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Figure 1: Several stages of the FreeLence encoding process of the Venus torso mesh. The blue vertex tree connects each vertex with its free
valences, i.e. the number of incident unprocessed vertices.

Abstract

We introduce FreeLence, a lossless single-rate connectivity com-
pression algorithm for triangle surface meshes. Based upon a
geometry-driven traversal scheme we present two novel and simple
concepts: free-valence connectivity encoding and entropy coding
based on geometric context. Together these techniques yield sig-
nificantly smaller rates for connectivity compression than current
state of the art approaches - valence-based algorithms and Angle-
Analyzer, with an average of 36% improvement over the former and
an average of 18% over the latter on benchmark 3D models, com-
bined with the ability to well adapt to the regularity of meshes. We
also prove that our algorithm exhibits a smaller worst case entropy
for a class of ”well-behaved” triangle meshes than valence-driven
connectivity encoding approaches.
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1 Introduction

Competitive compression of 3D geometric models stays an ever-
growing demand for a wide range of contemporary industrial ap-
plications. While resolution and size of such models are constantly
growing, it remains a challenge to reduce the amount of physical
storage they absorb. For geometry streaming over the Internet, for
online rendering and shared-network applications where bandwidth
is at stake, such a reduction is crucial. At the same time, often no
loss of the original high resolution data can be afforded. Hence re-
duction means the removal of redundant information while keeping
the indispensable parts. This is where lossless connectivity encod-
ing jumps in.

Over the last few years lossless connectivity encoding has been a
very active area of research which led to major advances in com-
pression technology. Here we present FreeLence, a new and simple
to implement compression scheme, which leads to serious practical
and theoretical advances. We improve the bit rates over those of the
best connectivity coders known to date, namely Angle-Analyzer by
Lee, Alliez and Desbrun [Lee et al. 2002] and valence-based tech-
niques as pioneered by Touma and Gotsman [Touma and Gotsman
1998] and improved by many others with an average of 18% over
the former and 36% over the latter. We combine the desirable fea-
tures of these existing approaches while improving some of their



drawbacks. Most notably, by using geometric information to pre-
dict combinatorial information we remove redundancies inherent to
valence-based schemes, where at the same time our approach has
the ability to adapt to highly regular meshes, making it suitable for
high-resolution uniform models. Additionally, building on a theo-
retical analysis we provide evidence that valence-based techniques
may not be ’near-optimal’ by improving their worst case by 11%.

Our high compression rates are based on two main novel technical
details:

1.) our encoding relies on the number of free-valences at the cur-
rently processed vertex: instead of storing the number of all va-
lences of each vertex, as in valence-based encoding schemes, we
only store the number of free valences, i.e. the number of unpro-
cessed incident vertices of a vertex as it is encountered in the pro-
cess of conquering the mesh. This significantly reduces the vari-
ance in the dispersion of stored numbers and hence the entropy of
the code sequence.

2.) the use of context-based arithmetic coding with contexts based
on geometric properties of the mesh. Passing geometric hints to
the entropy coder increases the compression ratios by an average of
20% on our test models.

1.1 Previous Work

Starting with Deering’s pioneering work [Deering 1995] geome-
try compression for 3D meshes has undergone rapid and excit-
ing developments. Early work on triangle mesh compression in-
cludes [Taubin and Rossignac 1998]. In general, geometry com-
pression can be said to divide into two main directions - compress-
ing the connectivity, or combinatorics, of the mesh and compressing
its geometric information, for instance, through quantization. Each
of these directions has several sub-branches. There are single-rate
and progressive schemes, re-meshing and spectral decomposition
approaches and geometry quantization techniques in position and
angle space. A thorough survey of recent techniques and directions
can be found in [Alliez and Gotsman 2003]. Without thriving for
completeness, here we only sketch the work on single-rate connec-
tivity encoding which is relevant to our approach. The techniques
we describe here all rely on a common pattern: from a chosen start-
ing point, the mesh is conquered by a growing disk. If in this pro-
cess the disk touches upon itself its boundary splits in two. If later
two of these boundaries meet again, they merge.

