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Provably Good Solutions for
Wavelength Assignment in Optical Networks

Arie M. C. A. Koster!? Adrian Zymolka'

Abstract

In this paper, we study the minimum converter wavelength assignment problem in
optical networks. To benchmark the quality of solutions obtained by heuristics, we
derive an integer programming formulation by generalizing the formulation of Mehrotra
and Trick [12] for the vertex coloring problem. To handle the exponential number of
variables, we propose a column generation approach. Computational experiments show
that the value of the linear relaxation states a good lower bound and can often prove
optimality of the best solution generated heuristically.

1 Introduction

The cost-efficient design of transparent optical networks comprises three main tasks: di-
mensioning, routing, and wavelength assignment. In the dimensioning, hardware devices
have to be placed in the given physical topology of the network. The installation of fibers
and Wavelength Division Multiplexing (WDM) systems at the links provides transmission
capacity, while Optical Cross-Connects (OXCs) in the nodes offer switching capacity. For
every pair of nodes, a demand for a number of lightpaths to be established is specified.
The lightpaths have to be routed such that their capacity consumption does not exceed
the transmission and switching capacities of the installed equipment. As WDM systems
are applied, each lightpath has also to be assigned an available wavelength of operation on
each passed link. Along a lightpath, exchanging the operated wavelength on two consec-
utive links requires in the intermediate node to install a wavelength converter, which can
translate any wavelength to any other for a single optical channel. The cost of the resulting
network composes of the installation costs for fibers, WDM systems, OXCs, and wavelength
converters. The optical network design problem is to determine a hardware and lightpath
configuration at minimum total cost.

The focus on optical network design in the literature has been on routing and wavelength
assignment, while dimensioning was considered less frequently. To incorporate all three
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issues, an alternative approach in [13] proposes the decomposition into a dimensioning and
routing subproblem (without distinguishing wavelengths), and a subsequent wavelength as-
signment subproblem. This decomposition is beneficial in several regards. The integrated
solution of dimensioning and routing as highly correlated issues from a cost-oriented per-
spective is, since wavelengths are neglected, very similar to non-optical network design and
thus allows to employ known sophisticated methods. Moreover, optical network design com-
bines two hard mathematical problems, an integer multicommodity flow problem (routing)
and a generalized coloring problem (wavelength assignment), which are separated by the
decomposition.

In this paper, we investigate the wavelength assignment subproblem. Given a proper dimen-
sioned network and a routing of all lightpaths, the task is to assign the available wavelengths
to the links of each lightpath such that the total number of required wavelength convert-
ers is minimized. Both constructive and improvement heuristics have been described and
studied in [10]. For the iterative algorithms, we propose a problem extraction method to
enhance the performance. Although the generated solutions typically contain a (relatively)
small number of converters, the heuristics leave open whether there are better assignments.
To benchmark the solution quality, it is necessary to determine the optimum or, second
best, approximate the number of unavoidable converters by a lower bound. Starting from a
simplified problem, we extend a successful exact approach for vertex coloring by Mehrotra
and Trick [12] step-wise to a suitable integer programming formulation for the wavelength
assignment problem, covering the general case. We also present a column generation algo-
rithm to solve the linear relaxation whose value provides a lower bound for the minimum
converter number. A computational study reveals that the derived formulation of the prob-
lem in fact yields good lower bounds. Using these benchmarks, we can also show that the
heuristics generate provably good solutions.

The paper is structured as follows. We formally introduce the minimum converter wave-
length assignment problem in Section 2. As exact solution approach, we develop the integer
programming formulation in Section 3 and describe in Section 4 the associated column
generation method to solve the linear relaxation. Next, we briefly review the heuristics in
Section 5 and present the extraction extension. In Section 6, we report on a computational
study to evaluate the quality of lower bounds and heuristic solutions. Concluding remarks
in Section 7 close the paper.

2 Problem description

We consider an already dimensioned optical network and a given set of lightpaths. Each
lightpath is routed on a link path in the physical topology of the network (however no
specific fiber on multi-fiber links is predefined). The network is dimensioned in such a
way that the number of channels consumed by all lightpaths on a link does not exceed the
channel capacity of the installed fibers and WDM systems. Likewise, the switching capacity
provided by optical cross-connects in the nodes is large enough to handle all traversing
lightpaths. We assume that both lightpaths and all capacities are bidirectional, i.e., fibers
and WDM systems are always installed in pairs, one for each direction, and a lightpath
provides a virtual connection in both directions. The installed fibers and WDM systems on



each link specify the available wavelengths for operating the lightpaths. For any exchange
of the operated wavelength along a lightpath, a wavelength converter has to be installed
in the intermediate node. Now, the Minimum Converter Wavelength Assignment Problem
(MCWAP) is the task to assign the available wavelengths to each link of each lightpath
such that the total number of required wavelength converters is minimized.

