ZIB

Zuse Institute Berlin (4195 Bori

Germany

MILENA PETKOVIC!, THORSTEN KOCH?,JANINA ZITTEL?

Deep learning for spatio-temporal
supply and demand forecasting in
natural gas transmission networks

1% 0000-0003-1632-4846
25 0000-0002-1967-0077
3 0000-0002-0731-0314

Z1B Report 21-01 (December 2020)


https://orcid.org/0000-0003-1632-4846
https://orcid.org/0000-0002-1967-0077
https://orcid.org/0000-0002-0731-0314

Zuse Institute Berlin
Takustr. 7

14195 Berlin
Germany

Telephone: +49 3084185-0
Telefax: +493084185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782


bibliothek@zib.de
http://www.zib.de

Deep learning for spatio-temporal supply and
demand forecasting in natural gas transmission
networks

Milena Petkovic 2, Thorsten Koch * 2, and Janina Zittel 2

! Technische Universitit Berlin, Chair of Software and Algorithms for Discrete Optimization,
Strafle des 17. Juni 135, 10623 Berlin, Germany
2Zuse Institute Berlin, Departement for Applied Algorithmic Intelligence Methods,
Takustrafle 7, 14195 Berlin, Germany

December 2020

Abstract

Germany is the largest market for natural gas in the European Union,
with an annual consumption of approx. 95 billion cubic meters. Ger-
many’s high-pressure gas pipeline network is roughly 40,000 km long,
which enables highly fluctuating quantities of gas to be transported safely
over long distances. Considering that similar amounts of gas are also
transshipped through Germany to other EU states, it is clear that Ger-
many’s gas transport system is essential to the FEuropean energy supply.
Since the average velocity of gas in a pipeline is only 25km/h, an adequate
high-precision, high-frequency forecasting of supply and demand is cru-
cial for efficient control and operation of such a transmission network. We
propose a deep learning model based on spatio-temporal convolutional
neural networks (DLST) to tackle the problem of gas flow forecasting
in a complex high-pressure transmission network. Experiments show that
our model effectively captures comprehensive spatio-temporal correlations
through modeling gas networks and consistently outperforms state-of-the-
art benchmarks on real-world data sets by at least 21%. The results
demonstrate that the proposed model can deal with complex nonlinear
gas network flow forecasting with high accuracy and effectiveness.

1 Introduction

Germany is the largest market for natural gas in the European Union, with
an annual consumption of approx. 95 billion cubic meters [I]. Since a similar
amount of gas is also transported across Germany to other EU states, Germany
represents a vital transit hub for natural gas [I1]. Natural gas is the second most
used energy source in Germany, and in 2019, its share in Germany’s primary



energy consumption was 25 % [34]. Even though the heat market is still by far
the most important market for natural gas, recently, natural gas is being used for
other purposes as well. In particular, gas plays an important role in the German
“Energiewende”, especially in the transition from fossil fuels to renewables in
the power sector. Due to short ramp-up times, gas-power-plants provide a fast
source of electricity in times of low availability of renewable sources.

The German high-pressure gas pipeline network’s length is roughly 40,000
km, enabling highly fluctuating quantities of gas to be transported efficiently
and safely over long distances. Considering that large amounts of gas are also
transshipped to other countries, it is clear that the gas transport system is
essential to the European energy supply. Expansion measures are cost-intensive
and take long time to implement. Thus, the optimal use of existing capacities
is crucial for safety of supply and service quality. Since the average gas pipe
velocity is only 25km /h, adequate high-precision and high-frequency forecasting
of supply and demand is a decisive matter for efficient control and operation of
the complex natural gas transmission networks and distribution systems.