The Edgebreaker algorithm [Rossignac 1999] encodes the connec-
tivity of a mesh using a fixed traversal scheme which conquers one
triangle at a time by crossing edges, or gates. It has a provable
worst case bit rate of 4 bits per vertex (bpv) for lossless storage
of connectivity. Edgebreaker underwent several improvements as
in [King and Rossignac 1999] where a bit rate of 3.67 bpv can be
guaranteed. An interesting derivative of Edgebreaker is the Cut-
Border-Machine [Gumhold and Strasser 1998] and its improve-
ments [Gumhold 1999] with a provable worst case bit rate of 3.552
bpv.

A different branch of this development consists of valence-based
techniques [Touma and Gotsman 1998] and its derivatives like [Al-
liez and Desbrun 2001]. Here the vertices of the mesh are con-
quered instead of the faces. The conquering scheme depends only
on the combinatorics of the mesh, not its geometry. These tech-
niques benefit from an increasing regularity of a mesh when the
dispersion of valences concentrates more around the average of 6
edges per vertex. The original Touma-Gotsman coder practically
achieves bit rates between 2 and 3.5 bpv. One of its attractive as-
pects is the asymptotic limit of 0 bpv for perfectly regular meshes.

Besides the valence part of the code, special “split” symbols need to
be stored, too. Whereas the valence part of the code can be shown to
lie below the Tutte information limit of 3.2452, compare [Gotsman
2003], it is the “split” part which still escapes a thorough analysis
and is in fact critical for the final code length.

The interplay between geometry and connectivity has been inves-
tigated by several authors. It is shown in [Isenburg et al. 2001]
that a big amount of geometric information is contained in the con-
nectivity of a mesh. But since the geometric information is also
completely contained in the vertex positions that are saved along
with the connectivity, some of this information is redundant. There
are two natural ways to remove this redundancy: using connec-
tivity information to improve geometry coding or using geometry
information to improve connectivity coding. The first approach
was investigated in [Sorkine et al. 2003] and [Ben-Chen and Gots-
man 2003]. Signal processing techniques on the connectivity graph
were used to achieve high compression ratios for vertex positions.
The second approach was recently taken by [Coors and Rossignac
2003] who use a geometry-based connectivity prediction to obtain
a serious improvement compared to the Edgebreaker encoder. It
also gives Edgereaker the ability to adapt to mesh regularity, but
on irregular meshes bit rates are above those of the best valence-
based coders. In Angle-Analyzer, [Lee et al. 2002] use a significant
amount of geometric information to improve connectivity compres-
sion ratios. Its symbol sequence is a derivative of the Edgebreaker
“gate” approach. Angle-Analyzer gives the best bit rates known to
date of about 2 to 2.5 bpv in practice. However, one of its draw-
backs is that it cannot benefit as much from highly regular meshes
as valence-based approaches.

Apart from the practical approaches there is a high theoretical in-
terest in guaranteeing worst case bit rates, see [Gotsman 2003] or
[Khodakovsky et al. 2002]. In [Poulalhon and Schaeffer 2003] a
coder is introduced which works at the Tutte census [Tutte 1963],
so that it is provably optimal in the theoretical sense. However, for
practical purposes this is not the case as it does not adapt to mesh
regularity - the code length is equal for all meshes with the same
number of vertices.

1.2 Overview

In this paper we introduce the FreeLence coder which uses a
geometry-driven traversal scheme and predicts free valences from
local geometric information. Popular valence-based coders store
the full number of valences at each vertex, with an average of 6
valences per vertex. This is equivalent to storing the combinatorial
Gauß curvature of the edge graph of the mesh. In contrast, Free-
Lence only stores the number of free valences and thereby benefits
from a very low statistical dispersion of the free valences being
about 1 free valence per focus vertex.

Additionally, a context-based arithmetic entropy coder is used for
storing the free valences. Into which context a concrete free valence
enters, depends on the opening angle of the focus to which this free
valence belongs. Opening angles are used to give the coder a hint
what the most suitable context for storage might be. Entropy coders
greatly benefit from such hints.

