
Takustr. 7
14195 Berlin

Germany
Zuse Institute Berlin

KAI HOPPMANN-BAUM1, GIONI MEXI2, OLEG
BURDAKOV3, CARL JOHAN CASSELGREN4, THORSTEN

KOCH5

Length-Constrained Cycle Partition
with an Application to UAV Routing

1 0000-0001-9184-8215
2 0000-0003-0964-9802
3 0000-0003-1836-4200
4 0000-0002-2741-468X
5 0000-0002-1967-0077

ZIB Report 20-30 (November 2020)

https://orcid.org/0000-0001-9184-8215
https://orcid.org/0000-0003-0964-9802
https://orcid.org/0000-0003-1836-4200
https://orcid.org/0000-0002-2741-468X
https://orcid.org/0000-0002-1967-0077

Zuse Institute Berlin
Takustr. 7
14195 Berlin
Germany

Telephone: +49 30-84185-0
Telefax: +49 30-84185-125

E-mail: bibliothek@zib.de
URL: http://www.zib.de

ZIB-Report (Print) ISSN 1438-0064
ZIB-Report (Internet) ISSN 2192-7782

bibliothek@zib.de
http://www.zib.de

Length-Constrained Cycle Partition with an
Application to UAV Routing

Kai Hoppmann1,2[0000−0001−9184−8215], Gioni Mexi1[0000−0003−0964−9802],
Oleg Burdakov3[0000−0003−1836−4200], Carl Johan

Casselgren3[0000−0002−2741−468X], and Thorsten Koch1,2[0000−0002−1967−0077]

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany
{kai.hoppmann,mexi,koch}@zib.de

2 TU Berlin, Chair of Software and Algorithms for Discrete Optimization, Str. des
17. Juni 135, 10623 Berlin, Germany

3 Linköping University, Department of Mathematics, SE-58183 Linköping, Sweden
{carl.johan.casselgren,oleg.burdakov}@liu.se

Abstract. In this article, we discuss the Length-Constrained Cycle Par-
tition Problem (LCCP). Besides edge weights, the undirected graph in
LCCP features an individual critical weight value for each vertex. A cy-
cle partition, i.e., a vertex disjoint cycle cover, is a feasible solution if the
length of each cycle is not greater than the critical weight of each of the
vertices in the cycle. The goal is to find a feasible partition with the min-
imum number of cycles. In this article, we discuss theoretical properties,
preprocessing techniques, and two mixed-integer programming models
(MIP) for LCCP both inspired by formulations for the closely related
Travelling Salesperson Problem (TSP). Further, we introduce conflict
hypergraphs, whose cliques yield valid constraints for the MIP models.
We conclude with a report on computational experiments conducted on
(A)TSPLIB-based instances. As an example, we use a routing problem
in which a fleet of uncrewed aerial vehicles (UAVs) patrols a set of areas.

1 Motivation

Providing a service to a set of customers on a periodical basis is a recurring task
being inherent to many real-world applications. Therefore, the corresponding
optimization problems, where it often is the goal to determine the minimum
number of agents needed to satisfy the service requirements while taking several
resource restrictions into account, represent an area of active research. Besides
classical examples, which include the delivery of gasoline to service stations [5]
or timetabling in public transport [15,22], problems of this kind frequently arise
in the context of routing uncrewed aerial vehicles (UAVs).

UAVs are widely used to execute surveillance tasks, since they can gather
information about an area from long distance or high altitude. In particular,
they are able to visit areas that are not accessible in any other way. Therefore,
they are used to monitor critical infrastructure, such as natural gas pipelines [12],
to fight forest-fires [17], or to analyze widespread animal populations [3]. The

2 K. Hoppmann et al.

Length-Constrained Cycle Partition Problem (LCCP) originates from a routing
problem regarding these UAVs.

Given a set of areas V = {v1, . . . , vn}, the goal is to determine the minimum
number of UAVs necessary to patrol them, while their individual flying routes
have to satisfy three conditions: First, the UAVs must fly tours, which means
that a UAV starts and ends its route at the same area and visits all other areas,
which are assigned to it, exactly once. We assume that a UAV continues on the
same tour after finishing it without any delay. Second, each area is visited by
exactly one UAV and therefore contained in exactly one tour. This is to avoid
possible interferences resulting from intersections. Third, each area vi ∈ V is
associated with a critical weight value Ti ∈ R≥0, which is an upper bound on
the duration for which it can be left unattended, and a scanning time Si ∈ R≥0,
which is the amount of time a UAV needs to scan it. We require that after
scanning vi for Si time units, the UAV assigned to it has to return and rescan
it within Ti time units.

2 Problem Formulation

For LCCP we are given a complete graph G = (V,E) where V = {v1, . . . , vn}
denotes the set of vertices and E ⊆ V × V the set of edges. For each vertex
vi ∈ V we are given a critical weight Ti ∈ R≥0 and a scanning time Si ∈ R≥0
with Si ≤ Ti. The edge weight of eij := {vi, vj} ∈ E is given as L̂ij ∈ R≥0. An
LCCP instance is called metric if the edge weights obey the triangle inequality.

Next, a cycle in G is a tuple Ck = (Vk, Ek), where Ek = (e1, . . . , eΩ) denotes
a closed walk that joins the vertices in Vk while all vertices except for the first
and the last one are distinct. We call a cycle Ck proper if |Vk| ≥ 2, a singleton
if |Vk| = 1, and empty otherwise. Furthermore, Ck is called feasible if τk ≤ Ti
holds for each vi ∈ Vk, where

τk :=
∑

eij∈Ek

L̂ij +
∑
vi∈Vk

Si

is the length of Ck, i.e., if the length of the cycle is not greater than the
critical weight values of its vertices. A solution for LCCP is a cycle partition
C = {C1, . . . , Cm} of V , i.e., a vertex disjoint cycle cover, and C is called feasible
if all of its cycles are feasible. The goal of LCCP is to determine a feasible cycle
partition C of minimum size w.r.t. the cardinality |C|.

In the following, we assume w.l.o.g. that Si = 0 for all vertices vi ∈ V , since
we can add the scanning times to the edge weights: Let Lij := L̂ij +

Si+Sj

2 for
eij ∈ E and consider a cycle Ck. If it is proper, all vertices have degree two and

τk =
∑

eij∈Ek

L̂ij +
∑
vi∈Vk

Si =
∑

eij∈Ek

(L̂ij +
Si + Sj

2
) =

∑
eij∈Ek

Lij .

Additionally, all singletons remain feasible by definition, too. Note that a metric
LCCP instance remains metric after this transformation, i.e., the triangle in-

Length-Constrained Cycle Partition 3

equality is preserved. Therefore, we are going to denote an instance of LCCP as

a four-tuple (V,E, T, L) with T ∈ R|V |≥0 and L ∈ R|E|≥0 in the following.
Consider the example LCCP instance in Figure 1a. The critical weight values

and the edge weights are attached to the corresponding entities. While Figures 1b
and 1c show infeasible solutions, an optimal one is presented in 1d.