From a graph theoretical point of view, MCWAP can be described as follows. Let N =
(N, L) be an undirected graph with IV representing the nodes and L the links of the physical
topology. The set A denotes the spectrum of all wavelengths. At each link ¢ € L, there
are ky fibers, whereas /{j‘ defines the number of times wavelength A € A is available by the
installed fibers and WDM systems. Note that different WDM systems can result in different
values /@j‘ for the diverse wavelengths. In total Ky = .\ K? optical channels are available
on link ¢ € L.

As multiple lightpaths can be routed along the same link path, we consider them cumulative.
For a path p in NV, we denote with d,, the number of lightpaths routed along this path. All
lightpaths that have to be assigned wavelengths are gathered in a multi-set P where each
path p is contained d, times (a multi-set is a set with allowed element repetition). So, in
total P = |P| lightpaths are considered. To differentiate the paths without multiplicity, the
set Py contains each path just once. Let N(p) C N denote the intermediate nodes along the
path p (the start and end node of the path are not included in N(p)). Similarly, L(p) C L
denotes the links of the path p, and all paths that share link £ € L are subsumed in the set
Py C P1.

The assumption that the channel capacities are sufficient to establish the given set of light-
paths implies that

> dy <Ky vieL (1)
PEP;

hold. Then, the existence of a feasible wavelength assignment is guaranteed by the avail-
ability of wavelength converters. Notice that by (1), lightpaths containing only a single link
can always be assigned a wavelength independently from the other lightpaths (and never
require converters). Therefore, such lightpaths are left out in our further considerations.

3 Mathematical formulation

In [10, 13], heuristics for the minimum converter wavelength assignment problem have
been developed. In case the resulting wavelength assignment is without conversion, we
can conclude that the solution is optimal. Otherwise, the best generated solution typically
contains a (relatively) low number of converters, but it remains unclear whether there are
better assignments with less (or even without) converters, i.e., no quality guarantee can
be given. To benchmark wavelength assignments by their converter number, we have to
determine the number of unavoidable wavelength converters as lower bound. The most
promising approach for such a task is integer programming.

A natural modelling of MCWAP is to introduce a variable for every combination of a
lightpath, each of its links, and each wavelength available on that link. By use of these



assignment variables, it is straightforward to formulate the associated integer program,
which we refer to as assignment formulation. Unfortunately, such a formulation has several
disadvantages, the most important one being the degeneracy of the solutions resulting from
the symmetry in the wavelengths. Suppose two wavelengths A; # Ao satisfy /@;‘1 = /{?2 for all
links ¢ € L. Given any wavelength assignment, the exchange of these two wavelengths results
in a different solution with exactly the same number of converters. Typically, there are many
such equivalent wavelengths, and thus an enormous amount of equivalent solutions exists.
This not only holds for integer solutions, but also for every fractional one. For problems with
a similar characteristic, like vertex coloring or frequency assignment [1], solution algorithms
like linear programming based branch-and-bound on the assignment formulation have been
shown to be computational intractable due to the inherent symmetry.

Since wavelength assignment in a very restrictive setting can be modeled as a vertex coloring
problem, alternative approaches for the latter problem are of special interest. Mehrotra
and Trick [12] have developed a so-called column generation formulation for vertex coloring
which overcomes the color symmetry. In the following, we generalize this formulation step
by step to MCWAP.

3.1 Single fiber links

Until further notice, we at first assume uniform WDM systems, i.e., all WDM systems
provide the same set of wavelengths, A. In case xky = 1 for all links ¢ € L, the question
whether or not a wavelength assignment without conversion exists then reduces to the vertex
coloring problem on the so-called path conflict graph Gp: Introduce a vertex v, for every
lightpath p € P and connect two vertices by an edge if the corresponding lightpaths share
at least one link. Any coloring of the vertices such that no two adjacent vertices have the
same color corresponds to an assignment of wavelengths to the lightpaths. The minimum
number of colors (=wavelengths) needed is denoted by the chromatic number, x(Gp). So,
a wavelength assignment without conversion exists if and only if x(Gp) < |A].

If all colors are available for all vertices of Gp, the specific color of a vertex is unimportant.
The only thing that matters is that adjacent vertices receive different colors. Stated oth-
erwise, non-adjacent vertices can receive the same color. A stable set ¢ is a set of pairwise
non-adjacent vertices and thus has the property that all vertices in ¢ can be colored with the
same color. So, a coloring consists of a covering of all vertices by stable sets representing the
colors (without specifying them). The less stable sets are needed, the lower the chromatic
number is.

Let ® denote the collection of all stable sets in Gp. The integer programming formulation
by Mehrotra and Trick [12] introduces a binary variable x, for every stable set ¢ € ® to
indicate whether or not this stable set is selected in the covering of the vertices. Now, the
vertex coloring problem for Gp can be formulated as follows:

X(Gp) =min Y w (2)

peD

s.t. Z zy=1 Vpe P (3)



zg € {0,1} (4)

The major advantage of this formulation in comparison to the assignment formulation is
the fact that no specific colors are used anymore. In fact, all colorings that are equal up to
a permutation of the colors are represented by a single solution in this formulation.