Traditionally, statistical models have been commonly used as a tool for nat-
ural gas forecasting. In their early work Herbert et al. [23] 22] used regression
analysis, residual analysis and linear regression equation to analyse effect of
heating degree days (HDD), price of natural gas, price of residual fuel oil, and
industrial activity on industrial demand for natural gas. Aras and Aras [3]
proposed two individual autoregressive time series models for heating and non-
heating season instead of attempting to capture the seasonal patterns in a sin-
gle model while Gorucu [I8] proposed multivariable regression for forecasting
gas consumption. Timmer and Lamb [40] used linear model external variables
like days below percentile (DBP) and heating degree days (HDD) in deter-
mining relations between temperature and residential natural gas consumption.
Vondracek et al. (2008) proposed statistical approach to estimate natural gas
consumption of individual residential and small commercial customers using
nonlinear regression. Autoregressive models are also commonly used in en-
ergy forecasting. ARIMA models were reported in Liu and Lin [32] and Er-
dogdu [14] while Brabec [8] used Nonlinear mixed effects model with individual
customer-specific parameters and compared the model with ARIMAX (Auto-
regressive integrated moving average with eXtra / eXternal process) and ARX
(Auto-regressive with exogenous inputs). Recently, Chen et al. [I2] proposed
advanced Functional AutoRegressive model with eXogenous variables (FARX)
for day-ahead hourly gas flow forecast.

Especially in the last two decades machine learning methods have intensively
been developed to model more complex data. Kizilaslan and Karlik [28] [29] used
ANN with several different algorithms (Quick propagation Algorithm, Conju-
gate Gradient Descent Algorithm, Levenberg-Marquardt Algorithm etc.) to
forecast daily, weekly and monthly gas consumption in Istanbul. They used
regression analysis to determine effect of different factors. Szpilk [39] presented
Multilayer Perceptron(MLP) with additional calendar and weather features for
predicting natural gas consumption in the city Szczecin in Poland. Nabavi et
al. [33] developed and compared multiple linear regression, logarithmic multiple



linear regression methods, and nonlinear autoregressive with exogenous input
artificial neural networks (NARAX) model as a tool for predicting annually con-
sumption in residential and commercial sectors in Iran. Many research studies
showed that hybrid models (combining or ensembling) improve performance and
robustness of forecast relative to individual forecast models. This is especially
important when forecasting multiple time series with different behaviour (such
as nodes in the gas network representing different demands of suppliers, indus-
trial or residential customers) since hybrid models enhance the advantages of
the individual approaches [35] [42] [25].

It is important to notice that, although the traditional statistical and ma-
chine learning models generally have good forecast accuracy in real-world data
applications, they often neglect the information available in the spatial-temporal
correlations of high-dimensional, complex gas network data. Moreover, the pre-
diction performances of traditional methods depend profoundly on feature en-
gineering, which usually requires expert experience in the corresponding field.

In recent years, deep learning methods have been employed to deal with
high-dimensional spatio-temporal data defined on the complex non-Euclidean
domains such as graphs. The success of convolutional neural networks (CNN) in
extracting spatial features of grid-based data inspired advances in redefining the
notation of convolution and adapt to the graph domain. Bruna et al. [10] were
pioneers in developing a graph convolution based on the spectral graph theory.
Following their work, several researchers improved and extended spectral-based
convolutional graph neural networks [31 13} 27]. In their survey Wu et al. [43]
give a comprehensive overview of graph neural networks in data mining and
machine learning fields together with an overview of possible applications of
graph neural networks to various domains such as computer vision [44] [24],
natural language processing [38, [5], traffic [47] 19, 45], chemistry [46], etc...

Inspired by the success of recently proposed deep learning models for en-
ergy time series forecasting [26], [36] we propose a deep learning spatio-temporal
predictive model (DLST) to tackle the problem of gas flow forecasting in a
complex high-pressure transmission network. In our model, the convolution is
employed directly on graph-structured data to extract profoundly meaningful
patterns and features in the space and time domain. We formulate the problem
of forecasting gas flows on graphs and build the complete convolutional model,
enabling us to significantly speed up training while using fewer parameters.