Also, we challenge the assumption that valence-based approaches
are ’near-optimal’ by proving that free-valence techniques yield
better worst case bit rates for the valence part of the code, while
at the same time having the ability to use exactly the same traversal
scheme, and hence having the same occurrences of split symbols
as the Touma-Gotsman algorithm. Note, that the actual number
of splits appearing in FreeLence is significantly below the Touma-
Gotsman rate because of the usage of a geometry-driven scheme.
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The paper is organized as follows: Section 2 introduces data struc-
tures and explains the FreeLence coder. Section 3 goes into a de-
tailed discussion and provides experimental evidence how our coder
improves over other techniques. A theoretical analysis of worst case
bit rates for our coder is given in the appendix of this paper.

2 The FreeLence Algorithm

We consider lossless compression of the combinatorial mesh of tri-
angulated orientable topological 2-manifolds of arbitrary genus and
possibly with boundary.

The general scheme of FreeLence follows that of other connectivity
coders: it starts at an arbitrarily chosen inner vertex of the mesh and
keeps growing bigger and bigger disks around it until the mesh is
fully conquered. If a disk touches itself, its boundary splits into two
components. If later two boundaries meet again, they merge.

At the heart of FreeLence is the idea to exploit geometric informa-
tion about the mesh in a twofold way: first of all, it governs the way
of how to grow disks, see Section 2.2, and secondly, it governs the
way to store the number of free valences of each focus in separate
tables depending on the opening angle of the focus, see Section 2.3.

2.1 Definitions and Related Data Structures

Here we introduce relevant terminology and data structures, stick-
ing to common definitions as closely as possible.

Active List (or cut border): A closed and oriented edge path in
the mesh. It is represented as a doubly linked list of vertices. It
separates the mesh locally in an inner region of conquered edges
and an outer part containing free edges. There may be several active
lists at a time; however, we only use a single priority queue to store
all vertices belonging to some active list.

Opening Angle: Assigned to each vertex in an active list. Except
for special cases, “joins”, its value is 360◦−∑∠(ei,ei+1), the sum
being taken over all angles between neighboring conquered edges
incident to the vertex, measured in degrees. The opening angles
constitute the keys of the priority queue of active vertices.

Focus (or pivot): The vertex in an active list which is currently
processed by the encoder or decoder. The focus is chosen to be the
minimum in the priority queue of active vertices.

Free Vertex: A vertex of the mesh which has not been previously
visited by the encoder.

Free Edge: An edge not previously conquered.

Free Valence: The number of free vertices directly connected to
the current focus vertex by an edge.

2.2 Geometry-driven coding with free valences

Conquering the mesh is based on increasingly growing disks. For
this growing process, FreeLence uses a simple geometric rule: at
each step the algorithm defines a focus as the vertex with the small-
est opening angle in the active lists. The number of free valences of
the focus is stored in the code sequence as an intermediate stage
of mesh compression. Then the free triangles around the focus
are conquered (thereby growing the disk), and a new focus is de-
termined until all vertices of the mesh have been processed. For
triangle meshes, since for each free valence exactly one vertex is

created, the sum of all stored numbers in this code sequence equals
the number of vertices of the mesh (up to “join” events).

2.3 Context-based arithmetic coding - predicting
combinatorics from geometry

The free valences of the code sequence are stored in separate tables.
Each table corresponds to an interval of a dissection of angle space.
Which table to choose from is governed by the opening angle of the
focus. Small angles usually indicate a smaller number of free edges,
and bigger angles a bigger number. Therefore, the numbers in a
single table exhibit only a small variation - a strong advantage for
an entropy coder. On average, for each i = 1..6, an opening angle of
i ·60◦ corresponds to (i−1) free edges. However, a concrete mesh
may heavily deviate from this pattern, see Figure 2.3.

Figure 2: Distribution of opening angles for an encoding run of
the David model. Each free valence has its own distribution. Note
how the curves for different values of free valences overlap due to
the irregularity of the mesh. Negative opening angles can occur
at vertices with negative Gauß curvature and at boundary vertices.
The vertical lines show the optimized thresholds by which the free
valence codes are grouped into contexts.