5v1

4v2

5

v3

5

v4

4 v5

5

v6

4

v7

1

1

1

2

1

1

1

3

2

1 1

1

1

(a) Example LCCP instance

5v1

4v2

5

v3

5

v4

4 v5

5

v6

4

v7

1

1

1

2

1

1

1

(b) Critical weight of v2 exceeded

5v1

4v2

5

v3

5

v4

4 v5

5

v6

4

v7

1

1

2

1

1

1

1

1

(c) Vertex v6 contained in two cycles

5v1

4v2

5

v3

5

v4

4 v5

5

v6

4

v7

1

1

2

1

1

1

1

(d) An optimal solution

Fig. 1: Example LCCP instance with two infeasible and one optimal solution.

In [14] it was shown that metric LCCP is NP-hard via a reduction from TSP
and the corresponding proof demonstrates its close relation to TSP. However,
for general edge weights, we can additionally state the next lemma.

Lemma 1. LCCP is not in APX.

Proof. Consider the Minimum Vertex Disjoint Cycle Cover Problem (MVDCC),
which was shown not to be in APX by Sahni and Gonzalez [21]. MVDCC is
defined on an unweighted graph G̃ = (Ṽ , E′) with E′ not necessarily being
complete, and it is the goal to determine a minimum vertex disjoint cycle cover.
Let Ẽ denote the complete edge set on Ṽ . Setting T̃i = n for all vi ∈ Ṽ , L̃ij = 1

4 K. Hoppmann et al.

for all eij ∈ E′ and L̃ij = n for all eij ∈ Ẽ \ E′, we derive a corresponding

LCCP instance (Ṽ , Ẽ, T̃ , L̃). Obviously, any constant approximation algorithm
for LCCP would induce a constant approximation algorithm for MVDCC. ut

However, whether metric LCCP is an APX or not remains an open question.

3 Related work

Optimization problems where the vertices of a graph have to be visited under
various timing or length conditions are a field of active research. To the best of
our knowledge, LCCP was first introduced by Hoppmann et. al. in [14]. They
considered the metric case only. In contrast, the paper at hand generalizes the
problem considering general edge weights. In the following, we discuss problems,
that are closely related to LCCP.

Drucker et al. consider the Cyclic Routing of UAVs (CR-UAV) problem in [7],
which is a generalization of LCCP. In CR-UAV, closed walks, which have to start
and end at the same vertex but can visit vertices and edges multiple times, have
to be determined. Additionally, waiting at vertices is possible and the routes are
allowed to intersect. The goal is to determine the minimum number of UAVs
necessary to jointly satisfy the critical weight requirements of all vertices. Ho
and Ouaknine [13] showed that the corresponding decision problem is PSPACE-
complete even in the case of a single UAV. In [9] a solution approach based on
solving satisfiability problems w.r.t. a fixed number of UAVs and so-called slots,
which correspond to arrival times of UAVs at vertices, is presented. Since the
necessary number of slots is not known in advance, the proposed method is in-
complete and does not guarantee an optimal solution. However, in [8] a reduction
to model-checking is suggested and a complete algorithm, which runs a bounded
model checker for detecting feasible solutions and an explicit-state search at-
tempting to prove their absence in parallel, is presented. Asghar et al., who
synonymously call the problem Multi-Robot Routing for Persistent Monitoring
with Latency Constraints, develop a factor O(log ρ) approximation algorithm
in [1], where ρ is the ratio of the maximum and the minimum critical weight
value. They partition the vertices w.r.t. their critical weights and subsequently
solve a Minimum Cycle Cover Problem (MCCP) on each subset.

Given a graph G = (V,E) and some λ, MCCP is to determine the minimum
number of cycles that cover the vertex set, such that the length of each cycle
is not greater than λ. For the metric version of this NP-hard problem an 32

7
approximation algorithm is introduced in [25]. Further, as demonstrated and
introduced in the proof of Lemma 1 above, the Minimum Vertex Disjoint Cycle
Cover Problem (MVDCC) [21] is a problem from combinatorial optimization,
for which LCCP can be seen as generalization of.

Besides TSP, of which LCCP can be seen a generalization of, see [14], there
are several other well-known combinatorial optimization problems, which are
closely related to LCCP. One of them is the Vehicle Routing Problem with Time
Windows (VRPTW), see Solomon and Desrosiers [23] or Desrochers et al. [6]

Length-Constrained Cycle Partition 5

for surveys on the topic. The goal is to determine a collection of routes for a
fleet of homogeneous vehicles. The routes have to start and end at a common
depot v0 and jointly visit a given set of customers {v1, . . . , vn}. In doing so, each
customer vi ∈ V has some service requirement qi which has to be satisfied within
a time window [li, ui] by exactly one of the vehicles. One of the most studied
objectives for VRPTW is to minimize the number of necessary vehicles while
the accumulated requirements of the customers are not allowed to exceed the
capacities Q of the assigned vehicles.

4 Preprocessing

Next, we show how edges, which cannot be part of any feasible cycle, can be
identified. Before proving a corresponding condition, we first of all introduce the
notion of a completion for an edge.

Definition 1. Let (V,E, T, L) be an LCCP instance and eij ∈ E. A completion
for eij is a path pij between vi and vj having length `(pij) :=

∑
est∈pij Lst such

that `(pij) + Lij ≤ Ts for all vs ∈ pij. It is called a shortest completion if it has
minimum length among all completions.

Lemma 2. Let (V,E, T, L) be an LCCP instance, eij ∈ E, and pij be a shortest
completion for eij. Then `(pij) + Lij is a tight lower bound on the length of a
proper feasible cycle containing eij.

Proof. Let Ck with length τk be a feasible cycle with eij ∈ Ek. Ck can be split
into eij and a completion p̂ij . Thus,

τk = `(p̂ij) + Lij ≥ `(pij) + Lij ,

and since the cycle induced by pij and eij is feasible, the bound is tight. ut

Corollary 1. Let (V,E, T, L) be an LCCP instance. If there exists no comple-
tion for some edge eij, there exists no feasible cycle containing it.

Remark 1. In the metric case, if an edge eij ∈ E possesses a completion, then
eij is a shortest completion for itself due to the triangle inequality. Hence, there
exists no completion for an edge eij ∈ E if 2 · Lij > min{Ti, Tj}.

The next lemma shows that determining a shortest completion or to detect that
no completion exists can be done in polynomial time w.r.t. the size of G.

Lemma 3. Let (V,E, T, L) be an LCCP instance and let eij ∈ E. Determining
a shortest completion for eij or to prove that no completion exists can be done
in O(|V ||E|+ |V |2 · log|V |).

