
Zuse Institute Berlin Takustr. 7
14195 Berlin

Germany

ALEXANDER TACK1, BERNHARD PREIM2, STEFAN ZACHOW3

Fully automated Assessment of Knee Alignment
from Full-Leg X-Rays employing a "YOLOv4
And Resnet Landmark regression Algorithm"

(YARLA): Data from the Osteoarthritis
Initiative4

1 0000-0002-2418-7629, corresponding author
2 0000-0001-9826-9478
3 0000-0001-7964-3049
4to appear in: Computer Methods and Programs in Biomedicine,

tack@zib.de

ZIB Report 21-28 (August 2021)

https://orcid.org/0000-0002-2418-7629, corresponding author
https://orcid.org/0000-0001-9826-9478
https://orcid.org/0000-0001-7964-3049


Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30 84185-0
Telefax: +49 30 84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de


Abstract
Background and Objective: We present a fully automated method for the quantification of knee alignment from
full-leg radiographs.
Methods: A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests in full-leg radio-
graphs for the hip joint, knee, and ankle. Residual neural networks were trained to regress landmark coordinates
for each region of interest. Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA)
angle was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed ones
for 180 radiographs. The accuracy of HKA angle computations was assessed on the basis of 2,943 radiographs by
a comparison to results of two independent image reading studies (Cooke; Duryea) both publicly accessible via the
Osteoarthritis Initiative. The agreement was evaluated using Spearman’s Rho, weighted kappa, and regarding the
correspondence of the class assignment.
Results: The average deviation of landmarks manually placed by experts and automatically detected ones by our
proposed ”YOLOv4 And Resnet Landmark regression Algorithm” (YARLA) was less than 2.0 ± 1.5 mm for all
structures. The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 ± 0.63◦;
YARLA resulted in a mismatch of 0.09 ± 0.73◦ compared to Cooke and of 0.18 ± 0.67◦ compared to Duryea.
Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent
reliability as measured by a Spearman’s Rho value of 0.98. Similar values were achieved by YARLA, i.e., a weighted
kappa value of 0.83 and 0.87 and a Spearman’s Rho value of 0.98 and 0.98 compared to Cooke and Duryea, re-
spectively. Cooke and Duryea agreed in 91% of all class assignments and YARLA did so in 90% against Cooke and
92% against Duryea.
Conclusions: YARLA yields HKA angles similar to those of human experts and provides a basis for an automated
assessment of knee alignment in full-leg radiographs.

Keywords: Hip-knee-ankle angle, Varus, Valgus, Mechanical axes, Osteoarthritis, Deep learning

1 Introduction
Knee malalignment affects the distribution of loads across the joint in an unfavorable manner leading to increased
contact pressure in the more heavily loaded regions [1]. Consequently, knee malalignment can be considered a risk
factor for osteoarthritis and cartilage loss as well as a biomarker for assessing severity and progression [2, 3, 4].
As shown in Fig. 1, knee alignment is defined as the angle between the mechanical axes of the femoral and tibial
bones. This angle has been termed the hip-knee-ankle (HKA) angle [5]. The mechanical axis of the femur is defined
by a line from the center of the femoral head to the mid-condylar point between the cruciate ligaments (cf. Fig. 1).
The mechanical axis of the tibia is defined as a line from the center of the tibial plateau to the center of the tibial
plafond [6]. As a convention the HKA angle is expressed as the angular deviation from a straight angle of 180◦. Varus
deviations are expressed as negative angles and valgus deviations as positive ones.
Classically, the HKA angle was assessed in anterior-posterior radiographs in a manual or a semi-automated setting
[7, 8, 5, 4, 9]. [10] proposed a computer-assisted, landmark-based method for the assessment of HKA angles from
full-limb radiographs. In their semi-automated method the rater is guided to identify a set of landmarks. Afterwards,
the HKA angle is derived automatically from the placed landmarks. The method of Sled et al. achieved an excellent
accuracy, however requires manual input and trained image readers. In recent years there has been a general trend
towards automated, deep learning-based methods for the analysis of medical images [11]. [12] presented an automated
image analysis pipeline to predict the HKA angle from standard knee radiographs. Their proposed method utilizes
random forest regression to predict landmarks at the outline of the knee bones. These landmarks are employed to
estimate the HKA angle. The advantage of the method of Gielis et al. is that radiation exposure is minimized since
only the knee is imaged instead of the full limb. However, this comes with the limitation of an average error of 1.8◦

as well as moderate intraclass correlation coefficients (ICCs) of 0.90 compared to manual readings from full-leg radio-
graphs. [13] proposed a decentralized deep learning algorithm for HKA angle computation from full-leg radiographs.
In a two-level approach 10 regions of interest (ROIs) are detected first using a convolutional neural network (CNN).
Then, by utilizing these ROIs the coordinates of anatomical landmarks are computed employing a second CNN. The
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Figure 1: Left: Examples of legs with varus malalignment, neutral alignment, and valgus malalignment. The load-
bearing axis is shown in red. Right: Computation of knee alignment based on landmarks illustrated by close-up
images of the valgus leg. The mechanical axes of the femur (green line) and tibia (blue line) are computed based on
landmarks for the hip, knee, and ankle. The center of the femoral head (orange circle) is derived from 6 landmarks
placed at the boundary of the femoral head. The landmarks at the femoral notch and tibial spines are directly placed
at the distinct anatomical regions. The center of the talus bone is derived from two landmarks defined at the superior
medial and lateral edges of the talus. The HKA angle is the angle enclosed by the femoral mechanical axis and the
tibial mechanical axis.

