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Contraction and Treewidth Lower Bounds∗

Hans L. Bodlaender† Arie M. C. A. Koster‡ Thomas Wolle§

Abstract

Edge contraction is shown to be a useful mechanism to improve lower bound heuristics
for treewidth. A successful lower bound for treewidth is the degeneracy: the maximum over
all subgraphs of the minimum degree. The degeneracy is polynomial time computable. We
introduce the notion of contraction degeneracy: the maximum over all minors of the minimum
degree. We show that the contraction degeneracy problem is NP-complete, even for bipartite
graphs, but for fixed k, it is polynomial time decidable if a given graph G has contraction
degeneracy at least k. Heuristics for computing the contraction degeneracy are proposed and
evaluated. It is shown that these can lead in practice to considerable improvements of the
lower bound for treewidth, but can perform arbitrarily bad on some examples. A study is
also made for the combination of contraction with Lucena’s lower bound based on Maximum
Cardinality Search [23]. Finally, heuristics for the treewidth are proposed and evaluated that
combine contraction with a treewidth lower bound technique by Clautiaux et al. [12].

1 Introduction

It is about two decades ago that the notion of treewidth and the equivalent notion of partial k-tree
were introduced. Nowadays, these play an important role in many theoretic studies in graph theory
and algorithms, but also their use for practical applications is growing, see e.g. [21, 22]. A first
step when solving problems on graphs of bounded treewidth is to compute a tree decomposition
of (close to) optimal width, on which often a dynamic programming approach is applied. Such a
dynamic programming algorithm typically has a running time that is exponential in the treewidth
of the graph. Since the treewidth problem is NP-complete [1], it is rather unlikely to find efficient
algorithms for computing the treewidth. Therefore, we are interested in lower and upper bounds
for the treewidth of a graph.

This paper focuses on lower bounds on the treewidth of a graph. Good lower bounds can serve
to speed up branch and bound methods, inform us about the quality of upper bound heuristics,
and in some cases, tell us that we should not use tree decompositions to solve a problem on a
certain instance. A large lower bound on the treewidth of a graph implies that we should not hope
for computationally efficient dynamic programming algorithms that use tree decompositions for
this particular instance.

More work has been done recently on practical algorithms for determining the treewidth of
graphs, for instance on preprocessing methods (see [7, 8, 32]), upper bound heuristics (e.g. [12, 11,
18, 20]), lower bound heuristics (e.g. [6, 12, 23, 25]), and some exact methods (e.g. [18, 29]). In
many cases, exact methods are still too slow, and for many instances, there are large gaps between
the bounds given by upper bound and lower bound heuristics. Thus, the study of algorithms and
heuristics for treewidth remains interesting also from a practical point of view.
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In this paper, we propose and study algorithms that find lower bounds for treewidth, that
use contraction of edges. In each of the algorithms, we have a combination of contraction with
existing lower bound methods. In particular, we study how contraction can be used to improve
the degeneracy (or MMD) lower bound [20], the lower bound based on maximum cardinality
search MCSLB, introduced by Lucena [23], and the technique introduced by Clautiaux et al. [12].
Descriptions of these existing lower bound methods can be found in Section 2.

Contraction of an edge is the operation that replaces its two endpoints by a single vertex, which
is adjacent to all vertices at least one of the two endpoints was adjacent to. Combining the notion
of contraction with degeneracy gives the new notion of contraction degeneracy of a graph G: the
maximum over all graphs that can be obtained by contracting edges and taking subgraphs of G of
the minimum degree. It provides us with a new lower bound on the treewidth of graphs. While
unfortunately, computing the contraction degeneracy of a graph is NP-complete (as is shown in
Section 3.2), the fixed parameter cases are polynomial time solvable (see Section 3.3), and there
are simple heuristics that provide us with good bounds on several instances taken from real life
applications (see Section 5).

In a very recent paper, Gogate and Dechter [18] propose a branch and bound algorithm for
treewidth with a good anytime performance. Independently of our work, Gogate and Dechter
also propose the lower bound heuristic which we call the MMD+(min-d) heuristic in this paper.
We compare this heuristic with other heuristics in Section 6, and see that the strategy where we
contract to a neighbour with minimum number of common neighbours almost always outperforms
the MMD+(min-d) heuristic where we contract to a neighbour of minimum degree. For more
details, see [18], Section 3 and Section 6.

The lower bound provided by MCSLB is never smaller than the degeneracy, but can be
larger [6]. Motivated by this, we also studied contraction in combination with the MCSLB al-
gorithm. Unfortunately, the problem to determine if some bound can be obtained with MCSLB
for a graph obtained from G by contracting edges is also NP-complete (Section 4.2). Its fixed
parameter case is linear time solvable (Section 4.3). We also studied some heuristics for this
bound.

In our experiments, we have seen that, typically, the bound by MCSLB is equal to the degen-
eracy or slightly larger. In both cases, often a large increase in the lower bound is obtained when
we combine the method with contraction. See Section 6 for results of our computational exper-
iments. They show that contraction is a very viable idea for obtaining or improving treewidth
lower bounds.

A further improvement to the lower bounds can be obtained by using a method found by
Clautiaux et al. [12]. This method uses another treewidth lower bound algorithm as a subroutine.
In [12], the authors use the degeneracy (or MMD) as a subroutine, but one can also use other algo-
rithms. Our experiments showed that the contraction degeneracy heuristics generally outperform
the method of [12] with degeneracy, but when we combine the method of [12] with the heuristics
of this paper, we get in several cases an additional small improvement to the lower bound. We
finally propose a heuristic that combines the method of [12] and contraction in another way, by
doing a contraction between every round of ‘graph improvement’. See Section 5 for more details.
This latter heuristic often costs considerably more time, but can give also significant increases to
the lower bound.

2 Preliminaries

Throughout the paper G = (V,E) denotes a simple undirected graph. Most of our terminology is
standard graph theory/algorithm terminology. As usual, the degree in G of vertex v is dG(v) or
simply d(v). N(S) for S ⊆ V denotes the open neighbourhood of S, i.e. N(S) =

⋃
s∈S N(s) \ S.

We define:
δ(G) := min

v∈V
d(v)
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Subgraphs and Minors. After deleting vertices of a graph and their incident edges, we get
an induced subgraph. A subgraph is obtained, if we additionally allow deletion of edges. If we
furthermore allow edge-contractions, we get a minor. It is known that the treewidth of a minor
of G is at most the treewidth of G (see e.g. [4]). We explicitly exclude the null graph (the graph
without vertices and without edges) as a minor or subgraph.

Edge-Contraction. Contracting edge e = {u, v} in the graph G = (V,E), denoted as G/e, is
the operation that introduces a new vertex ae and new edges, such that ae is adjacent to all the
neighbours of v and u, and deletes vertices u and v and all edges incident to u or v:

G/e := (V ′, E′), where

V ′ = {ae} ∪ V \ {u, v}
E′ = { {ae, x} | x ∈ N({u, v})} ∪ E \ {e′ ∈ E | e′ ∩ e 6= ∅}

A contraction-set is a cycle free set E ′ ⊆ E(G) of edges. Note that after each single edge-
contraction the names of the vertices are updated in the graph. Hence, for two adjacent edges
e = {u, v} and f = {v, w}, edge f will be different after contracting edge e, namely in G/e we
have f = {ae, w}. Thus, we let f represent the same edge in G and in G/e. For a contraction-set
E′ = {e1, e2, . . . , ep}, we define G/E′ := G/e1/e2/ . . . /ep. Furthermore, note that the order of
edge-contractions to obtain G/E ′ is not relevant. A contraction H of G is a graph such that there
exists a contraction-set E ′ with: H = G/E′.

Treewidth. A tree decomposition of G = (V,E) is a pair ({Xi | i ∈ I}, T = (I, F )), with
{Xi | i ∈ I} a family of subsets of V , and T a tree, such that

• ⋃i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

• For all i0, i1, i2 ∈ I : if i1 is on the path from i0 to i2 in T , then Xi0 ∩Xi2 ⊆ Xi1 .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi|−1. The treewidth tw(G)
of G is the minimum width among all tree decompositions of G.

One can alternatively define the treewidth in terms of chordal graphs. A graph is chordal, if
and only if it does not contain an induced cycle with length at least four. The treewidth of a
graph is exactly the minimum over all chordal graphs H that contain G as a subgraph of the size
of the maximum clique in H minus 1, see [4].

Degeneracy/MMD. We also use the term MMD (Maximum Minimum Degree) for the degen-
eracy. The degeneracy δD of a graph G is defined to be:

δD(G) := max
G′
{δ(G′) | G′ is a subgraph of G}

The minimum degree of a graph is a lower bound on its treewidth, and the treewidth of G cannot
increase by taking subgraphs. Hence, the treewidth of G is at least its degeneracy. (See also [20].)

Maximum Cardinality Search. MCS is a method to number the vertices of a graph. It was
first introduced by Tarjan and Yannakakis for the recognition of chordal graphs [30]. We start by
giving some vertex number 1. In step i = 2, . . . , n, we choose an unnumbered vertex v that has
the largest number of already numbered neighbours, breaking ties as we wish. Then we associate
number i to vertex v. An MCS ordering ψ can be defined by mapping each vertex to its number:
ψ(v) := number of v. For a fixed MCS ordering, let vi := ψ−1(i).
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Definition 1 Let be given a graph G and an MCS ordering ψ of G, and let vi := ψ−1(i). The
visited degree vdψ(vi) of vi is defined as follows:

vdψ(vi) := dG[v1,...,vi](vi)

The visited degree MCSLBψ of an MCS ordering ψ is defined as follows:

MCSLBψ := max
i=1,...,n

vdψ(vi)

In [23], Lucena shows that for every graph G and MCS ordering ψ of G,

MCSLBψ ≤ tw(G)

Thus, an MCS numbering gives a lower bound on the treewidth of a graph.

Improved Graphs. In [5], two notions of improved graphs were introduced. Let k be an integer.
The (k + 1)-neighbours improved graph G′ = (V,E′) of G = (V,E) is obtained as follows: we take
G, and then, as long as there are non-adjacent vertices u, v, that have at least k + 1 common
neighbours in the graph, we add the edge {u, v}. This improvement step is motivated by the
following lemma.

Lemma 1 (See [3, 5, 12].) Any tree decomposition of G with width at most k is also a tree
decomposition of the (k + 1)-neighbours improved graph G′ of G with width at most k, and vice
versa.

Clautiaux et al. use improved graphs to provide iterative methods to improve existing lower bounds
for treewidth [12]. They use the MMD for computing lower bounds, but their approach works
with every lower bound heuristic. Their algorithm LB N works as follows:

• Suppose we have a lower bound LB ≤ tw(G) on the treewidth of G (e.g. LB was computed
with the MMD heuristic).

• Use as hypothesis that LB = tw(G). Build the (LB + 1)-neighbours improved graph G′ of
G. (Note that if the hypothesis holds, then tw(G) = tw(G′))

• Compute a lower bound LB′ of G′ (e.g. with the MMD heuristic).

• If LB′ > LB, we have a contradiction, showing the hypothesis LB = tw(G) to be wrong.

• Therefore, LB < tw(G) and LB + 1 is also a lower bound.

• Set LB to LB + 1, and repeat the process until there is no contradiction.

We see that the LB N algorithm uses another treewidth lower bound algorithm as a subrou-
tine, and thus, for every choice of such an algorithm, we obtain a different version of the LB N
algorithm. If algorithm Y is used as subroutine, then we call the resulting algorithm LBN(Y), e.g.
the algorithm discussed by Clautiaux et al. in [12] is the LBN(MMD) algorithm.

In [12], Clautiaux et al. also propose a related method, that sometimes gives better lower
bounds, but also uses more time. Here, we have a different notion of improved graph. Let k be
an integer. The (k + 1)-paths improved graph G′′ = (V,E′′) of G = (V,E) is obtained by adding
an edge {u, v} to E for all vertex pairs u and v such that there are at least k + 1 vertex disjoint
paths between u and v in G. Similar to Lemma 1, we have here the following.

Lemma 2 (See [3, 5, 12].) Any tree decomposition of G with width at most k is also a tree
decomposition of the (k+ 1)-paths improved graph G′′ of G with width at most k, and vice versa.

We can build the (k+1)-paths improved graph in polynomial time, as we can decide in polynomial
time whether there are at least k + 1 vertex disjoint paths between a pair of vertices with help
of network flow techniques. However, the running time to compute the paths improved graph is
much larger than for the neighbour version. If we use (k + 1)-paths improved graphs instead of
(k + 1)-neighbours improved graphs, then we obtain a new lower bound heuristic for treewidth,
called LB P in [12]. If we use as subroutine a lower bound algorithm Y in this algorithm, we call
the resulting algorithm LBP(Y).
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3 Contraction Degeneracy

We first look at the treewidth lower bound heuristic, obtained by combining the degeneracy with
contraction. The algorithm to compute the degeneracy of a graph repeatedly removes the vertex of
minimum degree, and outputs the largest of these minimum degrees seen in the process. However,
we can also get a lower bound for treewidth if we contract the vertex of minimum degree with
a neighbour instead of deleting it. In this case, we can get different values if we make different
choices which minimum degree vertex to select, and with which neighbour to contract it. The best
way of doing these contractions is captured by the notion of contraction degeneracy.