Proof. Consider Algorithm 1. In each iteration a shortest path pij between vi
and vj is computed. Next, we check if the critical weight values of all contained
vertices are respected. If this is the case, we have found a shortest completion.

6 K. Hoppmann et al.

Otherwise, we remove all vertices from G whose critical weight values are smaller
than `(pij) + Lij and continue with the next iteration. The removal of vertices
does not decrease the length of a shortest path and therefore these vertices can
never be part of any completion for eij . If at some point vi or vj is removed, no
completion exists. Using the algorithm of Fredman and Tarjan [10], a shortest

Algorithm 1 Shortest completion for edge eij
1: while vi, vj ∈ G do
2: pij ← Shortest path between vi and vj in G
3: if `(pij) + Lij ≤ Ts for all vs ∈ pij then
4: return pij

5: G← G− {vs ∈ G | `(pij) + Lij > Ts}
6: return ∅

path in a weighted undirected graph can be computed in O(|E| + |V | · log|V |).
Further, since in each iteration at least one vertex is removed or the algorithm
terminates, we have at most |V |−1 iterations. Thus, Algorithm 1 has a runtime
of O(|V ||E|+ |V |2 · log|V |). ut

The previous result gives rise to Algorithm 2, which is based on Algorithm 1
and deletes all edges from the graph for which no completion exists.

Algorithm 2 Delete edges without completion

1: for eij in E in non-descending order w.r.t. Lij do
2: if eij has no completion then
3: G← G− eij

Lemma 4. Let (V,E, T, L) be an LCCP instance. Algorithm 2 deletes all edges
without completion from G.

Proof. Iterating over the edges in non-descending order w.r.t. to their weights
ensures that all edges without completion are removed. Assume there is an edge
eij ∈ E such that another edge ekl is removed from some shortest completion
pij for eij in a subsequent iteration of Algorithm 2. Due to the ordering of the
edges we know that Lij ≤ Lkl and since eij is a completion for itself, we have

Lkl + Lij ≤ `(pij) + Lij ≤ `(eij) + Lij = Lij + Lij ≤ Lkl + Lij

and therefore eij is a shortest completion, too. ut

By Lemma 4, applying Algorithm 2 deletes all edges without completion from G.
Thus, for all remaining edges there exists a completion and therefore a feasible
cycle containing it.

Length-Constrained Cycle Partition 7

5 Conflict Hypergraphs for LCCP

In this section, we introduce conflict hypergraphs for LCCP. These graphs con-
tain information about subsets of vertices which cannot be contained in common
feasible cycles. In particular, we are interested in cliques of these graphs, since
they give rise to constraints that can be imposed on the vertices when modelling
LCCP as mathematical program.

Definition 2. A hypergraph is a pair H = (V,EH) with vertex set V and hyper-
edge set EH . A hyperedge eS ∈ EH is a subset S ⊆ V . H is called a c-uniform
hypergraph or c-hypergraph if |S| = c holds for all hyperedges eS ∈ EHc .

Definition 3. Let Hc = (V,EHc) be a c-hypergraph. A hyperclique is a set U ⊆ V
such that for each subset S ⊆ U with |S| = c we have eS ∈ EHc .

Definition 4. Let (V,E, T, L) be an instance of LCCP. Its conflict c-hypergraph
Hc = (V,EHc) has V as vertex set and there is a hyperedge eS ∈ EHc if no feasible
cycle containing all vertices of the subset S ⊆ V with |S| = c exists.

Corollary 2. Let (V,E, T, L) be an LCCP instance and let U ⊆ V be a hyper-
clique in Hc. A feasible cycle Ck can contain at most c− 1 vertices from U , i.e.,
|U ∩ Vk| ≤ c− 1.

Lemma 5. Let (V,E, T, L) be an LCCP instance and let U ⊆ V be a hyperclique
of size |U | = m in Hc. For each feasible cycle partition C we have |C| ≥ d mc−1e.

Proof. Let C be a cycle partition with |C| < d mc−1e. By the pigeonhole principle
there exists a cycle containing at least c vertices from U , which is a contradiction
to Corollary 2. ut

Corollary 3. Let (V,E, T, L) be an LCCP instance and let U ⊆ V with |U | = m
be a maximum clique in Hc. Then d mc−1e is a lower bound on the size of an
optimal cycle partition.

Determining a shortest cycle containing a given subset S ⊆ V of vertices is an
NP-hard problem, since TSP can be reduced to it. However, for pairs of vertices,
i.e., for |S| = 2, it can be done in polynomial time.

Lemma 6. Let (V,E, T, L) be an LCCP instance and let vi, vj ∈ V . A small-
est feasible cycle w.r.t. the length containing both vertices can be determined in
O(|V ||E|+ |V |2 · log|V |).

Proof. Each feasible cycle containing vi and vj can be split into two vertex
disjoint, except for the start- and endnode of course, paths pij and qij . Hence,
we can equivalently determine two such paths minimizing the expression `(pij)+
`(qij) in order to determine a smallest feasible cycle containing both vertices.
This can be done with a modified version of Suurballe’s algorithm [24], see
Algorithm 3.

8 K. Hoppmann et al.

Algorithm 3 Shortest feasible cycle containing vi and vj
1: while vi, vj ∈ G do
2: pij , qij ← Two vertex disjoint vi-vj-paths in G minimizing `(pij) + `(qij)
3: if `(pij) + `(qij) ≤ Tl for all vl ∈ pij ∪ qij then
4: return Cycle induced by pij and qij

5: G← G− {vl ∈ G | `(pij) + `(qij) > Tl}
6: return ∅

In each iteration two vertex disjoint shortest paths pij and qij w.r.t. to the
sum of their lengths are determined. We check if the critical weights of the
vertices contained in both paths are respected. If this is the case, pij and qij
induce a shortest feasible cycle containing vi and vj . Otherwise, we remove all
vertices fromG whose critical weights are smaller than `(pij)+`(qij) and continue
with the next iteration. Since the removal of vertices does not decrease the sum
of the lengths of two vertex disjoint paths, the removed vertices cannot be part
of any feasible cycle containing vi and vj . Furthermore, since at least one vertex
is removed after each iteration, there are at most |V | − 1 iterations. If vi or vj is
removed, there exists no feasible cycle containing both vertices and the algorithm
terminates. Determining two vertex disjoint paths in a weighted undirected graph
can be done in O(|E|+ |V | · log|V |) using Suurballe’s algorithm. Hence, the total
running time of Algorithm 3 is O(|V ||E|+ |V |2 · log|V |). ut

Applying Algorithm 3 to each vertex pair S := {vi, vj} ⊆ V , we can check
whether eS ∈ EH2 or not and thereby create the complete conflict graph H2.

Remark 2. In each iteration of Algorithm 3, we delete the vertices contained in
the set {vl ∈ G | `(pij) + `(qij) > Tl} from G. This implies there does not exist a
feasible cycle containing S := {vi, vj , vl} ⊆ V for each deleted vertex vl. Hence,
the corresponding hyperedges eS are contained in H3.