approach of Nguyen et al. is efficient with a run time of less than one second, but yields an average bias of -0.402◦ as
well as a mismatch of more than 1.5◦ in 17.7% of the analyzed subjects compared to the ratings provided by radiolo-
gists. [14] presented a deep learning approach to assess the HKA angle from full-leg radiographs based on automated
segmentations of the leg bones. A CNN similar to a U-net [15] was employed to segment the distal and proximal
femur and tibia. The centers of these structures were used to compute the femoral and tibial mechanical axes in order
to derive the HKA angle. The segmentations of hip, knee, and ankle were successful with a Dice similarity of up to
0.93. However, their method resulted in an average systematic bias of 0.49◦ as well as a mismatch greater than 1.5◦

in 10.83% of the analyzed subjects compared to the ratings of radiologists.

First automated approaches for HKA angle computation employing methods of machine learning were presented
by [13], [14], and [12]. However, the proposed methods (i) often show a systematic bias compared to the measurements
of radiologists, (ii) may result in deviations larger than 1.5◦ in a substantial amount of analyzed subjects. Additionally,
the proposed studies evaluated a rather small set of images and merely assessed the accuracy of HKA angle compu-
tation – but did not analyze the accuracy of the underlying detection of anatomical landmarks.
The motivation for our study is to employ state-of-the-art methods of deep learning to determine the HKA angle
from full-leg radiographs. We employ YOLOv4 [16], which is a fast object detection algorithm where the input image
is subdivided and object detection is performed in each subregion. Such an approach is of advantage over methods
which consecutively loop over all regions of the image, like in R-CNN [17] and might lead to increased accuracy and
less run time. YOLOv4 uses the entire image during training and test time in order to implicitly encode contextual
information about classes as well as their appearances and is highly generalizable and less likely to fail when applied
to other domains or unexpected inputs [18]. After ROI detection using YOLOv4 we employ ResNets [19] to build deep

2



Figure 2: A) Pipeline of YARLA for computation of the HKA angle from full-leg X-Rays: The first step of the
algorithm is YOLOv4 which locates ROIs in an image (hip: orange, knee: green, ankle: purple). In the second step
three levels of ResNets are employed for the regression of landmark coordinates. The HKA angle is finally derived
from the resulting two axes. B) Flow-chart of the ResNet architecture. Six residual blocks with projection shortcuts
are employed. The number of filters is indicated in brackets. 3 × 3 convolutions are employed in each block. The last
block is followed by a dense layer with 2000 nodes as well as a dense layer having as many nodes as the number of
landmark coordinates.

CNNs for regression of landmark coordinates. We thoroughly evaluate the accuracy of our method on publicly avail-
able data from the Osteoarthritis Initiative (OAI)1. The contributions of this study are (i) the transfer of YOLOv4 as
a fast and reliable object detector for anatomical regions in full-leg radiographs, (ii) utilization of ResNets for precise
landmark detection in these regions, and (iii) a thorough evaluation of the accuracy of landmark detection, HKA angle
computation as well as of the class assignment (varus/neutral/valgus).
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OAI time point
v12 v24 v36 v48

Number of subjects 1,472 1,275 919 177
Subjects in common with v12 all 37 14 8
Subjects in common with v24 37 all 22 5
Subjects in common with v36 14 22 all 6
Subjects in common with v48 8 5 6 all
Sex (male; female) 671; 801 565; 710 349; 570 73; 104
Age [years] 61.86 ± 9.08 63.67 ± 9.22 64.27 ± 8.94 64.58 ± 9.1
BMI [kg/m2] 29.75 ± 4.83 28.36 ± 4.97 28.31 ± 4.94 28.57 ± 5.59
Cooke: Legs measured 2,456 2,547 1,822 264
Duryea: Legs measured 2,858 2,521 1,828 352
Legs measured by both studies 2,942 2,549 1,838 354
Legs measured by Cooke only 84 28 10 2
Legs measured by Duryea only 486 2 16 90
Cooke: Average HKA angles -1.37 ± 3.86 -1.17 ± 3.30 -0.95 ± 3.02 -1.06 ± 3.07
Duryea: Average HKA angles -1.41 ± 3.80 -1.24 ± 3.33 -1.08 ± 3.03 -1.27 ± 3.05
Cooke: Alignment classes
(Varus; Neutral; Valgus; NA) 1,025; 923; 416; 92 1,026; 1,114; 378; 29 638; 885; 293; 6 97; 125; 42; 0

Duryea: Alignment classes
(Varus; Neutral; Valgus; NA) 1,234; 1,138; 486; 0 1,031; 1,130; 360; 0 660; 901; 267; 0 132; 173; 47; 0

Table 1: Demographics: In this study 3,843 X-Rays of the OAI database are analyzed that were acquired at four visits
every 12 months (v12, v24, v36, and v48). At the different time points, mainly radiographs of different persons were
taken. The majority of legs were assessed by both, Cooke and Duryea.