In this section, we define the new parameter of contraction degeneracy and the related com-
putational problem. We show the NP-completeness of the problem just defined, and consider the
complexity of the fixed parameter cases.

3.1 Definition of the Problem

Definition 2 The contraction degeneracy δC of a graph G is defined as follows:

δC(G) := max
G′
{δ(G′) | G′ is a minor of G}

When G is connected, δC(G) can also be defined as the maximum over all contractions of G of
the minimum degree of the contraction. This does not necessarily hold for disconnected graphs:
when G has connected components whose contraction degeneracy is smaller than the contraction
degeneracy of G, we must delete this component entirely to obtain the minor with maximum
minimum degree. The corresponding decision problem is formulated as usual:

Problem: Contraction Degeneracy
Instance: Graph G = (V,E) and integer k ≥ 0.
Question: Is the contraction degeneracy of G at least k?

Lemma 3 For any graph G, we have that δC(G) ≤ tw(G).

Proof: Note that for any minor G′ of G, we have that tw(G′) ≤ tw(G) (see e.g. [4]). Furthermore,
for any graph G′: δ(G′) ≤ tw(G′). The lemma follows now directly. 2

3.2 NP-completeness

Theorem 1 The Contraction Degeneracy problem is NP-complete, even for bipartite
graphs.

Proof: Clearly, the problem is in NP as we only have to guess an edge set E ′, and then compute
in polynomial time δ(G/E ′).

The hardness proof is a transformation from the Vertex Cover problem, which is known to
be NP-complete, see [17]. In the Vertex Cover problem, we are given a graph G = (V,E) and
an integer k, and look for a vertex cover of size at most k, i.e. a set W ⊆ V with |W | ≤ k, such
that each edge in E has at least one endpoint in W . Let be given a Vertex Cover instance
(G, k), with G = (V,E).

Construction: We build a graph in two steps. In the first step, we construct a graph G′ by
taking the complement Ḡ of G, two adjacent vertices and k pairwise non-adjacent vertices, and
making the new vertices adjacent to each vertex in G. G′ is formally defined as follows, see
Figure 1:

G′ := (V ′, E′) where

V ′ = V ∪ {w1, w2} ∪ {u1, . . . , uk}
E′ = ({{v, w} 6∈ E | v, w ∈ V, v 6= w}) ∪ { {w1, w2} }

∪{ {wi, v} | i ∈ {1, 2} ∧ v ∈ V }
∪{ {ui, v} | i ∈ {1, . . . , k} ∧ v ∈ V }
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Figure 1: Intermediate graph G′ constructed for the transformation.

The final graph G∗ in our construction is obtained by subdividing any edge in G′, i.e. replacing
each edge in G′ by a path with two edges.

G∗ := (V ∗, E∗) where

V ∗ = V ′ ∪ { ve | e ∈ E′ }
E∗ = { {u, ve}, {ve, w} | e = {u,w} ∈ E′ }

Let be n := |V |. The constructed instance of the Contraction Degeneracy problem is
(G∗, n+ 1). G∗ is a bipartite graph, as all edges in G∗ are between a vertex in V ′ and a vertex in
{ ve | e ∈ E′ }. Now, we have to show that there is a vertex cover for G of size at most k if, and
only if δC(G∗) ≥ n+ 1.

Claim 1 If there is a vertex cover of G of size at most k, then there is a E3 ⊆ E∗, such that
δ(G∗/E3) ≥ n+ 1.

Proof: Suppose there is a vertex cover of size at most k. Now take a vertex cover V1 = {v1, . . . , vk}
of G of size exactly k. (If we add vertices to a vertex cover, we obtain again a vertex cover.)
We build the set of edges to be contracted in two steps. Let E1 be the edge set, such that
G∗/E1 = G′, i.e. E1 consists of |E′| edges to undo the subdivisions. First, we contract the
edges in E1 and obtain G∗/E1. Then, in G∗/E1, we contract edge set E2 defined as follows:
E2 := { {ui, vi} | i = 1, . . . , k}. I.e. each vertex in the vertex cover has a vertex of the type ui
contracted to it. We write E3 := E1 ∪ E2. We claim that the resulting graph G3 := G∗/E3 is an
(n+ 2)-clique. Assume there are two vertices x and y with {x, y} 6∈ E(G3). Since the vertices w1

and w2 are universal in G3, we have {x, y} ⊆ V . Therefore, {x, y} ∈ E, and hence x or y is in
V1. We assume w.l.o.g. x ∈ V1, i.e. ∃i ∈ {1, . . . , k}, such that vi = x. Since we contracted {ui, vi}
and {ui, y} ∈ E(G′), we have vi = x is adjacent to y in G3, which is a contradiction. Hence,
G3 = G∗/E3 is an (n+ 2)-clique and δ(G∗/E3) = n+ 1. �

Claim 2 If there is a E3 ⊆ E∗, such that δ(G∗/E3) ≥ n+ 1, then there is a vertex cover V1 for
G of size at most k.

Proof: We have |E′| vertices VE′ := { ve | e ∈ E′ } of degree two in G∗, namely the subdivisions.
Assuming G has more than just one vertex, i.e. assuming n ≥ 2, we see that the degree of all
vertices in VE′ is too small. We have to contract edges, such that all vertices in VE′ will get a
larger degree. Hence, there is a E2 ⊆ E3, such that G∗/E2 = G′. Let be E1 := E3 \E2. Because
of the commutativity of contraction-operations, we assume that we first contract all edges in E2.
A vertex ui, ∀i ∈ {1, . . . , k} has degree exactly n in G′. Thus, for each ui, i ∈ {1, . . . , k}, we
have to contract an edge incident to ui. After contracting these edges, there are n + 2 vertices
left in the graph. Therefore we cannot contract another edge, since then we could not obtain
the minimum degree of n + 1. Furthermore, we see that G∗/E3 is an (n + 2)-clique. Hence, E1

contains exactly k edges, one for every ui, i ∈ {1, . . . , k}, with the other endpoint in V . Let be
V1 :=

⋃
e∈E1

e \ ⋃
i=1,...k ui. Clearly, |V1| = k, and we claim that V1 is a vertex cover of G.

Assume, there is an edge f = {x, y} in G with V1 ∩ f = ∅. Hence, f is not an edge in G′. Since
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G∗/E3 is an (n + 2)-clique, edge f exists in G∗/E3, which means: f was created by contracting
another edge {ui, vj} ∈ E1. This can only be the case if vj = x or vj = y. According to the
definition of V1, we have: vj ∈ V1, which contradicts V1 ∩ f = ∅. Hence, V1 is a vertex cover of
size k. �
As G∗ can be constructed in polynomial time, NP-completeness of the Contraction Degener-
acy problem now follows. 2

3.3 Fixed Parameter Cases of Contraction Degeneracy

Now, we consider the fixed parameter case of the Contraction Degeneracy problem. I.e.
for a fixed integer k, we consider the problem to decide for a given graph G if G has a minor
with minimum degree k. Graph minor theory gives a fast answer to this problem. For a good
introduction to the algorithmic consequences of this theory, see [16].

Theorem 2 The Contraction Degeneracy problem can be solved in linear time when k is a
fixed integer with k ≤ 5, and can be solved in O(n3) time when k is a fixed integer with k ≥ 6.

Proof: Let k be a fixed integer. Consider the class of graphs Gk = {G | G has contraction
degeneracy at most k − 1}. Gk is closed under taking minors: if H is a minor of G and H
has contraction degeneracy at least k, then G has also contraction degeneracy at least k. As
every class of graphs that is closed under minors has an O(n3) algorithm to test membership by
Robertson-Seymour graph minor theory (see [16]), the theorem for the case that k ≥ 6 follows.

Suppose now that k ≤ 5. There exists a planar graph Gk with minimum degree k (for example
for k = 5 the icosahedron, see [10]). Hence, Gk 6∈ Gk. A class of graphs that is closed under taking
minors and does not contain all planar graphs has a linear time membership test (see [16]), which
shows the result for the case that k ≤ 5. 2

It can be noted that the cases that k = 1, 2 and 3 are very simple: a graph has contraction
degeneracy at least 1, if and only if it has at least one edge, and it has contraction degeneracy at
least 2, if and only if it is not a forest. For a graph to have contraction degeneracy at least 3, all
vertices of degree 2 or less have to be contracted recursively. If the result is a non-empty graph,
the contraction degeneracy is at least 3. Vertices of degree 2 can be contracted to either of the
neighbours without loss of generality. In the same way graphs that have treewidth at least 3 are
identified [2, 8], and hence graphs with δC(G) ≥ 3 are exactly those with tw(G) ≥ 3.

The result is non-constructive when k ≥ 6; when k ≤ 5, the result can be made constructive by
observing that the property that G has contraction degeneracy k can be formulated in monadic
second order logic for fixed k. Thus, we can solve the problem as follows: the result of [28] applied
to Gk, a planar graph with minimum degree k, gives an explicit upper bound ck on the treewidth
of graphs in Gk = {G | G has contraction degeneracy at most k − 1}. Test if G has treewidth at
most ck, and if so, find a tree decomposition with width at most ck with the algorithm of [3]. If
G has treewidth at most ck, use the tree decomposition to test if the MSOL formula holds for G
[14]; if not, we directly know that G has contraction degeneracy at least k. It should also be noted
that the constant factors hidden in the O-notation of these algorithms are very large; it would
be nice to have practical algorithms that do not rely on graph minor theory. We summarise the
different cases in the following table.

4 Maximum Cardinality Search with Contraction

As discussed in Section 2, we obtain a lower bound on the treewidth of a graph from a maximum
cardinality search ordering. We now study the combination of this MCSLB heuristic with contrac-
tion, and we analyse the complexity of finding an optimal way of contracting and building an MCS
ordering to obtain the best lower bound possible with this method. We define four computation
problems, and show that each of these is either NP-complete or NP-hard, respectively. For some
of these, we also can show that the fixed parameter cases are tractable.
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k Time Reference
1 O(n) Trivial
2 O(n) G is not a forest
3 O(n) tw(G) ≥ 3

4, 5 O(n) [3, 14, 28], MSOL
fixed k ≥ 6 O(n3) [27, 26]
variable k NP-complete Theorem 1

Table 1: Complexity of contraction degeneracy

4.1 Definition of the Problems

We consider the following problem and variants.

Problem: MCSLB With Contraction
Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H , and H an MCS ordering ψ with the visited

degree of ψ at least k?

Problem: MCSLB With Minors
Instance: Graph G = (V,E), integer k.
Question: Does G have a minor H , and H an MCS ordering ψ with the visited degree

of ψ at least k?

Problem: MinMCSLB With Contraction
Instance: Graph G = (V,E), integer k.
Question: Does G have a contraction H , such that every MCS ordering ψ has visited

degree at least k?

Problem: MinMCSLB With Minors
Instance: Graph G = (V,E), integer k.
Question: Does G have a minor H , such that every MCS ordering ψ has visited

degree at least k?

4.2 NP-completeness

Theorem 3 MCSLB With Contraction is NP-complete.

Proof: Clearly MCSLB With Contraction belongs to NP. We just have to guess a contraction
H and an MCS ordering ψ and check in polynomial time, whether the visited degree of ψ in H is
at least k.

To prove NP-hardness, we use a transformation from Vertex Cover. Let be given a Vertex
Cover instance (G, k), where G = (V,E) with n = |V |, and k is an integer. We construct a graph
G′ in the following way:

Construction. First, we take n + 2 copies of the complement of G. We call the vertices in
these copies graph vertices. We add k · (n + 2) extra vertices. Each extra vertex has degree n:
it is adjacent to all graph vertices in one copy of Ḡ and no other vertex; each copy has exactly
k such extra vertices. Hence, in total, we have k(n + 2) extra vertices. Finally, we add an edge
between each pair of graph vertices that belong to different copies. Let G′ be the resulting graph,
see Figure 2. The MCSLB With Contraction instance is (G′, n(n+ 2)− 1).

Now, we will show that G′ has a contraction H that has an MCS ordering ψ with the visited
degree of ψ at least n(n+ 2)− 1, if and only if G has a vertex cover of size at most k.
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Figure 2: The graph G′ constructed for the transformation.

Claim 3 If G has a vertex cover of size at most k, then G′ has a contraction H that has an MCS
ordering ψ with the visited degree of ψ at least n(n+ 2)− 1.