6 LCCP and Vertex Coloring

LCCP and its conflict hypergraphs are closely related to vertex coloring. Recall
the definition of the chromatic number.

Definition 5. Let H be a hypergraph. The chromatic number χ(H) is the min-
imum number of colors needed to color the vertices such that no hyperedge is
monochromatic, i.e., each hyperedge contains vertices of at least two colors.

Lemma 7. Let (V,E, T, L) be an LCCP instance and consider the hypergraph
H := (V,

⋃n
r=2E

H
r), i.e., the union of its c-conflict graphs. χ(H) is a lower

bound on the size of an optimal cycle partition.

Proof. The cycles of an optimal cycle partition are feasible by definition. Hence,
no subset of vertices contained in a common cycle forms a hyperedge in H.
Therefore, assigning the same color to all vertices in a common cycle results in
a feasible coloring for H. ut

Length-Constrained Cycle Partition 9

Corollary 4. Let (V,E, T, L) be an LCCP instance and let Hc be its corre-
sponding conflict c-hypergraph. Then χ(Hc) is a lower bound on the size of an
optimal cycle partition.

For metric LCCP, we can prove the following correspondence lemma.

Lemma 8. Let (V,E, T, L) be an LCCP instance and consider the hypergraph
H := (V,

⋃n
r=2E

H
r). The size of a minimum cycle partition is equal to the chro-

matic number H. In particular, there exists a one-to-one mapping of feasible
cycle partitions and feasible colorings of H.

Proof. Given a feasible coloring of H, there exist a feasible cycle C containing
all vertices of the same color. W.l.o.g. we can assume that this cycle C does not
contain vertices of any other colour, since we can remove them due to the triangle
inequality. Therefore, the colors induce a feasible cycle partition which has the
same size as the coloring. On the other hand, given a feasible cycle partition,
assigning all vertices of a feasible cycle the same color yields a feasible coloring
by definition. ut

Lemma 8 does not hold for the general case as the example LCCP instance in
Figure 2 demonstrates. H2 has no edges, since for any two vertices vi, vj with
i, j ∈ {1, 2, 3, 4} and i < j we have that {vi, vj , v5} is a feasible cycle. Accord-
ingly, for H3 we have EH3 = {{v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v4}},
since all cycles containing three vertices from V − v5 contain at least two edges
with weight 3. For the same reason, H4 and H5 are complete. Now, assigning
v1 and v2 as well as v3, v4, and v5 common colors yields a feasible coloring for
H and we have χ(H) = 2. However, a minimum cycle partition is given by
C = {({v1}, ∅), ({v2}, ∅), ({v3, v4, v5}, ({v3, v4}, {v4, v5}, {v5, v3}))} with |C| = 3.

5v1

5v4

5

v5

5 v2

5 v3

33

3

1

3

1

3

1

1

3

Fig. 2: LCCP instance for which Lemma 8 does not hold.

7 A Cheapest Insertion Heuristic for LCCP

Next, we present a Cheapest Insertion Heuristic (CI) for LCCP inspired by the
homonymous TSP heuristic [20]. The basic version is stated in Algorithm 4.

10 K. Hoppmann et al.

In each iteration, a vertex vx ∈ V having minimum critical weight is selected,
i.e., vx = argminvi∈V Ti. If vx is the only vertex in G or if there exists no adjacent
vertex with which it forms a feasible cycle, it is returned as singleton, see lines
9 to 13. Otherwise, we continue with such a shortest feasible cycle consisting of
two vertices. In the following, we repeatedly determine two vertices va and vb,
which are adjacent in Ck, and a vertex vc ∈ V \ Vk such that the insertion of
vc between va and vb would yield a minimum increase in the total cycle length.
If the augmented cycle length does not exceed Tx, we insert vc and continue to
search for more suitable vertex triples, see lines 18 to 24. Otherwise, we remove
Vk from G and continue with the construction of the next cycle. The algorithm
terminates when the graph is empty and each vertex is contained in a cycle.

Algorithm 4 Basic CI for LCCP

1: k ← 0
2: while V 6= ∅ do
3: k ← k + 1
4: Ck ← Create Feasible Cycle(V,E,K,L)
5: G← G− Vk

6: return C1, ..., Ck

7:
8: function Create Feasible Cycle(V,E,K,L):
9: vx ← argminvi∈V Ti

10: Vx ← {vy ∈ N(vx) |Tx ≤ 2 · Lxy and Ty ≤ 2 · Lxy}
11: if Vx = ∅ then
12: Ck ← ({vx}, ∅)
13: return Ck

14:
15: vy ← argminvi∈Vx

Lxi

16: Ck ← ({vx, vy}, ({vx, vy}, {vy, vx}))
17: τk ← 2 · Lxy

18: while V \ Ck 6= ∅ do
19: (va, vb, vc)← vertices va and vb being adjacent in Ck and vc ∈ V \ Vk

20: minimizing ∆τ := −Lab + Lac + Lcb

21: if τk +∆τ > Tx then
22: return Ck

23: Ck ← Ck with vc inserted between va and vb
24: τk ← τk +∆τ

25:
26: return Ck

The basic version can be refined in line 22. Instead of returning Ck directly,
any exact or heuristic algorithm for TSP can be applied to the subgraph of G
induced by Vk. If a tour of smaller length is found, i.e., τk can be decreased,
further vertices may possibly be inserted. In that case, the algorithm would
restart the while-loop in line 18.

Length-Constrained Cycle Partition 11

Furthermore, the following observation motivates the introduction of an ad-
ditional postprocessing routine: When Algorithm 4 terminates, cycle Cm, which
was created last, often has small length and contains only a small number of
vertices having large critical weights. Thus, we try to extend Cm using vertices
from L :=

⋃m−1
i=1 Vk, i.e., vertices contained in the other cycles. If no exten-

sion is possible, we return the current solution. Otherwise, we extend Cm in a
similar manner as in lines 18 to 24, but in contrast, we have to dynamically
adjust the minimum critical weight value of the cycle after each insertion and
to check whether or not τk + ∆τ ≤ Tc when determining a suitable vertex vc.
After extending Cm, we rerun the whole Algorithm 4 on G−Vm. The described
procedure is repeated until L = ∅.

Although the next lemma follows from the fact that LCCP is not in APX,
we give a concrete proof that demonstrates the possible shortsightness of CI.

Lemma 9. Cheapest Insertion for LCCP has no constant approximation ratio.

