liebchen, 2019). A large part of these methods has been integrated
into a single PESP solver based on concurrency, ConcurrentPESP (Borndörfer et al.,
2020).

However, up to today even medium-sized PESP instances withstand all attempts to com-
pute optimal solutions: Since 2012, none of the 20 instances of the PESP benchmark library
PESPlib (Goerigk, 2012) could be solved to optimality, the current best primal-dual gap be-
ing ≈ 35%, where the smallest instance R1L1 even has no more than 6,386 activities. For
all these instances, ConcurrentPESP is the record holder concerning both primal and
dual bounds.

2.3 Mixed Integer Programming Formulation

Our merging strategy relies on the well-known cycle-based mixed integer programming
formulation for PESP:

Minimize
∑
a∈A

wa(xa − `a)

subject to Γx = Tz,

` ≤ x ≤ u,
z ∈ ZB .

(1)

Here, B denotes an integral cycle basis of G with cycle matrix Γ, see, e.g., Liebchen
(2006) for details. The variables are the periodic tension x as defined above and the cycle
offset z ∈ ZB . Starting from a periodic tension x, the corresponding cycle offset is of course



recovered by computing z = Γx/T . Conversely, given z, an optimal periodic tension x for
z can be found by a minimum cost network flow computation (Nachtigall and Opitz, 2008).
In the case of integer input vectors ` and u, the existence of a feasible solution implies the
existence of an integral solution vector x, as Γ is the cycle matrix of an integral cycle basis.

In addition, recall from (Odijk, 1994) that for each oriented cycle γ ∈ {−1, 0, 1}A the
following cycle inequalities

zODIJK
γ :=

⌈
γt+`− γt−u

T

⌉
≤ zγ ≤

⌊
γt+u− γt−`

T

⌋
=: zODIJK

γ (2)

are valid and turned out to be useful for solving (1) in many computational studies. Here,
γ+ := max(γ, 0) resp. γ− := max(−γ, 0) denote the positive resp. negative part of γ, so
that γ = γ+ − γ−.

3 Merging Timetables

The incumbent solutions in the PESPlib are hard to improve further: They are locally op-
timal for the local heuristics implemented in the ConcurrentPESP solver, so that only
the global component realized by branch-and-cut is able to yield better solutions. This is
unsatisfactory, given the enormous size of the branch-and-bound trees being a result of the
weak trivial linear programming relaxations (Liebchen, 2006).

Bound restriction approaches are not new to periodic event scheduling. For example, the
Arc Selection heuristic suggested by Roth (2019) tries to improve a periodic tension x by
decreasing the upper bounds u to x and iteratively re-optimizing over subsets of activities.
The optimization is carried out by calling a MaxSAT solver after transforming the PESP
instance to an instance of the weighted partial maximum satisfiability problem. On large
instances, this approach is reported to be superior to pure branch-and-cut.

Although inspired by Roth (2019), our idea is somewhat different: For a PESP instance,
we consider a set S of solutions with “good” objective values. We now want to identify
certain variables of (1) whose values are the same or at least similar for all the solutions in
S. Then, by sharpening bounds for these variables, we aim at deriving a modified mixed-
integer program that

• is easier to solve because of the tighter bounds,

• still contains all the already good solutions of S as feasible solutions, and

• has a feasible set which is a subset of the feasible set of the initial problem.

Ideally, solving this sharpened problem, we could find even better solutions for the initial
problem. As there are two types of variables in (1), there are two directions to pursue:
Restricting the periodic tension x or restricting the cycle offset z. We will discuss the
details of our strategy for these two cases separately.

3.1 Restricting Periodic Tensions

Given a PESP instance I = (G,T, `, u, w), we first analyze the span ua − `a of an activity
a. For example, in the smallest PESPlib instance R1L1, having T = 60, it turns out that
each activity either has span at most 17 or exactly 59. A similar structure is present in the



other railway instances of the PESPlib. Motivated by the typical modeling of event-activity
networks for periodic timetabling in public transport, we refer to these free activities in the
group with the larger span as transfer activities, which is also supported by an investigation
of the connectivity structure of the PESPlib instances due to Goerigk and Liebchen (2017).
With integer bounds, as is the case for the PESPlib instances, a span of 59 on an activity a
in conjunction with a period time T = 60 means that any integer periodic slack ya ∈ [0, 60)
is feasible. However, restricting the span of these activities in a too rigorous way might turn
the PESP instance infeasible.