Proof: Let V ′ be a vertex cover of G of size at most k. Now, we perform the following in each
copy of Ḡ. Contract all the extra vertices to vertices in the vertex cover V ′, such that each vertex
in V ′ has at least one extra vertex contracted to it. This turns the set of graph vertices of G′ into
a clique of size n(n + 2), because for each pair of nonadjacent graph vertices v, w in G′, {v, w}
is an edge in G, so an extra vertex, adjacent to v and w is contracted to v or w, after which the
edge {v, w} is formed in H . (Compare with the proof of Claim 1.) As H is a clique of n(n + 2)
vertices, any MCS ordering of H has visited degree exactly n(n+ 2)− 1. �

Now, we will show the other direction. For this, we need a series of claims. Suppose that G′

has a contraction H that has an MCS ordering ψ with the visited degree of ψ at least n(n+2)−1.
Let y be the first vertex in ψ that is visited with visited degree n(n + 2) − 1, and let Y be the
vertices that are visited up to y (including y). Note that y must be a graph vertex. By Lucena’s
theorem [23], H [Y ] has treewidth at least n(n+ 2)− 1. Let X be the set of the vertices in H that
are extra vertices that are not contracted.

Claim 4 There are at most n+ 1 copies of Ḡ that have at least one extra vertex that belongs to
X ∩ Y .

Proof: Consider the MCS ordering ψ up to the point that there are n + 1 copies of Ḡ with at
least one extra vertex in X ∩ Y . As the set of visited vertices is connected, each copy must have
a (possibly contracted) graph vertex that is visited. Before we can visit a vertex in X of the last
copy, we must first visit a (possibly contracted) graph vertex of that copy. After that visit, each
graph vertex has visited degree at least n+ 1, while vertices in X have degree at most n, so yet
unvisited vertices in X will not be visited before all graph vertices are visited, in particular, only
after y is visited. �

So, there is at least one copy of Ḡ that has no uncontracted extra vertices in Y . Let Vi be the
set of vertices of that copy in Y .

Claim 5 There are at least n(n+ 2) graph vertices in Y .

Proof: If the opposite holds, then the treewidth of H [Y ] would be less than n(n+2)−1. Consider
e.g. the following triangulation of H [Y ]: turn the set of (possibly contracted) graph vertices into a
clique. The maximum clique size will be less than n(n+2) and the treewidth less than n(n+2)−1.
This contradicts the fact that the treewidth of H [Y ] is at least n(n+ 2)− 1. �

Claim 6 Vi is a clique.
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Proof: Assume the opposite. Let v and w be non-adjacent vertices in Vi. We can triangulate H [Y ]
as follows: Add an edge between each pair of non-adjacent (possibly contracted) graph vertices,
except that we do not add the edge {v, w}. Since Vi does not have extra vertices that are not
contracted, this gives a chordal graph. The vertices in X are simplicial with degree at most n.
After we remove these, we get a graph that is obtained by removing an edge from a clique with at
most n(n+2) vertices, yielding a graph with clique-size at most n(n+2)−1. Hence the treewidth
is at most n(n+ 2)− 2, which is a contradiction. �

Because there are n(n + 2) graph vertices in Y , we know that |Vi| = n, and we cannot have
contracted other graph vertices to vertices in Vi, since then we would have less then n(n+2) graph
vertices in Y . So, Vi was formed into a clique by the contraction of the k extra vertices of the copy
to the graph vertices in Vi. Let Z be the set of vertices in Vi that have an extra vertex contracted
to it. We have |Z| ≤ k.

Claim 7 Z is a vertex cover.

Proof: For each edge {v, w} ∈ E, v and w are non-adjacent in H . Thus, we must have an extra
vertex contracted to v or an extra vertex contracted to w. Therefore, we have v ∈ Z or w ∈ Z for
each edge {v, w} ∈ E. �

Hence, we can conclude that if G′ has a contraction H that has an MCS ordering ψ with the
visited degree of ψ at least n(n+ 2)− 1, then G has a vertex cover of size at most k, which proves
the other direction. The proof of the NP-completeness of MCSLB with contraction is now
complete. 2

The same proof can be used for the related problems given in Section 4.1, except that mem-
bership in NP is trivial only for MCSLB With Minors, and we have no proof for membership
in NP for the other two problems. Therefore, we conclude the following statement.

Corollary 1 MCSLB With Minors is NP-complete, and MinMCSLB With Contraction
and MinMCSLB With Minors are NP-hard.

4.3 Fixed Parameter Cases

The fixed parameter case of MCSLB With Minors can be solved in linear time with help of
graph minor theory. Observing that the set of graphs {G | G does not have a minor H , such
that H has an MCS ordering ψ with the visited degree of ψ at least k} is closed under taking of
minors, and does not include all planar graphs (see [6]), gives us by the Graph Minor theorem
of Robertson and Seymour and the results in [3, 28] the following result. See again [16] for more
background information.

Theorem 4 MCSLB With Minors and MinMCSLB With Minors are linear time solvable
for fixed k.

The fixed parameter cases of MinMCSLB With Minors give an O(n3) algorithm (linear
when k ≤ 5), similar as for Theorem 2. Note that these results are non-constructive, and that the
constant factors in the O-notation of these algorithms can be expected to be too large for practical
purposes.

5 Heuristics

In this section, we discuss a number of heuristics, each giving a lower bound for treewidth. In
Section 6, we discuss experimental evaluations of the heuristics. Here, we describe the heuristics,
and in some cases, give some analysis of them. In Section 5.1, we propose and analyse some
heuristics for the contraction degeneracy. In Section 5.2, we discuss heuristics for MCSLB with
contraction. In Section 5.3, we look at the LBN and LBP heuristics, introduced in [12]. These
can be combined with any of the other heuristics, but we also propose a new heuristic where
contractions alternate with constructions of neighbours or paths improved graphs.

10



5.1 Heuristics for the Contraction Degeneracy

An almost trivial heuristic for the contraction degeneracy is the degeneracy, δD(G). We denote it
in our overviews with the shorter abbreviation MMD (‘Minimum Maximum Degree’). It can be
computed in linear time, by iteratively selecting a vertex of minimum degree, and deleting it and
its incident edges. The largest seen minimum degree in these steps is the degeneracy.

From this algorithm, we derive the MMD+ algorithm (with three variants.) In this algorithm,
we select a vertex v of minimum degree, and contract it with one of its neighbours u. In each
case, the algorithm outputs the maximum over all vertices of its degree when it was selected as
minimum degree vertex. Clearly, this is a lower bound on the contraction degeneracy of a graph.
We consider three strategies how to select a neighbour:

• min-d selects a neighbour with minimum degree. This heuristic is motivated by the idea
that the smallest degree is increased as fast as possible in this way.

• max-d selects a neighbour with maximum degree. This heuristic is motivated by the idea
that we end up with some vertices of very high degree.

• least-c selects a neighbour u of v, such that u and v have the least number of common
neighbours. Note that for each common neighbour w of u and v, the two edges’ {u,w}
and {v, w} become the same edge in the graph, meaning that for each common neighbour,
effectively one edge is removed from the graph. Thus, the least-c heuristic is motivated by
the idea to delete as few as possible edges in each iteration to get a high minimum degree.

We call the resulting heuristics MMD+(min-d), MMD+(max-d) and MMD+(least-c). In Sec-
tion 6, we experimentally evaluate these heuristics. While the heuristics (and especially the least-c
heuristic) do often well in practice, unfortunately, each of the three heuristics can do arbitrarily
bad. In Sections 5.1.1 – 5.1.4, we give examples of graphs where there is a large difference between
the contraction degeneracy and a possible lower bound for it obtained by the considered heuristic.

We observe that each of the MMD+ heuristics gives a value that is at least the degeneracy:
consider a subgraph H of G with minimum degree the degeneracy of G. Consider the graph G′

that we currently have just before the first vertex v from H is to be contracted by the heuristic.
All neighbours of v in H are also neighbours of v in G′, hence the algorithm gives as bound at
least the degree of v in H , hence at least the degeneracy of G.

The minimum degree of a vertex is also a trivial lower bound for both the treewidth and the
contraction degeneracy. We call this heuristic MD; it plays a role in combination with a technique
based on work by Clautiaux et al. [12], see Section 5.3.

5.1.1 Degeneracy versus contraction degeneracy

The MMD algorithm can perform arbitrarily bad. Consider a clique with n vertices, and then
subdivide every edge. Let G be the resulting graph. Clearly, δ(G) = 2. We also have δD(G) = 2
since all subdivisions have degree 2 and must be deleted, which also deletes all edges in G. However,
δC(G) = n−1, because undoing the subdivisions results in an n-clique with minimum degree n−1.

5.1.2 A bad example for the MMD+(max-d) heuristic

An example where the MMD+(max-d) heuristic can perform arbitrarily bad is not hard to find.
One simple example is the following. Take a clique with n vertices, subdivide every edge, and
then add one universal vertex x. (I.e. x is adjacent to each other vertex in the graph.) Let G be
the resulting graph. The MMD+(max-d) heuristic will contract each vertex to x, and hence will
give 3 as a result. However, δC(G) = n, since if we contract the subdivision vertices to the clique
vertices, we obtain a clique with n+ 1 vertices.
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5.1.3 A bad example for the MMD+(min-d) heuristic

The example where the MMD(min-d) performs bad is somewhat more involved. For each r,
we build a graph where the min-d heuristic can possibly give a lower bound of three, while the
contraction degeneracy of the graph is r. We assume, as ‘adversary’, that we can decide in which
way tie-breaking is done (i.e. the adversary can select a vertex among those who have minimum
degree.)

Let r ≥ 3 be some integer. Build a graph Gr as follows. We take for each i, j, 1 ≤ i < j ≤ r
a vertex vij . We take for each i, 1 ≤ i ≤ r a vertex wi. We take a vertex x. Now, we add edges
{vij , wi}, {vij , wj} and {vij , x}, for each i, j, 1 ≤ i < j ≤ r.

To the graph thus obtained, we add a number of cliques. Each clique consists of three new
vertices and one vertex of the type wi, 1 ≤ i ≤ r or x. We have one such clique that contains
x. For each i, we take r2 such cliques that contain wi, 1 ≤ i ≤ r. (It is possible to make a more
compact construction, using about r2/6 cliques.) We call the new vertices in these cliques the
additional clique vertices. In this way, each wi has a degree that is larger than 3r2. Let Gr be the
resulting graph. See Figure 3.

vij
wi

wj

x

v12

v(r−1)r

w1

wr

r2 triangles

Figure 3: The structure of Gr

Proposition 1 Let r ≥ 3. The contraction degeneracy and treewidth of Gr equal r.

Proof: If we contract v1r to wr and each other vertex of the form vij to wi, and each additional
clique vertex to its neighbour of type wi or x, then the resulting graph is a clique on {wi | 1 ≤ i ≤
r} ∪ {x}. Each vertex in this clique has degree r, so the contraction degeneracy of Gr is at least
r, and hence the treewidth of Gr is at least r.

If we add to Gr an edge between each distinct pair of vertices in {wi | 1 ≤ i ≤ r} ∪ {x}, then
we obtain a chordal graph with maximum clique size r + 1. So, the treewidth of Gr is at most r,
and hence also its contraction degeneracy is at most r. 2

Proposition 2 The MMD+(min-d) heuristic can give a lower bound of three when applied to Gr.

Proof: Consider the following start of a sequence of contractions: first, contract the vertices of
the form vij one by one to x, for all i, j, 1 ≤ i < j ≤ r. Note that the min-d heuristic can start
with this sequence: at each point during this phase, the vertices of the form vij have degree three,
which is the minimum degree in the graph, and the degree of x is at most r(r−1)/2+3+r, which
is less than the degree of vertices of the form wi, which have degree at least 3r2. So, during this
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first part of the running of the algorithm, the bound for the contraction degeneracy is not larger
than three.

After all vertices vij have been contracted to x, the graph has the following form: x is adjacent
to all wi; there are no edges between vertices wi, wi′ , i 6= i′; and then there are a number of four-
cliques that have one vertex in common with the rest of the graph. This is a chordal graph with
maximum clique size four. So, this graph has treewidth three, and hence contraction degeneracy
at most three. Hence, the min-d heuristic cannot give a bound larger than three in the remainder
of the run of the algorithm. Thus, the maximum bound it obtains can be three. 2

Corollary 2 The MMD+(min-d) heuristic can give a solution that is a factor of Ω(
√
n) away

from optimal.

We can use cliques with four instead of three additional clique vertices. In that case, it holds
that every possible run of the MMD+(min-d) heuristic gives a lower bound of four on the graph.