Our experiments show that our model effectively captures comprehensive
spatio-temporal correlations through modeling gas networks. It consistently
outperforms state-of-the-art benchmarks on real-world data sets for four dif-
ferent forecasting horizons with a skill score (calculated on normalized mean
absolute percentage error) between 0.218 and 0.494. These results strongly in-
dicate that the proposed model is capable of dealing with complex nonlinear
gas network flow forecasting with high accuracy and effectiveness.

This work is part of a joint project with one of the Germany’s biggest trans-
mission system operators (TSO), Open Grid Europe [I7]. Together with OGE,
we develop a tool for high precision gas flow forecasting, providing multi-step
ahead hourly forecasts for more than 100 nodes in the gas network. These nodes



have very different statistical characteristics, as they represent a variety of dif-
ferent source and consumption points, ranging from connections to other gas
networks or countries over industrial consumers to storage facilities.

The paper is organized as follows: In Section [I] we give a brief introduction
to the motivation of the paper and presents related work. Section [2] gives a
formulation of the problem and explains the methodologies used in building the
DLST model. In Section [l we introduce the real-world data set we use for the
computational verification of our model described in Sectiond] In Section [5] we
discuss the obtained results. Finally, Section [6] brings some conclusions.

2 Forecasting on graphs

We formulate the problem of forecasting gas flow in the gas transmission network
as follows: predict gas flow (§¢x1,...,¢tepm) in the next H time steps, where
q: € R™ is a vector of gas flow values of n nodes at time step ¢, given the set of
features F € R4*™ consisting of M historical flow observations (g;_ 741, ..., q¢)
and an (optional) set of exogenous features (exy, ...,exq_pr) € RE=M)IX" guch
as weather information, season indicators, economical parameters etc.

The observation ¢; can be considered as a signal defined on the undirected
graph G = (V, A, W) which consists of a finite set of nodes V with |[V| = n
representing the nodes of a gas transmission network, a set of arcs A and an
adjacency matrix W € R™*™ modeling the connections between nodes. If arc
a;; connecting vertices i and j exists, W;; represents the weight of the arc;
otherwise, W; ; = 0.

For modeling connections between nodes, we split the set of arcs A into indi-
vidual sets A = AP U A® for the different types of network elements considered
in this paper i.e. passive and active elements respectively.

The basic passive elements of the transmission network connecting two nodes
are pipes. Nodes can be also connected via active elements such as valves,
regulators and compressor stations that can potentially change the network
topology and are used for controlling pressure along the direction of the flow,
see [21].

Furthermore, we split the set of nodes ¥V = V? U V° into a set of boundary
nodes and a set of inner nodes, respectively. We denote VT C V the supply and
YV~ CV the demand nodes of the network.

Using the information of graph data, we can capture the spatio-temporal
interdependence among nodes. The main challenge is that due to non-Euclidean
nature of graph data some essential operations of machine learning such as
convolutions do not apply to a graph domain [9]. Furthermore, for graph data,
instances are not independent from each other since each instance (node) is
related to others by its connections.



Figure 1: Ilustration of graph-structured flow data. Each g; represents a frame
of current flow status at time step ¢

2.1 Spatio Graph Convolution Unit (SGCU)

First, let us define the spatial convolution on a given graph G. We define the
diagonal degree matrix as D € R™*" with D;; = Zj W;; and Laplacian as

L=1— D 3WD where [ is an identity matrix. Then the Singular Value De-
composition (SVD) is applied to Laplacian as L = UAUT € R"*" where matrix
U € R™ ™ consists of eigenvectors of normalized Graph Laplasian transforms a
signal to frequency domain and A € R"*" is a diagonal matrix of eigenvalues of
L. Now we define the graph Fourier transform of the input graph signal z € R™
as Uz € R™ and the graph Fourier transform of a filter ¢ € R™ as Ug € R™.
Finally, we define the convolution of a graph signal x with filter g as

g* T = UT(UQQUJC) (1)

where we denote *¢ as graph convolution operator and © represents an ele-
ment wise product. By defining w = Ug as the filter in frequency domain, the
convolution can be rewritten as



g* sz =UT (diag(w)Uxz) (2)

The above graph convolution requires a filter w to have the same size as the
input signal z, which would be inefficient and hard to calculate when the graph
has a large size(O(n?) multiplications with graph Fourier basis).