2 Methods
2.1 Full-Leg X-Rays from the OAI
3,843 full-leg X-Rays from the publicly available OAI database have been assessed. Detailed demographics are given in
Table 1. Some X-Rays were excluded from this study due to an incomplete field of view (N = 11) and due to missing
pixel size information in the DICOM metadata (N = 3). If the hip, knee, or ankle are outside of the field of view for
one leg only, this leg is excluded from the study, but the contralateral one is still used (N = 3). See Supplementary
Figure A1 for images and subject identifiers of all cases that were treated specially.

2.2 Knee alignment studies of Cooke and Duryea
Two independent image reading studies for measuring HKA angles in full-leg radiographs as provided by the OAI were
independently conducted by Dr. Cooke and Dr. Duryea in two different image reading centers. The measurements of
Cooke were funded by OAI and performed by OAISYS Inc.2 with support of staff at Queen’s University (Kingston,
Ontario) using the semi-automated tool Horizon Surveyor (OAISYS Inc., Perth, Canada). The measurements of
Duryea were performed independently of OAI in the laboratory of Dr. Jeff Duryea at Brigham and Women’s Hospital
in Boston, MA using custom software to guide the reader in placing the respective landmarks.3 Both, Cooke and
Duryea, evaluated 6,965 of the available 7,683 legs. 124 remaining legs were evaluated by Cooke only and 594 by
Duryea only.

1https://nda.nih.gov/oai/
2www.oaisysmedical.com
3http://www.spl.harvard.edu/pages/People/duryea
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2.3 Automated determination of HKA angles by employing YARLA
Our motivation is to develop an automated method for the assessment of the HKA angle in full-leg X-Ray images
following the clinical workflow of radiologists. Hence, our approach is to locate the respective landmarks for each joint
individually, to derive the mechanical axes, and finally to compute the HKA angle. For the hip, six landmarks are
to be detected around the femoral head. These landmarks are placed manually equally distributed around the whole
femoral head. For the knee and ankle, two distinct anatomical landmarks are to be detected, respectively (see Fig. 2).
Several object detectors based on machine learning were proposed for an automated image analysis [20]. Many of them
already show an excellent accuracy in object detection as well as a high accuracy in the determination of bounding
boxes enclosing these objects. In our proposed YARLA we chose YOLOv4 for a detection of ROIs because it was
shown to be very fast and precise on data from the "Microsoft COCO: Common Objects in Context" challenge [21]
as well as data from PASCAL Visual Object Classes challenges (http://host.robots.ox.ac.uk/pascal/VOC/). In
contrast to common object detection algorithms YOLOv4 gets the complete image as input, but processes it at once in
order to achieve a low run time and high accuracy due to implicit encoding of contextual information. Its architecture
is splitting the input image into a grid. If the center of an object of interest falls into a grid cell, this grid cell becomes
responsible for detecting that object, i.e., to compute the respective class probabilities and bounding boxes. In our
study, we transfer YOLOv4 to the medical domain. YOLOv4 is employed to detect ROIs in X-Ray images for the hip
joint, the knee joint, and the ankle joint, respectively. Its architecture is kept as described in the original publications
[18, 16].
It was shown that CNNs are well suited for accurate regression of landmark coordinates in medical images [22, 23, 24].
For classification and regression tasks, very deep CNNs often suffer from the vanishing gradient problem [25] as the
gradient is back-propagated to earlier layers and the repeated multiplications result in an infinitely small gradient.
ResNets [19] introduced so-called “identity shortcut connections” that skip one or more layers making it easier to train
a deep CNN. The recent success of CNNs for landmark detection as well as the potential of better gradient flow of
ResNets motivated us to employ them for landmark regression in each ROI (hip, knee, ankle) that was previously
detected by employing YOLOv4. Within these regions the respective landmarks are located at the boundaries of the
bones. Hence, a good contrast can be expected and the ResNets can be trained to detect these landmarks relying on
strong gradients at the outlines of the bones as well as on local texture information. As shown in Fig. 2B, we employ
ResNets with projection shortcuts consisting of six layers for regression of the landmark coordinates. The number of
nodes of the final layer of the respective ResNet is equal to the number of landmark coordinates. The mean average
error is employed as a loss function for training the ResNets and optimization is carried out using stochastic gradient
descent (cf. Algorithm1).