Proof. Consider the metric LCCP instance on the complete graph G = (V,E)
with |V | = n = 2k2 vertices. For each vi ∈ {v1, . . . , vk} =: V1 let Ti = 2k and
for each vi ∈ V \ V1 =: V2 let Ti = 2k2 − k. Additionally, let Lij = 2 for each
edge in eij ∈ V1 × V1 and let Lij = 1 otherwise. An optimal solution consists of
two cycles: One cycle containing all nodes in V1 and the other cycle containing
all nodes in V2. However, the heuristic produces a solution with k cycles, each
featuring one node from V1 and 2k−1 nodes from V2. Hence, Cheapest Insertion
for LCCP does not admit a constant approximation ratio. ut

8 Mixed Integer Programming Models for LCCP

In this section we present two mixed integer programming models (MIPs) for
LCCP which are inspired by two fromulations for TSP. To define them, we
consider the induced directed graph G = (V,A), whose arc set features two
directed arcs aij , aji ∈ A for each edge eij ∈ E in the following. Both arcs
are assigned the same weight as the corresponding edge. Before discussing the
differences between the models, we first describe variables and constraints they
have in common.

For each potential proper feasible cycle Ck we introduce a binary variable
uk with k ∈ {1, . . . , bn2 c} := K indicating whether it contains any vertices or
not. Additionally, there is a nonnegative continuous variable τk representing its
length. Next, for each vertex vi ∈ V we introduce a binary variable yi indicating
whether the vertex forms a singleton or not. Further, for each vertex vi ∈ V
and each potential proper cycle Ck we introduce a binary variable zki indicating
whether vi ∈ Vk or not and analogously for each arc aij ∈ A a binary variable
xkij indicating whether aij ∈ Ek or not.

12 K. Hoppmann et al.

min
∑
vi∈V

yi +
∑
k∈K

uk (1)

s.t. yi +
∑
k∈K

zki = 1 ∀vi ∈ V (2)

zki ≤ uk ∀vi ∈ V,∀k ∈ K (3)∑
aij∈N+(vi)

xkij = zki ∀vi ∈ V,∀k ∈ K (4)

∑
aji∈N−(vi)

xkji = zki ∀vi ∈ V,∀k ∈ K (5)

∑
aij∈A

Lijx
k
ij = τk ∀k ∈ K (6)

Ti + (Mk − Ti)(1− zki) ≥ τk ∀vi ∈ V,∀k ∈ K (7)

uk ∈ {0, 1} ∀k ∈ K (8)

yi ∈ {0, 1} ∀vi ∈ V (9)

zki ∈ {0, 1} ∀vi ∈ V,∀k ∈ K (10)

xkij ∈ {0, 1} ∀aij ∈ A,∀k ∈ K (11)

τk ∈ R≥0 ∀k ∈ K (12)

The objective function (1) aims at minimizing the total number of cycles, i.e.,
the sum of singletons and proper cycles. Constraint (2) ensures that each vertex
either forms a singleton or is assigned proper cycle. If a vertex vi is assigned
proper cycle Ck, then (3) accounts for that and vi has to have an outgoing and
an ingoing arc, which is ensured by constraints (4) and (5), respectively. Next,
constraints (6) keep track of the cycle lengths, while (7) ensures that the critical
weights values of all vertices are respected, where Mk denotes the k-th biggest
critical weight among all vertices.

The formulation above guarantees that each vertex is contained in exactly one
cycle and that all critical weight constraints are fulfilled. Nevertheless, as it often
occurs when designing MIP formulations for problems related to TSP, we have
to take care of possible subtours. Hence, we extend the basic formulation in two
different ways: One uses a modified version of subtour elimination constraints
and the other one follows the idea of Miller, Tucker and Zemlin of assigning an
order to the vertices in order to prohibit subtours, as introduced in [14].

8.1 Subtour Elemination Constraints

Subtour elimination constraints for TSP ensure that between any two nonempty
sets of vertices there are at least two arcs connecting them. However, in contrast
to TSP, we do not know in advance which vertices form a common cycle in LCCP.
Thus, we cannot directly apply the classic subtour elimination constraints and
therefore introduce constraints

Length-Constrained Cycle Partition 13

∑
vi,vj∈S1:
aij∈A

xkij +
∑

vi,vj∈S2:
aij∈A

xkij ≤ |S1|+ |S2| − 2 ∀S1, S2 ⊂ V, S1, S2 6= ∅ (13)

S1 ∩ S2 = ∅,∀k ∈ K

instead. Assume that a subset of the vertices assigned to the set representing Vk
in the basic MIP formulation above form two proper cycles C1

k and C2
k . In that

case, constraint (13) with S1 = V 1
k and S2 = V 2

k is violated, since∑
vi,vj∈C1

k:
aij∈A

xkij +
∑

vi,vj∈C2
k:

aij∈A

xkij = |V 1
k |+ |V 2

k | = |S1|+ |S2|.

Conversely, if the vertices form one proper cycle, no sets S1 and S2 exist such
that the corresponding constraint is violated. Hence, the MIP consisting of (1)
- (12) and constraints (13), which we call SEC in the following, models LCCP.

8.2 Miller-Tucker-Zemlin Formulation

A second way to avoid subtours in TSP is the Miller-Tucker-Zemlin (MTZ)
formulation [16]. Each vertex is assigned a positive weight while the starting
vertex has value zero. For each pair of consecutive vertices in a tour the weights
must increase except for the last and the starting vertex. Again, a straightforward
use for LCCP is not possible, since we cannot fix starting vertices for the cycles
in advance. Thus, for each k ∈ K and each vertex vi ∈ V we introduce additional
binary variables ski ∈ {0, 1} indicating whether vi is the starting vertex of cycle
Ck or not. Weight variables wki ∈ Z≥0 together with constraints

∑
i∈V

ski = uk ∀k ∈ K (14)

ski ≤ zki ∀vi ∈ V,∀k ∈ K (15)∑
vi∈V

zki − uk ≥ wki ∀vi ∈ V,∀k ∈ K (16)

wki − wkj + |V | · (xkij − skj) ≤ |V | − 1 ∀aij ∈ A,∀k ∈ K (17)

ski ∈ {0, 1} ∀vi ∈ V,∀k ∈ K (18)

wki ∈ Z≥0 ∀vi ∈ V,∀k ∈ K. (19)

do then model the idea explained above applied to LCCP. Constraints (14)
determine a starting vertex for each cycle, which also has to be part of it due to
constraint (15). Furthermore, the necessary weight values are bounded by (16) for
each set k ∈ K. Finally, constraints (17) are the Miller-Tucker-Zemlin constraints
as explained above. Thus, the MIP model consisting of (1) - (12) together with
(14) - (19) models LCCP and we denote it by MTZ in the following.

14 K. Hoppmann et al.

8.3 Symmetry Breaking Inequalities

The solution space of the two MIP models can be highly symmetric. Given
any feasible solution, all permutations of the proper cycle indices respecting
constraints (7) are feasible. Assume w.l.o.g. that the vertices are ordered non-
increasingly by their critical weights. Then, inequalities

zki ≤
i−1∑
j=1

zk−1j ∀vi ∈ V,∀k ∈ K \ {1} (20)

ensure that only the permutation with the cycles sorted by the minimum index
of the contained vertices remains feasible.