Of course, increasing the lower bounds and decreasing the upper bounds of the activities
is our main goal. However, in order to keep some flexibility, we restrict the upper bounds
in a different manner than the lower bounds: Non-transfer activities as well as transfer
activities with low impact on the objective function always remain at their original upper
bounds, because there would be no strong empirical evidence which of these arcs will have
to face large slack in the best solutions for an instance. To this end, we choose a parameter
α ∈ [0, 1] and denote by Aα the largest set of transfer activities a ∈ A that, when sorted in
ascending order w.r.t. weight wa, sum up to at most α

∑
a∈A wa.

Now let S be a set of periodic tensions for I . We define the following bounds for each
activity a ∈ A:

`ORIG
a := `a, uORIG

a := ua,

`FIX
a := min{xa | x ∈ S}, uFIX

a :=

{
max{xa | x ∈ S} if a ∈ Aα,
ua otherwise,

`MED
a :=

1

2
`ORIG
a +

1

2
`FIX
a , uMED

a :=
1

4
uORIG
a +

3

4
uFIX
a .

Observe that for all x ∈ S we find

` = `ORIG ≤ `MED ≤ `FIX ≤ x ≤ uFIX ≤ uMED ≤ uORIG = u.

We can now combine different lower and upper bound strategies freely by consider-
ing the PESP instances IS(L,U) := (G,T, `L, uU , w) for L,U ∈ {ORIG,MED,FIX}.
Clearly, IS(ORIG,ORIG) is the original PESP instance I . Observe that any solution in S
is feasible for all scenarios IS(L,U). Moreover, restricting the changes to either lower or
upper bound, a periodic tension for FIX is a periodic tension for MED, and any periodic
tension for MED is a periodic tension for ORIG. However, formally, the weighted slacks
might differ, as the lower bounds are potentially altered.

3.2 Restricting Cycle Offsets

Consider a PESP instance I = (G,T, `, u, w) with a set S of periodic tensions. For every
integral cycle basis B with cycle matrix Γ, we can compute the corresponding cycle offset
vector z ∈ ZB for each tension x ∈ S. Denote by SB := {Γx/T | x ∈ S} the set of
these cycle offsets. The idea is now to find bounds z, z ∈ ZB and to solve the restricted
mixed-integer program



Minimize
∑
a∈A

waya

subject to Γx = Tz,

` ≤ x ≤ u,
z ≤ z ≤ z,

z ∈ ZB .

(3)

We do this in two ways by defining for each oriented cycle γ ∈ B

zALL
γ := min{zγ | z ∈ SB},
zALL
γ := max{zγ | z ∈ SB},

zPARTIAL
γ :=

{
zALL
γ if zALL

γ = zALL
γ ,

zODIJK
γ otherwise, cf. (2),

zPARTIAL
γ :=

{
zALL
γ if zALL

γ = zALL
γ ,

zODIJK
γ otherwise, cf. (2).

In the PARTIAL version, we fix all cycle offset variables if they are the same in all solutions
in S, and we do not impose any restrictions that would depend on S on the other entries
of z.

Hence, for any set of tensions S and any integral cycle basis B, we obtain two restricted
mixed-integer programs of the form (3): MIPS,B(I,ALL) and MIPS,B(I, PARTIAL). Note
that these do not necessarily correspond to PESP instances anymore, as we have not changed
any part of the input data I = (G,T, `, u, w) – we are merely restricting the program (1).
Clearly, the solutions in S are feasible for both MIPS,B(I,ALL) and MIPS,B(I, PARTIAL).
Moreover, any feasible solution to MIPS,B(I,ALL) is feasible for MIPS,B(I, PARTIAL),
and any feasible solution to MIPS,B(I, PARTIAL) is feasible for the original unrestricted
MIP (1). As the cycle inequalities (2) are valid inequalities, the unrestricted MIP (1) is
equivalent to MIPS,B(I,ODIJK) for any cycle basisB and any S. Referring to MIPS,B(I, ·)
as the feasible regions of the respective mathematical programs, we summarize

S ⊆ MIPS,B(I,ALL) ⊆ MIPS,B(I, PARTIAL) ⊆ MIPS,B(I,ODIJK) ≡ MIP (1).