The input size of CNNs is restricted due to memory limitations. To allow our CNNs to focus on the relevant region
around the respective landmarks with a maximum level of detail we employ an approach consisting of three levels of
ResNets. In the first level the centers of the ROIs for each joint as detected by YOLOv4 are used for the computation
of a surrounding region of 170mm × 170mm in size. In the second level a 135mm × 135mm region is extracted at
the predicted location of the first stage. In the third and final level a region of 100mm × 100mm in size for both the
hip and the ankle, as well as a region of 100mm × 40mm in size for the knee is computed with the centers at the
respective second predictions. The sizes of the final regions are chosen according to the average sizes of adult joints
and the initial sizes are chosen large enough to account for inaccuracies in the ROI detection by YOLOv4. Each region
is resampled to 512× 512 pixels and min-max normalized to an intensity range between zero and one before it is fed
into the respective ResNet. The architecture of the ResNets is identical in each level.
After all landmarks have been detected by the ResNets, the resulting axes are computed from these landmarks. The
center of the femoral head is computed by fitting a circle to the six landmarks of the hip and by minimizing the
following equation:

minimize
r

xc
yc

E =
n∑

i=1
(di − r)2 , (1)
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with a circle of radius r and center (xc,yc), and di being the distance of a landmark (xi,yi) from the center defined as

di =
√

(xi − xc)2 + (yi − yc)2 . (2)

The femoral mechanical axis is defined from the femoral head chip to the femoral knee landmark pfemur. The center
of the ankle is computed as the geometric mean of the two respective landmarks. The tibial mechanical axis is defined
from the tibial knee landmark ptibia to the center of the ankle cankle (cf. Fig. 1). Finally, the HKA angle is computed
based on the two resulting axes as

HKA angle = arctan
(det[cankle − pfemur, chip − ptibia]

(cankle − pfemur) · (chip − ptibia)

)
. (3)

2.4 Experimental setup
Out of 3,843 X-Rays used in this study 900 X-Rays (OAI time point v12) are used as training, validation, and test
data of YOLOv4 and the ResNets (60%, 20%, 20%). Manual landmarks are placed for both legs of all 900 X-Rays,
i.e., six landmarks for the femoral head, two landmarks for the knee, and the ankle, respectively. In the following,
these landmarks are termed LM_ZIB.
Our method is trained for the right leg only. The data is flipped in left-right direction to effectively double the amount
of training data and to additionally reduce the variance within the data. Specifically, the X-Rays are flipped prior to
training of YOLOv4 such that the patients’ left legs appear similar to the right ones. All X-Ray images are resized
to 512 × 1024 pixels and given as input into YOLOv4. The ROIs used for training YOLOv4 always have a size of
170 mm × 170 mm centered at the geometric mean of the landmarks LM_ZIB for the respective joint. This size was
empirically determined such that all details are covered by the ROIs.
For each level ResNets are trained using ROIs randomly placed around the center of the landmarks. To enhance the
generalization ability and to cope with larger variation within the given image data, data augmentation is employed.
The ROIs are translated (randomly up to ±10% of physical size of the ROI in every direction) and rotated (randomly
up to ±7◦) as well as scaled (randomly between 75% and 125%).
2,943 X-Rays are neither used for training, validation nor testing. For these data HKA angle measurements are given
by Cooke and Duryea but no manually placed landmarks. These 2,943 X-Rays are used for the evaluation of the HKA
angles that are determined by YARLA and are in the following termed as "Angle_OAI" data.

2.5 Evaluation of the performance of YARLA
Table 2 shows the methods that are employed to evaluate the performance of YARLA. For all 360 legs contained
in the testing data the mismatch between the landmarks computed by YARLA and the manually placed ones are
evaluated. To investigate which regions are most important for the ResNet’s computation of landmark coordinates
occlusion heatmaps [26] are employed. A so-called "occluder" is moved over the respective ROI with a stride of 8. At
each position the occluder sets the intensities of all pixels in a 64× 64 pixels region to the mean image intensity to
occlude the real image. The magnitude of change is evaluated for each position of the occluder and the most important
regions for the ResNet’s prediction are qualitatively assessed (see Fig. 3).
Additionally, the following five methods are employed for an evaluation of YARLA on both testing and Angle_OAI
data: (1) Computation of non-parametric Spearman’s Rho [27] to assess the agreement between HKA angles as
determined by YARLA and the measurements of Cooke and Duryea. The Spearman’s Rho measure is chosen since
the HKA angle measurements are not normally distributed. (2) Generation of Bland-Altman plots [28] to investigate
any systematic bias between YARLA results and the two studies, as well as to visualize the variance and to identify
outliers.
In order to perform class assignments (varus/neutral/valgus), varus malalignment is defined as HKA angles ≤ -2
degrees, valgus malalignment as HKA angles ≥ +2 degrees, and neutral alignment as any angle in between. Based on
this definition of knee alignment, (3) the agreement of class assignment by YARLA is compared to the class assignments
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of Cooke and Duryea. Further, (4) confusion matrices are plotted to analyze which classes were most often confounded
with each other. Finally, (5) the weighted kappa [29] is computed to quantify agreement between YARLA and the
two studies.
In order to investigate the quality of our manually placed landmarks, HKA angles and class assignments are determined
using LM_ZIB for the testing data only. The conformity of class assignment is assessed using Spearman’s Rho and
weighted kappa between the class assignments using LM_ZIB and those of Cooke, Duryea, and YARLA.
For a comparison to existing methods the ICC [30] and the proportion of errors being larger than 1.5◦ are computed
for the Angle_OAI data.
Finally, we perform an ablation study to analyze the individual parts of our method. In the ablation study we evaluate
the performance of YOLOv4 only and investigate the performance of adding up to three levels of ResNet landmark
regression. To evaluate YOLOv4 only, the centers of the ROIs computed by YOLOv4 are utilized to compute the
femoral and tibial mechanical axes. The HKA angle is derived from these axes. In further investigations one, two, or
three levels of ResNets are employed to detect landmarks in the ROIs given by YOLOv4 (see Algorithm1 and Fig.
2A).