Mehrotra and Trick [12] proved that the lower bound on the number of colors provided
by the linear relaxation of (2)—(4) is at least as good as the linear relaxtion bound of the
assignment formulation. In many cases it is indeed better.

A drawback of the formulation (2)—(4) is the number of variables which is extremely large.
We have one variable for each stable set, where the number of stable sets is in general
exponential in |V|. For non-trivial graphs, this number is too large to handle the variables
explicitly. To solve the linear relaxation of (2)—(4), the technique of column generation [4, 5]
can be applied: A small number of the variables is considered explicitly within a restricted
program. After the linear relaxation of the restricted problem is solved, the non-explicitly
handled variables are searched for those that can improve the relaxation. If such a variable
exists, it is added to the restricted program, and the relaxation is solved again. If it can
be proved that no such variable exists, the linear programming relaxation is solved to
optimality with respect to all variables.

Column generation can be combined with branch-and-bound to solve not only the linear
relaxation, but the integer problem to optimality. This method is known as branch-and-
price. In [12], a branch-and-price method has been applied to (2)—(4) for graphs with
up to several hundreds of vertices, a result that is out of the question for the assignment
formulation due to its degeneracy.

3.2 Aggregating lightpaths

Given a routing of the lightpaths, it is likely that several lightpaths are routed along the
same physical path p € P; through the network (i.e., d, > 1). Two such lightpaths are
obviously in conflict with the same set of other lightpaths. In particular, they are in conflict
with each other. This means that the corresponding vertices have the same neighbors in
the path conflict graph (neglecting the vertices itself) and that all parallel lightpaths are
mutually adjacent, i.e., they form a clique. It is well known that in such a case we can
contract all these d, vertices to a single vertex provided that we color the new vertex
with d,, different colors. In this way, the size of the path conflict graph can be reduced
substantially.

For the stable set formulation (2)-(4), a contraction of d,, vertices corresponding to parallel
lightpaths to a single vertex implies that the new vertex has to be covered by d, stable
sets. This simply changes constraints (3) to have a right hand side of d, for each unique
path p € P;. Moreover, the variables are not longer binary but integer, since one stable set
can be used for multiple colors (as long as all vertices in the stable set need more than one
color). Summarized, the formulation now reads:

X(Gp) = min Z Ty (5)

ped



s.t. Z Ty =dp Vp e Py (6)

3.3 Parallel fibers

If more than |A| lightpaths have to be established on the same link, multiple fibers (and
WDM systems) have to be installed. One way to model parallel fibers is to include a seperate
link in the network A for every fiber. If the fibers on which a lightpath is established are
specified beforehand, the path conflict graph can be used again. However, during the
dimensioning and lightpath routing, parallel links cannot be discriminated with respect to
the network cost. At first during the wavelength assignment it becomes important whether
some lightpaths are established on the same or on different fibers. A preliminary decision
which fiber is used by which lightpath therefore restrains the space of low cost wavelength
assignments unnecessarily. Consider the network in Fig. 1 where each pair of the nodes A,
B, and C is connected by two lightpaths. In case we pre-allocate the dashed lightpaths to
the first fiber on both links and the solid lightpaths to the second fiber on both links, two
wavelength converters are needed. By allocating both lightpaths from A to B on the first
fiber on both links, both lightpaths from A to C on the second fiber on both links, and both
lightpaths from B to C on the second fiber between B and D and on the first fiber between
D and C, no wavelength converters are necessary at all. This example makes clear that a
dedication of the lightpaths to distinct fibers can prevent better wavelength assignments
and thus is not a good idea.

Alternatively, we model all parallel fibers by a single link in the network and do not specify
beforehand which fiber is used by which lightpath. If x; fibers with uniform WDM systems
are installed on link £ € L, then ky lightpaths that share link ¢ can be assigned the same
wavelength without being in conflict, they simply use different fibers. This extends the
binary relation between the lightpaths to an integer one which cannot be represented by
the edges of a simple path conflict graph anymore. In [6] a path conflict hypergraph is
proposed to model these relations.

For our integer programming formulation, such a hypergraph is of limited interest. A slight
extension of formulation (5)—(7) still models the problem, where only the mathematical
nature of the sets ¢ (and by this ®) is different. Instead of ¢ being a stable set in the path
conflict graph, ¢ becomes a so-called path packing. A path packing is defined by a network
N = (N, L), capacities ry for all £ € L, and a set of paths P;. If the multiplicity of a path

Figure 1: Wavelength assignment problem with two fibers on each link and two wavelengths
per fiber



p € Pi in a multi-set ¢ is denoted by t¥, a feasible path packing is a multi-set ¢ C P of
paths such that

Yo o<k Viel
pEGLEL(D)

hold, i.e., all paths in a feasible path packing ¢ can be assigned the same wavelength without
conflict.