Therefore, we further adjust each context table according to the ge-
ometry of a concrete mesh. That means, the encoder first stores
for each value of free valences the distribution of the opening an-
gles over this value. By using a greedy heuristic, the dissection of
angle space is then optimized in such a way, that the sum over all
entropies in the tables becomes minimal. The vertical lines in Fig-
ure 2.3 show such a dissection for the David mesh. Each table is
now compressed separately with an order-0 entropy coder [Witten
et al. 1987].

In other words, one can look at the categorization of free valences
into different tables as an ordering according to the discrete geo-
metric Gauß curvature. As valences correspond to combinatorial
Gauß curvature this can be understood as prediction of combina-
torics from geometry.

2.4 Detailed Description

The FreeLence algorithm operates on two main data structures - a
single priority queue where all active vertices are sorted by their
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Figure 3: A sample run of the first steps of the encoder. A starting
vertex is chosen with 6 free valences. The number 6 is stored in the
code and all incident triangles to the vertex are conquered. Then a
new focus is chosen according to the minimal opening angle in the
active list. This focus has 2 free valences, so a 2 is written and all
free triangles incident to the focus are conquered.

opening angles, and one ore more doubly linked lists of these ver-
tices, the active lists. . The algorithm uses a finite set of symbols, P
“move to previous”, N “move to next”, J ”join”, D “dummy”, and
a set of numbers which specify “free valence” and “distance”. The
algorithm works as a finite state machine.

Storing free valences. We give a description for encoding a trian-
gle mesh without boundary (the handling of boundaries is described
later in this section). The algorithm starts by picking an arbitrary
vertex v, the first focus. All edges of v are free so v gets assigned
an outer angle of 360◦, and the number of free edges is stored in
the connectivity code. Then the triangles in the vertex star of v are
closed in clockwise order, and the vertices of the boundary of the
vertex star of v constitute the first active list. All the vertices in an
active list are doubly linked to each other according to their pre-
vious and next neighbors. Also, to each vertex in the active list an
opening angle is assigned, equaling 360◦ minus its conquered inner
angles.

A new focus is repeatedly chosen according to the minimal opening
angle among all vertices in active lists. As all vertices in active
lists reside in a single priority queue, the focus may jump among
different lists. The number of free valences of the focus is then
stored and the open triangles around it are closed. Now the focus
is considered processed, and is removed from the active list and the
priority queue. We keep repeating this scheme until we hit a focus
which has a free edge to a previously visited vertex; we then need
to store a special symbol.

Local and global splits - P, N and J. For a spherical geometry
a previously visited vertex which is connected to the focus by a
free edge, must lie in the same active list as the focus itself. This
event is called a split. Splits are a critical part for an entropy coder
as they destroy the uniformity of the sequence. In practice, splits
take up 0.1% to 5% of all symbols. Most of these splits happen
locally, namely when the successor or predecessor vertex of the
current focus has no free edges. In this case, a single triangle gets
inserted without adding new vertices. We only store the symbol
P or N depending on whether the predecessor or successor to the
focus has no free edges left. The previous or next vertex can then
be conquered without storing another number, because the number
of free edges around it is known to be zero. The queue of active
vertices is then updated according to the new opening angles.

For each focus we keep conquering its free edges in clockwise or-
der. If a free edge is hit which connects the focus to a previously
visited vertex, and this vertex is not the previous or next to the focus,
we have encountered a join, see Figure 2.4. Most joins correspond
to splits, i.e. connect the focus to a vertex in the same active list.
For manifolds with handles there is another kind of joins - where
the focus connects to a vertex in another active list. Those are com-
monly called merges. The number of merges equals the number
of handles of the mesh. When a join is encountered, a symbol J
together with the number of free edges in clockwise order to the
join vertex is stored. A third number is needed by the decoder to
identify the join vertex in the queue. Therefore, the vertices in the
priority queue are sorted according to their Euclidian distance from
the focus. The position in this ordering of the join vertex to the
focus is stored as a third number in a separately encoded offset list.