To localize the filter and reduce the number of parameters, we restricted the
kernel diag(w) to a polynomial of A as diag(w) = ©(A) = kK:_Ol O AF, where
O € R¥ is a vector of polynomial coefficients [13].

K represents the kernel size of graph convolution and determines the max-
imum radius of the convolution from central nodes. The number of trainable
parameters are restricted to K.

In graph signal processing Chebyshev polynomial Ty (z) is traditionally used
to approximate kernels for graph signal as a truncated expansion of order K-1
as

K-1
O(A) ~ D OuTi(A) (3)
k=0

with A = 2A /Amaz — I, where A, denotes the largest eigenvalue of L [20].
Now, the graph convolution can then be rewritten as

K—-1
Oxcr=0(L)z~ » O Tk(L)x (4)
k=0

where Ty (L) € R™*™ is the Chebyshev polynomial of order k evaluated at
the scaled Laplacian L = 2L/Apmax — I,,. Using the polynomial approximation
and recursively computing K-localized convolutions we reduce the cost of
to O(K|E]) as shows [13].

Further, we extend the graph convolutions operator ”*¢” defined on graph
signal x € R™ to multi-dimensional tensors. First, for a signal with C; channels
X € R™* % the graph convolution can be generalized as:

Ci
v =3 O (L €R" 1< < C, )
i=1

with C; x C,, vectors of Chebyshev coeflicients O;,; € RE (C;, Cy are the size
of input and output of the feature maps, respectively). The graph convolution
for 2-D variables is denoted as 70O x ¢z 7 with @ € REXCixCo,

If the graph signal X € R?*"*C s a 3-D variable composed of d matrices
whose column i is the C;-dimensional value of X at the i** node in graph G
we can apply the equal graph convolution operation with the same kernel © for
each feature of d. Thus, the graph convolution can be further generalized in

3-D variables, noted as © % ¢X with X € RxnxCi



2.2 Temporal Convolution Unit (TCU)

Although recurrent neural networks (RNN) are still the most common choice for
time series forecasting, CNN models recently achieved great success in dealing
with time series data [I6l [6] since they overcome main problems of recurrent
models. The weights used to compute the output neurons in a feature map
are the same (the same filter is used for each location) so the training of CNN
is faster and with fewer parameters. In the case of a long input sequence,
RNN use a significant amount of memory to store the partial results for their
multiple cell gates while in CNNs the filters are shared across a layer, with the
back-propagation path depending only on the network depth. Additionally, the
number of parameter to learn is significantly reduced since each hidden neuron
is connected only to a subset of input neurons that are close to each other.

To capture the temporal dynamic behavior of gas flows we employ con-
volutional neural network with a specific design suitable for time series data:
Temporal convolutional networks (TCNs) inspired by [41], [4] [7] and recently
wildly used in numerous applications [37], 30].

If we consider a 1-D time-series z € R™ and a one-dimensional filter ® € R¥¢,
we can define the i*" element of the convolution between x and ® as:

Ki—1

F) = (@x2)(@) = Y a(i—jw()) (6)

J=0

Instead of the standard convolution operator (Figure [2[a)), temporal convo-
lution networks use causal convolutions which ensure that the prediction made
at the time step ¢, ¢:+1 can not depend on any of the future time steps feature
fta11 as shown in Figure b).

Futhermore, TCNs use dilated convolutions defined as:

Ki—1

Fli) = (@ xaq x)(i) = Y (i — dj)w())) (7)

=0

where d is a dilation factor and *4; represents modified convolutional oper-
ator which apply the same filter over an area larger than its length by skipping
input values with a certain step as it is shown in Figure fc). Note that with
dilation d = 1 we have standard 1-d convolution. Using larger dilation enables
an output at the top level to represent a wider range of inputs and effectively
expanding the receptive field of a TCN.