YARLA output Method for evaluation
Landmark location Average distance
Landmark location Occlusion heatmaps
HKA angle Bland-Altman plots
HKA angle Proportion of errors being > 1.5◦

HKA angle Intraclass correlation coefficient (ICC)
HKA angle Non-parametric Spearman’s Rho
Class assignments Agreement
Class assignments Confusion matrix
Class assignments Weighted kappa

Table 2: Methods used for evaluating the performance of YARLA.

3 Results
In order to evaluate the quality of YARLA several components of the method were assessed, i.e., YOLOv4 as the
employed object detector, preciseness of the located landmarks, HKA angle computations, and class assignments.

Success rate of YOLOv4
YOLOv4 detects the ROIs of the hip, knee, and ankle successfully for all legs contained in the testing data. For
the Angle_OAI cases, YOLOv4 detects all regions successfully for 5,809 out of 5,818 legs (99,85% success rate, see
Supplementary Figure B1 for images and subject identifiers of the nine X-Ray images for which YOLOv4 failed).

Location of the automatically detected landmarks
For the testing data, the difference between landmark positions as determined by YARLA and the manually located
ones is on average 1.72 ± 1.00 mm for the center of the femoral head, 1.94 ± 1.33 mm for the distal femoral notch,
1.63 ± 1.29 mm for the tibial spines, and 1.54 ± 1.33 mm for the center of the talus bone at the ankle (Table 5).

Analysis of systematic bias and outliers
Bland-Altman plots were used to investigate if there is any systematic bias or if there are outliers in the HKA angles
determined by Cooke, Duryea, or YARLA. Additionally, the HKA angles computed based on LM_ZIB are evaluated.
LM_ZIB have an average mismatch of 0.12 ± 0.6◦ and 0.18 ± 0.46◦ to Cooke and Duryea, respectively. As shown in
the Bland-Altman plots in Figure 4, the average disagreement between YARLA and LM_ZIB is 0.03 ± 0.48◦. The
disagreement between YARLA and Cooke and Duryea is 0.13 ± 0.65◦ and 0.21 ± 0.56◦, respectively. Cooke and
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Cooke vs. Duryea
Testing data

Duryea
Varus Neutral Valgus

C
oo

ke Varus 99 7 0
Neutral 7 102 6
Valgus 0 5 53

Angle_OAI data
Duryea

Varus Neutral Valgus

C
oo

ke Varus 2003 141 0
Neutral 154 2221 77
Valgus 1 123 737

YARLA vs. Cooke
Testing data

Cooke
Varus Neutral Valgus

YA
R
LA Varus 95 3 0

Neutral 11 107 8
Valgus 0 5 50

Angle_OAI data
Cooke

Varus Neutral Valgus

YA
R
LA Varus 1915 102 1

Neutral 255 2281 135
Valgus 0 83 730

YARLA vs. Duryea
Testing data

Duryea
Varus Neutral Valgus

YA
R
LA Varus 125 3 0

Neutral 13 143 7
Valgus 0 3 58

Angle_OAI data
Duryea

Varus Neutral Valgus
YA

R
LA Varus 2056 68 0

Neutral 235 2487 84
Valgus 2 79 766

Table 3: Confusion matrices for the testing as well as the Angle_OAI data.

Duryea had a mismatch of 0.07 ± 0.57◦. For the Angle_OAI data the mismatch is 0.09 ± 0.73◦ and 0.18 ± 0.67◦

between YARLA and the two studies, whereas Cooke and Duryea had a disagreement of 0.09 ± 0.63◦.

Spearman’s Rho
In Table 4 statistical comparisons of the HKA angles between YARLA and the two studies are shown. For the testing
data as well as the Angle_OAI data very strong correlations have been achieved. Spearman’s Rho is greater than 0.98
for all four raters. With p < 0.001, significant correlations have been found in all cases.

Agreement of class assignment
The correctness of class assignment is equal to or higher than 90% for the testing data as well as the Angle_OAI
data between YARLA and all other measurements (Table 4). The highest accuracy (93%) has been achieved between
YARLA and LM_ZIB as well as Duryea (testing data). The lowest accuracy (90%) has been achieved between YARLA
and Cooke (Angle_OAI data).