3.3 Choosing a Cycle Basis

So far, we have not discussed which cycle basis B to choose when restricting cycle offsets.
For the purpose of solving the mixed integer program (3), it is desirable to fix as many
integer variables as possible, and more generally, to minimize the possible number of values
of z. Hence, we seek to minimize∏

γ∈B
(zALL
γ − zALL

γ + 1),

or equivalently,

log
∏
γ∈B

(zALL
γ − zALL

γ + 1) =
∑
γ∈B

log(zALL
γ − zALL

γ + 1). (4)



We call (4) the log width of the cycle basis B.
In the context of periodic timetabling, the concept of integral cycle bases of small (log)

width has proven to be a valuable tool in order to speed up the branch-and-bound process
for the cycle-based mixed integer programming formulation of PESP (Liebchen and Peeters,
2009). Finding a so-called directed or undirected cycle basis of minimum weight is well-
understood (Kavitha et al., 2009).

Yet, in order to profit from these insights, we must get around the following two pitfalls:
First, since a minimum-weight cycle basis in general is not integral, after having computed a
minimum-weight cycle basis we need to check, whether it is even an integral cycle basis, be-
cause otherwise the computed cycle basis risks to be useless. Second, we can only compute
a minimum-weight cycle basis efficiently, if the weight is given as a function on the arcs
rather than on the cycles. Therefore, we will construct an arc-weight function c : A→ R≥0
such that for all oriented cycles γ in G holds

c(γ) :=
∑
a∈γ

c(a) ≈ zALL
γ − zALL

γ .

Lemma 3.1. Define c : A→ R≥0 via

c(a) :=
max{xa | x ∈ S} −min{xa | x ∈ S}

T
.

Then for all oriented cycles γ ∈ B consisting of |γ| arcs holds

0 ≤ c(γ)− (zALL
γ − zALL

γ ) ≤ c(γ) < |γ|.

Proof. Let γ be an oriented cycle in B. Then

zALL
γ − zALL

γ = max{zγ | z ∈ SB} −min{zγ | z ∈ SB}

=
max{(Γx)γ | x ∈ S} −min{(Γx)γ | x ∈ S}

T

=
max{γtx | x ∈ S} −min{γtx | x ∈ S}

T
.

Recall that we can decompose γ = γ+ − γ− into its positive and negative part. Then for
any x ∈ S holds

γt+x− γt−x ≤ γtx ≤ γt+x− γt−x,
where x, x are the vectors in RA with

xa := max{xa | x ∈ S} and xa := min{xa | x ∈ S} for all a ∈ A.

In particular

zALL
γ − zALL

γ ≤
(γt+x− γt−x)− (γt+x− γt−x)

T
=

(γ+ + γ−)t(x− x)

T
=
∑
a∈γ

c(a) = c(γ).

Since zALL
γ − zALL

γ ≥ 0, we arrive at

0 ≤ c(γ)− (zALL
γ − zALL

γ ) ≤ c(γ).

Finally note that, as we require u− ` < T for our PESP instances, we have

c(γ) ≤
∑
a∈γ

ua − `a
T

< |γ|.



We can now compute a minimum-weight undirected cycle basis B∗ w.r.t. c. Note that
such a cycle basis is not necessarily integral. However, our empirical observation is that
on non-artificial PESP instances, as the ones that can be found in particular in the PESPlib,
minimum undirected cycle bases typically turn out to be integral. Being an F2-vector space,
the undirected cycles form a matroid (Horton, 1987), so that B∗ is also of minimum weight
w.r.t. log(c)+1: Up to breaking ties, the greedy algorithm sorts the cycles in the same order
both regarding c and log(c) + 1. This enables us to bound the error that we make when we
are using the cycle basis B∗ instead of the one that minimizes the actual log width (4).

Corollary 3.2. Let B′ be an undirected cycle basis of G of minimum log width (4). Then

0 ≤
∑
γ∈B∗

log(zALL
γ − zALL

γ + 1)−
∑
γ∈B′

log(zALL
γ − zALL

γ + 1) < |B∗| log(|V |+ 1).

Proof. The left inequality is clear asB′ minimizes (4). As
∑
γ∈B′ log(zALL

γ −zALL
γ +1) ≥ 0,

it remains to invoke Lemma 3.1 to obtain∑
γ∈B∗

log(zALL
γ − zALL

γ + 1) <
∑
γ∈B∗

log(|γ|+ 1) ≤ |B∗| log(|V |+ 1).