5.1.4 A bad example for the MMD+(least-c) heuristic

The example for the MMD+(least-c) heuristic is a modification of the one for the min-d heuristic.
Let r ≥ 3 be again an integer. We take Gr and modify it as follows. Each edge of the

form {vij , wi} or {vij , wj} is replaced by the structure given in Figure 4. In words: the edge is
subdivided, and we add a clique with three new vertices and the subdivision vertex to the graph.
Let G′r be the resulting graph.

vij wi or wj

Figure 4: The structure that replaces edges of the form {vij , wi} or {vij , wj}

Proposition 3 Let r ≥ 3. The contraction degeneracy and treewidth of G′r equal r.

Proof: We can contract G′r to Gr: contract each structure as in Figure 4 to the vertex of the
form vij . So, the contraction degeneracy of G′r is at least the contraction degeneracy of Gr, hence
at least r. So the treewidth of G′r is at least r.

The treewidth of G′r is at most r: Add to G′r edges between each pair of distinct vertices in
{wi | 1 ≤ i ≤ r} ∪ {x}. Then, for each i, j, 1 ≤ i < j ≤ r, add edges {vij , wi} and {vij , wj}.
This gives a chordal graph with maximum clique size r + 1. So, the treewidth of G′r is at most r.
Hence, its contraction degeneracy is also at most r. 2

Proposition 4 The MMD+(least-c) heuristic can give a bound of three when applied to G′r.

Proof: Like for the min-d heuristic, the algorithm can start with contracting each vertex of the
form vij to x. During this phase, vertices vij have the minimum degree in the graph, namely
three, and have no common neighbours with x. So, during this phase, the lower bound is set to
three.

After all vertices of the form vij are contracted to x, the graph G′′ has treewidth three. This
can be seen as follows. The treewidth of a graph is the maximum treewidth of its biconnected
components. The biconnected components of G′′ are either cliques with four vertices, single edges,
or consist of x, a vertex wi, and a number of paths of length two between x and wi (for some
i, 1 ≤ i ≤ r). In the first case, the treewidth of the component is three; in the last case, the
component has treewidth three. So, after the contractions of the vij -vertices to x, the bound of
three cannot be increased. 2

Corollary 3 The MMD+(least-c) heuristic can give a solution that is a factor of Ω(
√
n) away

from optimal.
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It is possible to modify the construction such that any run of the MMD+(least-c) heuristic
gives a result far from optimal. Instead of cliques with three new vertices and one ‘old’ vertex, we
use cliques with five new vertices and one old vertex. The structure of Figure 4 is replaced by the
structure of Figure 5. In this way, we obtain a graph that has contraction degeneracy r, but for
which any run of the MMD+(least-c) heuristic gives a lower bound that is at most five.

vij wi or wj

Figure 5: An alternative structure that replaces edges of the form {vij , wi} or {vij , wj}

5.2 Heuristics for MCSLB With Contractions

Based on the result by Lucena [23] that the visited degree of an MCS ordering of G is a lower
bound for the treewidth, we will look at heuristics based upon maximum cardinality search and
contraction.

For comparison, we have the MCSLB heuristic. This heuristic computes |V | MCS orderings ψ
– one for each vertex as start vertex. It returns the maximum over these orderings of MCSLBψ,
cf. [6].

The MCSLB+ heuristic starts by using MCSLB to find a start vertex w with largestMCSLBψ.
Then, we iteratively select a vertex and a neighbour to contract, compute an MCS ordering, and
repeat until the graph has no edges. To reduce the CPU time consumption, an MCS is carried out
only with start vertex w (or vertices resulting from contractions that involve w) instead of with
all possible start vertices. Three strategies for selecting a vertex v to be contracted are examined:

• min-deg selects a vertex of minimum degree.

• last-mcs selects the last vertex in the just computed MCS ordering.

• max-mcs selects a vertex with maximum visited degree in the just computed MCS ordering.

Once a vertex v is selected, we select a neighbour u of v using the two strategies min-d and least-c
that are already explained for MMD+. We thus have six versions of the MCSLB+ heuristic. These
are experimentally evaluated in Section 6. We did not evaluate the MCSLB+(max-d) heuristic,
because of the negative experimental results for the MMD+(max-d) strategy.

5.3 Contraction and the LBN and LBP Heuristics

For each treewidth lower bound algorithm Y, we have two lower bound heuristics LBN(Y) and
LBP(Y), based on the technique by Clautiaux et al. [12], see Section 2. So, we can have, e.g. the
LBN(MMD+) algorithm.

A different method to combine the LBN or LBP methods with contraction is to alternate
improvement steps with contractions. We describe the LBN+(Y) algorithm for some treewidth
lower bound heuristic Y below. If we instead of making a neighbours improved graph, take a paths
improved graph, we obtain the LBP+(Y) algorithm; the latter one is slower but often gives better
bounds.

Algorithm LBN+(Y)
1 Initialise L to some lower bound on the treewidth of G, e.g. L = 0.
2 H := G.
3 repeat
4 H = the (L+ 1)-neighbours improved graph of H .
5 b :=Y(H)
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6 if b > L
7 then L := L+ 1
8 goto step 2
9 else select a vertex v of minimum degree in H .
10 select neighbour u of v according to the least-c strategy.
11 contract the edge {u, v} in H .
12 endif
13 until H is empty
14 output L.

In the description above, we used the least-c strategy, as this one performed best for the other
heuristics; of course, variants with other contraction strategies can also be considered.

Proposition 5 If algorithm Y is an algorithm that outputs a lower bound on the treewidth of
its input graph, then LBN+(Y) and LBP+(Y) output lower bounds on the treewidth of its input
graph.

Proof: Let G be the input graph of algorithm LBN+(Y) or LBP+(Y). An invariant of the
algorithm is that the treewidth of G is at least L. A second invariant of the algorithm is that when
the treewidth of G equals L, then the treewidth of H is at most L. Clearly, these invariants hold
initially. Lemmas 1 and 2 show that the second invariant holds also after making an improved
graph in step 4. The fact that contraction cannot increase treewidth shows that the second
invariant holds after a contraction in step 11. Similar as in [12], when Y outputs a value larger
than L on H , then the treewidth of H and hence the treewidth of G (by the second invariant) is
larger than L, so increasing L by one in step 7 maintains the first invariant. 2

In our experiments, we started the algorithm by setting the lower bound L to the value com-
puted by the MMD+ heuristic.

5.3.1 Faster Implementation of LBP+

A straightforward implementation of an LBP+(Y) heuristic can be very slow. However, we can
observe that some steps are not necessary. Contracting an edge can increase the number of vertex
disjoint paths between two vertices, but not for all pairs. Lemma 4 tells us that contracting an edge
{x, y} cannot increase the number of vertex disjoint paths between u and v, if {x, y}∩ {u, v} = ∅.
Lemma 4 Let be given vertices u and v and edge e = {x, y} in G = (V,E). Furthermore, let N
be the maximum number of vertex disjoint paths between u and v in G, and let N ′ be the maximum
number of vertex disjoint paths between u and v in G/{x, y}. Then we have:

{x, y} ∩ {u, v} = ∅ =⇒ N ′ ≤ N
Proof: Let ae be the new vertex created by contracting edge e. We consider a set P ′ of vertex
disjoint paths p1, ..., pN ′ between u and v in G/e. Since these paths are vertex disjoint and
{x, y} ∩ {u, v} = ∅, there can be at most one path p′ in P ′ going through the new vertex ae, i.e.
ae is contained in at most one path p′ of P ′.

One easily sees that there is a path p in G between u and v that uses all vertices of p′ except
ae and x and/or y. Therefore, we have a set P of N ′ vertex disjoint paths between u and v in G.
Hence, N ′ ≤ N . 2

In other words, the number of vertex disjoint paths between u and v can be increased by an
edge contraction, only if an edge incident to u or v is contracted. A consequence of this is that
after contracting edge e which results in a new vertex ae, we only have to look for the number
of vertices disjoint paths of pairs of vertices that contain ae. This results in a drastic speed up
compared to the case when checking all pairs of vertices for L + 1 vertex disjoint paths, as we
check O(n) pairs instead of Θ(n2) pairs. However, once we have found an improvement edge in
the graph, we then must check all other pairs, as possibly, after an improvement edge is added,
pairs of vertices that do not contain ae can have L+ 1 vertex disjoint paths.
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5.3.2 LBN+(MD) versus LBN+(MMD)

We now compare the LBN+(MD) heuristic with the LBN+(MMD) heuristic, and similarly, the
LBP+(MD) heuristic with the LBP+(MMD) heuristic. We show that these output the same lower
bound result. I.e. in the LBN+(MD) heuristic, we just use the minimum degree of a vertex in H
as lower bound, while in the LBN+(MMD) heuristic, we compute the degeneracy.

The intuitive idea is that LBN+(MD) and LBN+(MMD) compute the same result, because
due to the additional contraction step, the subgraphs considered by the MMD lower bound, will
also be considered in the algorithm LBN+(MD); similarly for the version with paths improvement.
Below, we show that this intuition is correct. However, before that, we give one lemma.

Lemma 5 (See [33].) Let be given a graph G = (V,E), vertex v ∈ V and edge e ∈ E. Further-
more, let ae be the resulting new vertex after contracting edge e. If v 6∈ e, then dG/e(v) ≥ dG(v)−1.
If v ∈ e, then dG/e(ae) ≥ dG(v)− 1.

Lemma 6 Let G = (V,E) be a graph. Let the result of running the LBN+(MD), LBN+(MMD),
LBP+(MD) and LBP+(MMD) algorithms on G be respectively αn, βn, αp and βp. Then αn = βn
and αp = βp.

Proof: The proof is the same for the versions with neighbours and paths improvement. Thus, in
the proof below, we write LBX+(MD) and LBX+(MMD), where the X can stand for N or P, and
we drop the subscripts n and p from α and β.

First note that when the LBX+(MD) and LBX+(MMD) enter the loop at step three with the
same value of L, then they will work with the same graph H . Thus, we have that α ≤ β: when
LBX+(MD) increases L by one, we have that L is smaller than the minimum degree of H , hence
also smaller than the degeneracy of H , and hence the LBX+(MMD) algorithm will also increase
L by one at the corresponding point during the execution of the algorithms. To show equality, we
assume the following, and we will derive a contradiction:

α < β (1)

Consider the moments step 2 is done by algorithm LBX+(MMD) and by algorithm LBX+(MD)
when L = α. As LBX+(MD) outputs α, this is the last time step 2 is done by the LBX+(MD)
algorithm, while the LBX+(MMD) algorithm will increase L further (as α < β), and hence will
execute later the ‘goto step 2’ command at least once.

Let H∗ be the the graph H at the moment the LBX+(MMD) algorithm is at step 7 and 8
when the algorithm increases L from α to α+ 1. This graph H∗ is formed from G by a sequence
of contractions and (α+ 1)-neighbours or (α+ 1)-paths improvement steps. As the test in step 6
was true, the degeneracy of H∗ is at least α+ 1.

The LBX+(MD) algorithm has started a run of the main iteration with L = α. As the
algorithm outputs α, this is its last iteration. During this iteration, it does the same improvement
steps as the LBX+(MMD) algorithm, and hence, at some point, creates the graph H∗. However,
it cannot execute steps 7 and 8 now, so the test in step 6 was false for the LBX+(MD) algorithms.
Thus, we have:

δ(H∗) ≤ α < δD(H∗)

Write d = δD(H∗). Therefore, there exists an induced subgraph H ′ ⊂ H∗ with

δ(H∗) < δ(H ′) = d

Note that all vertices in V (H ′) have degree at least d := δD(H∗) in H∗. We now consider the
execution of LBX+(MD), starting when H is the graph H∗, up to just before the point that the
first vertex from H ′ is selected as minimum degree vertex v in step 9. During this part of the
execution, we have that H ′ is a subgraph of the graph H used by the algorithm: improvement
steps only add edges, and no edges between vertices in H ′ are contracted.

Now, consider the first vertex v∗ from H ′ that is selected as minimum degree vertex v in step 9
by LBX+(MD). As H ′ is a subgraph of the graph H , we have that the degree of v∗ at the moment
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it is selected is at least its degree in H ′, which is at least d. But, as v∗ is the minimum degree of
a vertex in H , all vertices in H have at this point degree at least d. This gives a contradiction:
consider the test at step 6 just before v∗ was selected: the minimum degree of H is at least d,
which is larger than the current value of L, i.e. α. So, this test is true, and the algorithm will
increase L, contradiction.

So, we can conclude that the assumption α < β is false, hence α = β. 2

Whether in practice LBX+(MD) would be more time-efficient than LBX+(MMD) is unclear
from the above. The lower bound MMD is more time consuming than MD, but can result in a
b > L earlier during the contraction process, by this avoiding a number of graph improvement
steps. By Lemma 6, the number of graph improvement steps in the last iteration will be equal,
slowing down the algorithm on this point.