8.4 Conflict Clique Inequalities

Let (V,E, T, L) be an LCCP instance and let Hc be its conflict c-hypergraph.
Let U ⊆ V with |U | = m be a hyperclique in Hc. By Corollary 2 we derive that∑

vi∈U
zki ≤ c− 1 ∀k ∈ K (21)

are valid inequalities for LCCP. In addition, the size of each clique induces a
lower bound on the size of an optimal solution by Corollary 3, i.e.,∑

vi∈V
yi +

∑
k∈K

uk ≥ d
m

c− 1
e (22)

is a valid inequality, too. The following lemma demonstrates, that none of the
conflict hypergraphs is redundant w.r.t. conflict clique constraints.

Lemma 10. Let c ≥ 2. There exists an LCCP instance (V,E, T, L) and a fea-
sible solution for the LP-relaxation of the corresponding MIP models, which is
cut of by conflict clique constraints that can only be derived from the conflict
c-hypergraph. Further, the lower bound induced by the size of a maximum hyper-
clique of this c-hypergraph is the only tight one, i.e., it is the only one equal to
the size of an optimal solution.

Proof. Consider the generic LCCP instance consisting of the complete graph on
2c−1 vertices where Ti = 2c−1 for each vertex vi ∈ V and Lij = 2 for each edge
eij ∈ E. Obviously, for each subset S ⊆ V with |S| < c there exist a feasible
cycle, e.g. the cycle induced by any permutation of the vertices of S and the
corresponding edges. Thus, all conflict d-hypergraphs with d < c are empty, i.e.,
do not contain any hyperedge. On the other hand, if |S| ≥ c there does not exist
any feasible cycle and all conflict d-hypergraphs with d ≥ c are complete.

A feasible solution for the LP-relaxations of the MIP models is given by
uk = 1

2 , zkj = 1
2 , xkij = 1

2 for all eij with j = i + 1 together with e2c−1,1, and
τk = 2c − 1 for k ∈ {1, 2}, while all remaining variables are zero. For model

Length-Constrained Cycle Partition 15

MTZ we additionally have s11 = s21 = 1
2 . Since the conflict d-hypergraphs with

d ≥ c are complete, V is the maximum hyperclique in each of them. Therefore,
we have that the corresponding conflict clique constraints (21) for k ∈ {1, 2}∑

vi∈V
zki =

1

2
|V | = c− 1

2
≤ d− 1,

are violated if and only if d = c. Furthermore, the lower bound (22) on the size
of a smallest cycle partition is given by

d2c− 1

c− 1
e ≥ 2c− 1

c− 1
>

2c− 2

c− 1
= 2

for the conflict c-hypergraph, while for d > c we have

d2c− 1

d− 1
e ≤ d2c− 1

c
e = d2− 1

c
e = 2.

Since an optimal cycle partition consists of three cycles, e.g., any cycle induced
by the vertex sets V1 := {v1, . . . , vc−1} and V2 := {vc, . . . , v2c−2} as well as the
singleton V3 := {v2c−1}, we know that the bound for d = c is tight. ut

9 Computational experiments

In this section, we describe and present the computational experiments, which
we conducted in order to test both MIP approaches, and analyze the results.

9.1 Computational Setup

We ran our experiments on a cluster of machines composed of Intel Xeon Gold
5122 @ 3.60GHz CPUs with 96GB of RAM. All algorithms were implemented
in Python and we used the corresponding interface of the Branch-and-Bound
based solver Gurobi v9.0 [11] with a time limit of 6 hours.

9.2 Instances

For our computational experiments, we generated two sets of test instances based
on the 28 instances from the TSPLIB and 14 instances from the ATSPLIB all
having 100 or less vertices [19,18]. The ATSPLIB instances are defined on a
directed graph and the corresponding arc weights are given as an asymmetric
matrix. For our LCCP instances, we chose the weights in the upper triangular
part of these matrices.

Furthermore, let τ∗ denote the length of an optimal tour for the correspond-
ing TSP or ATSP instance. As mentioned, we created two sets of LCCP test
instances: For the first test set we assigned each vertex a random integer in
the interval [τ

∗

6 ,
τ∗

2], while for the second test set we assigned an integer in the

interval [τ
∗

8 ,
τ∗

4] as critical weight.

16 K. Hoppmann et al.

9.3 Algorithmic Setup

First of all, we ran Algorithm 2 and removed all edges, which cannot be con-
tained in feasible cycles. Next, we computed a feasible solution by running the
Cheapest Insertion Heuristic and thereby derived a tighter bound on the neces-
sary size of K. Here, we used the mentioned refinement step applying an exact
algorithm for TSP and the described post-processing routine. The TSP is solved
with the MIP formulation from Dantzig, Fulkerson and Johnson [4]. Afterwards,
we determined the conflict 2-hypergraph as in Algorithm 3 and calculated all
maximal cliques using the algorithm of Cazals and Karande [2]. The correspond-
ing constraints (21) as well as the lower bound (22) and the symmetry breaking
constraints (20) were added to both MIP models before the start of the solution
process. Furthermore, we determined a subset ẼH3 ⊆ EH3 of the hyperedges of H3

as follows: For each vertex triple vi, vj , vl ∈ V we checked whether the sum of the
shortest paths between the three nodes is larger than min{Ti, Tj , Tl}. Addition-
ally, we added all the edges according to Remark 2. All mentioned calculations
together were performed in less than 2 minutes for each instance.

While the corresponding variables and constraints for the MTZ model were
added before the start of the solving process, the subtour elimination con-
straints (13) for the SEC model were separated during the solving process. Let
C = {C1, . . . , Cm} be a solution for the current fomulation. If a cycle Ck con-
tains subtours, we add the corresponding SEC constraint (13) for every pair of
distinct subtours and each k ∈ K.

Additionally, we heuristically separated constraints from cliques in our subset
of hyperedges of H3 for both models during the solving process. After solving the
LP relaxation of each Branch-and-Bound node, we determined hypercliques in
H̃3 := (V, ẼH3) using a greedy routine: Let z̃ denote the vector of z-variable values
in the current LP-solution and consider the subgraph induced by the vertex set
{vi ∈ V | z̃ki > 0} for some k ∈ K. By using a greedy algorithm on the hyperedges
w.r.t. z̃ we first of all compute a maximal clique in this subgraph. Afterwards,
we extend this clique to a maximal clique U in H̃3 by adding suitable vertices
for which z̃ki = 0. The corresponding constraint (21) is added to the model and
cuts off the current LP-solution if

∑
vi∈U z̃

k
i > 2.