Figure 4: A sample run for Bunny. The zoom sequence to the right
shows the occurrence of a split. The current focus is emphasized.
The upper picture shows the active list right before the split. The
middle picture is where the split occurs, and in the lower picture the
active list is split in two new lists.

Connecting the focus to the join vertex either splits an active list or
merges two different lists, depending on whether the join vertex is
in the same active list as the focus or a different one. In either case,
the join vertex is duplicated and the previous and next pointers of
the active lists are updated.

Special symbols like previous, next, join, and dummy are repre-
sented as negative integers: −1,−2,−3 and−4 to distinguish them
from free valences.

Boundary vertices. FreeLence handles boundaries similar to the
coder of Touma and Gotsman: The vertices of each boundary are
connected to a new dummy-vertex, so that the mesh is closed.
When the encoder hits a dummy-vertex for the first time, a spe-
cial boundary code D is written to provide a hint for the decoder to
remove the dummy vertices after decoding the mesh.

As for joins, an index is needed along with the boundary symbol
to indicate which of the free edges of the focus is connected to
the dummy vertex. However, this index can be omitted if there
are no free valences other than the dummy vertex. This way, we
need to store only one boundary symbol per hole. In the case that
the boundary is hit by more than one focus independently, a split
occurs, with the dummy vertex being the join vertex. We use a
negative offset to indicate that the join is a dummy vertex. To pre-
vent dummy vertices from becoming a focus, we provide them with
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Encode (TriangleMesh M) {
init

v0 = pickInnerVertex()
addToActiveList(v0)
addToQueue(v0 ,360) // outer angle 360◦

repeat
v = getNewFocus() // new focus
if 0==freeEdges(v.prev) // move to previous

print(P)
elseif 0==freeEdges(v.next) // move to next

print(N)
elseif isJoinVertex(v) // join

first = getFirstJoinEdge(v)
fillToJoinEdge(v, first)
join(v, first)
print(J, first, distance(v, first))

else // no joins
nFree = getNumFreeValences(v)
makeVertexFull(v)
print(nFree)

removeFullVertices()
updateQueue()

until queueIsEmpty() }

Table 1: Pseudocode of the FreeLence encoder.

infinitely large keys in the priority queue.

Since the dummy vertex has no geometric position, we define the
angles of triangles incident to the dummy vertex to be 90 degrees.

2.5 FreeLence Pseudocode

The kernel of our algorithm is based on a single main loop: we keep
adding free vertices and removing full vertices until there are no
vertices left. In each step we update the priority queue of vertices
in active lists according to their opening angles. To highlight the
main ideas we include the pseudocode for encoding triangulated
meshes of arbitrary genus but without boundary.

Decoding. The code for decompression is equally simple and
works along the same lines; the “print” command is replaced by
a “read” command, and the connectivity is restored from the infor-
mation it reads.

Geometry quantization. In test implementations we first quan-
tized the vertex positions to a desired accuracy of usually 8-12 bits,
and then used the parallelogram prediction [Touma and Gotsman
1998] to predict vertex postitions during the mesh traversal. For
higher face degrees we use its extension [Isenburg and Alliez 2002].

3 Analysis and Discussion

FreeLence yields the best bit rates for lossless compression of tri-
angle meshes known so far. It achieves an average of 36% better
rates over popular valence-based schemes like the one of Alliez-
Desbrun and an average of 18% better rates over Angle- Analyzer
for benchmark models, see table 2.

Adaption to regularity is one of the important features of our al-
gorithm, making it attractive for high-resolution subdivision mod-
els. The ability to adapt to very regular models gives FreeLence a
further advantage compared to Angle-Analyzer. The stronger the

model vertices VD AA FL vs VD vs AA
body 711 2.38 1.96 1.87 22% 5%
femur 3,897 2.71 2.09 23%
egea 5,315 1.63 0.82 0.54 67% 34%

fandisk 6,475 1.02 0.72 30%
venus 8,268 2.71 1.95 1.73 36% 11%
foot 10,016 2.20 1.56 1.35 39% 14%