The causal dilated convolution can be generalized to 3D variables by employ-
ing the same convolution kernel ® € RE#*CixCo t4 every node signal with C;
channels z; € R¥*% in graph G equally, noted as ”?® gy 27 with z € R&x"*C:,

We form a Temporal Convolutional Unit (TCU) (as shown on Figure [3|in a
pink block) by stacking causal dilated convolution layers with dilation factors
in an increasing order which enables the receptive field of a model to grow
exponentially. This way, TCU is capable to capture longer sequences with less



layers and saves computational resources. The TCU consist of L 1-D causal
dilated convolution with a kernel K; and dilation factors d = 2',1 € [0,L —
1], followed by a non-linearity and a dropout layer for avoiding overfitting.
Furthermore, residual connections are implemented among stacked temporal
convolutional layers [41].

Output Output

cuum

Input Input

Output

dil=2

Hidden

dil=1

Input

(@) (b) (c)

Figure 2: (a) Standard convolutional Network (b) Causal Convolutional Net-
work with K; = 3 (c) Causal Dilated Convolutional Network with K; = 3 and
dil = 1,2

2.3 DLST architecture

In order to combine features from both spatial and temporal domains, we pro-
pose a DLST model to process the graph-structured gas flow time series.

As Figure |3| shows, in the first block of the model we process separately
the historical flow information and the exogenous information through a stan-
dard temporal convolutional layer with 1D causal convolution, non-linearity unit
(NLU) and a dropout layer. Later, the results are concatenated together and
processed by the first Spatio Graph Convolution Unit (SGCU). Furthermore, we
apply a Temporal Convolutional Unit, as described in Section [2:2] with L layers
where each layer consists of a block with 1D dilated causal convolution with
increasing dilation factor d = 2,1 € [0, L — 1], a non-linearity unit (NLU) and
a dropout layer to prevent overfitting. After TCU we apply once more SGCU
in order to explore spatial dependencies on long term temporal information.

Finally, we apply once more temporal 1D- CNN with fully connected layers
to calculate the final prediction.

3 Data

In this study we aim to forecast hourly natural gas inflows and outflows (supply
and demand) in a high-pressure gas pipeline network operated by one of the
largest transmission system operators in Germany, Open Grid Europe GmbH
[I7]. The observed gas network has 397 nodes in total, 25 supply (V1) 73
demand nodes (V™) as well as 299 inner nodes(V°). Even though we calculate
the forecast for all nodes in the network, both boundary and inner nodes, when
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Figure 3: Arhitecture of DLST farmework

evaluating the forecast accuracy we focus only on the demand and supply nodes,
since this is the main forecast goal.

For modeling the connections between the nodes we used the network topol-
ogy provided by OGE. As described in Section [2] nodes can be connected with
a passive (pipes) or an active element (valves, regulators, compressor stations).
In the observed network the nodes are connected with 171 pipes, 254 valves,
154 regulators and 34 compressor stations.

We define the adjacency matrix W of the graph based on the distances
among nodes in the gas network as follows:

li,j; if ai’j S Ap
ij = {0 01 : (8)
.01, otherwise

where [; ; € R is the length of the pipe connecting nodes ¢ and j.

The data set covers 33 months (May 2016- January 2019) of hourly gas
flows for each node. Thus, every node of the gas network graph contains 24144
observations (covering 1006 days) in total. Additionally, we use as exogenous
features, a set of measured air temperatures at the nodes location with the same
time resolution. In order to compare results for different nodes, the data inputs
are standardized by Z-Score method. Figure [4] shows summary statistics of 25
supply and 73 demand nodes. The nodes are sorted according to total absolute
flow during the observed period and denoted as ’S’ for supply nodes 'D’ for
demand nodes. The distribution of most of the nodes is centered around zero
having wide-ranging variations. We can notice that some of nodes are skewed
(both left and right) and have a large amount of outliers.