9.4 Results

The results of our computational experiments can be found in Tables 1 to 4
in the Appendix. Besides the instance name, the number of removed edges due
to preprocessing is shown for each instance. Furthermore, while the value of the
solution found by the heuristic is given in column UB (CI heur), the lower bound
from the size of a maximum clique in the H2 is written in column LB (H2-clique).
Finally, for both MIP approaches the upper and the lower bound at the end of
the solving process are shown, which was either reached when the problem was
solved or when the time limit was reached, which is indicated by TL. Note that
the number of vertices of an instance is encapsulated in the instance name. In

Length-Constrained Cycle Partition 17

the following remarks, we consider instances with less than 30 vertices as small,
less than 60 vertices as medium-sized, and all others as large.

The results for the TSPLIB-based test sets can be found in Table 1 for critical
weights in [τ

∗

8 ,
τ∗

4] and in Table 2 for critical weights in [τ
∗

6 ,
τ∗

2], respectively.
For the first test set, we are able to solve all but two medium-sized instances.
Thereby, model SEC is able to solve three more instances than model MTZ and
is faster on all medium-sized instances. For the second test set, the results are
similar: SEC is able to solve one more instance than MTZ and is faster on all
instances. However, compared to the first test set, it takes longer to solve the
medium sized instances as well as four of them were not solved. This is probably
due to the larger critical weights, which allow for more degree of freedom when
it comes to the creation of feasible cycles.

Compared to the results in [14], where only model MTZ was tested, we could
improve the running times of this algorithmic solution approach. This is mainly
due to the new version of the CI heuristic, which generates better incumbents on
many instances, and because of the additional cutting planes from H3. Further,
we are able to prove optimality for 6 additional instances on the first and 4
additional instances on the second test set and could improve the lower bounds
for most of the other instances as well.

The results for the ATSPLIB-based test sets can be found in Table 3 for
critical weights in [τ

∗

8 ,
τ∗

4] and in Table 4 for critical weights in [τ
∗

6 ,
τ∗

2], respec-
tively. The results we see in Table 3 are similar to the ones for the corresponding
metric test instance set from Table 1. We are able to solve instances with up
to 44 vertices using model SEC, while model MTZ could prove optimality only
for the three smallest instances. However, for critical weights in [τ

∗

6 ,
τ∗

2] model
SEC was able to solve only two instances and model MTZ three instances, see
Table 4. Again, due to the bigger critical weights, there is more degree of free-
dom when it comes to creating feasible cycles. Nevertheless, this combined with
general edge weights seems to make the problem a lot harder to solve.

10 Conclusion and Outlook

In this article we introduced LCCP for arbitrary nonnegative edge weights gen-
eralizing the results presented in [14]. Further, we extended and improved the
proposed CI heuristic and developed a new MIP formulation based on a variant
of subtour elimination constraints. Additionally, we introduced the concept of
conflict hypergraphs for LCCP and showed their close relation to Vertex Color-
ing. We are able to solve test instances for metric LCCP of small and medium
size and improve upon the results shown in [14]. The same holds for general
LCCP instances, although they seem to be more difficult to solve.

18 K. Hoppmann et al.

Acknowledgements

The work of Kai Hoppmann, Gioni Mexi, and Thorsten Koch has been conducted
in the Research Campus MODAL funded by the German Federal Ministry of Ed-
ucation and Research (BMBF) (fund number 05M14ZAM). Carl Johan Cassel-
gren was supported by a grant from the Swedish Research Council (2017-05077).

References

1. Asghar, A.B., Smith, S.L., Sundaram, S.: Multi-Robot Routing for Persistent Mon-
itoring with Latency Constraints. arXiv preprint arXiv:1903.06105 (2019)

2. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theoretical Computer Science 407(1-3), 564–568 (2008)

3. Chamoso, P., Raveane, W., Parra, V., González, A.: UAVs applied to the counting
and monitoring of animals. In: Ambient Intelligence - Software and Applications,
pp. 71–80. Springer (2014)

4. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America 2(4), 393–410 (1954)

5. Dantzig, G.B., Ramser, J.H.: The Truck Dispatching Problem. Management Sci-
ence 6(1), 80–91 (1959)

6. Desroches, M., Lenstra, J., Savelbergh, M., Soumis, F.: Vehicle Routing with Time
Windows: Optimization and Approximation. Vehicle routing: Methods and Stud-
ies, B. L. Golden and A. A. Assad (eds.). North-Holland, Amsterdam, pp. 65–84
(1988)

7. Drucker, N., Penn, M., Strichman, O.: Cyclic routing of unmanned air vehicles.
Information Systems Engineering Technical Reports. IE/IS-2014-02 (2014)

8. Drucker, N., Ho, H.M., Ouaknine, J., Penn, M., Strichman, O.: Cyclic-routing of
Unmanned Aerial Vehicles. Journal of Computer and System Sciences 103, 18–45
(2019)

9. Drucker, N., Penn, M., Strichman, O.: Cyclic routing of unmanned aerial vehicles.
In: International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems. pp. 125–141. Springer (2016)

10. Fredman, M.L., Tarjan, R.E.: Fibonacci Heaps and Their Uses in Improved
Network Optimization Algorithms. J. ACM 34(3), 596–615 (Jul 1987).
https://doi.org/10.1145/28869.28874, http://doi.acm.org/10.1145/28869.

28874
11. Gurobi Optimization, L.: Gurobi Optimizer Reference Manual, Version 9.0.0.

http://www.gurobi.com (2019)
12. Hausamann, D., Zirnig, W., Schreier, G.: Monitoring of gas transmission pipelines

- A customer driven civil UAV application. In: ODAS Conference (2003)
13. Ho, H.M., Ouaknine, J.: The cyclic-routing UAV problem is PSPACE-complete.

In: International Conference on Foundations of Software Science and Computation
Structures. pp. 328–342. Springer (2015)

14. Hoppmann, K., Mexi, G., Burdakov, O., Casselgren, C.J., Koch, T.: Minimum
Cycle Partition with Length Requirements. In: International Conference on AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems. Springer (2020)

15. Liebchen, C., Möhring, R.H.: The Modeling Power of the Periodic Event Scheduling
Problem: Railway Timetables - and Beyond. In: Algorithmic Methods for Railway
Optimization, pp. 3–40. Springer (2007)

https://doi.org/10.1145/28869.28874
http://doi.acm.org/10.1145/28869.28874
http://doi.acm.org/10.1145/28869.28874

Length-Constrained Cycle Partition 19

16. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM) 7(4), 326–329 (1960)

17. Ollero, A., Mart́ınez de Dios, J.R., Merino, L.: Unmanned aerial vehicles as tools
for forest-fire fighting. Forest Ecology and Management 234(1), S263 (2006)

18. Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4), 267–384 (1991)

19. Reinelt, G.: TSPLIB and ATSPLIB instances (accessed July 27, 2020), http://
comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

20. Rosenkrantz, D.J., Stearns, R.E., Lewis, II, P.M.: An Analysis of Several Heuristics
for the Traveling Salesman Problem. SIAM Journal on Computing 6(3), 563–581
(1977)