mannequin 11,706 0.37 0.37 0%
dino 14,070 2.25 1.69 1.44 36% 15%
horse 19,851 2.25 1.35 0.95 58% 30%
David 24,085 2.52 1.97 22%
Max 25,445 2.22 1.45 1.19 47% 18%
feline 49,864 2.38 1.50 1.21 49% 19%

average 2.05 1.54 1.29 36% 18%

Table 2: Comparison of our FreeLence (FL) algorithm with the best
known coders on several 3D benchmark triangle meshes: Valence
Driven coder (VD) by Alliez-Desbrun and Angle Analyzer (AA) by
Lee-Alliez-Desbrun. The given numbers are bits per vertex (bpv).
The last two columns show the improvement ratios of FL compared
to VD and AA. The last row shows the average improvement rate
of FL over the other methods. Missing entries indicate that no com-
parison value is available.

correlation between opening angles and free valences the better we
can predict the latter number from the former. With an increasing
regularity of a mesh our bit rates asymptotically tend to zero, a fact
which is also true for the original Touma-Gotsman algorithm. Ta-
ble 3 shows the bit rates for

√
3-subdivision of the “body” model,

see also Figure 3.

verts 711 2,131 6,319 18,955 56,647 169,936
bpv 1.868 1.059 0.486 0.237 0.099 0.062

Table 3: Bit rates in bits per vertex (bpv) for recursive
√

3-
subdivision of the body model, illustrating the ability of FreeLence
to adapt to the regularity of a mesh.

Entropy bound and optimality. Under the assumption of no join
symbols FreeLence guarantees bit rates of 2.8999 bits per vertex
(bpv), a proof is given in the appendix. This is the best-known up-
per bound, improving a previous upper bound of 3.2364 bpv [Gots-
man 2003] by 11%. This is especially interesting as one could
choose the traversal scheme of our algorithm such that it equals that
of Touma-Gotsman in which case the occurrences of joins (global
splits) would be identical. Also, the numbers of stored symbols
are asymptotically identical for both schemes, namely #vertices +
#joins (see appendix). Note that in practice we have even less global
splits than in the Touma-Gotsman case because of the geometry-
driven choice of the next focus. Because free-valence coding im-
proves valence-based coding by 11%, the latter might not be opti-
mal.

Complexity. Since we can bound the maximum length of the ac-
tive list as well as the number of joins by the number of edges,
which is roughly three times the number of vertices. As the num-
ber of elements that are enqued is #joins + #vertices, we have O(V )
enqueueing steps, resulting in a theoretical run-time complexity of
O(V log(V )) for maintaining the priority queue. Additionally we
have an extra penalty for handling joins. However, because the
number of joins is low, the processing time for joins was neglectible
for all models that we have tested.

Higher face degrees. Once FreeLence is mastered for triangle
meshes, it is straightforward to move on to meshes with mixed

6



Figure 5: Models used in the comparison of FreeLence with other
coder.

Figure 6: More regular models yield even higher compression rates.

face degrees. However, we do not go into much detail here as the
straightforward approach, albeit simple, is not yet suited to compete
with bit rates of other techniques such as valence-based [Isenburg
2002] or gate-based [Isenburg and Snoeyink 2000] schemes. Still,
because of its simplicity we briefly sketch it here.

The major difference to the pure triangular case is that for each face
its degree needs to be stored in a separate degree table. As for tri-
angle meshes the focus is chosen according to the minimal opening
angle in the priority queue of active lists and all faces of degree n
with n− 2 free vertices are conquered. For each face its degree n
is stored in the degree table and the number of free valences to the
focus is stored in the context table. During this process it may hap-
pen that a face of degree n is encountered which has less than n−2
free vertices. Then a split occurs within this face. To perform this
split, a virtual edge is introduced which splits the face into a k-gon
(to the left of the virtual edge) and a (n− k + 2)-gon (to the right of
the virtual edge). The decoder must get a hint to remove this edge,
so instead of storing the degree k we store its negative degree −k in
the degree table. The storage of negative degrees is the equivalent
to join symbols. Note, that by using an entropy coder the extra stor-
age of the face degrees produces no noticeable overhead, even if all
faces of the mesh are triangular.