Similarly LBX+(MMD+) can be more time-efficient than LBX+(MD): MMD+ is more time
consuming but can reduce the number of improvement steps. Moreover, LBX+(MMD+) can
return a better bound than LBX+(MD), although this rarely happens. Experimental results
with LBX+(MD), LBX+(MMD), and LBX+(MMD+) have shown that the computation times
of LBX+(MD) are significantly smaller than those for LBX+(MMD) which on their turn are
significantly smaller than those.for LBX+(MMD+).

6 Experimental Results

In this section, we report on the results of computational experiments we have carried out. We
tested our algorithms on a number of graphs. The first set of instances are probabilistic networks
from existing decision support systems from fields like medicine and agriculture. Central to the
use of these networks is to solve the probabilistic inference problem. One of the most used methods
for probabilistic inference is the following: one constructs the so-called moralised graph from the
probabilistic network. After this (simple) step, one builds a tree decomposition of the moralized
graph, and then uses this tree decomposition to solve the probabilistic inference problem. The
time for the last step is exponential in the width of the tree decomposition, but linear in the
number of nodes. Thus, computing the treewidth of these moralized graphs is of great practical
use. The second set of instances are from frequency assignment problems from the EUCLID
CALMA project. In [19, 21], tree decompositions were used to solve the frequency assignment
problem on many of the networks from this collection of instances. In addition, we use versions
of the network, obtained by preprocessing [8]. We have also used these sets of instances in earlier
experiments. A third set of instances are taken from the work of Cook and Seymour [13]. Here,
they present a heuristic for the travelling salesman problem where they use branch decompositions
(a notion strongly related to tree decompositions) of graphs formed by merging a number of TSP-
tours. Finally, we computed the lower bounds for many of the DIMACS colouring instances [15].
Among all these, we excluded those networks for which the MMD heuristic already gives the exact
treewidth. Some of the graphs can be obtained from [31]. All algorithms have been written in
C++, and the computations have been carried out on a Linux operated PC with a 3.0 GHz Intel
Pentium 4 processor.

Tables 2, 3 and 4 give the results for some selected instances, whose behaviour is typical for
the entire set of instances. In the appendix, we give longer tables for the entire collection of
graphs we tested our algorithms on. In Table 2, we included the best known upper bound (UB)
for comparison [20, 11]. For the six variants of the MCSLB+ algorithm we give for space reasons
only the average time. There were no large differences in the running times between the different
MCSLB+ heuristics.

We can see from these results that contraction is a very useful method for obtaining lower
bounds for treewidth. The improvements obtained by using MMD+ instead of MMD, or MCSLB+
instead of MCSLB are in many cases quite significant.

Concerning the different strategies for MMD+, we can observe that the least-c strategy is best.
In many cases, it performs much better than the other two strategies, and in all our experiments,
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there is only one case where its bound is one smaller than that obtained with the min-d strategy.
The max-d strategy appears to do bad, giving in general much smaller lower bounds than the
other two. Thus, we did not use this strategy for the other heuristics.

For the MCSLB+, again the least-c strategy seems to be better than the min-d strategy. We
observe that min-deg and last-mcs for selecting the contraction vertex, combined with least-c
outperform the other strategies. The differences between MMD+(least-c) and MCSLB+(least-c)
are usually small, but in a few cases, the MCSLB+(least-c) gives a significant larger bound. The
time of these heuristic is often much larger than that of the MMD+ heuristics.

The LBN and LBP strategies appear to be usually preferable to the MCSLB-based ones. The
time of these on improvement based strategies is often much smaller (except for LBP+(MD)),
while the bounds are at least as good. For the instances from probabilistic networks and frequency
assignment, the LBN+(MD) and LBP+(MD) algorithm give often rather significant increases to
the lower bounds, but often at the cost of more time use. The situation for the TSP-instances is
interesting. Here, the LBN(MMD+) and LBP+(MD) algorithms seem to give the best tradeoff
between lower bound and running time. The LBP+(MD) algorithm appears to use very much
time on these instances. A few cases could not be run to completion due to the large time used;
others give a result only after several many hours of computation time.

We can also observe that in a few cases (e.g. pignet2), the LBN+(MD) algorithm performs faster
than the LBN(MMD). This can be explained by the fact that the LBN+(MD) and LBP+(MD)
algorithms start with the lower bound value given by the MMD+ algorithm, while the LBN(MMD)
and the LBP(MMD) algorithms start with the value provided by the MMD algorithm. Thus, these
latter algorithms have more rounds, and as often many improvements are possible for small values
of k, the earlier rounds are often more time consuming. Hence, for speeding up LBN, LBP, LBN+
or LBP+ based heuristics, one should start with a good start value of the lower bound. For
instance, one might want to start an LBP+(MD) heuristic with a lower bound obtained by an
LBN+(MD) heuristic.

For the class of instances derived from the work of Cook and Seymour [13], our heuristics seem
not well suited. This can be explained as follows. For planar graphs, the contraction degeneracy
is at most five (as planar graphs and hence minors of planar graphs have always a vertex of degree
at most five). The TSP-instances can be expected to be close to planar; thus one can expect the
MMD+ based heuristics not to do well on such instances in general.

Overall, for 31 out of 155 graphs, the best lower bound computed equals the best known upper
bound, for many other instances the remaining gap is very small. From these results, we can
conclude that combining existing methods with contraction can give considerable improvements of
treewidth lower bounds. The MMD+(least-c) appears to be a good algorithm with often (almost)
negligible running times and good bounds; better bounds can be obtained by slower algorithms,
like the LBN(MMD+) or the LBP+(MD).

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

link 724 1738 13 4 0.00 8 0.02 5 0.01 11 0.03
munin1 189 366 11 4 0.00 8 0.01 5 0.00 10 0.00
munin3 1044 1745 7 3 0.01 7 0.01 4 0.02 7 0.02
pignet2 3032 7264 135 4 0.01 29 0.11 10 0.07 38 0.20
celar06 100 350 11 10 0.00 11 0.00 10 0.00 11 0.01
celar07pp 162 764 18 11 0.00 13 0.00 12 0.00 15 0.01
graph04 200 734 55 6 0.00 12 0.01 7 0.00 19 0.02
rl5934-pp 904 1800 23 3 0.01 5 0.02 4 0.02 5 0.03
queen15-15 225 5180 171 42 0.00 52 0.07 42 0.02 58 0.19

Table 2: Upper bounds and results of MMD and MMD+ for selected instances
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

link 5 3.09 8 10 8 11 8 6 43.08
munin1 4 0.17 8 10 9 10 9 7 0.95
munin3 4 5.87 6 7 7 7 6 7 33.80
pignet2 5 59.60 28 39 30 39 16 18 509.60
celar06 11 0.06 11 11 11 11 11 11 0.33
celar07pp 12 0.16 14 15 13 15 13 15 1.22
graph04 8 0.25 12 20 13 20 14 16 1.95
rl5934-pp 4 8.27 5 6 5 6 5 6 35.98
queen15-15 42 1.80 52 59 52 62 52 58 27.79

Table 3: Results of MCSLB+ for selected instances

instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

link 4 0.06 11 0.08 11 0.40 4 0.12 11 0.16 12 40.70
munin1 4 0.01 10 0.00 10 0.03 4 0.01 10 0.02 10 0.16
munin3 3 0.21 7 0.06 7 0.53 3 0.43 7 0.12 7 31.31
pignet2 6 79.97 38 0.60 41 21.58 6 87.94 38 0.63 48 1280.96
celar06 10 0.00 11 0.02 11 0.02 10 0.00 11 0.01 11 0.12
celar07pp 13 0.25 15 0.04 15 0.06 13 0.22 15 0.04 16 2.11
graph04 6 0.02 19 0.07 21 0.34 6 0.03 19 0.07 24 4.34
rl5934-pp 3 0.52 5 0.12 5 0.25 3 0.55 5 0.11 9 38137.20
queen15-15 42 0.19 58 0.78 60 7.36 42 0.10 58 0.41 73 7579.01

Table 4: Results of LBN+/LBP+ for selected instances
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7 Discussion and Concluding Remarks

In this article, we examined the notion of contraction degeneracy, and several heuristics for
treewidth lower bounds which are based on the combination of contraction with existing treewidth
lower bound methods. We showed some corresponding decision problems to be NP-complete, but
also introduced several heuristics.

The practical experiments show that contracting edges is a very good approach for obtaining
lower bounds for treewidth as it considerably improves known lower bounds. The MMD+ heuris-
tics appear to be attractive, due to the fact that the running time of these heuristics is almost
always negligible, and the bound is reasonably good. The MCSLB+ heuristics have much larger
running time, and often give only a small improvement on the MMD+ based lower bound. The
LBN, LBP, LBN+ and LBP+ heuristics often use more time than the MMD+, but less than
the MCSLB+ (except for LBP+(MD)), and can give further lower bound improvements. The
LBP+(MD) heuristic usually is slowest but gives often the best results. Furthermore, we see that
the strategy for selecting a neighbour u of v with the least number of common neighbours of u
and v often performs best and appears to be the clear choice for such a strategy.

Notice that although the gap between lower and upper bound could be significantly closed by
contracting edges within the algorithms, the absolute gap is still large for many graphs (pignet2,
graph*). While it is known that the treewidth has polynomial time approximation algorithm with
logarithmic performance ratios, the existence of polynomial time approximation algorithms for
treewidth with constant bounded ratios remains a long standing open problem. Thus, obtaining
good lower bounds for treewidth is both from a theoretical as from a practical viewpoint a highly
interesting topic for further research.

A different lower bound for treewidth was provided by Ramachandramurthi [24, 25]. While
this lower bound appears to generally give small lower bound values, it can also be combined with
contraction. Work in this direction is in progress.

Apart from its function as a treewidth lower bound, the contraction degeneracy appears to be
an attractive and elementary graph measure, worth further study. For instance, interesting topics
are its computational complexity on special graph classes or the complexity of approximation
algorithms with a guaranteed performance ratio. We recently found a polynomial time algorithm
for cographs [9], and we observed that the problem is easy for chordal graphs [33], but many other
cases remain open.
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A All Computational Results

Below, we present the results of our experiments. Earlier, we presented a number of selected
results. See Section 6 for details on the backgrounds of the graphs and the experimental setting.

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

barley 48 126 7 5 0.00 6 0.00 5 0.00 6 0.00
diabetes 413 819 4 3 0.00 4 0.01 4 0.00 4 0.00
link 724 1738 13 4 0.00 8 0.02 5 0.01 11 0.03
mildew 35 80 4 3 0.00 4 0.00 3 0.00 4 0.00
munin1 189 366 11 4 0.00 8 0.01 5 0.00 10 0.00
munin2 1003 1662 7 3 0.01 6 0.01 4 0.01 6 0.02
munin3 1044 1745 7 3 0.01 7 0.01 4 0.02 7 0.02
munin4 1041 1843 8 4 0.01 7 0.01 5 0.01 7 0.02
oesoca+ 67 208 11 9 0.00 9 0.00 9 0.00 9 0.00
oow-trad 33 72 6 3 0.00 4 0.00 4 0.00 5 0.00
oow-bas 27 54 4 3 0.00 4 0.00 3 0.00 4 0.00
oow-solo 40 87 6 3 0.00 4 0.00 4 0.00 5 0.00
pathfinder 109 211 6 5 0.00 6 0.00 5 0.00 6 0.01
pignet2 3032 7264 135 4 0.01 29 0.11 10 0.07 38 0.20
pigs 441 806 10 3 0.00 6 0.01 4 0.00 7 0.01
ship-ship 50 114 8 4 0.00 6 0.00 4 0.00 6 0.00
water 32 123 10 6 0.00 7 0.00 7 0.00 8 0.00
wilson 21 27 3 2 0.00 3 0.00 3 0.00 3 0.00

barley-pp 26 78 7 5 0.00 6 0.00 5 0.00 6 0.00
link-pp 308 1158 13 6 0.00 8 0.01 6 0.00 11 0.02
munin1-pp 66 188 11 4 0.00 8 0.00 5 0.00 10 0.01
munin2-pp 167 455 7 4 0.00 6 0.01 5 0.00 6 0.01
munin3-pp 96 313 7 4 0.00 7 0.00 5 0.00 7 0.01
munin4-pp 217 646 8 5 0.00 7 0.00 5 0.01 8 0.01
munin-kgo-pp 16 41 5 4 0.00 4 0.00 5 0.00 4 0.00
oesoca+-pp 14 75 11 9 0.00 10 0.00 9 0.00 9 0.00
oow-trad-pp 23 54 6 4 0.00 5 0.00 4 0.00 5 0.00
oow-solo-pp 27 63 6 4 0.00 5 0.00 4 0.00 5 0.00
pathfinder-pp 12 43 6 5 0.00 6 0.00 5 0.00 6 0.00
pignet2-pp 1024 3774 142 5 0.01 29 0.09 10 0.03 38 0.13
pigs-pp 48 137 10 4 0.00 7 0.00 4 0.00 7 0.00
ship-ship-pp 30 77 8 4 0.00 6 0.00 4 0.00 6 0.00
water-pp 22 96 10 6 0.00 8 0.00 7 0.00 8 0.00