Let now ® denote the set of all feasible path packings. To account for the path multiplicities
in a path packing within the covering, we have to replace conditions (6) by

Z tz% = dp Vp € P1 (8)
PeD:v,EH

Then the problem whether or not a conversion-free wavelength assignment exists can be
solved by the program (5), (8), (7). If the optimum is less than or equal to |A[, a conflict-free
assignment without converters is found, otherwise no such assignment exists.

3.4 Wavelength converters

So far, we only can answer the question whether a conflict-free assignment without conver-
sion exists. In case no such an assignment exists, we need to install wavelength converters
for the establishment of all requested lightpaths. A better objective would therefore be
to minimize the number of converters needed. If the optimum is zero, we found the same
answer as before, in all other cases we get an answer with added value, namely where to
place converters.

The objective to minimize the number of converters involves a more substantial reformu-
lation of (5), (8), (7). Recall that a solution for MCWAP consists of an assignment of
wavelengths to the links of the lightpaths in such a way that each lightpath is assigned
wavelengths on all its links and that no wavelength is assigned more than its availability
on the link. Given such an assignment, the number of wavelength converters can be cal-
culated. Looking at a lightpath that needs a converter in the solution, the wavelengths
are assigned to one or more consecutive links along the path. The consecutive links with
the same wavelength can be gathered to a subpath. In this view, a lightpath consists of a
number of subpaths (possibly only one) that cover the path.

All subpaths that are assigned the same wavelength within the network is again a packing
(of subpaths). Since we have in total |A| wavelengths available, an assignment exists of |A]
subpath packings. The number of converters needed for a lightpath is exactly the number
of subpaths to cover the lightpath minus one. Hence, minimizing the total number of
converters needed is equivalent to minimizing the total number of subpaths involved in the
|A| subpath packings.

The number of times a subpath s can be contained in a subpath packing is restricted from
two sides. On the one hand, all subpaths that share a link cannot be taken more than x,
times. On the other hand, the number of times a subpath can be used is limited by the



number of lightpaths it is part of. Formally, for each p € P, let S, denote the set of all
subpaths s of p. Note that |S,| = 2[L(p)|(|L(p)| + 1). Let S = UpepS, denote the set of
all subpaths. Moreover, let P; C P denote the multi-set of all lightpaths containing s as a
subpath. A feasible subpath packing is now defined as a multi-set ¢ C S of subpaths such
that

>ty <k VieL
s€p:leL(s)
and
tf’b < |Ps] VseS

hold. Let ® denote this time the set of all feasible subpath packings. Given |A| feasible
subpath packings, it is still unclear whether these build a complete wavelength assignment.
Each lightpath has to be covered by subpaths on all its links. As a subpath s € S can be
used to cover all lightpaths in Pg, we have to specify how many times a part of the path p
is covered by subpath s. We denote this number by the integer variable y,.

Now, we are ready to formulate MCWAP with uniform wavelength spectra as integer pro-
gram:

min Z Z Uy - Z d, 9)

pEP1 sES) pEPL

s.t. > y=d Vp € Py, L € L(p) (10)
seSpleL(s)

dtswe= >y VseS (11)

pcd pEP1:s€ES)

D zp <A (12)
ped

Yp, Ty € Z§ (13)

As explained before, the total number of converters is given by the total number of used
subpaths minus one for each lightpath, so minus the total number of lightpaths, which is
expressed by (9). Note that the lightpath number is constant (and therefore put in brackets
in (9)). At every link ¢ € L, the lightpath-multiplicity for each path p has to be satisfied,
which is modeled by constraints (10). Constraints (11) state that all covering subpaths
s € § are provided the required number of times by the selected subpath packings. Finally,
constraint (12) restricts the number of subpath packings to the size of the available spectrum
A, and constraints (13) guarantee all variables to be integer valued.

Although we need substantially more variables to formulate MCWAP compared to the
vertex coloring formulation (2)—(4), the advantages of that formulation carry over to this
one. In (9)—(13), we do not consider specific wavelengths, and thus assignments that are



equivalent up to a permutation of the wavelengths are all respresented by a single solution.
Moreover, the linear relaxation provides a lower bound on the number of converters that is
always as good as the one by the straightforward assignment formulation. In fact, where
the bound by the linear relaxation of the assignment formulation is always zero (cf. [9]), the
bound by the linear relaxation of the subpath packing formulation (9)—(13) can be positive,
cf. Fig. 2. If only two wavelengths are available, we need one converter in the central node.
The linear relaxation of (9)—(13) has value four (minus three as total number of lightpaths),
for example by setting the variables of the two subpath packings in Fig. 2(b) to one, and
thus it says that at least one converter is needed.