Note that we can assume |γ| ≤ |V | as there is always a minimum undirected cycle basis
composed of simple cycles, and we only compare the objectives.

An empirical analysis of the quality of different cycle bases will be given in §4.2, the
cycle basis B∗ as defined in Lemma 3.1 being superior for our purposes.

4 Results

We turn now to the computational results that we obtained by timetable merging. We de-
scribe the details of the set-up in §4.1. In §4.2, we present a structural analysis of the re-
stricted scenarios constructed in §3, including an assessment of various cycle bases. Finally,
the actual timetables found by our strategy are presented in §4.3.

4.1 General Setup

We test the merging approach outlined in Section 3 on the smallest and largest PESPlib
instance, R1L1 and R4L4, respectively. For each of the two instances, we choose a set S
of 5 solutions whose weighted slack is close to the current PESPlib record. Among these
solutions are the incumbent solution found by Lindner and Roth (see Borndörfer et al. 2020),
and the best solution found by the iterative procedure by Goerigk and Liebchen (2017).

Our workflow is visualized in Figure 1. We construct the 8 scenarios with the tightened
bounds as described in §3.1, and another 2 scenarios according to §3.2. For each of these
10 scenarios, we conduct 18 = 6 ·3 runs of ConcurrentPESP with 60 minutes each (wall
time): These arise from 6 different initial solutions (the ones from the set S, or none) in
combination with 3 different parameter settings for fine-tuning the actual solution process
(Round 1). For each of these runs we check whether the optimum solution of that run
achieved an improvement compared to the initial solution that gave rise to the respective
run. If this is the case, then the possibility arises to escape local minima and we thus launch
Round 2: We feed the ConcurrentPESP solver on the original instance R1L1 resp. R4L4



6 initial solutions for I

S = {x1, x2, x3, x4, x5, ∅}

8 tension-restricted scenarios

IS(L,U), L, U ∈ {FIX,MED,ORIG},
(L,U) 6= (ORIG,ORIG)

2 cycle-offset-restricted scenarios

MIPS(I,B∗,ALL),
MIPS(I,B∗,PARTIAL)

Round 1: 18 runs per scenario

6 initial solutions {x1, x2, x3, x4, x5, ∅}
3 parameter settings

ConcurrentPESP, 1 hour

Round 2: 1 run per solution from Round 1

ConcurrentPESP, 4 hours

output solutions for I

choose parameter α ∈ [0, 1]
§3.1

compute cycle basis B∗

§3.2, §3.3

Figure 1: Workflow for a PESP instance I

with the output of Round 1 as input. Each such run of Round 2 is performed as a single
solver run for 4 hours (wall time), dedicating most computational capacity to MIP solving.

For the scenarios of Round 1, we compute dual bounds with separated additional dedi-
cated runs of ConcurrentPESP of 24 hours each, running exclusively a MIP solver with
best bound emphasis, and a separator for violated flip inequalities (Lindner and Liebchen,
2020). For the ALL and PARTIAL scenarios with restricted cycle offsets, we have to turn
off the modulo network simplex algorithm, as this too frequently violates the tighter bounds.
Instead, we adjust the mixed-integer programming based maximum cut heuristic available
in ConcurrentPESP to work with the cycle offset bound constraints.

The ConcurrentPESP solver is run on up to 8 threads on an Intel Xeon E3-1270
CPU running at 3.80 GHz with 32 GB RAM. We use IBM CPLEX 12.10 as underlying
MIP solver.



4.2 Scenario Analysis

Tension-Restricted Scenarios
The approach from §3.1 yields PESP instances IS(L,U) for L,U ∈ {FIX,MED,ORIG},
where IS(ORIG,ORIG) corresponds to the original instance I ∈ {R1L1,R4L4}, and is
thus omitted. Our approach does neither alter the graph G nor the weights w, it merely
affects the lower bounds ` and the upper bounds u. We demonstrate hence the effect of our
approach by analyzing the span: The span of an activity a ∈ A is defined as ua − `a. We
will call an activity fixed if its span is 0, and free if the span is 59. The weighted span of an
activity a is given by wa(ua − `a).

Table 1 presents an analysis of the activity spans in the tension-restricted scenarios for
the PESPlib instances R1L1 and R4L4. As parameter α, we chose α = 0.125.