Confusion matrices
In Table 3 confusion matrices are shown for both testing and the Angle_OAI data. It can be seen for the Angle_OAI
data that 255 knees with varus and 135 knees with valgus malalignment have been missclassified as neutral compared to
Cooke as well as 235 and 84 compared to Duryea. The amount of legs in neutral alignment misclassified as malaligned is
in tendency smaller (in total 185 misclassifications compared to Cooke and 147 misclassifications compared to Duryea).

Weighted kappa
Almost perfect agreement is found as measured by weighted kappa being higher than 0.80 between YARLA and the
two other raters (Table 4). The highest kappa (0.88) is achieved between YARLA and the measurements employing
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LM_ZIB as well as the ones of Duryea (testing data). The lowest kappa (0.83) is achieved between YARLA and
Cooke (Angle_OAI data). The kappa decreases for YARLA vs. Cooke comparing the testing with the Angle_OAI
data (0.85 vs. 0.83) and increases slightly for YARLA vs. Duryea (0.85 vs. 0.87).

Run time
ROI detection for both legs using YOLOv4 takes 0.6 seconds per X-ray on average. The application of the three
ResNet levels takes 2.1 seconds on average for both legs. In total, the computation of the HKA angles for both legs
in one X-Ray takes about 3 seconds on average.

Ablation study and comparison to other methods
The results of our ablation study and a comparison to four related methods is provided in Table 5. It can be seen that
most performance measures are clearly improving in each level of ResNet landmark regression following the YOLOv4
ROI detection. The proportion of HKA angle errors larger than 1.5◦ is decreasing from 3.56% and 5.05% (YOLOv4
for Cooke and Duryea) to 3.38% and 1.82% using three levels of ResNet landmark regression.

4 Discussion
YARLA detects the joints of interest for almost all cases and achieves a good accuracy for locating the anatomical
landmarks. Almost perfect agreement as measured by weighted kappa [31] and very strong correlations as measured
by Spearman’s Rho [32] confirm the quality of our method. These evaluation methods as well as the conformity of
class assignments are approximately in the range of disagreement between the two studies of Cooke and Duryea. Also,
considering the related work, our proposed method achieves excellent results. The methods of both, [13] as well as
[14], show a systematic mismatch between the automated results and the manual readings of around 0.5◦ (see Table 6).
Our method shows only a slight deviation from the two studies by Cooke and Duryea. Moreover, stronger correlations
are found using YARLA compared to [12], as well as clearly less bias. Also, in terms of the proportion of knees with
a mismatch greater than 1.5◦ our method performs clearly better than the ones proposed by Nguyen et al. and Pei et
al. (Table 6).
As shown in the occlusion heatmaps (Fig. 3) the ResNets focus on the image regions adjacent to the anatomical
landmarks which are to be detected. Especially for the hip we noticed that the CNN learned the circular arrangement
of the landmarks. It could be investigated in the future whether all six landmarks are needed or if fewer landmarks
might also be sufficient.
In our evaluation of thousands of X-Ray images we did notice some limitations of YARLA. In nine cases YOLOv4
fails to identify all joint ROIs. These nine cases are shown in Supplementary Figure B1. This is probably due to an
extremely low image contrast. Most of these cases have very dark regions around the knee and ankle or very bad
contrast at the hip – whereas the other regions are displayed well. We argue that these X-Ray images should have
been acquired in a better quality.
A strength of our method is that YOLOv4 indicates the certainty for all detected ROIs within the image allowing

for quality assurance of the input X-Ray data (e.g. if the complete limb is covered). We believe our method performs
better than the method of [13] since ResNets allow us to build deeper CNN consisting of 6 convolutional layers.
Moreover, 3× 3 convolutions are usually more efficient [33] than the 9× 9 and 7× 7 convolutions as employed by [13].
Each level of ResNet landmark regression is further improving the results since a higher level of detail is covered in
the respective input images and the ResNet is explicitly guided to focus on the relevant region. Disadvantages of our
method are that it is not trained end-to-end and that 9 ResNets need to be trained and executed. Moreover, our
ResNet levels are completely independent and an iterative refinement of landmark positions could be beneficial [34].
As shown with the Bland-Altman plots (Fig. 4) the resulting mean disagreement as well as the standard deviation of
HKA angle computations are consistent between the test data and the Angle_OAI data. The systematic mismatch
between YARLA and the two studies is low, however, it can be seen that YARLA has the tendency to compute higher
HKA angle values, i.e., valgus malalignment.
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Spearman’s Rho
Testing data

Cooke Duryea LM_ZIB YARLA
Cooke — 0.99 (p < 0.001) 0.99 (p < 0.001) 0.98 (p < 0.001)
Duryea 0.99 (p < 0.001) — 0.99 (p < 0.001) 0.99 (p < 0.001)
LM_ZIB 0.99 (p < 0.001) 0.99 (p < 0.001) — 0.99 (p < 0.001)
YARLA 0.98 (p < 0.001) 0.99 (p < 0.001) 0.99 (p < 0.001) —

Angle_OAI data
Cooke Duryea YARLA

Cooke — 0.98 (p < 0.001) 0.98 (p < 0.001)
Duryea 0.98 (p < 0.001) — 0.98 (p < 0.001)
YARLA 0.98 (p < 0.001) 0.98 (p < 0.001) —