a) instance b) two subpath packings with x4 = 1 in the
P p g ¢
linear relaxation

Figure 2: Star network with positive linear relaxation value

3.5 Non-uniform wavelength spectra

So far, we have discussed the case that all wavelength spectra are uniform. In practice
however it can be the case that different types of WDM systems are used, providing different
subsets of the spectrum A. As a consequence, not every wavelength is the same number of
times available on a link. As a consequence, we have to refine the definition of a feasible
subpath packing. A subpath packing is said to be feasible for wavelength A € A if

dot<K vee L
sep:leL(s)
and
ty < |Ps | Vs e S

hold. Let &) denote all A-feasible subpath packings and let ® = Uycp®y. For each A € A,
we now have to select one ¢ € ®,. Hence, constraint (12) are replaced by the |A| constraints

Y wp<i YAeA (14)

PED

In principle, (14) diminishes the advantages of the subpath packing formulation, since
wavelength-specific variables are introduced again. However, typically only a small number
of different types of WDM systems are considered, resulting in a number of subsets of the
spectrum that contain exchangable wavelengths. Consider for example two WDM systems,



one with 40 wavelengths and one with only 20 out of the 40 in total. At every link £ only
two different m?‘ values can occur: one for the wavelengths that occur in both systems and
one for the wavelengths that occur in the large system only. In general, the spectrum A can
be partitioned into k subsets Aq,..., A} with K,g\l = /{?2 for all £ € L if A\, Ay € A; for some
i=1,...,k. Instead of (14), only the k constraints

> ag <A i=1,...,k (15)
PED

replace constraint (12). If k is small, then the advantage of not specifying particular wave-
lengths is still kept. Notice that, in the special case that every link consists of a single fiber,
the problem corresponds to a list-coloring problem (cf. [8]).

4 Column Generation Algorithm

In this paper, we would like to solve the linear programming relaxation of the subpath
packing formulation (9)—(13) to obtain a lower bound on the number of needed converters
for a conflict-free wavelength assignment. The number of variables and thus columns of the
formulation (9)—(13) complicates such a computation, since it is tremendously large: the
y-variables plus a variable for every subpath packing. The program size can be reduced by
relaxing constraints (11) to

dtiwe = >y VseS (16)

ped pEP1:SES,

So, we allow the number of times a subpath is provided in the selected subpath packings
to be larger or equal to the desired number. By the spectrum constraint (12), the number
of selected subpath packings will not increase. This relaxation provides the advantage to
restrict the set of subpath packings to those that are maximal. That is, for every subpath
packing ¢ € ®, it holds that there is no ¢’ € ® with ¢35, > & for all s € S and t5, > &5 for
at least one s.

Although, in theory, the replacement of (11) by (16) reduces the number of columns substan-
tially, this number is still too large to be explicitly considered in practice. Therefore, like in
Mehrotra and Trick [12], we propose a column generation approach, where only a subset of
the columns are stored explicitly in a restricted program. As explained in Section 3.1, after
computation of the linear relaxation for this restricted program, other profitable columns
are searched for. Due to the exponential number of the implicitly handled columns, an
enumeration of these columns is not possible. Therefore, we formulate a so-called pricing
problem to find the most profitable column to add to the restricted program. Such a column
is selected based on the values of the dual variables, like in the simplex method. In case no
profitable columns can be generated anymore, the linear relaxation including all columns
has been solved (cf. [4, 5] for further details).

For MCWAP, we apply column generation for the 4 variables, whereas all y, variables
are taken into account explicitly. Let ® C ® denote the actual subset of subpath packings

10



included in the restricted program. To formulate the pricing problem for MCWAP, we
introduce the dual variables 7}, °, and 7 for respectively the constraints (10), (11),
and (12). From linear programming, we know that a primal-dual pair ((x,y),7) is optimal
for the linear programming relaxation of (9)—(13), whenever ¢ — AT7 < 0, with ¢ the primal
objective function, and A the coefficient matrix. For a subpath packing ¢ € ®, we have
¢y = 0, and the coefficients of A corresponding to (10) equal zero as well. So, the optimality
condition reads

- Z tom® < mh (17)

seS

Note that, by (16), 7% < 0, whereas 7 > 0. By optimality of ((z,%),7), (17) holds for
every ¢ € ®. To verify whether (17) holds for all ¢ € ®, we search for a subpath packing ¢
that maximizes the left hand side of (17). If the maximum is less than or equal to 7 then
no improving columns exist, and the linear relaxation is solved optimally, i.e., all still not
contained columns are proven to have value 0 in the optimal solution. Otherwise, a subpath
packing ¢ that violates (17) is found and can be added to improve the restricted program.