The “difficulty” of the restricted instances I(L,U), in terms of the average span or the
average weighted span, is dictated by the upper bound strategy: U = FIX has lower average
span than U = MED, which in turn has lower average span than U = ORIG. Each change
in U to a more restrictive policy reduces the weighted average span by roughly a factor of
1
2 . For a given strategy for the upper bounds, there is a clear ranking for the lower bound
strategies, which is also FIX → MED → ORIG with increasing difficulty. Moreover, the
number of free activities is significantly lower than on the original instance. The number
of fixed activities is approximately the same for all scenarios with U ∈ {MED,ORIG}, but
jumps up to ≈ 54-55 % (R1L1) resp. ≈ 43 % (R4L4) when U = FIX.

I L U fixed activities free activities avg. span avg. wt. span

R
1L

1

FIX FIX 55.18 % 28.03 % 18.98 6 511
MED FIX 53.78 % 28.05 % 19.76 7 608
ORIG FIX 53.78 % 28.07 % 20.49 8 646
FIX MED 10.34 % 29.13 % 21.03 15 285
MED MED 10.12 % 29.24 % 21.81 16 382
ORIG MED 10.12 % 29.79 % 22.55 17 420
FIX ORIG 10.34 % 35.07 % 26.19 35 391
MED ORIG 10.12 % 35.61 % 26.96 36 488
ORIG ORIG 10.12 % 44.28 % 27.70 37 526

R
4L

4

FIX FIX 42.78 % 32.38 % 24.99 3 802
MED FIX 42.66 % 32.40 % 25.76 4 073
ORIG FIX 42.66 % 32.54 % 26.46 4 320
FIX MED 8.93 % 34.36 % 27.02 7 643
MED MED 8.86 % 34.70 % 27.79 7 915
ORIG MED 8.86 % 36.53 % 28.50 8 162
FIX ORIG 8.93 % 40.91 % 31.84 16 221
MED ORIG 8.86 % 42.01 % 32.61 16 493
ORIG ORIG 8.86 % 54.27 % 33.32 16 740

Table 1: Span analysis of the tension-restricted R1L1 and R4L4 scenarios

Cycle-Offset-Restricted Scenarios and Evaluation of Cycle Bases
Recall from §3.3 that, when restricting the cycle offset vectors z, we want to choose a cycle
basis B that minimizes the log width (4). In a kind of pre-test, we compare several cycle



bases:

1. a fundamental cycle basis obtained from a minimum spanning tree in G w.r.t. w,

2. an undirected cycle basis minimizing the span u− `,

3. an undirected cycle basis minimizing the number of arcs,

4. an undirected cycle basis minimizing the function c as defined in Lemma 3.1.

For our two instances, all the undirected cycle bases turn out to be integral, so that they are
minimum integral cycle bases as well.

Table 2 evaluates the fixed cycle offset variables and the log width of the aforementioned
cycle bases. The cycle basisB? minimizing c suggested in §3.3 comes out as a clear winner:
It fixes by far the most variables and the log width is smallest for our strategies ALL and
PARTIAL. It is clear by construction that the strategies ALL and PARTIAL fix the same set
of cycle offset variables. However, it is remarkable that none of the cycle bases is able to fix
an integer variable in the standard MIP formulation (1) just with Odijk’s cycle inequalities
(2). This is due to the fact that every cycle in the R1L1 resp. R4L4 instance contains at
least two transfer activities. The minimum span cycle basis is tailored to decrease the log
width w.r.t. the Odijk bounds (Liebchen and Peeters, 2009), but surprisingly, minimizing the
number of activities in the cycle basis often produces an even smaller log width. Minimizing
c is a bad choice for tightening Odijk’s bounds.

ALL PARTIAL ODIJK
I cycle basis fixed log width fixed log width fixed log width

R
1L

1

fundamental 33.28 % 667 33.28 % 1 516 0.00 % 2 107
min span 58.67 % 343 58.67 % 645 0.00 % 1 543
min # arcs 59.59 % 346 59.59 % 609 0.00 % 1 484
min c 73.62 % 216 73.62 % 597 0.00 % 2 302

R
4L

4

fundamental 22.01 % 2 862 22.01 % 6 542 0.00 % 7 939
min span 37.66 % 1 777 37.66 % 3 399 0.00 % 5 378
min # arcs 42.26 % 1 722 42.26 % 2 932 0.00 % 5 000
min c 59.46 % 1 144 59.46 % 2 886 0.00 % 6 957

Table 2: Evaluation of cycle bases for R1L1 and R4L4. The “fixed” column indicates the
percentage of cycles γ in the basis with zγ = zγ . The log width is given w.r.t. decadic
logarithms to make the numbers more intuitive.