Figure 4: Boxplot of standardized gas flow of 25 supply and 73 demand nodes
for period May 2016 to January 2019

Figure[5|represents the heatmap of standardized aggregated daily flow for the
98 boundary nodes. Large supply nodes (S1-S8) have a stable flow with very
small sensitivity to season changing. These nodes usually represent transfer
points from and to other networks and the flow is mainly induced by long term
trading contracts. Other, smaller supply nodes show some seasonal patterns,
especially high peaks during the winter period. Most of the demand nodes show
strong seasonal dependency since they belong to the group of so called ”Munic-
ipal supply nodes”. These nodes supply residential areas and small commercial
customers. Some of the largest (by total flow) demand nodes do not show a sea-
sonal pattern, yet mostly intermittent behaviour and they belong to the group
of Power Plant nodes, where a large amount of gas is needed in a relatively short
period of time.

To transform the time series forecasting problem into a supervised machine
learning problem we adopt a sliding window approach as illustrated in Figure
[6l The window slides and obtains an input—output instance at each position.
The output window size is set according to desired forecasting horizon and the
optimal value for input window size had to be carefully decided based on the
characteristics of the data sets and the model.

4 Forecasting procedure
We verify the performance of the proposed DLST model on the real-world data

with hourly resolution between May 2016 and January 2019, as described in
Section 3. The sample period is split as follows:
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June 2016 June 2017 June2018

Figure 5: Heatmap of standardized daily flow of 25 supply and 73 demand nodes
for period May 2016 to January 2019

Set Name From To Days
training Tiraining May 2016 September 2018 944
validation Tyaiidation October 2016 November 2018 61
test Tiest December 2018  January 2018 62

We train the model and optimize hyperparameters on the training and val-
idation set by minimizing the square loss. We calculate out-of-sample forecasts
on the test set using the fitted model and the rolling window method with the
input of previous 24 observations and the output that is determined by the fore-
casting horizon. During the test, we do not update the hyperparameters of the
model.

For each boundary (supply and demand) node we calculate an out-of-sample
1, 3, 6 and 12 hours ahead forecast for period 1.12.2018 until 31.01.2019 (62 days
in total) with rolling windows approach.

Architecture and hyperparameters of DLST model are optimized using OP-
TUNA software [2]. Both the graph convolution kernel K and temporal convo-
lution kernel K; are set to 3 and for NLU we choose standard ReLU function.
The number of channels are 32 for the input and first SGC unit, 64 for TCU as
well as for second SCG unit. The TCU has 4 layers with dilation factor dil = 2!,
1 =0,...,3 . The proposed model is trained by minimizing mean squared error
using ADAM optimizer for 50 epochs with a batch size of 32. The learning rate
is initially set to 0.001 and was decayed for 0.9 every 5 epochs.

4.1 Benchmark models

We compare the performance DLST with several well-known benchmarks: ARIMA
and the state-of-the-art artificial neural network models like MLP, CNN and

11
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Figure 6: Sliding-window approach for data transformation.

LSTM [I5] model. We determine the best ARIMA models for an univariate
time series of 98 nodes according to a Akaike information criterion (AIC). To
estimate the parameters of the ARIMA models we use input data of 28 days
rolling window (parameter estimation of the ARIMA model is significantly faster
then for neural network models). The LSTM is implemented using one LSTM
layer hidden layer with optimized number of hidden neurons and learning rate
for each individual node, a dropout of 0.1 followed by a fully connected output
layer with the number of neurons equal to the forecast horizon and was trained
for 100 epochs. MLP and CNN models are implemented in a similar fashion
and optimized for the individual nodes. The input data for MLP, CNN and
LSTM model is constructed in the same fashion as for DLST model, respecting
the receptive filed of DLST, so that both models can use the same amount of
historical information.