4 Conclusion

We introduced FreeLence, a single-rate connectivity coder for tri-
angle meshes which gives an average of 36% better bit rates for
connectivity encoding than the best valence-based coders known
so far, and an average of 18% over Angle-Analyzer. FreeLence
combines the advantages of the most popular existing techniques,
valence-based encoding and Angle-Analyzer. At the same time it
overcomes some disadvantages of each of these approaches.

FreeLence demonstrates the use of geometric information to in-
crease the regularity of symbol sequences. This increases the
compression ratio much more than the use of order-1 arithmetic
coder. In fact, combining order-1 entropy coding with our tech-
nique slightly worsens the bit rate on most of the tested models.

We also provide evidence that valence-based coding is not near-
optimal by improving the worst case by 11%. FreeLence reduces
the redundancy stored by valence-driven coders by replacing com-
binatorial curvature by free valence information.

For the future we plan to improve the handling of mixed face de-
grees in FreeLence.
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Appendix: Entropy of free valence sequences

For triangle meshes we show that asymptotically the worst case bit
rates for free valence codes is strictly less than the worst case bit
rates for full valences codes. In fact we even show a stronger re-
sult, namely that the bit rates for free valence codes is 11% below
the entropy of the code of average valences with the average being
taken over all triangle meshes, see [Gotsman 2003] for precise dis-
tinctions between worst case and average entropies. Note that all of
these bit rate estimates do not take “split” symbols into account but
are only concerned with the valence part of the code sequence. Our
bit rate estimate has a major consequence: full valence codes for
triangle meshes contain redundant information which is not con-
tained in free valence codes. In fact, one could replace the traversal
scheme of FreeLence by the traversal scheme of [Touma and Gots-
man 1998] so that the number of split occurrence would be identical
for both codes. But since the valence part of the code for free va-
lences is on average less then the entropy for full valence codes,
this implies the non-optimality of (full) valence-based codes. The
question about optimality is hence open once again.

Worst case entropy for free valence codes. We assume the setting
of a triangulated orientable 2-manifold with V vertices and without
boundary. We also assume that this manifold is topologically equiv-
alent to a sphere. Recall that the entropy of a sequence of symbols
is given by

E =−∑
i

pi · log2 pi, (1)

where pi is the frequency of the ith symbol. In our case we have
the symbols N for move to next, P for move tp previous and i for i
free valences. Their corresponding frequencies in the sequence are
denoted by pN , pP and pi. Under the assumption of no splits, the
total number of these symbols is exactly V −2 because all vertices
in the mesh, except those in the last triangle, correspond to exactly
one of the symbols in the code, and for the last triangle only a single
symbol, 0, is needed. This and the fact that each free valence cor-
responds to exactly one free vertex (except for the very first focus)
imply that

∞

∑
i=0

pi + pN + pP = 1
∞

∑
i=1

i · pi = 1. (2)

We must now maximize the worst case free valence entropy

Efree val worst =−
∞

∑
i=0

pi · log2 pi + pN · log2 pN + pP · log2 pP (3)

under the assumptions (2). We take the standard way of employing
Lagrange multipliers, so we let

f (pN , pP, p0, p1, ...,λ ,µ) =

Efree val worst + λ (
∞

∑
i=0

pi + pN + pP−1)+ µ(
∞

∑
i=1

i · pi−1).

The partial derivatives of f with respect to pi, pN and pP must then
vanish so that log2 pi = (λ − 1) + i · µ and log2 pN = log2 pP =

(λ −1). We can now set α := 2λ−1 and β := 2µ and get

pi = α ·β i and pN = pP = α. (4)

Plugging back into (2) gives

α · (
∞

∑
i=1

β i + 3) = 1 and α · (
∞

∑
i=1

i ·β i) = 1. (5)

Collecting terms in the infinite sums then gives

α ·β
(1−β )

+ 3α = 1 and
α ·β

(1−β )2 = 1. (6)

Solving these last two equations for α and β yields

α =
1
2
− 1√

12
and β =

3
2
− 3√

12
(7)

Combining equations (3) and (4) then gives the worst case entropy
for free valence codes

Efree val worst =− log2(1−
√

3
2

) = 2.8999... bpv.