In the sequel, we thus select MIPS,B∗(R1L1,ALL) and MIPS,B∗(R1L1,PARTIAL) for
our computations with the two cycle-offset-restricted scenarios.

4.3 Computational Results

We finally turn to the timetables found by our merging approach. In this section, we omit
the subscripts S and B∗, as we consider only a single S and a single B∗ per instance.

The results for R1L1 are summarized in Table 3 (Round 1) and Table 4 (Round 2).
In Round 1, R1L1(ORIG,MED) is the only scenario where we could produce a better
timetable (best weighted slack: 30 036 475) than the current PESPlib incumbent (weighted



slack: 30 415 672). This underlines the “hardness” of the local optimum at the latter solu-
tion. The scenarios R1L1(−,FIX) can in fact be solved to optimality: The current PESPlib
incumbent is optimal. In particular, we cannot gain much information out of these 3 sce-
narios and discard them for Round 2. However, when reaching the computation time limit,
several runs of Round 1 end up at a different timetable than the current PESPlib incumbent
with only slightly higher slack. These timetables turn out to be “far enough” from the in-
cumbent, and this is why we find improving solutions for all scenarios except U = FIX in
Round 2.

The best timetable has weighted slack 29 894 745 and is computed from one of the
three better timetables produced by R1L1(ORIG,MED) in Round 1, but not from the one
with lowest weighted slack. The PARTIAL cycle offset strategy produces the second best
timetable with a weighted slack of 29 907 781.

L U best objective better objectives dual bound gap
FIX FIX 30 415 672 0 / 18 30 415 672 0.00 %
MED FIX 30 415 672 0 / 18 30 415 672 0.00 %
ORIG FIX 30 415 672 0 / 18 30 415 672 0.00 %
FIX MED 30 415 672 0 / 18 29 673 500 2.44 %
MED MED 30 415 672 0 / 18 28 612 511 5.93 %
ORIG MED 30 036 475 3 / 18 25 883 704 13.83 %
FIX ORIG 30 415 672 0 / 18 28 697 443 5.65 %
MED ORIG 30 415 672 0 / 18 25 620 519 15.77 %

cycle offset strategy best objective better objectives dual bound gap
ALL 30 415 672 0 / 18 30 174 317 0.79 %
PARTIAL 30 415 672 0 / 18 30 118 941 0.98 %

Table 3: Results for the 10 = 8 + 2 scenarios of Round 1 for R1L1

L U best objective better objectives
FIX MED 30 348 574 2 / 18
MED MED 30 003 486 4 / 18
ORIG MED 29 894 745 6 / 18
FIX ORIG 30 373 924 1 / 18
MED ORIG 30 335 565 3 / 18

cycle offset strategy best objective better objectives
ALL 29 973 362 7 / 18
PARTIAL 29 907 781 6 / 18

Table 4: Results of Round 2 for R1L1

The evolution of the objective values over both rounds for all 18 runs of the scenarios
R1L1(ORIG,MED) and MIP(R1L1,ALL) is visualized in Figure 2 and Figure 3, respec-
tively. These figures, as well as the subsequent ones, read as follows: The upper end of the
green bar is the objective value of the initial solution from S that Round 1 has been fed with,
or∞ in the case where no solution has been provided to Round 1 (∅). The border between



the green and the yellow bars is the objective value of the best solution that has been found
in Round 1, and is thus plugged into Round 2 as initial solution. Finally, the bottom of the
yellow bar is the objective value that has been achieved as the result of Round 2.

The picture for R4L4 is somewhat different: Although the current PESPlib incumbent
is the optimal solution to the R4L4(−,FIX) instances, we find at least 6 better timetables
for each other scenario in Round 1, the best has weighted slack 37 281 703 and is found by
R4L4(ORIG,MED), too.

For Round 2, we again discard U = FIX. The remaining 7 scenarios bring plenty of
better solutions, at least 12 per scenario. The best timetable is an outcome of a Round 1
timetable for R4L4(MED,ORIG), and has weighted slack 36 729 402. The objective values
of the best timetables found in Round 2 are close for all scenarios, the second best with a
weighted slack of 36 753 295 has again been produced by the PARTIAL cycle offset strat-
egy. The objective value evolution for R4L4(MED,ORIG) and MIP(R4L4,PARTIAL) is
visualized in Figure 4 and Figure 5, respectively.