4.2 Performance measurement

The performance of DLST model is measured and quantified by calculating
the forecast accuracy for individual (boundary) nodes, as well as the mean for
the entire network. Specifically, we use mean absolute deviation (MAD), root
mean squared error (RMSE), mean absolute percentage error(MAPE) as well
as normalized mean absolute percentage error(nMAPE) defined as follows:

24 H-1

1
MAD = ————— E E E \Qd,t+h7 —Qd,i+h|
24« H * |Tiest| deTrens =1 h=0

24 H-1

1
RMSE = ,| ————— (Qd,t+n — 9d,t+n)?
24 x H x |Ttest| deTgst t:zl };

12



24 H-1

1 ddt+h — qt
MAPE = ——— —————
24 % H * |Ttest| dei%st =1 h—o ‘ qd,t+h

24 H-1

1 Qd,t+h — qd,t+h
nMAPE = ——MMM —_
24« H |Tt€bt| deTz:m ; hE:O | max(Q) ‘

where qq+, and gq are the real and forecast values of the natural gas
flows on day d, hour t and H is a forecasting horizon. In order to compare the
proposed method with alternative benchmark models we described in Section
1] we compute a different skill scores for each of the benchmark model :

skillscore(M AD)moder; = 1 — W
skillscore(RM SE)moder; = 1 — m
skillscore(M APE) moder, = 1 — ]\m

skillscore(nM APE) model; = 1 — Zﬁiiggii}iﬁ;

A perfect forecast results in a skill score value of 1. A forecast which is
outperforming the benchmark model will have a skill score between 0 and 1.
If the skill is equal to the benchmark forecast the skill score will be 0, and a
forecast which is under performing the benchmark forecast will have unbounded
negative skill score values.

5 Results and discussion

In Table [I] we report the average skill scores of the DLST model compared to
the four benchmark models for 25 supply and 73 demand nodes as well as the
accuracy of the DLST model for reference. All metrics are calculated on the
1488 instances of the out-of-sample test set, as explained in Section[d The pro-
posed model outperforms all benchmark models for four considered forecasting
horizons with a skill score of at least 0.218. Comparing to the ”second best”
model (marked bold in the Table , DLST has a skill score calculated with
normalized mean absolute percentage error (nMAPE) between 0.218 and 0.494
depending on forecasting horizons. The proposed model shows high dominance
in forecasting 3-steps ahead, while the difference is smallest for the one-step
ahead horizon.

High mean accuracy (measured with four performance metrics) for every
forecasting horizon and the positive skill score compared to all benchmark mod-
els strongly indicate that the DLST model more effectively captures compre-
hensive spatio-temporal correlations through modeling of the gas network. It

13



Model DLST ARIMA MLP CNN LSTM

H MAD Skill score (MAD)
1 0.012 0.450 0.565 0.658 0.264
3 0.018 0.460 0.532 0.575 0.435
6 0.028 0.423 0.426 0.443 0.296
12 0.043 0.384 0.350 0.297  0.308
RMSE Skill score (RMSE)
1 0.028 0.768 0.326 0.492 0.155
3 0.040 0.749 0.327  0.395 0.282
6 0.055 0.723 0.242 0.282 0.198
12 0.076 0.697 0.175 0.148 0.174
MAPE Skill score (MAPE)
1 0.032 0.517 0.433 0.630 0.405
3 0.048 0.502 0.471 0.506 0.399
6 0.076 0.455 0.324 0.392 0.280
12 0.122 0.410 0.234 0.236 0.193
nMAPE Skill score (nMAPE)
1 0.012 0.489 0.516 0.616 0.218
3 0.018 0.543 0.517 0.530 0.494
6 0.027 0.512 0.411 0.402 0.336
12 0.041 0.447 0.307 0.231 0.264

Table 1: Comparison of the DLST model and benchmark models. The first col-
umn shows different performance measures(MAD, RMSE, MAPE and nMAPE)
achieved by DLST for forecasting horizons H=1,3,6 and 12. Other columns show
skill scores for different benchmark models and performance measures.

benefits from the information available in the spatial-temporal correlations of
high-dimensional, complex gas network data.