Free-valence-based code optimality. In [Gotsman 2003] Gotsman
has remarked that the entropy of all triangle mesh valence distribu-
tions, Eall val is strictly less than then Tutte entropy. This analysis is
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based on the results of [Bender and Wormald 1985] concerning the
relative frequency of valences over all triangle meshes,

Eall val = 3.2364... bpv

ETutte = log2(
256
27

) = 3.2452... bpv.

Our calculation of the worst case entropy for free valence codes
shows that Eall free val - the entropy of the distribution of free va-
lences in all free valence codes in the class of all triangle meshes
is not only strictly less than the Tutte entropy but also strictly less
than Eall val, the entropy of the distribution of full valences in all the
free valence codes in the class of all triangle meshes:

Eall free val ≤ Efree val worst < Eall val < ETutte

This implies that valence-based coding may in fact not be optimal
but can be improved by free-valence-based coding because the dis-
persion of symbols in free-valences-based codes is less than in
valence-based codes. Intuitively this is based on the fact that the
average number of free valences is 1 free edge per vertex whereas
the average number of full valences in a triangle mesh is 6 edges
per vertex. Together with the fact that the traversal scheme for
free-valence-based coding can be made the same as for the Touma-
Gotsman algorithm (so that the occurrence of split symbols be-
comes identical in both of them) implies that free-valence-based
coding breaks the ’optimality’ for valence-based schemes in prac-
tice.

Counting symbols. We now assume an orientable triangulated 2-
manifold mesh with V vertices and g handles but without boundary.
We prove that the number of stored symbols of a free-valence coder
is asymptotically equal to V +J, the number of vertices of the mesh
plus the number join symbols (splits + merges) in the code. This
is the same number as for valence-based coders so that both tech-
niques have identical code lengths. We first give a count of the
split symbols: each split increases the number of active lists by 1.
Each active list will finally ’die’ in a single triangle which is closed.
Right before such a triangle is closed its boundary will make up an
active list itself. Let N0 be this number of ’dying’ triangles in the
conquering process. Also, to each handle there corresponds exactly
one split and exactly one merge operation which together leave the
number of active lists invariant. Hence we have for the number of
joins

J = N0 + 2 ·g−1.

We can now count the total number of symbols N of a free valence
coder: each vertex contributes one of the symbols N for move to
next, P for move to previous or i for i free valences. Each join
operation duplicates the focus and the corresponding join vertex
and adds an extra J itself (there is an extra list where the distances of
the join vertices to the focus are stored; those are not counted here).
So the number of joins increase the number of symbols by 3 · J.
However, each occurrence of a ’dying triangle’, a triangle whose
boundary becomes itself an active list, requires only a single 0 for
one of its vertices, the other two do not require an extra symbol.
Hence, the total number of symbols is num stored symbols = V +
3 · J−2 ·N0. Together with the last equation this implies

num stored symbols = V + J + 4 ·g−2

.

Figure 7: A complete run of FreeLence. (a) Pick an initial vertex,
it has valence 6, write 6. (b) Close the triangles incident to the
initial vertex and find a new focus according to minimal opening
angle; the new focus has 2 free valences, write 2. (c) Close the
triangles incident to the focus and find a new focus according to
minimal opening angle; the vertex previous to the focus has no free
edges, write P and close previous. (d) Focus has 0 free valences,
write 0. (e) Focus is boundary vertex with 1 free edge preceding
the boundary in clockwise order, write D 1. Connect a virtual edge
(dashed line) to the dummy vertex. Decrease opening angles of the
focus’ neighbors by 90◦. The total count of free valences of the
focus is 1 write 1. (f) New focus has 1 free valence, write 1. (g) to
(j). Focus has 0 free valences; write 0. (k) Active list has length
two. Stop. The full seqence is 6 2 P 0 D 1 1 1 0 0 0 0.

Figure 8: Intermediate state of the encoding of a pelvic bone. Note
how circular the active list remains during the processing.
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