Table 5: Upper bounds and results of MMD and MMD+ for (preprocessed versions of) probabilistic
networks
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

celar01 458 1449 17 8 0.00 12 0.01 9 0.00 14 0.02
celar02 100 311 10 9 0.00 9 0.00 9 0.00 10 0.00
celar03 200 721 15 8 0.00 11 0.00 9 0.00 13 0.01
celar04 340 1009 16 9 0.00 12 0.01 9 0.00 13 0.01
celar05 200 681 15 9 0.01 11 0.00 9 0.00 13 0.01
celar06 100 350 11 10 0.00 11 0.00 10 0.00 11 0.01
celar06pp 82 327 11 10 0.00 11 0.00 10 0.00 11 0.01
celar07 200 817 18 11 0.00 13 0.00 12 0.01 15 0.00
celar07pp 162 764 18 11 0.00 13 0.00 12 0.00 15 0.01
celar08 458 1655 18 11 0.00 13 0.01 12 0.01 15 0.01
celar08pp 365 1539 18 11 0.00 13 0.00 12 0.01 15 0.01
celar09 340 1130 18 11 0.01 13 0.01 12 0.00 15 0.01
celar10 340 1130 18 11 0.00 13 0.01 12 0.01 15 0.01
celar11 340 975 15 8 0.00 11 0.00 9 0.00 13 0.01
graph01 100 358 25 8 0.00 9 0.01 9 0.00 14 0.00
graph02 200 709 51 6 0.00 11 0.00 7 0.01 20 0.02
graph03 100 340 22 5 0.00 8 0.00 6 0.01 14 0.00
graph04 200 734 55 6 0.00 12 0.01 7 0.00 19 0.02
graph05 100 416 26 8 0.00 9 0.00 9 0.00 15 0.00
graph06 200 843 53 8 0.00 12 0.01 9 0.00 21 0.02
graph06pp 119 348 18 5 0.00 7 0.00 6 0.00 11 0.01
graph07 200 843 53 8 0.00 12 0.01 9 0.00 21 0.02
graph08 340 1234 91 7 0.00 16 0.02 8 0.01 26 0.04
graph09 458 1667 118 8 0.01 17 0.03 9 0.01 29 0.06
graph10 340 1275 96 6 0.00 15 0.01 7 0.01 27 0.04
graph11 340 1425 98 7 0.00 17 0.01 8 0.01 27 0.05
graph11pp 340 1424 98 7 0.00 16 0.02 8 0.01 28 0.05
graph12 340 1256 90 5 0.00 16 0.01 6 0.01 25 0.04
graph13 458 1877 126 6 0.00 18 0.02 7 0.01 31 0.07
graph13pp 456 1874 134 6 0.01 18 0.03 7 0.01 31 0.07
graph14 458 1398 121 4 0.00 20 0.02 8 0.02 27 0.05

Table 6: Upper bounds and results of MMD and MMD+ for frequency assignment instances
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

celar01-pp 157 804 16 8 0.00 12 0.00 9 0.00 14 0.01
celar02-pp 19 115 10 9 0.00 9 0.00 9 0.00 10 0.00
celar03-pp 81 413 15 9 0.00 11 0.01 10 0.00 13 0.00
celar04-pp 114 524 16 9 0.00 12 0.00 10 0.00 13 0.01
celar05-pp 80 426 15 9 0.00 12 0.00 9 0.01 13 0.00
celar07-pp 92 521 18 11 0.00 13 0.01 11 0.00 15 0.00
celar08-pp 189 1016 18 11 0.00 13 0.01 12 0.00 15 0.01
celar09-pp 133 646 18 11 0.00 13 0.00 11 0.00 15 0.01
celar10-pp 133 646 18 11 0.01 13 0.01 11 0.00 15 0.01
celar11-pp 96 470 15 9 0.00 11 0.00 9 0.01 13 0.00
graph01-pp 89 332 26 8 0.00 10 0.00 9 0.01 15 0.00
graph02-pp 179 659 48 6 0.00 12 0.01 7 0.01 20 0.01
graph03-pp 79 293 24 6 0.00 8 0.00 6 0.01 13 0.00
graph04-pp 179 678 53 6 0.01 12 0.00 7 0.01 19 0.01
graph05-pp 91 394 26 8 0.00 9 0.01 9 0.00 15 0.01
graph06-pp 180 790 54 8 0.00 13 0.01 9 0.00 21 0.02
graph07-pp 180 790 54 8 0.00 13 0.01 9 0.00 21 0.02
graph08-pp 314 1173 90 7 0.01 16 0.02 8 0.01 26 0.04
graph09-pp 405 1525 121 8 0.00 18 0.04 9 0.02 29 0.08
graph10-pp 328 1253 97 6 0.00 16 0.03 7 0.01 26 0.05
graph11-pp 307 1338 93 7 0.00 16 0.02 8 0.01 28 0.04
graph12-pp 312 1177 87 6 0.00 16 0.02 7 0.01 25 0.03
graph13-pp 420 1772 134 6 0.01 19 0.03 7 0.01 31 0.07
graph14-pp 395 1325 127 5 0.00 20 0.02 8 0.02 27 0.04

Table 7: Upper bounds and results of MMD and MMD+ for preprocessed versions of frequency
assignment instances

instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU

fl3795 2103 3973 13 3 0.01 5 0.09 4 0.06 5 0.10
fnl4461 3326 5147 35 3 0.02 5 0.10 4 0.08 5 0.13
pcb3038 1985 3109 25 2 0.01 5 0.05 4 0.04 5 0.07
rl5915 1939 2935 25 3 0.01 5 0.06 4 0.04 5 0.06
rl5934 2048 3087 26 3 0.01 5 0.05 4 0.04 5 0.07

fl3795-pp 1433 3098 13 3 0.01 5 0.04 4 0.05 6 0.05
fnl4461-pp 1528 3114 33 3 0.01 5 0.04 4 0.03 5 0.06
pcb3038-pp 948 1920 25 3 0.01 5 0.03 4 0.02 5 0.03
rl5915-pp 863 1730 23 3 0.00 5 0.02 4 0.02 5 0.03
rl5934-pp 904 1800 23 3 0.01 5 0.02 4 0.02 5 0.03

Table 8: Upper bounds and results of MMD and MMD+ for TSP graphs and preprocessed versions
of these
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instance size UB MMD MMD+
min-d max-d least-c

|V | |E| LB CPU LB CPU LB CPU LB CPU
anna 138 493 12 10 0.00 11 0.01 10 0.00 11 0.01
david 87 406 13 10 0.00 10 0.00 10 0.00 12 0.00
fpsol2.i.1 269 11654 66 64 0.01 66 0.05 64 0.04 66 0.34
games120 120 638 33 8 0.00 12 0.01 9 0.01 19 0.01
homer 556 1628 31 12 0.01 19 0.01 12 0.01 22 0.02
inithx.i.1 519 18707 56 55 0.01 55 0.11 55 0.09 56 0.72
inithx.i.2 558 13979 35 31 0.01 31 0.10 31 0.08 31 0.54
inithx.i.3 559 13969 35 31 0.01 31 0.14 31 0.08 31 0.53
le450-15a 450 8168 272 24 0.01 59 0.15 27 0.03 73 0.45
le450-15b 450 8169 270 24 0.01 59 0.15 27 0.04 75 0.45
le450-15c 450 16680 359 49 0.01 98 0.30 51 0.08 109 1.22
le450-15d 450 16750 360 51 0.00 97 0.30 52 0.07 109 1.14
le450-25a 450 8260 234 26 0.00 56 0.12 29 0.04 75 0.42
le450-25b 450 8263 233 25 0.00 53 0.12 28 0.04 74 0.42
le450-25c 450 17343 327 52 0.01 95 0.28 54 0.08 111 1.14
le450-25d 450 17425 336 51 0.01 97 0.29 53 0.08 111 1.17
le450-5a 450 5714 256 17 0.01 53 0.13 19 0.03 62 0.31
le450-5b 450 5734 254 17 0.00 53 0.13 19 0.03 62 0.32
le450-5c 450 9803 272 33 0.00 74 0.22 35 0.04 86 0.63
le450-5d 450 9757 278 32 0.01 73 0.22 34 0.04 85 0.62
miles1000 128 3216 49 41 0.00 45 0.01 41 0.01 48 0.06
miles1500 128 5198 77 72 0.00 76 0.03 72 0.01 77 0.10
miles250 125 387 9 7 0.00 8 0.00 7 0.00 9 0.00
miles500 128 1170 22 19 0.00 21 0.00 20 0.01 22 0.02
miles750 128 2113 36 31 0.00 33 0.01 31 0.01 34 0.04
mulsol.i.1 138 3925 50 48 0.00 50 0.02 49 0.01 50 0.06
mulsol.i.2 173 3885 32 31 0.00 31 0.01 31 0.02 32 0.06
mulsol.i.3 174 3916 32 31 0.00 32 0.03 31 0.02 32 0.06
mulsol.i.4 175 3946 32 31 0.00 31 0.01 31 0.02 32 0.07
mulsol.i.5 176 3973 31 31 0.00 31 0.01 31 0.02 31 0.06
myciel3 11 20 5 3 0.00 5 0.00 3 0.00 5 0.00
myciel4 23 71 10 5 0.00 8 0.00 5 0.00 8 0.00
myciel5 47 236 19 8 0.00 14 0.01 8 0.00 14 0.00
myciel6 95 755 35 12 0.00 24 0.00 13 0.01 26 0.01
myciel7 191 2360 66 18 0.00 40 0.03 19 0.01 42 0.07
queen10-10 100 1470 72 27 0.00 31 0.02 27 0.01 35 0.03
queen11-11 121 1980 88 30 0.00 34 0.03 30 0.01 38 0.04
queen12-12 144 2596 104 33 0.00 39 0.03 33 0.01 44 0.07
queen13-13 169 3328 122 36 0.01 42 0.05 36 0.01 48 0.10
queen14-14 196 4186 141 39 0.00 48 0.06 39 0.01 53 0.14
queen15-15 225 5180 163 42 0.00 52 0.07 42 0.02 58 0.19
queen16-16 256 6320 186 45 0.01 56 0.11 45 0.02 63 0.26
queen5-5 25 160 18 12 0.00 12 0.00 12 0.00 12 0.00
queen6-6 36 290 25 15 0.00 15 0.00 15 0.00 15 0.01
queen7-7 49 476 35 18 0.01 18 0.00 18 0.00 20 0.01
queen8-12 96 1368 67 25 0.00 29 0.02 25 0.00 33 0.03
queen8-8 64 728 46 21 0.01 22 0.00 21 0.01 25 0.01
queen9-9 81 1056 58 24 0.00 26 0.02 24 0.00 29 0.02
school1 385 19095 188 73 0.01 97 0.19 74 0.08 122 1.04
school1-nsh 352 14612 162 61 0.01 82 0.13 61 0.05 106 0.74
zeroin.i.1 126 4100 50 48 0.00 50 0.02 48 0.01 50 0.08
zeroin.i.2 157 3541 32 29 0.00 31 0.02 30 0.01 32 0.07
zeroin.i.3 157 3540 32 29 0.00 31 0.02 30 0.01 32 0.07

Table 9: Upper bounds and results of MMD and MMD+ for DIMACS colouring instances

26



instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

barley 5 0.01 6 6 6 6 6 5 0.06
diabetes 4 0.92 4 4 4 4 4 4 5.23
link 5 3.09 8 10 8 11 8 6 43.08
mildew 3 0.00 4 4 4 4 4 4 0.03
munin1 4 0.17 8 10 9 10 9 7 0.95
munin2 4 5.46 6 6 6 6 5 6 31.3
munin3 4 5.87 6 7 7 7 6 7 33.8
munin4 5 6.06 7 7 7 8 6 7 48.3
oesoca+ 9 0.02 9 9 9 9 9 9 0.15
oow-trad 4 0.00 5 5 5 5 5 4 0.03
oow-bas 3 0.00 4 4 4 4 4 4 0.02
oow-solo 4 0.01 4 5 4 5 5 5 0.05
pathfinder 6 0.05 6 6 6 6 6 6 0.34
pignet2 5 59.60 28 39 30 39 16 18 509.6
pigs 3 1.01 7 7 7 7 6 6 5.12
ship-ship 5 0.01 6 6 6 6 6 6 0.06
water 8 0.00 8 8 8 8 8 8 0.04
wilson 3 0.00 3 3 3 3 3 3 0.01

barley-pp 6 0.00 6 6 6 6 6 6 0.02
link-pp 6 0.60 8 11 8 11 8 9 4.65
munin1-pp 5 0.02 9 10 9 9 9 8 0.14
munin2-pp 5 0.15 6 6 6 6 6 6 0.91
munin3-pp 5 0.05 7 7 7 7 6 6 0.34
munin4-pp 5 0.26 7 7 7 7 7 7 1.7
munin-kgo-pp 5 0.00 5 5 5 5 5 5 0.01
oesoca+-pp 10 0.00 10 10 10 10 10 10 0.01
oow-trad-pp 4 0.00 5 5 5 5 5 5 0.01
oow-solo-pp 5 0.00 5 5 5 5 5 5 0.02
pathfinder-pp 6 0.00 6 6 6 6 6 6 0
pignet2-pp 6 7.59 29 38 29 39 20 21 74.76
pigs-pp 5 0.01 7 7 7 7 7 6 0.07
ship-ship-pp 4 0.00 6 6 6 6 6 6 0.02
water-pp 8 0.00 8 8 8 8 8 8 0.02