Maximizing — > s tym® can be formulated as an optimization problem as well. We intro-
duce the integer variables ¢, for all s € S representing the multiplicity function of a subpath
packing. Then the pricing problem reads

z = max Z—?Tsts (18)

seS
s.t. Yt <y viel (19)
seS:4eL(p)
ts € Z¢ (20)
In case ky = 1 for all £ € L, the pricing problem reduces to a maximum weighted set

packing (or stable set) problem which is well studied (cf. Borndérfer [3]). Moreover, instead
of solving the pricing problem optimally in every iteration, it suffices to find a solution with
value larger than 7. Only if such a solution cannot be found heuristically, the integer
program (18)—(20) must be solved to optimality. However, our experience shows that this is
most often only required to prove that no further improving column exists. Having optimally
solved the linear relaxation of (9)—(13), the objective value provides a lower bound on the
number of unavoidable converters. As we will see in Section 6, the formulation yields often
a non-zero bound, serving best to benchmark the wavelength assignments generated by our
heuristics.

5 Heuristics

In [10], MCWAP has been proven to be NP-hard, even on networks as simple as star
graphs with single fiber links. As a consequence, we cannot expect to find efficient solution
algorithms in the general case. Therefore, a couple of heuristics for MCWAP has been
proposed and evaluated in [10]. All of these heuristics process the lightpaths sequentially.

11



In each step, the (remaining) available wavelengths are assigned to the actual lightpath such
that, beginning with the first (unassigned) link, we repeatedly select a wavelength that can
be assigned as far as possible, i.e., to the maximum number of consecutive links, until the
end of the lightpath is reached. It is easy to verify that this assignment strategy is locally
optimal, i.e., places a minimum number of converters on the actual lightpath, but does not
guarantee to end up with a globally optimal MCWAP solution.

Basically, we distinguish constructive and iterative methods. Where the constructive meth-
ods try to generate good assignments from scratch, the iterative algorithms start with an
assignment (or processing order) and try to reduce the converter number by clever trans-
formations, exploiting the information about the former placement of converters. Since
the computational experiments documented in [10] revealed that the iterative methods per-
formed best, we focus on these algorithms in the following.

5.1 Iterative improvement

Having finished a sequential processing of all lightpaths, we obtain a feasible wavelength
assignment together with the placement of required converters. If no converters are needed,
the generated MCWAP solution is obviously optimal. Otherwise, we know for which light-
paths converters are needed. The key idea is that those lightpaths probably have just been
processed ’too late’ in the sequence. So, we put these lightpaths at the beginning and pro-
ceed with the reordered sequence. By iterating the sequential assignment algorithm and
the reordering, better assignments are hopefully found. This general method allows for
some variants concerning the reordering mechanism, e.g., moving only single or multiple
converted lightpaths to the beginning, the latter in the same or reversed order, and others.
For further details, we refer to [10] and restrict in the following on a brief summary of the
computational results documented there.

We have observed that it is most favorable to put, in each iteration, all converted lightpaths
at the beginning of the sequence, either in the former or in reversed order. Both algorithms
typically generate a series of assignments whose number of converters decreases rapidly
in the beginning, soon finding good solutions, and have then to work more and more for
further improvements. While many converter-free solutions could be found this way, some
instances did not allow to find assignments with less than a certain number of converters,
starting to yo-yo at some point. As long as it is unclear whether the best solution found
so far is provably optimal, the iterative method does not terminate (without setting a time
limit). In such a situation, even a lower bound on the converter number is not helpful unless
it already matches the optimum (and an appropriate assigment is known). However, the
best found assignments typically have a low number of converters. So, it might be helpful
to reduce the problem on those lightpaths (or wavelengths) that cause trouble.

5.2 Extraction
To improve the iterative heuristic performance, we propose a problem extraction method.

Assume the algorithm has generated a solution with z < %|A| converters. Since any con-
verter affects exactly two different wavelengths, the solution contains some wavelengths

12



that are never converted to or from. Stated otherwise, such wavelengths are assigned only
to complete lightpaths. Nevertheless, these lightpaths are always reprocessed in the next
iteration, too, and typically similar assignments with some unconverted wavelengths are
produced.

The key idea now is to extract all unconverted wavelengths together with the associated
lightpaths from the best known solution and to continue with the reduced instance. On
the one hand, this clearly reduces the search space of complete assignments and can, in
the worst case, avoid to find an optimal solution. On the other hand, such an extraction
does not only improve the computation time for each iteration and thus allows to examine
many more solutions, but opens also the chance to find better assignments by focusing on
the ’critical part’ of the problem. As long as the newly generated solutions contain further
unconverted wavelengths, the extraction method can also be applied repeatedly.

Finally, we remark that the extracted problem states a complete MCWAP instance itself.
So, the size reduction can make the remaining instance tractable for exact approaches, too,
and is not limited to be applied within the iterative algorithms (but note that even an
optimal solution of such a reduced instance need not to prove optimality for the original
problem). However, we experienced that the extraction is already successful in improv-
ing the heuristics. In particular in combination with a good lower bound computed by
the column generation algorithm, we obtain in many cases provably optimal wavelength
assignments, as shown next.

6 Computational experiments

In this section, we present a computational study to evaluate the methods proposed in
this paper. For this, we restrict on the case of MCWAP with uniform wavelength spectra.
We describe the used optical network design instances, present the results obtained by our
methods, and discuss their impact.