Figure[7|shows the average skill score for individual nodes and different fore-
casting horizons compared to the ”second best” model. The circle size represents
the size of the node based on the total amount of flow during the observed period,
while the percentage of instances where DLST outperforms the benchmark is
shown on the x-axes. While we can see that for some nodes proposed model has
negative skill, it is clear that for most nodes, and especially nodes with biggest
flows, the DLST model has a positive skill score and provides more accurate
forecast for more than 50% of instances. The detailed ranking of the models
for forecasting individual nodes is given in Figure [8| The ranking is calculated
based on average nMAPE for individual nodes for every instance. DLST model
outperforms the benchmark models for the first eight biggest supply and five
biggest demand nodes in one step ahead forecasting. For longer horizons, es-
pecially H=3 and H=6, DLST is dominant, having the rank one for more then
85% of the nodes. LSTM is, in most of the cases, second most accurate model
except for nodes like S15 and S18 where ARIMA model is having the rank one

14



DLST Skill score

o

15 . . . .
0 20 40 60 80 100
Percentage of instances where DLST outperforming benchmark model [%]

(a) H=1, Benchmark model LSTM

DLST Skill score

-1.5
0 20 40 60 80 100

Percentage of instances where DLST outperforming benchmark model [%]

(¢) H=6, Benchmark model MLP

o

DLST Skill score
°
o

-1.5

0 20 40 60 80 100
Percentage of instances where DLST outperforming benchmark model [%]

(b) H=3, Benchmark model LSTM

DLST Skill score

-1.5
0 20 40 60 80 100

Percentage of instances where DLST outperforming benchmark model [%]

(d) H=12, Benchmark model LSTM

Figure 7: Average DLST skill score (nMAPE) for individual nodes compared
to ”second best model”. The percentage of instances where DLST model has
a lower nMAPE then LSTM is shown on x-axes. The size of the circle denotes
the total amount of absolute flow calculated for the period May 2016 - January
2019 for this node

for all horizons. The reason why neural network (machine learning) models are
failing to forecast these two nodes lies in the fact that they had zero flows for
more than 95% of the hours in the training set. As an illustration, Figure [J]
shows measured and forecasted flow for 3 most significant supply and demand
nodes (ranked by total absolute flow) for a testing period of two months.

6 Conclusion

In this paper, we have proposed a deep learning spatio-temporal model based
on temporal and graph convolutional neural networks to capture both temporal
and spatial dependencies in gas flows in a complex transmission network. The
proposed model has been applied to predict hourly natural gas flows with dif-
ferent forecasting horizons (1,3,6 and 12) in one of Germany’s longest and most
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Figure 8: DLST and benchmark models (ARIMA, MLP, CNN and LSTM)
ranked based on average nMAPE for individual nodes for different forecast
horizons(H=1,3,6,12)

complex pipeline network. We consider a network with gas flow time series of 98
boundary nodes, 25 supply and 73 demand nodes, and model the connections
between the nodes to extract valuable information about mutual influences of
different nodes in order to increase forecast accuracy. We have compared the
proposed DLST model with several benchmark models popular in the literature.
The obtained results show that the DLST model provides a stable and accurate
forecast, consistently outperforming all considered benchmark models with a
relative skill score between 0.218 and 0.494, especially in forecasting the most
important nodes of the network. Among the benchmark models, the LSTM
model tuned for individual nodes is the best one and gives a stable forecast ac-
curacy, particularly for the nodes with strong seasonal patterns. Furthermore,
there are special cases where the flow during the training period has signifi-
cantly different behavior (e.g. high percentage of zero flow hours). For these
cases, statistical models like ARIMA have an advantage compared to machine
learning models.
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