Table 10: Results of MCSLB+ for (preprocessed versions of) probabilistic networks
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

celar01 10 1.20 12 13 12 14 12 13 17.08
celar02 9 0.06 9 10 9 10 9 9 0.3
celar03 9 0.23 11 12 11 13 12 12 1.54
celar04 11 0.66 11 13 12 13 12 13 4.85
celar05 9 0.23 12 13 12 13 12 12 1.8
celar06 11 0.06 11 11 11 11 11 11 0.33
celar06pp 11 0.04 11 11 11 11 11 11 0.24
celar07 12 0.24 13 15 13 15 13 15 1.66
celar07pp 12 0.16 14 15 13 15 13 15 1.22
celar08 12 1.45 13 15 14 15 13 15 17.04
celar08pp 12 0.86 14 15 14 15 14 14 8.39
celar09 12 0.82 13 15 14 15 14 15 4.62
celar10 12 0.71 13 15 14 15 14 15 4.77
celar11 10 0.66 11 13 12 13 12 12 4.43
graph01 9 0.06 9 15 11 14 12 13 0.45
graph02 8 0.24 12 19 12 19 14 13 2.54
graph03 6 0.06 9 13 10 14 9 13 0.49
graph04 8 0.25 12 20 13 20 14 16 1.95
graph05 9 0.06 10 15 11 16 11 14 0.47
graph06 9 0.26 12 22 14 22 14 15 2.22
graph06pp 6 0.07 7 11 7 11 7 8 0.47
graph07 9 0.26 12 22 14 22 14 15 2.15
graph08 9 0.76 17 26 18 26 18 20 5.89
graph09 9 1.43 17 30 20 28 22 23 11.51
graph10 8 0.77 18 26 17 26 19 22 6.25
graph11 8 0.80 15 27 18 27 17 26 6.53
graph11pp 8 0.81 16 27 17 28 18 23 7.25
graph12 7 0.76 15 25 16 25 17 21 5.92
graph13 8 1.48 18 32 19 31 20 28 12.89
graph13pp 8 1.46 19 31 19 32 21 17 12.98
graph14 5 1.35 19 28 20 28 21 25 10.11

Table 11: Results of MCSLB+ for frequency assignment instances
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

celar01-pp 10 0.16 11 13 12 13 12 13 1.27
celar02-pp 10 0.00 10 10 10 10 10 10 0.01
celar03-pp 10 0.04 11 13 12 13 13 12 0.29
celar04-pp 11 0.08 11 13 13 13 13 13 0.57
celar05-pp 9 0.04 11 12 12 12 11 12 0.31
celar07-pp 12 0.11 13 15 14 15 14 15 0.4
celar08-pp 12 0.25 14 15 14 15 14 15 1.89
celar09-pp 12 0.12 14 15 14 15 14 15 0.82
celar10-pp 12 0.12 14 15 14 15 14 15 0.82
celar11-pp 10 0.06 12 13 11 12 11 11 0.42
graph01-pp 9 0.05 10 15 11 14 12 14 0.33
graph02-pp 8 0.22 12 19 14 19 14 15 1.46
graph03-pp 6 0.03 9 14 9 13 10 13 0.25
graph04-pp 8 0.20 12 20 13 20 13 17 1.56
graph05-pp 9 0.06 10 15 10 15 12 14 0.37
graph06-pp 9 0.23 12 22 15 21 15 17 1.75
graph07-pp 9 0.23 12 22 15 21 15 17 1.73
graph08-pp 8 0.67 16 26 17 25 19 23 5.15
graph09-pp 9 1.31 18 29 20 30 21 24 9.35
graph10-pp 8 0.76 16 26 18 26 16 22 5.71
graph11-pp 9 0.67 16 27 18 28 18 25 5.51
graph12-pp 7 0.65 16 25 17 25 17 25 4.98
graph13-pp 8 1.31 19 32 20 32 21 30 10.74
graph14-pp 6 1.03 20 28 21 28 21 25 7.92

Table 12: Results of MCSLB+ for preprocessed versions of frequency assignment instances

instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU

fl3795 4 41.12 5 6 5 6 5 5 160.84
fnl4461 4 101.46 5 5 5 5 5 5 406.3
pcb3038 4 33.02 5 5 5 5 5 5 127.66
rl5915 4 33.39 5 5 5 6 5 5 114.83
rl5934 4 37.70 5 5 5 6 5 5 128.27

fl3795-pp 4 18.52 5 6 5 6 5 5 115.28
fnl4461-pp 4 22.26 5 5 5 5 5 5 124.29
pcb3038-pp 4 7.48 5 5 5 5 5 5 45.56
rl5915-pp 4 9.13 5 5 5 6 5 6 34.57
rl5934-pp 4 8.27 5 6 5 6 5 6 35.98

Table 13: Results of MCSLB+ for TSP graphs and preprocessed versions of these
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instance MCSLB MCSLB+ LBs
min-deg last-mcs max-mcs average

LB CPU min-d least-c min-d least-c min-d least-c CPU
anna 10 0.21 10 12 11 12 11 11 1.66
david 10 0.10 11 12 10 12 10 11 0.79
fpsol2.i.1 66 4.45 66 66 66 66 66 66 79.51
games120 10 0.23 12 20 15 19 14 18 1.58
homer 13 3.54 19 23 20 23 18 17 39.36
inithx.i.1 56 13.62 56 56 56 56 56 56 262.49
inithx.i.2 31 12.35 31 31 31 31 31 31 226.48
inithx.i.3 31 12.17 31 31 31 31 31 31 225.48
le450-15a 28 7.08 60 74 59 73 59 71 131.96
le450-15b 27 6.73 59 74 59 75 60 73 127.27
le450-15c 51 10.50 97 110 98 109 97 105 223.34
le450-15d 53 10.66 98 110 97 110 96 107 251.67
le450-25a 30 6.06 56 75 58 75 59 69 138.04
le450-25b 29 6.22 54 75 55 76 56 69 126.24
le450-25c 55 12.23 97 111 96 111 97 110 262.69
le450-25d 54 11.05 97 111 98 111 98 110 264.69
le450-5a 20 5.26 53 63 52 62 53 62 89.01
le450-5b 20 5.16 51 62 52 62 52 61 90.96
le450-5c 35 7.14 73 86 73 87 74 85 152.89
le450-5d 34 7.39 72 85 73 86 73 84 150.14
miles1000 46 0.60 46 48 46 49 46 48 10.21
miles1500 74 1.00 77 77 77 77 76 76 13.16
miles250 8 0.16 9 9 9 9 8 8 1.49
miles500 21 0.30 22 22 22 22 22 22 2.78
miles750 32 0.44 33 34 33 34 33 34 6.23
mulsol.i.1 50 0.77 50 50 50 50 50 50 10.62
mulsol.i.2 32 0.95 32 32 32 32 32 32 15.92
mulsol.i.3 32 0.99 32 32 32 32 32 32 14.51
mulsol.i.4 32 0.99 32 32 32 32 32 32 15.72
mulsol.i.5 31 1.00 31 31 31 31 31 31 14.53
myciel3 3 0.00 4 4 5 4 4 4 0.00
myciel4 5 0.00 8 8 8 8 8 7 0.03
myciel5 8 0.03 14 14 14 14 14 12 0.23
myciel6 13 0.16 23 25 24 24 23 23 1.70
myciel7 20 0.84 40 43 40 43 39 35 13.05
queen10-10 27 0.25 31 35 30 36 30 32 2.72
queen11-11 30 0.41 34 39 35 40 35 37 4.64
queen12-12 33 0.62 37 44 40 45 39 42 7.58
queen13-13 36 0.91 42 51 45 49 43 47 12.54
queen14-14 39 1.29 46 54 49 55 47 52 18.57
queen15-15 42 1.80 52 59 52 62 52 58 27.79
queen16-16 45 2.48 56 64 57 65 55 63 39.83
queen5-5 12 0.01 12 12 12 12 12 12 0.05
queen6-6 15 0.03 15 15 15 16 15 16 0.15
queen7-7 18 0.04 18 19 18 19 19 19 0.37
queen8-12 25 0.22 30 34 29 33 29 31 2.24
queen8-8 21 0.08 22 25 22 25 22 24 0.73
queen9-9 24 0.15 25 30 27 30 26 28 1.21
school1 85 9.73 97 122 110 118 104 118 228.85
school1-nsh 72 6.70 81 108 92 101 88 105 155.16
zeroin.i.1 50 0.67 50 50 50 50 50 50 8.90
zeroin.i.2 31 0.80 31 32 31 32 31 31 10.91
zeroin.i.3 31 0.78 31 32 31 32 31 31 11.45

Table 14: Results of MCSLB+ for DIMACS colouring instances
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instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

barley 5 0.00 6 0.01 6 0.01 5 0.00 6 0.00 6 0.10
diabetes 3 0.04 4 0.04 4 0.13 3 0.06 4 0.06 4 17.89
link 4 0.06 11 0.08 11 0.40 4 0.12 11 0.16 12 40.70
mildew 3 0.00 4 0.01 4 0.00 3 0.00 4 0.01 4 0.05
munin1 4 0.01 10 0.00 10 0.03 4 0.01 10 0.02 10 0.16
munin2 3 0.10 6 0.06 6 0.47 3 0.20 6 0.11 6 54.54
munin3 3 0.21 7 0.06 7 0.53 3 0.43 7 0.12 7 31.31
munin4 4 0.06 7 0.06 8 1.05 4 0.11 7 0.13 8 99.52
oesoca+ 9 0.00 9 0.01 10 0.03 9 0.01 9 0.01 10 0.79
oow-trad 3 0.00 5 0.00 5 0.00 3 0.00 5 0.00 5 0.02
oow-bas 3 0.00 4 0.00 4 0.00 3 0.00 4 0.00 4 0.01
oow-solo 3 0.00 5 0.01 5 0.01 3 0.00 5 0.00 5 0.04
pathfinder 5 0.00 6 0.00 6 0.04 5 0.01 6 0.01 6 0.16
pignet2 6 79.97 38 0.60 41 21.58 6 87.94 38 0.63 48 1280.96
pigs 3 0.06 7 0.02 7 0.13 3 0.07 7 0.02 8 9.58
ship-ship 4 0.00 6 0.00 6 0.00 4 0.00 6 0.01 6 0.03
water 6 0.00 8 0.00 9 0.01 6 0.00 8 0.00 9 0.16
wilson 2 0.00 3 0.00 3 0.00 2 0.00 3 0.00 3 0.00

barley-pp 5 0.00 6 0.00 6 0.00 5 0.00 6 0.00 6 0.03
link-pp 6 0.05 11 0.09 11 0.17 6 0.05 11 0.10 12 29.94
munin1-pp 4 0.01 10 0.01 10 0.02 4 0.01 10 0.01 10 0.05
munin2-pp 4 0.02 6 0.03 6 0.05 4 0.02 6 0.02 6 3.16
munin3-pp 4 0.01 7 0.02 7 0.03 4 0.01 7 0.02 7 0.23
munin4-pp 5 0.01 8 0.05 8 0.09 5 0.02 8 0.04 8 3.78
munin-kgo-pp 4 0.00 4 0.00 5 0.00 4 0.00 4 0.00 5 0.03
oesoca+-pp 9 0.00 10 0.00 10 0.00 9 0.00 10 0.00 10 0.00
oow-trad-pp 4 0.00 5 0.01 5 0.00 4 0.00 5 0.00 5 0.02
oow-solo-pp 4 0.00 5 0.00 5 0.00 4 0.00 5 0.01 5 0.02
pathfinder-pp 5 0.00 6 0.00 6 0.00 5 0.00 6 0.00 6 0.00
pignet2-pp 9 36.90 38 0.66 41 5.65 9 38.75 38 0.66 48 288.83
pigs-pp 4 0.00 7 0.00 8 0.02 4 0.00 7 0.00 8 0.03
ship-ship-pp 4 0.00 6 0.00 6 0.00 4 0.00 6 0.00 6 0.02
water-pp 6 0.00 8 0.00 9 0.01 6 0.00 8 0.01 9 0.07