6.1 Instances

For the design of optical transport networks, three reference scenarios have been defined
within the MultiTeraNet project [2]. Every scenario consists of a network topology and a
traffic matrix which specifies the demand for each pair of nodes as number of lightpaths to
establish. The networks represent an US network based on the NSF topology with 14 nodes
and 21 links, a hypothetical German network with 17 nodes and 26 links, and a European
network with 28 nodes and 41 links. All networks have a meshed topology and can be
equipped with the same set of devices, including fibers, WDM systems providing |A| = 40
wavelengths, OXCs, and wavelength converters.

In each scenario, we consider four survivability specifications which differ in the fraction
p € [0,1] of the traffic that has to be protected against any single link or node failure.
In the UNPROTECTED case (p = 0), no survivability is provided, while FULL PROTECTED
(p = 1) means that all lightpaths have to be protected. The other two cases, %—PROTECTED
and %—PROTECTED, require to protect a fraction of p = % and p = % of each demand,
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Figure 3: Networks of the computation scenarios.

respectively, such that for a demand of d lightpaths, [p-d] of them have to be protected. The
specified survivability is realized by additional establishment of backup lightpaths according
to the concept Demand-wise Shared Protection (DSP) proposed in [11]. To reduce the
number of needed backup lightpaths, DSP spreads the lightpath routing of each demand
by exploiting the network’s connectivity. For evaluation of the concept, we also extended
the German network by two links to increase the connectivity which allowed to save further
backup lightpaths for the high survivability requirements in the %—PROTECTED and FULL
PROTECTED cases. These instances yielded non-trivial wavelength assignment subproblems
and are therefore included in our test set.

So, we consider in total 14 instances on four networks which are depicted in Fig. 3. For
each instance, we have computed an optical network design using the tool OND (Optical
Network Design) described in [13]. Besides the dimensioning and routing, the tool offers also
an initial wavelength assignment generated by a short run of an iterative heuristic. Some
instance characteristics are listed in Table 1. Subsequently, the columns list the number
of nodes (|N|) and links (|L|) in the network as well as the total number of established
lightpaths (|P|). The last column contains the number of converters in the initial wavelength
assignment provided by OND.
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statistics initial

instance IN| |L|  |P] solution
US network
UNPROTECTED 14 21 2710 0
L_prROTECTED 14 21 2710 0
%—PROTECTED 14 21 3166 1
FULL PROTECTED 14 21 4655 14
German network
UNPROTECTED 17 26 686 0
1_PROTECTED 17 26 699 0
$-PROTECTED 17 26 836 12
FULL PROTECTED 17 26 1193 0
Extended German network
2-PROTECTED 17 28 796 6
FULL PROTECTED 17 28 1122 8
European network
UNPROTECTED 28 41 1008 15
L _PROTECTED 28 41 1148 3
5-PROTECTED 28 41 1480 75
FULL PROTECTED 28 41 1855 39

Table 1: Characteristics of the test instances.

6.2 Results

Clearly, for all instances without converters, we can already conclude optimality of the
initial wavelength assignment. So, we focus in the following on the remaining instances for
which a converter-free solution of the associated MCWAP was not found within the network
design procedure. All reported computations have been run on a Linux-operated PC with
an Intel Pentium 4 3,2 GHz HT processor.

At first, we have determined a lower bound on the number of unavoidable converters by
solving the linear relaxation of the MCWAP integer programming formulation. For this,
we have implemented the column generation method in C++, using CPLEX 9.0 [7] as
(integer) linear programming solver with the C++ interface of ILOG’s Concert Technology.
The restricted program was initialized with a single column representing a subpath packing
that contains only subpaths with a single link (each with multiplicity x;). Note that this
column suffices to guarantee for a feasible solution of the restricted program, but with
the worst possible value (placing a converter in each intermediate node of each lightpath).
Then we iteratively generated improving columns, as described in Section 4, until the linear
relaxation was solved optimally.

These computations are documented in Table 2. For each instance, the first column recalls
the number of converters in the initial solution (init. sol.). Next, the columns list subse-
quently the final optimal LP value as lower bound (LB), the total number of generated
columns (cols), and the total CPU time in seconds (time). To illustrate the size of the
linear program, the last two columns display the total numbers of involved subpaths (|S|)
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init. column generation method

instance sol. LB  cols time |S| y-vars
US network
2-PROTECTED 1 0 176 53 252 1739
FULL PROTECTED 14 0 156 5.1 252 1685
German network
%—PROTECTED 12 12 112 2.1 259 1096
Extended German network
2-PROTECTED 6 6 154 4.0 311 1220
FULL PROTECTED 8 6 154 3.3 256 1067
European network
UNPROTECTED 15 2 376 75.7 606 4243
1 PROTECTED 3 0 746 1165.7 1102 13218
%—PROTECTED 75 0 1630 4306.0 1185 15398
FULL PROTECTED 39 0 1557 4067.0 1350 15902

Table 2: Lower bound computations.