21. Sahni, S., Gonzalez, T.: P-complete approximation problems. Journal of the ACM
(JACM) 23(3), 555–565 (1976)

22. Serafini, P., Ukovich, W.: A Mathematical Model for Periodic Scheduling Problems.
SIAM Journal on Discrete Mathematics 2(4), 550–581 (1989)

23. Solomon, M.M., Desrosiers, J.: Survey Paper - Time Window Constrained Routing
and Scheduling Problems. Transportation science 22(1), 1–13 (1988)

24. Suurballe, J.W., Tarjan, R.E.: A quick method for finding shortest pairs of disjoint
paths. Networks 14(2), 325–336 (1984)

25. Yu, W., Liu, Z., Bao, X.: New approximation algorithms for the minimum cycle
cover problem. Theoretical Computer Science 793, 44–58 (2019)

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

20 K. Hoppmann et al.

Appendix

Table 1: Results for TSPLIB with critical weights from [τ
∗

8 ,
τ∗

4]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges (CI heur) (H2-clique) (sec) (sec)

burma14 67 6 6 6 6 1 6 6 1
ulysses16 65 6 5 6 6 1 6 6 1

gr17 96 8 7 8 8 1 8 8 1
gr21 141 8 6 8 8 4 8 8 3

ulysses22 127 7 6 7 7 4 7 7 2
gr24 172 7 7 7 7 1 7 7 1
fri26 188 8 6 8 8 6 8 8 10

bayg29 238 10 7 8 8 42 8 8 23
bays29 235 8 6 8 8 36 8 8 21

dantzig42 478 9 7 9 9 1552 9 9 575
swiss42 451 9 7 9 8 TL 9 9 284
att48 605 9 6 8 8 4563 8 8 2893
gr48 536 9 5 9 8 TL 9 8 TL
hk48 548 10 6 9 8 TL 9 9 14417
eil51 522 9 5 9 8 TL 9 9 19242

berlin52 515 9 6 9 9 2956 9 9 2260
brazil58 649 9 5 8 7 TL 9 7 TL

st70 1074 10 5 10 7 TL 10 7 TL
eil76 780 10 5 10 6 TL 10 6 TL
pr76 925 10 6 10 7 TL 10 7 TL
gr96 1587 10 5 10 6 TL 10 7 TL
rat99 1673 10 5 10 6 TL 10 6 TL

kroA100 2141 10 5 10 6 TL 10 5 TL
kroB100 1979 10 5 10 6 TL 10 6 TL
kroC100 2183 11 6 11 7 TL 11 6 TL
kroD100 1962 11 6 11 6 TL 11 6 TL
kroE100 2092 11 5 11 6 TL 11 6 TL

rd100 1817 11 5 11 6 TL 11 6 TL

Length-Constrained Cycle Partition 21

Table 2: Results for TSPLIB with critical weights from [τ
∗

6 ,
τ∗

2]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges (CI heur) (H2-clique) (sec) (sec)

burma14 40 5 4 5 5 1 5 5 1
ulysses16 39 4 4 4 4 1 4 4 1

gr17 61 5 4 5 5 1 5 5 1
gr21 86 6 3 5 5 2 5 5 1

ulysses22 66 5 4 5 5 4 5 5 1
gr24 53 6 4 5 5 11 5 5 3
fri26 105 6 5 6 6 87 6 6 9

bayg29 103 6 4 5 5 30 5 5 13
bays29 111 6 5 6 6 32 6 6 14

dantzig42 243 7 4 6 6 20686 6 6 15081
swiss42 160 7 4 6 6 13111 6 6 6833
att48 299 8 5 6 5 TL 6 6 4939
gr48 197 7 4 7 5 TL 7 6 TL
hk48 282 7 4 6 6 18843 6 6 3656
eil51 128 7 3 7 5 TL 7 5 TL

berlin52 264 7 4 7 6 TL 7 6 TL
brazil58 227 6 3 6 4 TL 6 5 TL

st70 218 7 3 7 5 TL 7 5 TL
eil76 185 7 3 7 5 TL 7 5 TL
pr76 208 7 3 7 5 TL 7 5 TL
gr96 406 7 3 7 5 TL 7 5 TL
rat99 587 7 3 7 5 TL 7 5 TL

kroA100 803 8 3 8 5 TL 8 5 TL
kroB100 643 8 3 8 5 TL 8 5 TL
kroC100 856 7 3 7 5 TL 7 5 TL
kroD100 635 7 3 7 5 TL 7 5 TL
kroE100 678 7 3 7 5 TL 7 5 TL

rd100 446 8 4 8 4 TL 8 5 TL

22 K. Hoppmann et al.

Table 3: Results ATSPLIB with critical weights from [τ
∗

8 ,
τ∗

4]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges (CI heur) (H2-clique) (sec) (sec)

br17 114 6 6 6 6 1 6 6 1
ftv33 284 9 7 8 8 120 8 8 137
ftv35 275 9 6 8 8 205 8 8 149
ftv38 332 10 6 9 8 TL 9 9 2614
p43 226 4 2 4 3 TL 3 3 1398

ftv44 441 9 6 9 8 TL 9 9 3297
ftv47 468 11 5 11 8 TL 11 8 TL
ry48p 459 9 5 9 8 TL 9 8 TL
ft53 177 11 3 11 6 TL 11 6 TL
ftv55 563 10 5 10 7 TL 10 7 TL
ftv64 580 10 5 10 7 TL 10 7 TL
ft70 0 9 1 9 6 TL 9 5 TL
ftv70 565 11 5 11 6 TL 11 7 TL

kro124p 744 10 3 10 5 TL 10 5 TL

Table 4: Results ATSPLIB with critical weights from [τ
∗

6 ,
τ∗

2]

MTZ SEC

Instance Removed UB LB UB LB time UB LB time
name edges (CI heur) (H2-clique) (sec) (sec)

br17 92 5 5 5 5 1 5 5 1
ftv33 97 7 4 7 6 TL 7 6 TL
ftv35 67 6 3 5 5 14852 6 5 TL
ftv38 70 7 3 7 5 TL 6 5 TL
p43 196 3 2 3 3 1 3 3 1

ftv44 112 8 3 8 5 TL 8 6 TL
ftv47 169 7 3 7 5 TL 7 6 TL
ry48p 162 7 3 7 5 TL 7 5 TL
ft53 12 7 2 7 4 TL 7 4 TL
ftv55 145 8 4 8 5 TL 8 5 TL
ftv64 130 8 3 8 5 TL 8 5 TL
ft70 0 7 1 7 4 TL 7 4 TL
ftv70 72 7 2 7 4 TL 7 5 TL

kro124p 64 7 2 7 4 TL 7 4 TL

	Length-Constrained Cycle Partition with an Application to UAV Routing