Accuracy of class assignment
Testing data

Cooke Duryea LM_ZIB YARLA
Cooke — 0.92 0.92 0.90
Duryea 0.92 — 0.93 0.93
LM_ZIB 0.92 0.93 — 0.93
YARLA 0.90 0.93 0.93 —

Angle_OAI data
Cooke Duryea YARLA

Cooke — 0.91 0.90
Duryea 0.91 — 0.92
YARLA 0.90 0.92 —

Weighted kappa
Testing data

Cooke Duryea LM_ZIB YARLA
Cooke — 0.88 0.87 0.85
Duryea 0.88 — 0.89 0.88
LM_ZIB 0.87 0.89 — 0.88
YARLA 0.85 0.88 0.88 —

Angle_OAI data
Cooke Duryea YARLA

Cooke — 0.86 0.83
Duryea 0.86 — 0.87
YARLA 0.83 0.87 —

Table 4: Evaluation of non-parametric Spearman’s Rho, accuracy of class assignment, and weighted kappa. Agreement
is computed for the Angle_OAI data between the automated HKA angle computations of YARLA and those of Cooke
and Duryea. For the testing data, additionally, HKA angles were derived from our manually determined landmarks,
LM_ZIB, and compared to the results of YARLA, Cooke, and Duryea.
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Method L2 landmark error
[mm]

HKA angle error
[Degree]

HKA angle
error > 1.5◦

HKA angle
Spearman’s
Rho

ICC HKA
class as-
signment
weighted
kappa

HKA
class as-
signment
accuracy

Run
time

Modality

Ours
(YOLOv4)

H: 2.50 ± 2.49
FN: 4.21 ± 1.46
TS: 4.28 ± 1.80
A: 2.45 ± 3.15

C: 0.30 ± 0.70
D: 0.38 ± 0.69

C: 3.56%
D: 5.05%

C: 0.98
D: 0.97

C: 0.97
D: 0.97

C: 0.82
D: 0.80

C: 0.89
D: 0.88

0.6 s Full-leg
X-Ray

Ours
(YOLOv4 + 1 Level)

H: 2.39 ± 1.45
FN: 2.01 ± 1.34
TS: 1.91 ± 1.13
A: 2.55 ± 2.00

C: 0.24 ± 0.73
D: 0.32 ± 0.63

C: 3.85%
D: 2.22%

C: 0.97
D: 0.98

C: 0.97
D: 0.98

C: 0.81
D: 0.84

C: 0.88
D: 0.90

1.3 s Full-leg
X-Ray

Ours
(YOLOv4 + 2 Levels)

H: 2.09 ± 1.21
FN: 2.02 ± 1.33
TS: 1.86 ± 1.17
A: 2.05 ± 1.54

C: 0.20 ± 0.74
D: 0.29 ± 0.76

C: 3.42%
D: 1.87%

C: 0.97
D: 0.98

C: 0.97
D: 0.97

C: 0.82
D: 0.85

C: 0.89
D: 0.91

2.0 s Full-leg
X-Ray

Ours
(YOLOv4 + 3 Levels)

H: 1.72 ± 1.00
FN: 1.94 ± 1.33
TS: 1.63 ± 1.29
A: 1.54 ± 1.33

C: 0.09 ± 0.73
D: 0.18 ± 0.67

C: 3.38%
D: 1.82%

C: 0.98
D: 0.98

C: 0.97
D: 0.98

C: 0.83
D: 0.87

C: 0.90
D: 0.92

2.7 s Full-leg
X-Ray

Table 5: Ablation study of the proposed method. To evaluate YOLOv4 on the testing data, the centers of the ROIs
computed by YOLOv4 are used to derive the HKA angle. Moreover, the influence on the results of up to three levels
of ResNet landmark regression following ROI detection by YOLOv4 is investigated. The L2 error is shown for the hip
(H), femoral notch (FN), tibial spines (TS), and ankle (A). All other metrics are computed between our predictions
and the measurements from Cooke (C) and Duryea (D), respectively. For reasons of comparability, additionally the
intraclass correlation coefficient (ICC) is computed. The best results per column are highlighted in bold.

Method L2 landmark error
[mm]

HKA angle error
[Degree]