LB heur. extraction

instance sol. sol. [A.| [P
US network

2-PROTECTED 0 0

FULL PROTECTED 0 0
Extended German network

FULL PROTECTED 6 6
European network

UNPROTECTED 9 8 13 329

2
1 prROTECTED 0 1 0 2 49
5-PROTECTED 0 54 54 33 1213
FULL PROTECTED 0 15 5 13 606

Table 3: Iterative heuristic results with 6000 seconds CPU time limit.

and of yy-variables (y-vars).

Remarkably, we obtain a non-zero lower bound in roughly half of the cases, i.e., these
problems are proven to have no converter-free assignments. Moreover, in two instances the
lower bound additionally indicates that the solution at hand is indeed optimal. Hence, these
instances need not to be considered further.

So, there are seven unsolved instances left. As next step, we have tried to find better
solutions with a longer run of the iterative heuristic for which we have set a limit of 6000
seconds CPU time. The results are shown in the left part of Table 3, listing the lower bound
(LB) and the number of converters in the best solution found (heur. sol.) during that run.
By this, advanced assignments have been found for all instances, and three more solutions
match the lower bound, i.e., are provably optimal.

For further improvement of the heuristic search, we have applied the extraction method
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LB 2. extraction 3. extraction

instance sol. |A.] [P| sol. A [P
European network
UNPROTECTED 2 5 8 201 3 7T 174
%—PROTECTED 0 58 28 1035 54 26 969

FULL PROTECTED 0O 0 7 324

Table 4: Results for repeated extractions.

which removes all unconverted wavelengths and the associated lightpaths from the best
solution known so far. As listed in the right part of Table 3, we have generated new
solutions (sol.) by running the iterative algorithm, again with a time limit of 6000 seconds,
on the extracted instances with a reduced set of wavelengths (A,) and lightpaths (P,).
The extraction allowed to find assignments with less converters in three of four cases, one
optimal solution among them.

In addition, the newly computed assignments for the other three cases have also been struc-
turally improved by generating further unconverted wavelengths. This enables to repeat the
extraction method, step-wise removing those wavelengths and lightpaths after each run of
the iterative heuristic (of at most 6000 seconds). In the same form as in Table 3, the results
of two further extraction iterations are shown in Table 4. For the %—PROTECTED case, no
further improvement was achievable, with an even worse solution in the second iteration.
For the two remaining instances, the repeated extraction was more successful. While a
converter-free assignment was already found in the second extraction for FULL PROTECTED,
the UNPROTECTED case could iteratively reduce the number of required converters down to
three, a fairly good solution as indicated by the lower bound of two.

6.3 Discussion

The computational results point up some interesting aspects of the models and methods
proposed in this paper. First of all, we have in total found provably optimal wavelength
assignments for twelve out of 14 optical network designs, i.e., 85 % of the instances. Only
five of the instances have already been solved within the optical network design procedure,
while the remaining nine instances state more difficult problems and required additional
effort. For their solution, the derived lower bound turned out as valuable information to
benchmark the quality of the generated wavelength assignments and to guide the heuristic
search.

By knowledge of such a benchmark, we could apply the iterative algorithm purposive to
improve the assignments for those instances that have not been solved so far. Thereby,
the extraction method was helpful to enhance the heuristic performance and to approach
a minimum number of converters foreshadowed by the lower bound. In fact, the computed
lower bounds match the optimum for at least seven of the nine instances and proved in
four cases that no converter-free assignment exists. Moreover, in one of the two non-
solved instances, the benchmark of two shows that the best found assignment with three
converters already represents a nearly optimal solution. So, we can conclude that for nearly
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all instances, provably good solutions for the minimum converter wavelength assignment
problem have been generated by our methods.

7 Concluding remarks

In this paper, we studied the Minimum Converter Wavelength Assignment Problem (MCWAP)
which states an important task in the design of optical networks. We developed a suitable
integer programming formulation for the general case, the subpath packing formulation,
and derived a column generation method to solve the linear relaxation whose value states a
lower bound on the number of required converters. We also revisited heuristics to compute
wavelength assignments and proposed an advancement by a problem extraction method.

The computational study revealed the quality of the lower bounds provided by the sub-
path packing formulation. In contrast to a standard assignment formulation, the linear
relaxation optimum can take positive values and thus indicates how many converters are
unavoidable for any feasible wavelength assignment. The obtained benchmarks have in fact
verified optimality in most cases and were helpful to guide the heuristic search which was
substantially enhanced by the extraction method. Finally, only the additional information
of the lower bound allows to state to have found provably good solutions.

A direction for further research consists in in the development of exact solution algorithms,
i.e., branch-and-price or branch-cut-and-price methods, for the subpath packing formula-
tion. Moreover, further performance improvements for the heuristics are of interest.
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