L U best objective better objectives dual bound gap
FIX FIX 38 381 922 0 / 18 38 381 922 0.00 %
MED FIX 38 381 922 0 / 18 38 381 922 0.00 %
ORIG FIX 38 381 922 0 / 18 38 381 922 0.00 %
FIX MED 38 095 741 7 / 18 29 918 556 21.46 %
MED MED 37 616 308 6 / 18 24 688 127 34.37 %
ORIG MED 37 281 703 6 / 18 19 414 100 47.93 %
FIX ORIG 37 862 826 9 / 18 27 834 556 26.49 %
MED ORIG 37 398 748 9 / 18 23 196 127 37.98 %

cycle offset strategy best objective better objectives dual bound gap
ALL 37 507 260 9 / 18 30 458 434 18.80 %
PARTIAL 37 499 535 9 / 18 30 560 248 18.51 %

Table 5: Results of Round 1 for R4L4

L U best objective better objectives
FIX MED 36 784 153 18 / 18
MED MED 36 772 886 12 / 18
ORIG MED 36 757 228 13 / 18
FIX ORIG 36 770 965 12 / 18
MED ORIG 36 728 402 12 / 18

cycle offset strategy best objective better objectives
ALL 36 775 559 12 / 18
PARTIAL 36 753 295 13 / 18

Table 6: Results of Round 2 for R4L4

To sum up, although our restricted scenarios do not always give rise to better solutions
of the original instance in Round 1, the ConcurrentPESP solver is able to compute
timetables of very good quality that can help overcome local optima on the original instance
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Figure 2: Objective values of the solutions obtained from R1L1(ORIG,MED). After
Round 1, runs #2, #3, and #5 produced better solutions than the current PESPlib in-
cumbent (value 30 415 672, dotted blue line). After Round 2, in total 7 better timetables
have been found.
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Figure 3: Objective values of the solutions obtained from MIP(R1L1,ALL). No improve-
ment upon the current PESPlib incumbent shows up in Round 1, but 7 better timetables are
found after Round 2. Interestingly, these arise from weaker initial solutions or none at all.
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Figure 4: Objective values of the solutions obtained from R4L4(MED,ORIG). Round 1
produces 6 timetables improving upon the current PESPlib incumbent (objective value
38 381 922, dotted blue line), and 3 more are found in Round 2. Runs #16-18 have been
conducted without an initial solution, and the final objective value is larger than 41 000 000.
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Figure 5: Objective values of the solutions obtained from MIP(R4L4,PARTIAL). After
Round 2, 13 solutions have a better objective value than the current PESPlib incumbent.
During runs #16 and #18 of Round 1, the solver could not find any feasible solution.



in Round 2. Restricting tensions produced lower objective values, but the difference to the
cycle offset approach is only minor, so that we consider both approaches as fruitful.

5 Conclusion

We presented two strategies to merge periodic timetables in the context of the Periodic Event
Scheduling Problem. Both rely on mixed integer programming, one constructing restricted
PESP instances with tighter bounds on periodic tensions, and the other one defining re-
stricted mixed-integer programs tightening the bounds of the integer cycle offset variables.
The new bounds are computed using a set of initial solutions, considering the span of the
activities and using minimum cycle basis techniques. On the smallest and largest PESPlib
instance, this approach overcomes local optima for the classical PESP heuristics, and is
therefore able to produce better periodic timetables.

We are confident that the approach will turn out to be fruitful on the other PESPlib
instances, and on general PESP instances as well. Although we did not experiment with
different sets S of initial solutions, the outcome was satisfactory, given the hardness of
periodic timetabling problems. It would be interesting to integrate the search for these sets S
into a merging framework, perhaps guided by reinforcement learning. Another direction of
investigation could be to combine our two directions, i.e., restricting periodic tension and
cycle offset variables simultaneously.

Bearing similarities to the crossover heuristic as it is applied for MIPs, the basic princi-
ple of our method is certainly applicable to general mixed integer programs. Note however
that our computation times are several hours, whereas standard crossover for solution pol-
ishing is supposed to finish within a scale of seconds. We therefore think that the focus of
such a general MIP solution merging heuristic should be on hard MIPs with general, i.e.,
non-binary, integer variables.
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