HKA angle
error > 1.5◦

HKA angle
Spearman’s
Rho

ICC HKA
class as-
signment
weighted
kappa

HKA
class as-
signment
accuracy

Run
time

Modality

[10] — — — — 0.995 — — — Full-leg
X-Ray

[13] — -0.402 ± 0.68
(left leg) 17.7% — — — — < 1 s Full-leg

X-Ray
[12] — 1.8 ± 1.3 — — 0.90 — — — AP

knee
radio-
graphs

[14] — -0.49 ± 0.75 10.83% — 0.999 — — — Full-leg
X-Ray

Proposed method H: 1.72 ± 1.00
FN: 1.94 ± 1.33
TS: 1.63 ± 1.29
A: 1.54 ± 1.33

C: 0.09 ± 0.73
D: 0.18 ± 0.67

C: 3.38%
D: 1.82%

C: 0.98
D: 0.98

C: 0.97
D: 0.98

C: 0.83
D: 0.87

C: 0.90
D: 0.92

2.7 s Full-leg
X-Ray

Table 6: Comparison of our results to related work. The L2 error is shown for the testing data for the hip (H), femoral
notch (FN), tibial spines (TS), and ankle (A) between the predictions of our method and our manual landmarks. All
other metrics are computed for our method between our predictions and the measurements from Cooke (C) and Duryea
(D), respectively. For reasons of comparability, additionally the intraclass correlation coefficient (ICC) is computed.
The best results per column are highlighted in bold.
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Figure 3: Occlusion heatmaps were computed for all levels of ResNet landmark regression. We utilized a so-called
"occluder" of size 64 × 64 with mean image intensity. The occluder was moved over the respective X-Ray image with
a stride of 8 pixels. The magnitude of change of the landmark coordinate prediction was evaluated at each position.
The magnitudes of the occlusion heatmaps were normalized to [0,1] and values lower than 0.7 were truncated.
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(a) Test data: Cooke vs. Duryea (b) Test data: YARLA vs. LM_ZIB

(c) Test data: YARLA vs. Cooke (d) Test data: YARLA vs. Duryea

(e) Angle_OAI data: YARLA vs. Cooke (f) Angle_OAI data: YARLA vs. Duryea

(g) Angle_OAI data: Cooke vs. Duryea

Figure 4: Bland-Altman plots. For the Angle_OAI data Bland-Altman plots are shown comparing YARLA, Cooke,
and Duryea. For the testing data, additionally, YARLA is compared against LM_ZIB.
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Figure 5: Examples for outliers. The first row contains examples which should actually be solved by YARLA, but
show errors (white arrows). The second row shows examples of ROIs with bad image contrast which led to errors in
the landmark detection. The last row shows examples in which unnatural shapes of the joint bones led to errors.
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Algorithm 1 ResNets for regression of landmark coordinates for full-leg X-Rays
Require: ROIs for hip, knee, and ankle as given by YOLOv4.
1: procedure Multi-level landmark regression
2: for ROI in [ROIhip, ROIknee, ROIankle]) do
3: c0 ← compute center of ROI
4: // ResNet to regress landmarks lms1 = (xi, yi, ..., xn, yn)
5: lms1 ← ResNet(c0, sizex=170, sizey=170)
6: c1 ← compute center of lms1
7: lms2 ← ResNet(c1, sizex=135, sizey=135)
8: c2 ← compute center of lms2
9: if ROI_T Y P E is knee then
10: lms3 ← ResNet(c2, sizex=100, sizey=40)
11: else
12: lms3 ← ResNet(c2, sizex=100, sizey=100)
13: end if
14: end for
15: end procedure
16: function ResNet(c, sizex, sizey)
17: r ← extract sizex mm × sizey mm region in X-Ray around c
18: r ← resample r to 512 × 512 pixels (linear interpolation)
19: r ← min-max normalized intensities in r to [0,1]
20: lms ← landmark regression by ResNet(r)
21: return lms
22: end function
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As an additional limitation, YARLA produces a few outliers (see Bland-Altman plots in Fig. 4 and examples shown
in Fig. 5), usually due to bad image contrast (Fig. 5 middle row) or unexpected bone shapes (Fig. 5 lower row). Some
outliers cannot be explained, though, and would be easily avoidable for a human (Fig. 5 upper row). Whereas more
training data could improve the results, methodical changes to the landmark regression network could be considered
as well. A different object detector, fully convolutional approaches for landmark detection, or end-to-end approaches
could be employed. The end-to-end trained YOLOv4 shows a considerable error in landmark position as well as HKA
angle computation. End-to-end trained approaches based on novel transformers [35] could improve the results due to
attention mechanisms. However, these approaches require a lot of training data. It is common practice to increase the
amount of training data using methods of data augmentation which is challenging for full-leg radiographs since global
rotations of the image are not plausible and local deformations might influence the landmark position and thus the
resulting HKA angle.
We consider this work a foundation for future artificial intelligence-based diagnosis of knee alignment. A clinical work-
flow could involve YARLA as a decision support for computer-aided diagnosis. In the first step YARLA computes
anatomical landmarks for all joints determining the HKA angle. In the second step quality assurance by medical ex-
perts needs to be performed, i.e., confirmation of the landmark locations or modification of the locations via suitable
software tools as well as agreement on the diagnosis of knee alignment proposed by YARLA. In future studies, the
impact of YARLA could be investigated in terms of reliability and efficiency of knee alignment assessment from full-leg
X-Rays. Moreover, a comparison with commercial products should be conducted4.
In conclusion, YARLA can be used for diagnosis of knee alignment from full-leg X-Rays, i.e., for computation of the
hip-knee-ankle angle based on automated landmark detection. Our manual landmarks as well as the trained networks
will be made publicly available with this publication to support future developments as well as an evaluation of the
clinical value of YARLA (https://pubdata.zib.de).
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