Table 15: Results of LBN+/LBP+ for (preprocessed versions of) probabilistic networks
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instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

celar01 10 0.58 14 0.05 14 0.17 10 0.79 14 0.06 15 15.64
celar02 9 0.01 10 0.01 10 0.01 9 0.01 10 0.01 10 0.30
celar03 9 0.16 13 0.03 13 0.06 9 0.15 13 0.03 14 2.59
celar04 10 0.19 13 0.06 14 0.19 10 0.19 13 0.06 15 3.35
celar05 10 0.16 13 0.03 13 0.07 10 0.17 13 0.03 14 2.75
celar06 10 0.00 11 0.02 11 0.02 10 0.00 11 0.01 11 0.12
celar06pp 10 0.01 11 0.03 11 0.02 10 0.00 11 0.01 11 0.12
celar07 13 0.28 15 0.05 16 0.12 13 0.26 15 0.04 16 2.41
celar07pp 13 0.25 15 0.04 15 0.06 13 0.22 15 0.04 16 2.11
celar08 13 1.03 15 0.12 16 0.38 13 1.02 15 0.12 16 39.72
celar08pp 13 0.83 15 0.11 16 0.32 13 0.81 15 0.11 16 32.55
celar09 13 0.44 15 0.07 16 0.22 13 0.45 15 0.07 16 3.92
celar10 13 0.46 15 0.07 16 0.22 13 0.47 15 0.07 16 4.03
celar11 9 0.25 13 0.06 14 0.20 9 0.25 13 0.06 14 2.05
graph01 8 0.00 14 0.03 15 0.07 8 0.00 14 0.02 16 0.66
graph02 6 0.02 20 0.08 21 0.21 6 0.03 20 0.08 24 2.19
graph03 5 0.00 14 0.02 14 0.04 5 0.01 14 0.03 16 0.31
graph04 6 0.02 19 0.07 21 0.34 6 0.03 19 0.07 24 4.34
graph05 8 0.00 15 0.03 16 0.08 8 0.00 15 0.03 18 1.03
graph06 8 0.02 21 0.09 23 0.42 8 0.02 21 0.09 26 6.48
graph06pp 5 0.01 11 0.03 12 0.06 5 0.02 11 0.02 13 0.36
graph07 8 0.02 21 0.10 23 0.42 8 0.02 21 0.09 26 6.74
graph08 7 0.04 26 0.16 27 0.56 7 0.04 26 0.16 32 12.19
graph09 8 0.05 29 0.23 32 1.66 8 0.05 29 0.23 37 32.87
graph10 6 0.06 27 0.17 29 0.79 6 0.06 27 0.18 31 10.78
graph11 7 0.06 27 0.20 30 1.28 7 0.07 27 0.20 34 26.86
graph11pp 7 0.07 28 0.19 30 0.98 7 0.07 28 0.21 34 19.69
graph12 5 0.08 25 0.17 27 0.78 5 0.08 25 0.17 31 15.18
graph13 6 0.14 31 0.29 34 2.06 6 0.14 31 0.30 39 61.54
graph13pp 6 0.13 31 0.31 34 2.04 6 0.13 31 0.33 39 56.50
graph14 4 0.22 27 0.22 30 1.33 4 0.23 27 0.21 34 17.49

Table 16: Results of LBN+/LBP+ for frequency assignment instances
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instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

celar01-pp 10 0.38 14 0.05 14 0.06 10 0.35 14 0.04 15 8.87
celar02-pp 10 0.00 10 0.01 10 0.00 10 0.00 10 0.00 10 0.02
celar03-pp 10 0.06 13 0.02 13 0.02 10 0.06 13 0.02 14 0.90
celar04-pp 10 0.07 13 0.03 14 0.07 10 0.06 13 0.03 15 1.57
celar05-pp 10 0.07 13 0.03 13 0.02 10 0.08 13 0.03 14 1.52
celar07-pp 13 0.12 15 0.03 16 0.05 13 0.13 15 0.03 16 0.90
celar08-pp 13 0.42 15 0.06 16 0.15 13 0.40 15 0.06 16 23.85
celar09-pp 13 0.18 15 0.03 16 0.09 13 0.18 15 0.04 16 1.54
celar10-pp 13 0.17 15 0.03 16 0.09 13 0.18 15 0.03 16 1.42
celar11-pp 10 0.14 13 0.03 14 0.06 10 0.14 13 0.03 14 1.13
graph01-pp 8 0.01 15 0.02 15 0.03 8 0.01 15 0.03 16 0.26
graph02-pp 6 0.01 20 0.07 21 0.21 6 0.02 20 0.06 24 1.99
graph03-pp 6 0.00 13 0.03 14 0.07 6 0.01 13 0.02 16 0.47
graph04-pp 6 0.02 19 0.06 21 0.32 6 0.02 19 0.07 24 4.22
graph05-pp 8 0.00 15 0.03 16 0.08 8 0.00 15 0.03 18 0.80
graph06-pp 8 0.01 21 0.09 23 0.39 8 0.01 21 0.09 26 6.40
graph07-pp 8 0.02 21 0.08 23 0.40 8 0.01 21 0.09 26 6.36
graph08-pp 7 0.04 26 0.18 27 0.53 7 0.04 26 0.16 32 11.73
graph09-pp 8 0.05 29 0.22 31 1.18 8 0.05 29 0.22 37 33.81
graph10-pp 6 0.06 26 0.17 29 1.08 6 0.06 26 0.18 31 16.21
graph11-pp 7 0.06 28 0.18 30 0.90 7 0.06 28 0.19 34 20.72
graph12-pp 6 0.05 25 0.16 27 0.76 6 0.05 25 0.16 31 15.34
graph13-pp 6 0.13 31 0.28 34 2.01 6 0.12 31 0.29 39 62.66
graph14-pp 5 0.03 27 0.10 30 1.25 5 0.04 27 0.12 34 16.91

Table 17: Results of LBN+/LBP+ for preprocessed versions of frequency assignment instances

instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)
LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU

fl3795 3 0.78 5 0.36 3 0.73 5 0.32 7 2.87 - -
fnl4461 3 0.97 5 0.45 3 0.91 5 0.36 5 2.56 - -
pcb3038 3 3.65 5 0.21 3 3.39 5 0.19 5 0.88 - -
rl5915 3 0.79 5 0.21 3 0.70 5 0.20 5 0.87 - -
rl5934 3 0.99 5 0.24 3 0.69 5 0.21 5 0.99 - -

fl3795-pp 3 1.31 6 0.18 3 1.32 6 0.22 6 0.51 7 4269.18
fnl4461-pp 3 0.66 5 0.22 3 0.70 5 0.21 5 0.61 - -
pcb3038-pp 3 0.28 5 0.11 3 0.30 5 0.11 5 0.27 8 34030.60
rl5915-pp 3 0.27 5 0.11 3 0.31 5 0.11 5 0.24 9 54819.50
rl5934-pp 3 0.52 5 0.12 3 0.55 5 0.11 5 0.25 9 38137.20

Table 18: Results of LBN+/LBP+ for TSP graphs and preprocessed versions of these
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instance LBN LBN LBN+ LBP LBP LBP+
(MMD) (MMD+) (MD) (MMD) (MMD+) (MD)

LB CPU LB CPU LB CPU LB CPU LB CPU LB CPU
anna 10 0.02 11 0.02 12 0.22 10 0.01 11 0.02 12 1.67
david 10 0.00 12 0.02 12 0.06 10 0.01 12 0.02 12 0.61
fpsol2.i.1 66 1.42 66 1.67 66 5.03 66 1.33 66 1.76 66 1810.12
games120 8 0.03 19 0.05 21 0.36 8 0.02 19 0.06 24 2.48
homer 14 1.13 22 0.13 25 3.12 14 1.18 22 0.13 26 88.39
inithx.i.1 56 2.21 56 3.79 56 14.75 56 2.15 56 3.75 56 3937.69
inithx.i.2 31 1.90 31 4.55 31 13.01 31 1.11 31 2.44 31 3510.81
inithx.i.3 31 4.92 31 7.16 31 12.65 31 2.92 31 4.08 31 3223.80
le450-15a 24 0.80 73 2.01 80 48.59 24 0.41 73 0.94 94 33607.00
le450-15b 24 1.70 75 1.94 81 38.40 24 0.88 75 0.93 95 25254.92
le450-15c 49 2.06 109 4.97 118 196.08 49 1.37 109 2.62 139 301507.92
le450-15d 51 4.46 109 4.86 117 186.02 51 2.74 109 2.83 141 468771.49
le450-25a 27 20.09 75 1.93 81 40.36 27 11.61 75 0.96 96 29270.39
le450-25b 25 2.19 74 1.81 81 47.98 25 1.26 74 0.95 96 34398.06
le450-25c 52 1.86 111 4.97 121 228.82 52 1.20 111 2.76 144 818568.19
le450-25d 51 3.88 111 5.14 119 214.68 51 2.62 111 2.79 143 868635.44
le450-5a 17 0.53 62 1.23 66 17.13 17 0.30 62 0.64 79 6149.43
le450-5b 17 0.52 62 1.27 67 20.78 17 0.30 62 0.66 79 7466.67
le450-5c 33 1.09 86 2.53 93 48.27 33 0.69 86 1.32 106 30076.05
le450-5d 32 1.10 85 2.57 92 48.04 32 0.68 85 1.28 106 34573.68
miles1000 44 2.46 48 0.25 49 1.01 44 1.33 48 0.13 49 337.91
miles1500 76 1.55 77 0.62 77 0.63 76 0.82 77 0.35 77 113.30
miles250 8 0.02 9 0.02 9 0.07 8 0.01 9 0.01 9 0.78
miles500 21 0.18 22 0.10 22 0.16 21 0.11 22 0.05 22 14.52
miles750 32 0.17 34 0.14 34 0.35 32 0.09 34 0.07 35 160.10
mulsol.i.1 50 0.23 50 0.30 50 0.75 50 0.12 50 0.15 50 103.11
mulsol.i.2 32 0.17 32 0.33 32 1.10 32 0.08 32 0.17 32 68.10
mulsol.i.3 32 0.18 32 0.34 32 1.10 32 0.09 32 0.18 32 73.24
mulsol.i.4 32 0.17 32 0.34 32 1.13 32 0.09 32 0.17 32 71.90
mulsol.i.5 31 0.08 31 0.34 31 1.16 31 0.05 31 0.18 31 85.24
myciel3 3 0.00 5 0.00 5 0.00 3 0.00 5 0.00 5 0.00
myciel4 5 0.00 8 0.00 8 0.01 5 0.00 8 0.00 9 0.01
myciel5 8 0.01 14 0.02 15 0.07 8 0.00 14 0.01 16 0.25
myciel6 15 0.40 26 0.06 27 0.26 15 0.22 26 0.03 29 1.94
myciel7 25 5.76 42 0.29 46 3.39 25 3.17 42 0.16 52 174.52
queen10-10 27 0.02 35 0.13 35 0.32 27 0.01 35 0.07 42 29.74
queen11-11 30 0.04 38 0.20 40 1.31 30 0.02 38 0.10 48 119.72
queen12-12 33 0.06 44 0.27 44 0.78 33 0.03 44 0.15 55 363.91
queen13-13 36 0.11 48 0.41 50 3.45 36 0.05 48 0.21 61 1154.18
queen14-14 39 0.14 53 0.56 55 4.90 39 0.07 53 0.30 67 3282.31
queen15-15 42 0.19 58 0.78 60 7.36 42 0.10 58 0.41 73 7579.01
queen16-16 45 0.28 63 1.05 66 13.44 45 0.14 63 0.53 79 16312.83
queen5-5 12 0.00 12 0.00 12 0.01 12 0.00 12 0.00 14 0.04
queen6-6 15 0.00 15 0.01 16 0.05 15 0.00 15 0.00 18 0.35
queen7-7 18 0.01 20 0.03 21 0.09 18 0.00 20 0.01 22 0.69
queen8-12 25 0.02 33 0.11 34 0.46 25 0.01 33 0.06 39 19.54
queen8-8 21 0.01 25 0.04 26 0.18 21 0.01 25 0.03 28 1.71
queen9-9 24 0.01 29 0.08 30 0.31 24 0.01 29 0.04 35 9.75
school1 88 910.26 122 7.87 132 180.80 88 610.36 122 4.46 149 207254.65
school1-nsh 72 461.76 106 4.24 116 112.63 72 312.79 106 2.37 132 139781.41
zeroin.i.1 50 0.30 50 0.35 50 0.78 50 0.15 50 0.19 50 33.40
zeroin.i.2 31 1.18 32 0.51 32 1.05 31 0.62 32 0.27 32 74.14
zeroin.i.3 31 1.25 32 0.53 32 1.05 31 0.62 32 0.28 32 71.42

Table 19: Results of LBN+/LBP+ for DIMACS colouring instances
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